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Abstract

We show that there exists a continuous function from the unit Lebesgue interval to itself such that for any
ε ≥ 0 and any natural number k, any point in its domain has an ε-neighbourhood which, when feasible,
contains k mutually disjoint extremally scrambled sets of identical Lebesgue measure, homeomorphic to
each other. This result enables a satisfying generalisation of Li–Yorke (topological) chaos and suggests an
open (difficult) problem as to whether the result is valid for piecewise linear functions.
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1. Introduction
It was elementary, but not simple by any means. The problem turned out to be deep, the
appearance of simplicity was deceptive. Khinchin [8]

Independent and pioneering results of Sharkovsky [17] and Li and Yorke [9] have led to
a rich literature on continuous self-maps on the unit interval, and the phrase ‘Li–Yorke
chaotic maps’ is now part of the vernacular of dynamical systems and affiliated
applied fields, not only physics and engineering, but also evolutionary biology and
economics. Sharkovsky defines an order relation on the possible periods of periodic
points, establishing precise conditions under which such interval maps can have points
of any period, while Li and Yorke furnish conditions under which nonperiodic chaotic
behaviour is displayed by an uncountable subset of initial points of an interval map.
Much effort has been expended to capture the apparently random behaviour of chaotic
trajectories through precise mathematical definitions of chaos itself. The excellent
monograph by Ruette [16] contains a very precise taxonomy of the different notions of
chaos that have been explored (see page VIII of the introduction for a clear schematic
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summary). For the distinctions between turning points, periodic points, periodic orbits,
orbit portraits and their evolution under the general rubric of the concept of an orbit,
see Milnor and Thurston’s monograph [10] and the extensive work that has followed
it: the field of economic dynamics still has much to learn from this literature.

The result we present belongs more generally to the subject of the pervasiveness
of Li–Yorke chaos, the existence of scrambled sets in the domain of a map that can
be arbitrarily large or arbitrarily small as measured by the Lebesgue measure but are
pervasive in being spread all over the domain. The result addresses the ‘observability’
of chaos exhibited by interval maps as tracked by the Lebesgue measure of sets of
initial points with chaotic trajectories (see Misiurewicz [11] for the linkage between
the Lebesgue measure of scrambled sets and observability of chaos). As background,
let us note Jiménéz-López singling out in his review [5] of Ruette [16] ‘a very beautiful
(and far from easy to prove) dichotomy result by Smítal: a continuous interval map is
either Li–Yorke chaotic, or all points are (up to small errors) eventually periodic for it’.

In this connection, Nathanson [13] presents a continuous self-map on the interval
that exhibits unobservable Li–Yorke chaos in a system exhibiting dynamics that can be
made as regular (periodic) as one pleases. For any natural number n ≥ 3, he constructs
a piecewise linear continuous map such that all trajectories except for a set of Lebesgue
measure zero have eventually periodic trajectories of period n. On the other hand,
there is a dual, apparently orthogonal, result due to Kan [6], which questions the
prevailing sentiment of the negligibility of the set of initial conditions that give rise to
Li–Yorke chaotic trajectories. His canonical example consists of a continuous self-map
defined on the unit interval which has a scrambled set whose Lebesgue measure is
1/8. This result was soon generalised to show a scrambled set, first of full outer
Lebesgue measure [18] and then [12] and [15] for extensions and [1], [2, footnote
66], [14, page 63] and [16, page 111] for its framing more broadly in the current
literature.

The point of this paper (the question posed and answered) is that we can extend
Kan’s construction to find a chaotic interval map that has an arbitrarily large (but finite)
number of mutually disjoint extremally scrambled sets which are homeomorphic to
each other, and each of which has positive Lebesgue measure. Extremally scrambled
sets of functions defined on the closed unit interval are scrambled sets in the Li–Yorke
sense, which are comprised of initial points whose trajectories contain subsequences
whose distance from an arbitrary periodic point can be bounded below by 1/2 (the
largest possible positive constant in this context). A precise formal definition is given
in Section 2. Our first theorem shows that extremally scrambled sets are dispersed
all over the domain of a continuous self-map of the interval. Our second theorem,
based on a similar construction, allows us to recover not only Kan’s result but also the
theorems of Smítal and Rajan as particular cases. Equally to the point, our construction
yields, with straightforward modifications, a continuous self-map whose scrambled
set, though again dispersed all over the interval, can be of zero Lebesgue measure.

