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BI-INTERPRETATION INWEAK SET THEORIES

ALFREDO ROQUE FREIRE AND JOEL DAVID HAMKINS

Abstract. In contrast to the robust mutual interpretability phenomenon in set theory, Ali Enayat

proved that bi-interpretation is absent: distinct theories extending ZF are never bi-interpretable and models

of ZF are bi-interpretable only when they are isomorphic. Nevertheless, for natural weaker set theories,

we prove, including Zermelo–Fraenkel set theory ZFC– without power set and Zermelo set theory Z, there

are nontrivial instances of bi-interpretation. Specifically, there are well-founded models of ZFC– that are

bi-interpretable, but not isomorphic—even 〈Hù1 , ∈〉 and 〈Hù2 , ∈〉 can be bi-interpretable—and there are

distinct bi-interpretable theories extending ZFC–. Similarly, using a construction ofMathias, we prove that

every model of ZF is bi-interpretable with a model of Zermelo set theory in which the replacement axiom

fails.

§1. Introduction. Set theory exhibits a robust mutual interpretability phe-
nomenon: in a given model of set theory, we can define diverse other interpreted
models of set theory. In anymodel ofZermelo–Fraenkel (ZF) set theory, for example,
we can define an interpreted model of ZFC+GCH, via the constructible universe,
as well as definable interpreted models of ZF+¬AC, of ZFC+MA+¬CH, of
ZFC+ b < d, and so on for infinitely many theories. For these latter theories,
set theorists often use forcing to construct outer models of the given model; but
nevertheless the Boolean ultrapower method provides definable interpreted models
of these theories inside the original model (see Theorem 7). Similarly, in models
of ZFC with large cardinals, one can define fine-structural canonical inner models
with large cardinals and models of ZF satisfying various determinacy principles,
and vice versa. In this way, set theory exhibits an abundance of natural mutually
interpretable theories.
Do these instances of mutual interpretation fulfill the more vigorous conception

of bi-interpretation? Two models or theories are mutually interpretable, when
merely each is interpreted in the other, whereas bi-interpretation requires that the
interpretations are invertible in a sense after iteration, so that if one should interpret
one model or theory in the other and then re-interpret the first theory inside that,
then the resulting model should be definably isomorphic to the original universe
(precise definitions in Sections 2 and 3). The interpretations mentioned above are
not bi-interpretations, for if we start in a model of ZFC+¬CH and then go to L in
order to interpret a model of ZFC+GCH, then we’ve already discarded too much
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610 ALFREDO ROQUE FREIRE AND JOEL DAVID HAMKINS

set-theoretic information to expect that we could get a copy of our original model
back by interpreting inside L. This problem is inherent, in light of the following
theorem of Ali Enayat, showing that indeed there is no nontrivial bi-interpretation
phenomenon to be found amongst the set-theoretic models and theories satisfying
ZF. In interpretation, one must inevitably discard set-theoretic information.

Theorem 1 (Enayat [3]).

(1) ZF is tight: no two distinct theories extending ZF are bi-interpretable.
(2) Indeed, ZF is semantically tight: no two non-isomorphic models of ZF are
bi-interpretable.

(3) What is more, ZF is solid : if M and N are mutually interpretable models of ZF
and the isomorphism of M with its copy inside the interpreted copy of N in M is
M-definable, then M and N are isomorphic.

We introduce the concept of semantic tightness in this paper, since we find it very
natural; Enayat had proved statements (1) and (3); we provide proofs in Section
6. One should view solidity as a strengthening of semantic tightness—it amounts
essentially to a one-sided version of semantic tightness, requiring the models to be
isomorphic not only in instances of bi-interpretation, but also even in the case that
only one of the two interpretation isomorphisms is definable, rather than both of
them. Thus, statement (3) is a strengthening of statement (2). And statement (2) is
an easy strengthening of statement (1), as we explain in Corollary 14.
The proofs of these theorems seem to use the full strength of ZF, and Enayat

had consequently inquired whether the solidity/tightness phenomenon somehow
required the strength of ZF set theory. In this paper, we shall find support for that
conjecture by establishing nontrivial instances of bi-interpretation in various natural
weak set theories, including Zermelo–Fraenkel theory ZFC–, without the power set
axiom, and Zermelo set theory Z, without the replacement axiom.

Main Theorems.

