Scott's Induced Subdivision Conjecture for Maximal Triangle-Free Graphs

NICOLAS BOUSQUET 1 and STÉPHAN THOMASSÉ 2†

 ¹ Université Montpellier 2, CNRS, LIRMM, 161 Rue Ada, 34392 Montpellier, France (e-mail: bousquet@lirmm.fr)
² Laboratoire LIP (Université Lyon, CNRS, ENS Lyon, INRIA, UCBL), 46 Allée d'Italie, 69364 Lyon CEDEX 07, France (e-mail: stephan.thomasse@ens-lyon.fr)

Received 18 July 2011; revised 14 December 2011; first published online 21 March 2012

Scott conjectured in [6] that the class of graphs with no induced subdivision of a given graph is χ -bounded. We verify his conjecture for maximal triangle-free graphs.

AMS 2010 Mathematics subject classification: 05C15

Let F be a graph and let Forb^{*}(F) be the class of graphs with no induced subdivision of F. A class \mathcal{G} of graphs is χ -bounded if there is a function f such that every graph G of \mathcal{G} satisfies $\chi(G) \leq f(\omega(G))$, where χ and ω denote the chromatic number and the clique number of G. Gyárfás conjectured that Forb^{*}(F) is χ -bounded if F is a cycle [3]. Scott proved that for each tree T, Forb^{*}(T) is χ -bounded, and conjectured the following [6].

Conjecture 1. For every graph F, Forb^{*}(F) is χ -bounded.

This question is open for triangle-free graphs, which is probably the core of the problem. It also has nice corollaries, for instance it would imply that the triangle-free intersection graphs of segments in the plane have a bounded chromatic number. Indeed, by planarity, they cannot contain an induced subdivision of a K_5 with all the edges subdivided twice. This is a well-known question of Erdős, first cited in [3]. Our goal is to prove Scott's conjecture for triangle-free graphs with diameter two, *i.e.*, maximal triangle-free graphs.

[†] This work was partially supported by grant ANR-09-JCJC-0041.

Theorem 1. There is a constant c such that every maximal triangle-free graph G with $\chi(G) \ge e^{c \cdot l^4}$ contains an induced subdivision of every graph F on l vertices.

Proof. Let *H* be the *neighbourhood hypergraph* of *G*, *i.e.*, the hypergraph with vertex set *V* and with hyperedges the closed neighbourhoods of the vertices of *G*. Observe that *H* has packing number one, *i.e.*, its hyperedges pairwise intersect. Note also that if the transversality of *H* is *t* (minimum size of a set of vertices intersecting all hyperedges), then $\chi(G) \leq 2t$. Indeed, *G* can be covered by *t* closed neighbourhoods, hence by *t* induced stars since *G* is triangle-free. Since $\chi(G) \geq e^{c \cdot l^4}$, the transversality of *H* is at least $1/2 \cdot e^{c \cdot l^4}$.

Ding, Seymour and Winkler [2] proved that if a hypergraph H has packing number one and transversality greater than $11d^2(d+4)(d+1)^2$, it contains d hyperedges e_1, \ldots, e_d and a set of vertices $Y = \{y_{i,j} : 1 \le i < j \le d\}$ such that $y_{i,j} \in e_i \cap e_j$ and $y_{i,j} \notin e_k$ for all $k \ne i, j$. Since the transversality of H is at least $1/2 \cdot e^{c/l^4}$, we have such a collection of hyperedges e_1, \ldots, e_d with $d \ge e^{c_2 \cdot l^4}$ where c_2 is a constant.

Each e_i corresponds to the closed neighbourhood of a vertex x_i of G. Let $X = \{x_1, \ldots, x_d\}$. Since G is triangle-free, there exists a stable set S in X of size at least \sqrt{d} (which has size at least $e^{c_3 \cdot l^4}$). Replacing X by S, we can assume that X is indeed a stable set, still denoting it by $\{x_1, \ldots, x_d\}$. Note that no $y_{i,j}$ belongs to X since $y_{i,j}$ would be a neighbour of some vertex of X, which is a stable set. Consequently, X is a stable set of G, the set Y is disjoint from X, and for every pair x_i, x_j there is a unique vertex $y_{i,j}$ of Y which is joined to exactly these two vertices of X.

By a theorem of Kim [4], every triangle-free graph on *n* vertices has a stable set of size $\Theta(\sqrt{n \log n})$. Since the restriction of *G* to *Y* is triangle-free and has size $\binom{d}{2}$, by Kim's theorem, it contains a stable set *Y'* of size $\Theta(d\sqrt{\log d})$. Consider the graph *G'* on vertex set *X* with an edge $x_i x_j$ if and only if $y_{i,j} \in Y'$. Note that if *G''* is a subgraph of *G'* on vertex set *X'*, then *G''* appears as an induced subdivision in *G*. Indeed, the induced restriction of *G* to *X'* \cup *Y''*, where $y_{i,j} \in Y''$ whenever $x_i x_j$ is an edge of *G''*, is such a subdivision. So we just have to show that *G'* contains a subdivision of our original graph *F* as a subgraph.

A theorem due to Mader [5] and improved by Bollobás and Thomason [1] ensures that each graph with average degree $512 \cdot l^2$ contains a subdivision of K_l , hence of F. Since $d \ge e^{c_3 \cdot l^4}$, there is a constant c_4 such that $\sqrt{\log d} \ge c_4 l^2$, hence G' contains a subdivision of F, and therefore G has an induced subdivision of F.

Ding, Seymour and Winkler also bound the transversality of H in terms of the packing number. Hence the chromatic number of a triangle-free graph G is also bounded when the maximum packing of neighbourhoods is bounded. This is the case for instance if the minimum degree is $c \cdot n$ for some fixed constant c > 0.

References

- Bollobás, B. and Thomason, A. (1998) Proof of a conjecture of Mader, Erdős and Hajnal on topological complete subgraphs. *Europ. J. Combin.* 19 883–887.
- [2] Ding, G., Seymour, P. and Winkler, P. (1994) Bounding the vertex cover number of a hypergraph. Combinatorica 14 23–34.

- [3] Gyárfás, A. (1987) Problems from the world surrounding perfect graphs. Zastos. Mat. XIX 413–441.
- [4] Kim, J. (1995) The Ramsey number R(3,t) has order of magnitude $t^2/\log(t)$. Random Struct. Alg. 7 173–207.
- [5] Mader, W. (1967) Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Mathematische Annalen 174 265–268.
- [6] Scott, A. (1997) Induced trees in graphs of large chromatic number. J. Graph Theory 24 297-311.