In terms of applications, and staying with economic dynamics, let us note that
Nathanson’s map with parallel left and right arms was extended, by Khan and

https://doi.org/10.1017/S0004972722000144 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722000144


134 L. Deng, M. A. Khan and A. V. Rajan [3]

Rajan [7], to yield a family of maps whose arms are not parallel, and thereby shown to
constitute reduced forms of workhorse two-sector models in mathematical economics.
In [3], the application is shown to go beyond the technical into the substantive. The
Khan–Rajan extension of Nathanson shows how in equilibrium growth ‘anything goes’
in the sense that, for any natural number n, there exists a prototypical two-sector model,
associated with Shinkai, Uzawa and Srinivasan, that, while admitting Li–Yorke chaotic
trajectories, exhibits eventually periodic trajectories of period n, starting from almost
any initial condition. Equally importantly, while this is evident in (Keynesian) models
of equilibrium growth, such trajectories are rendered impossible in (Ramseyan) models
of optimal growth in which intertemporal arbitrage conditions play a determining role
(see [3]).

Before turning to the plan of the work and concluding this introduction, let us note
some questions that are rendered open by our result: the open questions are arguably
as important as the answers given here. The first is the observation that the map we
construct, like that of [6], barring the two linear arms on left and right outside, has
Cantor’s ‘devil’s staircase’ in the middle. We can then ask whether the parallelism of
the left and right arms, reminiscent of Nathanson’s map, can be relaxed to nonparallel
arms, à la Khan and Rajan [7], to strengthen the results on the two-sector model
available in [3]. Technically, this would also strengthen the result of [15]. However,
as stated above, this is not merely of technical interest, but of substantive consequence
for economic dynamics.

The second open question relates to an orthogonal direction of unobservable
Li–Yorke chaos. Can Corollary 2.7 below be extended to show that for any natural
numbers n, m ∈ N, and for any piecewise linear map with the number of pieces less
than or equal to n, the size of the m dispersed scrambled sets is zero?

Finally, note that the our work has nothing to say about the closely related result of
Misiurewicz [12] which uses topological conjugacy, and thereby different techniques,
to obtain a continuous map for which there exists a scrambled set of Lebesgue measure
1. Progress in this direction would lead to a fuller exploration in economic dynamics
of an idea that has not been sufficiently attended to on the topological conjugacy
of economic models, and thereby an invariance of the qualitative properties of their
dynamics.

After this introduction, Section 2 presents the results and Section 3 the proofs.
Section 3 is divided into three subsections: the argument, the construction and the
proofs of the ancillary results.

2. The result

Denote by C([0, 1]) the space of continuous functions from the unit interval to
itself.

DEFINITION 2.1. An uncountable subset K ⊂ [0, 1] is called an extremally scrambled
set for a function f ∈ C([0, 1]), if, for any x, y ∈ K, x � y:
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(i) lim supk→∞ | f k(x) − f k(y)| = 1;
(ii) lim infk→∞ | f k(x) − f k(y)| = 0; and
(iii) lim supk→∞ | f k(x) − f k(x0)| ≥ 1

2 for any periodic point x0 of f.

THEOREM 2.2. For any natural number k and any positive real number ε, there
exists a continuous mapping fk,ε ∈ C([0, 1]) such that for any x ∈ [0, 1], the interval
(x − ε, x + ε) ∩ [0, 1] contains k mutually disjoint extremally scrambled sets of identi-
cal positive Lebesgue measure, homeomorphic to each other.

If we set k = 1 in Theorem 2.2, following a similar construction to Section 3.2
below, we can adjust the size of the extremally scrambled set to obtain the following
result.