(1) ZFC– is not solid.
(2) ZFC– is not semantically tight, not even for well-founded models: there are
well-founded models of ZFC– that are bi-interpretable, but not isomorphic.

(3) Indeed, it is relatively consistent with ZFC that 〈Hù1, ∈〉 and 〈Hù2, ∈〉 are
bi-interpretable and indeed bi-interpretation synonymous.

(4) ZFC– is not tight: there are distinct bi-interpretable extensions of ZFC–.
(5) Z is not semantically tight (and hence not solid ): there are well-founded models
of Z that are bi-interpretable, but not isomorphic.

(6) Indeed, every model of ZF is bi-interpretable with a transitive inner model of Z
in which the replacement axiom fails.

(7) Z is not tight: there are distinct bi-interpretable extensions of Z.

These claims are made and proved in Theorems 18, 19, and 21–23. We shall in
addition prove the following theorems on this theme:

(7) Nonisomorphic well-founded models of ZF set theory are never mutually
interpretable.

(8) The Väänänen internal categoricity theorem does not hold for ZFC–, not
even for well-founded models.
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BI-INTERPRETATION INWEAK SET THEORIES 611

These are Theorems 15 and 17. Statement (8) concerns the existence of a model
〈M, ∈,∈〉 satisfying ZFC–(∈ ,∈), meaning ZFC– in the common language with both
predicates, using either ∈ or ∈ as the membership relation, such that 〈M, ∈〉 and
〈M,∈〉 are not isomorphic.

§2. Interpretability in models. Let us briefly review what interpretability means.
The reader is likely familiar with the usual interpretation of the complex field
〈C,+ , · ,0,1,i〉 in the real field 〈R,+ ,·〉, where one represents the complex number
a+bi with the pair of real numbers (a, b). The point is that complex number field
operations are definable operations on these pairs in the real field. Conversely, it
turns out that the real field is not actually interpreted in the complex field (see [15]
for an elementary account), but it is interpreted in the complex field equipped also
with the complex conjugate operation z 7→ z̄, for in this case you can define the real
line as the class of z for which z = z̄. The reader is also likely familiar with the usual
interpretation of the rational field 〈Q,+ ,·〉 in the integer ring 〈Z,+ ,·〉, where one
represents rational numbers as equivalence classes of integer pairs (p, q), written
more conveniently as fractions pq , with q 6= 0, considered under the equivalence

relation pq ≡ r
s ↔ ps = qr; one then defines the rational field structure by means

of the familiar fractional arithmetic. Another example would be the structure
of hereditarily finite sets 〈HF, ∈〉, which is interpreted in the standard model of
arithmetic 〈N,+, ·,0,1, <〉 by the Ackermann relation, the relation for which n E m
just in case the nth binary digit of m is 1; this relation is definable in arithmetic and
the reader may verify that 〈HF, ∈〉 ∼= 〈N,E〉.
More generally, we interpret one model in another as follows.

Definition 2. AmodelN = 〈N,R, ...〉 in a first-order language LN is interpreted
in another model M in language LM , if for some finite k there is an M-definable
(possibly with parameters) class N ∗ ⊆M k of k-tuples and M-definable relations
RN

∗

on N ∗ for relation symbols R in LN , as well as functions (defined via their
graphs) and constants, and anM-definable equivalence relation ≃ on N ∗, which is
a congruence with respect to those relations, for which there is an isomorphism j
from N to the quotient structure 〈N ∗,RN

∗

, ...〉/≃.

M

N
N

j

Figure 1. Model N is interpreted in modelM.

In models supporting an internal encoding of finite tuples, such as the models of
arithmetic or set theory, there is no need for k-tuples and one may regard N ⊆M
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612 ALFREDO ROQUE FREIRE AND JOEL DAVID HAMKINS

directly. In models of arithmetic or models of set theory with a definable global
well-order, there is no need for the equivalence relation ≃, since one can pick
canonical least representatives from each class. Theorem 9 shows furthermore that
in models of ZF, even when there isn’t a definable global well-order, one can still
omit the need for the equivalence relation≃ by means of Scott’s trick: replace every
equivalence class with the set of its ∈-minimal rank elements. Thus, in the model-
theoretic terminology, the theory ZF is said to eliminate imaginaries. This trick
doesn’t necessarily work, however, in models of ZFC–, without the power set axiom,
since in this theory the class of minimal rank members could still be a proper class,
although in ZF it is always a set.

Definition 3. Models M and N are mutually interpretable, if each of them is
interpreted in the other.

M

N
N

Mj

i

Figure 2. ModelsM and N are mutually interpreted.

Since (the quotient of) N ∗ is isomorphic to N, we may find the corresponding
copy ofM inside it, and similarly wemay find the copy ofN insideM ∗, as illustrated
below, where we have now suppressed the representation of the equivalence relation.

M

N

M

N
M

N

j

i
a

jia

uij

u

Figure 3. Iterating the interpretations of modelsM and N.

One may simply compose the isomorphisms i and j to form an isomorphism ji
between M and M , which is now a definable subset of M (although the map ji
may not be definable). Because in the general case these are quotient structures, one
should think of the map ji as a relation rather than literally a function, since each
object a inM is in effect associated with an entire equivalence class ā in the quotient
structure ofM . Similarly, the composition ij is an isomorphism of the structure N
with N , which is now definable in N.
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BI-INTERPRETATION INWEAK SET THEORIES 613

It will be instructive to notice that we have little reason in general to expect the
map ji to be definable inM, and this issue is the key difference between the mutual
interpretation of models and their bi-interpretation.

Definition 4. Models M and N are bi-interpretable, if they are mutually
interpretable in such a way that the isomorphisms ji :M ∼=M and ij : N ∼= N
arising by composing the interpretation maps are definable in the original models
M and N, respectively.

M

N
N

M

j

i
a

ji

u
ijM

a

N

u

Figure 4. ModelsM and N are bi-interpreted.

Asomewhat cleaner picture emerges if we should simply identify themodelN with
its isomorphic copyN ∗ andM ∗ withM . Let us now use i to denote the isomorphism
ofM with its copyM insideN, and j is the isomorphism ofN with its copyN inside
M . This picture applies with either mutual interpretation or bi-interpretation, the
difference being that in the case of bi-interpretation, the isomorphisms i and j are
definable inM and N, respectively. Furthermore, by iterating these interpretations,
in the case either ofmutual interpretation or bi-interpretation, one achieves a fractal-
like nested sequence of definable structures, with isomorphisms at each level. In the
case of bi-interpretation, all these maps are definable inM, and any of the later maps
is definable inside any of the successive copies ofM or N in which it resides.

M

N
M

i

N

j

Figure 5. Iterated bi-interpretations.
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614 ALFREDO ROQUE FREIRE AND JOEL DAVID HAMKINS

An even stronger connection between models is the notion of bi-interpretation
synonymy. This relation was introduced by de Bouvère in [2] and recently deepened
by Friedman and Visser in [7].

Definition 5. Models M and N are bi-interpretation synonymous, if there is a
bi-interpretation for which (i) the domains of the interpreted structures are in each
case the whole structure; and (ii) the equivalence relations used in the interpretation
are the identity relations onM and N.

In remarks after Theorem 16, we explain how every instance of bi-interpretation
between models of ZF can be transformed to an instance of bi-interpretation
synonymy.

§3. Interpretability in theories. Let us now explain how interpretability works
in theories, as opposed to models. At bottom, an interpretation of one theory in
another amounts to a uniform method of interpreting a model of the first theory in
any model of the second theory. Specifically, we interpret one theory T1 in another
theory T2 by providing a way to translate the T1 language and structure into the
language and structure available in T2, in such a way that the translation of every
T1 theorem is provable in T2.
In somewhat more detail, the interpretation I of theory T1 in language L1 into

theory T2 in language L2 should provide, first of all, an L2-formula U (x̄) that
will define the interpreted domain of k-tuples x̄ = (x1, ...,xk) and an L2-expressible
relation x̄ =I ȳ, the interpretation of equality, that T2 proves is an equivalence
relation on tuples in U. Next, for each relation symbol R of L1, the interpretation
should provide a translation RI as an L2 formula of the same arity on U as R has
in L1, and T2 should prove that this relation is well-defined modulo =

I. Finally,
functions are to be handled by considering their graphs f(x̄) = y as definable
relations and interpreting these graph relations, but with the proviso that T2 proves
that the interpreted relation is indeed well-defined and functional on U modulo =I.
Ultimately, therefore, the theory T2 will prove that =

I is a congruence with respect
to the interpreted relations RI and functions fI.
Having thus interpreted the atomic L1 structure, one may naturally extend the

interpretation to all L1 assertions as follows.