THEOREM 2.3. For any (ε, δ) ∈ (0, 1) × (0, 1], there exists a continuous mapping gε,δ ∈
C([0, 1]) that has an extremally scrambled set of Lebesgue measure (1 − δ), such that
for any x ∈ [0, 1], the interval (x − ε, x + ε) ∩ [0, 1] contains an extremally scrambled
set having positive Lebesgue measure.

On letting the Lebesgue measure of the union of the extremally scrambled sets be
any real number in [0, 1), Theorem 2.3 can be sharpened to yield the results in Kan
[6], Smítal [18] and Rajan [15] as corollaries. It should be noted that in contrast to the
proofs in [6, 15] which influence the methods used herein, Smítal obtains his result
through a very different construction.

COROLLARY 2.4 (Kan). There exists f ∈ C([0, 1]) which possesses an extremally
scrambled set of Lebesgue measure 1/8.

COROLLARY 2.5 (Smítal). For any ε ∈ (0, 1), there exists fε ∈ C([0, 1]) which pos-
sesses a scrambled set of Lebesgue measure greater than 1 − ε.

COROLLARY 2.6 (Rajan). For any ε ∈ (0, 1), there exists fε ∈ C([0, 1]) which pos-
sesses an extremally scrambled set of Lebesgue measure 1 − ε.

COROLLARY 2.7. For any ε ∈ (0, 1), there exists a mapping fε ∈ C([0, 1]) that has
an extremally scrambled set of Lebesgue measure 0, such that for any x ∈ [0, 1], the
interval (x − ε, x + ε) ∩ [0, 1] contains an extremally scrambled set having Lebesgue
measure 0.

3. The proofs

The proof of Theorem 2.2 rests on Proposition 3.1 stated and proved below.
The proof of Theorem 2.3 follows similarly from a straightforward modification of
Proposition 3.1 in the light of Remarks 3.2 and 3.3 in Section 3.2 below. The proofs of
the four corollaries are straightforward and left to the reader.
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3.1. The proof of Theorem 2.2. For any arbitrary positive integer m, define

Lm =

[
0,

1
3m

]
, Mm =

[ 1
3m , 1 − 1

3m

]
, Rm =

[
1 − 1

3m , 1
]
, M◦m =

( 1
3m , 1 − 1

3m

)
,

Gm =

{
gm ∈ C([0, 1]) : gm(x) =

{3mx if x ∈ Lm
3mx − (3m − 1) if x ∈ Rm

}
.

For any arbitrary positive integer n, partitionM◦m into 2n mutually disjoint intervals of
length δnm = 2−nμ(M◦m) with each interval defined as

Mn
m,j =

( 1
3m + ( j − 1)δnm,

1
3m + jδnm

)
, for 1 ≤ j ≤ 2n.

PROPOSITION 3.1. For any positive integers m, n and k, there exists a continuous map-
ping in Gm such that each interval Mn

m,j (for 1 ≤ j ≤ 2n) contains k mutually disjoint
extremally scrambled sets of identical positive Lebesgue measure, homeomorphic to
each other.

PROOF OF THEOREM 2.2. Choose positive integers m and n sufficiently large so
that 3−m + δnm < ε. From Proposition 3.1, there exists a continuous mapping f in Gm
such that each interval Mn

m,j (for 1 ≤ j ≤ 2n) contains k mutually disjoint extremally
scrambled sets of identical positive Lebesgue measure, homeomorphic to each other.
Define fk,ε = f . Then, [0, ε) contains Mn

m,1 and (1 − ε, 1] contains Mn
m,2n . For any

x ∈ (0, 1), the segment (x − ε, x + ε) ∩ [0, 1] contains some Mn
m,j and hence contains

k mutually disjoint extremally scrambled sets of identical positive Lebesgue measure,
homeomorphic to each other. �

3.2. The construction. The construction is obtained through the following three
steps. In step 1, divide the unit interval into three exhaustive segments Lm, Mm and
Rm as defined above. We first construct 2n mutually disjoint sets in Lm which are
extremally scrambled sets for any function in Gm. Then, in step 2, for the middle
interval Mm, we construct 2n mutually disjoint Smith–Volterra–Cantor (SVC) sets
each of which is contained in each of the 2n intervals Mn

m,j (1 ≤ j ≤ 2n). Finally, in
step 3, we construct a homeomorphism from the 2n SVC sets to the 2n extremally
scrambled sets. Extending the homeomorphism to the unit interval gives the desired
continuous map fm,n.

Step 1. Denote by Ω the space of infinite binary sequences, which is an ordered
topological space when equipped with the lexicographic ordering and topologised with
the topology of pointwise convergence. Consider the 2n+1 binary (n + 1)-tuples

εj = (ej
1, . . . , ej

n+1) for 1 ≤ j ≤ 2n+1, where ej
k ∈ {0, 1}.

Define a binary relation 0 ≺ 1 and order the 2n+1 binary (n + 1)-tuples lexicographi-
cally so that ε1 ≺ ε2 ≺ · · · ≺ ε2n+1 . Define

Ωεj = {(ωk)k≥1 ∈ Ω : (ωk)k≥1 = (εj,ωn+2,ωn+3, . . .)}.
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Then Ωε1 ≺ · · · ≺ Ωε2n+1 ,Ωεi ∩Ωεj = ∅ for i � j and Ω = Ωε1 ∪ · · · ∪Ωε2n+1 . Hence the
subsets {Ωε1 , . . . ,Ωε2n+1 } form a partition of the space Ω into 2n+1 mutually disjoint
subsets. Consider the shift mapping σ : Ω→ Ω given by

σ(ω) = (σ(ω1),σ(ω2), . . .), where σ(ωj) = ωj+1 for j ≥ 1 and ω ∈ Ω.

Define φm : Ω→ [0, 1] by

φm(ω) =
∞∑

k=1

(3m − 1)ωk

3mk ,

and observe the following routine facts:

(i) φm is an order-preserving homeomorphism;
(ii) φm(Ω) ∩M◦m = ∅; and
(iii) φm(Ω) is homeomorphic to the classical ‘middle-thirds’ Cantor set [4].

Consider (ωk)k≥1 ∈ Ωεj for 1 ≤ j ≤ 2n. For any positive integer t, define

Λt =
(
ω1 · · ·ω1︸����︷︷����︸

t times

ω2 · · ·ω2︸����︷︷����︸
t times

· · ·ωt · · ·ωt︸���︷︷���︸
t times

)
and Bt =

(
0 · · · 0︸︷︷︸
t times

1 · · · 1︸︷︷︸
t times

)
.

The mapping Zεj : Ωεj → Zεj (Ωεj ) ⊂ Ωεj defined by

Zεj (εj,ωn+2, . . .) = (εj, B1Λ1B2Λ2B3Λ3 · · · )
is an order-preserving homeomorphism. We define

Kεj = φm ◦ Zεj (Ωεj ), for 1 ≤ j ≤ 2n,

and observe that as Ωε1 ≺ · · · ≺ Ωε2n and Zεj (Ωεj ) ⊂ Ωεj for 1 ≤ j ≤ 2n, we have
Zε1 (Ωε1 ) ≺ · · · ≺ Zε2n (Ωε2n ). Since the function φm is an order-preserving homeomor-
phism and since φm(Ωεj ) ⊂ Lm for 1 ≤ j ≤ 2n, it follows that φm(Zε1 (Ωε1 )) = Kε1 <
· · · < φm(Zε2n (Ωε2n )) = Kε2n . Thus, the sets Kε1 , . . . , Kε2n are a collection of 2n mutually
disjoint subsets of the interval Lm. Later we will establish in Proposition 3.6 that each
of the 2n mutually disjoint subsets Kεj is an extremally scrambled set for every function
gm ∈ Gm.

Step 2. For ease of exposition, let Mεj = (αj, βj) ≡ Mn
m,j−2n for 2n + 1 ≤ j ≤ 2n+1. We

construct positive measure SVC sets Cεj ⊂ Mεj such that μ(Cεj ) = 1/2n+2. To this end,
consider any one of the above intervals Mεj , and consider its midpoint (αj + βj)/2 = mj.
Choose a positive real number ε such that

1
2n+2 < ε < δ

n
m and let δ =

(
ε − 1

2n+2

)
.

Define E0
εj
= [
εj , rεj ] = [mj − 1

2ε, mj +
1
2ε] and set 
εj0 = 
εj +

1
4δ, rεj0 = mj, 
εj1 = mj +

1
4δ, rεj1 = rεj and E1

εj
= [
εj0, rεj0] ∪ [
εj1, rεj1]. Observe that μ(E1

εj
) = μ(E0

εj
) − 1

2δ. Next,
set 
εj00 = 
εj0 +

1
16δ, rεj00 =

1
2 (
εj0 + rεj0), 
εj01 = rεj00 +

1
16δ, rεj01 = rεj0, 
εj10 = 
εj1 +

1
16δ, rεj10 =

1
2 (
εj1 + rεj1), 
εj11 = rεj10 +

1
16δ, rεj11 = rεj1 and define E2

εj
= [
εj00, rεj00] ∪
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[
εj01, rεj01] ∪ [
εj10, rεj10] ∪ [
εj11, rεj11]. Observe that μ(E2
εj

) = μ(E1
εj

) − 1
2δ = μ(E

0
εj

) −
( 1

2δ +
1
4δ). Repeating this construction yields a decreasing sequence of sets Ek

εj
for

k = 0, 1, 2, . . . in which every Ek
εj

is a finite union of disjoint closed and bounded
intervals and is therefore compact. Observe that all the right end points of Ek

εj
are

retained in Ek+1
εj

, but that all the left end points of Ek
εj

have been replaced by new left
end points which only survive one iteration of this construction of the SVC set. Thus,
the decreasing sequence of nonempty compact sets E0

εj
⊃ E1

εj
⊃ E2

εj
⊃ · · · must have a

nonempty intersection Cεj =
⋂∞

k=0 Ek
εj
� ∅ where

μ(Cεj ) = μ(E
0
εj

) −
∞∑

k=1

δ

2k = μ(E
0
εj

) − δ = ε − δ = ε −
(
ε − 1

2n+2

)
=

1
2n+2 .

Since Cεj ⊂ Mεj , the 2n mutually disjoint SVC sets Cε2n+1
, . . . ,Cε2n+1 in M◦m all have

positive Lebesgue measure 1/2n+2.

REMARK 3.2. For any δ ∈ (0, 1), pick m such that the length of the middle interval is
strictly greater than 1 − δ. We can adjust the measure of what we remove from each
interval Mεj to make sure that the sum of the measures of the SVC sets adds up to
1 − δ.

REMARK 3.3. We can also make each Cantor set in our construction have measure 0
by the standard procedure of iteratively removing the open middle third from a set of
intervals. This construction will yield pervasive scrambled sets of measure 0 as stated
in Corollary 2.7.

Step 3. Fix any particular j with 2n + 1 ≤ j ≤ 2n+1. We shall construct an
order-preserving homeomorphism ξεj : Ωεj → Cεj , where Ωεj is constructed in step 1
and Cεj is constructed in step 2. Towards this end, for every positive integer k > 1 and
for any (k − 1)-tuple (ω1, . . . ,ωk−1), replace in Ω

(ω1, . . . ,ωk−1, 1, 0, 0, . . . , 0, 0, . . .) by (ω1, . . . ,ωk−1, 0, 1, 1, . . . , 1, 1, . . .),

where the first terminates in an infinite sequence of 0s and the second terminates in an
infinite sequence of 1s.

Consider the set Ω1
εj

of all binary sequences in Ωεj that terminate in 1 after a finite
number of coordinates starting at ωn+2 (after the first n + 1 coordinates which are
always equal to εj for every element of Ωεj ). It is clear that this is a countable dense
subset of Ωεj . Let C1

εj
consist of all the right end points that appear in the decreasing

sequence of closed intervals Ek
εj

(k = 0, 1, 2, . . .) whose intersection is the SVC set Cεj .
Observe that C1

εj
is also a countably infinite dense subset of Cεj .

We contend that all the right end points that comprise C1
εj

are indexed by subscripts
which are sequences in Ω1

εj
. To see that this is so, observe that the first time that the

terminal binary digit 1 appears as a coordinate in the subscript that indexes a given
right end point in Cεj , in the Nth coordinate say, counted after εj (which always appears
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as the first n + 1 coordinates of every element in Cεj ) so that ωN = 1 and ωN−1 = 0 for
N > n + 2, is in the set EN−n−1

εj
at which the right end point rεj, . . . ,ωN−1, 1︸������������︷︷������������︸

N subscripts

appears. Now

observe that after the infinite intersection Cεj =
⋂∞

k=0 Ek
εj

has been taken, this right end
point rεj, . . . ,ωN−1, 1︸������������︷︷������������︸

N subscripts

in Cεj is indexed by the subscript

rεj,...,ωN−1,1,1,1,..., where (εj, . . . ,ωN−1, 1, 1, 1, . . .) ∈ Ω1
εj

.

Thus, every right end point of each interval En
εj

is indexed by a subscript in Ω1
εj

.
We define an order-preserving bijection ξ1εj

: Ω1
εj
→ C1

εj
by

ξ1εj
(εj,ωn+2, . . . ,ωN−1, 1, 1, 1, 1, . . .) = rεj,ωn+2,...,ωN−1,111....

This map is plainly an order-preserving bijection, and extends to an order-preserving
homeomorphism ξεj : Ωεj → Cεj as the set Ω1

εj
is dense in Ωεj and C1

εj
is dense in Cεj .

Now, consider the mapping r : Ω→ Ω defined by r((ωk)k≥1) = (r(ωk)k≥1) where,
for every k ≥ 1,

r(ωk) =

⎧⎪⎪⎨⎪⎪⎩
0 if ωk = 1,
1 if ωk = 0.

It is immediate that r is an order-reversing homeomorphism and that

r(Ωεj ) = Ωε(2n+1+1)−j
, for 1 ≤ j ≤ 2n.

To sum up, for all j with 2n + 1 ≤ j ≤ 2n+1,

Cεj

ξ−1
εj→ Ωεj

r→ Ωε(2n+1+1)−j

Zε
(2n+1+1)−j→ Zε(2n+1+1)−j

(Ωε(2n+1+1)−j
)
φm→ Kε(2n+1+1)−j

.

Since every mapping that appears in the sequence above is a homeomorphism, and all
but one are order-preserving, the mapping fεj,m,n : Cεj → Kε(2n+1+1)−j

defined by

fεj,m,n = (φm ◦ Zε(2n+1+1)−j
◦ r ◦ ξ−1

εj
), for 2n + 1 ≤ j ≤ 2n+1

must be an order-reversing homeomorphism.
To finish the construction of a continuous mapping in Gm, define S = ⋃2n+1

j=2n+1 Cεj ,
K =⋃2n

j=1 Kεj and fm,n : S → K by setting fm,n |Cεj= fεj,m,n. We define fm,n onLm ∪ Rm

to ensure that fm,n ∈ Gm by setting

fm,n(x) =
{3mx for x ∈ Lm,
3mx − (3m − 1) for x ∈ Rm.

We linearly interpolate to extend fm,n toMm from S. So, for any s ∈ Mm\S, we define
s
 = sup({t ∈ S : t < s} ∪ {1/3m}), sr = inf({t ∈ S : t > s} ∪ {1 − 3−m}) and

fm,n(s) = fm,n(s
) +
s − s

sr − s


( fm,n(sr) − fm,n(s
)).
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3.3. The proofs of the ancillary results. In this subsection, we furnish the proof
of Proposition 3.1. To this end, we first state and prove two lemmas. These lemmas
will then be used to establish Proposition 3.6, which itself will be used in the proof of
Proposition 3.1.

LEMMA 3.4. For any positive integer m, let ω ∈ Ω and gm ∈ Gm. Then, for any positive
integer k, gk

m ◦ φm(ω) = φm(σk(ω)).

PROOF OF LEMMA 3.4. We argue by mathematical induction on k. If k = 1, then

gm ◦ φm(ω) = gm

( ∞∑
k=1

(3m − 1)ωk

3mk

)
= 3m
( ∞∑

k=1

(3m − 1)ωk

3mk

)
− (3m − 1)ω1

=

∞∑
k=2

(3m − 1)ωk

3m(k−1) =

∞∑
k=1

(3m − 1)ωk+1

3mk = φm(σ(ω)).

Assume now, as our induction hypothesis, that for any positive integer k ≥ 1,

gk
m ◦ φm(ω) = φm(σk(ω)).

Then

gk+1
m ◦ φm(ω) = (gm ◦ gk

m) ◦ φm(ω) = gm ◦ (gk
m ◦ φm)(ω)

= gm ◦ φm(σk(ω)) = φm(σ(σk(ω))) = φm(σk+1(ω)).

Hence, the lemma follows by mathematical induction. �

LEMMA 3.5. Let both ω = (ωk)k≥1 and τ = (τk)k≥1 be elements of Ω. Then, for any
positive integers m, k and N, the following three statements hold.

(i) Ifωk+j = τk+j for1 ≤ j ≤ N, then |gk
m(φm(ω)) − gk

m(φm(τ))| ≤ 3−mN .
(ii) Ifωk+j = 0 for1 ≤ j ≤ N, then |gk

m(φm(ω))| = gk
m(φm(ω)) ≤ 3−mN .

(iii) Ifωk+j = 1 for1 ≤ j ≤ N, then |gk
m(φm(ω))| = gk

m(φm(ω)) ≥ 1 − 3−mN .

PROOF OF LEMMA 3.5. From Lemma 3.4,

gk
m(φm(ω)) = φm(σk(ω)) =

∞∑
j=1

(3m − 1)ωk+j

3mj

and the three inequalities follow directly. �

PROPOSITION 3.6. For any positive integers m and n, each of the2n mutually disjoint
subsetsKεj (for1 ≤ j ≤ 2n) is an extremally scrambled set for every functiongm ∈ Gm.

PROOF OF PROPOSITION 3.6. In order to prove the proposition, we must show that
each of the three defining conditions of an extremally scrambled set are satisfied by
any particular Kεj for 1 ≤ j ≤ 2n and for every gm ∈ Gm. To this end, choose any subset
{x, y} ⊂ Kεj such that x < y and any gm ∈ Gm. Assume also that x0 is a periodic point of
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gm having period p. Let (ωx,ωy) ∈ Zεj (Ωεj ) × Zεj (Ωεj ) be such that

(ωx,ωy) = (φ−1
m (x), φ−1

m (y)).

Since φm is an order-preserving homeomorphism, ωx and ωy are unique elements of
Ω, with ωx ≺ ωy. Now since {ωx,ωy} ⊂ Zεj (Ωεj ) and ωx ≺ ωy, to every positive integer
u there corresponds a strictly increasing sequence {tur }r≥1 of positive integers such that
(ωx)tur+j = 0 and (ωy)tur+j = 1 for 1 ≤ j ≤ u. Thus, by Lemma 3.5,

|gtur
m (φm(ωx)) − gtur

m (φm(ωy))| ≥ |gtur
m (φm(ωy))| − |gtur

m (φm(ωx))|

≥
(
1 − 1

3mu

)
− 1

3mu = 1 − 2
3mu .

Since

|gtur
m (φm(ωx)) − gtur

m (φm(ωy))| ≥ 1 − 2
3mu for every u ≥ 1,

we conclude that

lim sup
k→∞
|gk

m(x) − gk
m(y)| = 1.

For the same pair {ωx,ωy}, since {ωx,ωy} ⊂ Zεj (Ωεj ), there is an increasing sequence
{tus}s≥1 of positive integers such that (ωx)tus+j = (ωy)tus+j = 0 for 1 ≤ j ≤ u. This implies,
by Lemma 3.5, that

|gtus
m (φm(ωx)) − gtus

m (φm(ωy))| ≤ |gtus
m (φm(ωx))| + |gtus

m (φm(ωy))|

≤ 1
3mu +

1
3mu =

2
3mu .

As this estimate holds for every positive integer u ≥ 1, we conclude that

lim inf
k→∞
|gk

m(x) − gk
m(y)| = 0.

Finally, assume that x0 is a periodic point of period p for the function gm. We must
prove that for any x ∈ Kεj ,

lim sup
k→∞
|gk

m(x) − gk
m(x0)| ≥ 1

2 .

Observe now that maxk≥1 |gk
m(x0)| is a definite real number in [0, 1] since we are

simply choosing the maximum value from a finite set consisting of p distinct real
numbers in [0, 1]. Assume that ωx = φ

−1
m (x) ∈ Zεj (Ωεj ) where x ∈ Kεj . Then to every

positive integer u there correspond strictly increasing sequences (urt )t≥1 and (ust )t≥1 of
positive integers such that (ωx)urt+j = 0 and (ωx)ust+j = 1, for 1 ≤ j ≤ (u + p). Hence,
by Lemma 3.5, |gurt

m (x)| ≤ 3−m(u+p) and

|gurt+j
m (x) − gurt+j

m (x0)| ≥ |gurt+j
m (x0)| − |gurt+j

m (x)| ≥ |gurt+j
m (x0)| − 1

3mu
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for 0 ≤ j ≤ p − 1. Since the above inequalities hold for every positive integer u, we
conclude that

lim sup
k→∞
|gk

m(x) − gk
m(x0)| ≥ max

k≥1
|gk

m(x0)|.

Similarly, by Lemma 3.5,

|gust
m (x) − gust

m (x0)| ≥ |gust
m (x)| − |gust

m (x0)|

≥
(
1 − 1

3mu

)
− |gust

m (x0)| ≥
(
1 − 1

3mu

)
−max

k≥1
|gk

m(x0)|.

As this estimate holds for every positive integer u, we conclude that

lim sup
k→∞
|gk

m(x) − gk
m(x0)| ≥ 1 −max

k≥1
|gk

m(x0)|.

Finally, since

lim sup
k→∞
|gk

m(x) − gk
m(x0)| ≥ max

k≥1
|gk

m(x0)| and

lim sup
k→∞
|gk

m(x) − gk
m(x0)| ≥ 1 −max

k≥1
|gk

m(x0)|,

we have

lim sup
k→∞
|gk

m(x) − gk
m(x0)| ≥ 1

2 ,

proving that Kεj must be an extremally scrambled set for any j with 1 ≤ j ≤ 2n and for
any particular gm ∈ Gm. �

PROOF OF PROPOSITION 3.1. For any positive integers n and k, define n′ = nk. From
step 3 of the construction, we observe by definition that

fm,n′(x) =
{3mx for x ∈ Lm,
3mx − (3m − 1) for x ∈ Rm.

Moreover, fm,n′ is decreasing and continuous on both S andM◦m\S since it has been
extended from S toMm by linear interpolation in such a way that fm,n′(1/3m) = 1 and
fm,n′(1 − (1/3m)) = 0. Thus, fm,n′ is in Gm. Since fm,n′ ∈ Gm, by Proposition 3.6, for any
j with 2n′ + 1 ≤ j′ ≤ 2n′+1, Kε(2n′+1+1)−j′

must be an extremally scrambled set for fm,n′ , and
since fm,n′(Cεj′ ) = Kε(2n′+1+1)−j′

, for every Cεj′, it follows that every Cεj′ must also be an
extremally scrambled set for fm,n′. By construction it is clear that μ(Cεj′ ) = 1/2n′+2 and
the Cεj′ are homomorphic to each other. Since n′ = nk, for 1 ≤ j ≤ 2n, Mn

m,j contains
k mutually disjoint sets Mn′

m,j′ with k( j − 1) + 1 ≤ j′ ≤ kj, and thus k mutually disjoint
extremally scrambled sets of identical positive Lebesgue measure, homeomorphic to
each other. Thus, fm,n′ is the desired map. �
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