• (ϕ∧ø)I = ϕI ∧øI .
• (¬ϕ)I = ¬ϕI .
• (∃xϕ(x))I = ∃x̄ U (x̄)∧ϕI (x̄).

Finally, for this to be an interpretation of T1 in T2, we insist that T2 proves that T1
holds for the interpreted structure, or in other words, that

T1 ⊢ ϕ implies T2 ⊢ ϕ
I .

Because the interpretation preserves the Boolean and quantifier structure of
interpreted formulas, it suffices that T2 should prove the interpretation ϕ

I of
each axiom ϕ of T1. It is clear that if T1 is interpreted in T2 by interpretation
I, then in any model M |= T2 we may use the interpretation to define a model
N = 〈U,RI ,fI , ...〉/ =I of T1. The domain of N will consist of the quotient of U
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by =I asM sees it, and the relations R and functions f of N, if any, will be exactly
those defined by RI and fI via the interpretation.

Definition 6.

(1) Two theories T1 and T2 are mutually interpretable, if each of them is
interpretable in the other.

(2) Two theories T1 and T2 are bi-interpretable, in contrast, if they are mutually
interpretable by interpretations I and J, respectively, which are provably
invertible, in that the theory T1 proves that the universe is isomorphic, by
a definable isomorphism map, to the model resulting by first interpreting via
J to get a model of T2 and then interpreting via I to get a model of T1 inside
that model; and similarly the theory T2 proves that its universe is definably
isomorphic to the model obtained by first interpreting via I to get a model of
T1 and then inside that model via J to get a model of T2.

With mutual interpretation of theories, one can start with a modelM of T1 and
then use J to define within it a modelN = JM of T2, which can then define a model
M ′= IN ofT1 again.Withmutual interpretability, there is no guarantee thatM

′ and
M are isomorphic or even elementarily equivalent, beyond the basic requirement
that both are models of T1. The much stronger requirements of bi-interpretability,
in contrast, ensure thatM ′ andM are isomorphic, and furthermore isomorphic by
a definable isomorphism relation, which the theory T1 proves is an isomorphism.
And similarly when interpreting in models of T2. Thus, with bi-interpretation, each
theory sees how its own structure is faithfully copied via the definable isomorphisms
f1 andf2 under iterations of the interpretations.With bi-interpretability, it therefore
follows that

(1) For every L1 assertion α

T1 � ∀x̄ α(x1, ...,xn)↔ α
J I (f1(x1),f1(x2), ...,f1(xn)).

(2) For every L2 assertion â

T2 � ∀ȳ â(y1, ...,ym)↔ â
I J (f2( y1),f2(y2), ...,f2(ym)).

In light of the quotients by the equivalence relations, the functions f1 and f2 are
more properly thought of as relations f1(x) = ȳ well-defined with respect to those
relations; they need not be functional on points, but only in the quotient.

§4. Mutual interpretation of diverse set theories. Let us briefly establish themutual
interpretability phenomenon in set theory.

Theorem 7. The following theories are pairwise mutually interpretable.

(1) ZF;
(2) ZFC;
(3) ZFC+GCH;
(4) ZFC+V = L;
(5) ZF+¬AC;
(6) ZFC+¬CH;
(7) ZFC+MA+¬CH;
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(8) ZFC+b< d;
(9) Any extension of ZF provably holding in a definable inner model or provably
forceable by set forcing over such an inner model.

Proof. In many of these instances, the interpretation is obtained by defining a
suitable inner model of the desired theory. For example, in any model of ZF, we can
define the constructible universe, and thereby find an interpretation of ZFC+V =L
and hence ZFC+GCH and so forth in ZF. Some of the interpretations involve
forcing, however, which we usually conceive as a method for constructing outer
models, rather than defining models inside the original model. Nevertheless, one
can use forcing via the Boolean ultrapower method to define interpreted models of
the forced theory inside the original model. Let us illustrate the general method by
explaining how to interpret the theory ZFC+¬CH in ZF. In ZF, we may define L,
and thereby define a model of ZFC with a definable global well-order. Inside that
model, consider the forcing notion Add(ù,ù2) to add ù2 many Cohen reals. Let B
be the Boolean completion of this forcing notion in L, and let U ⊆ B be the L-least
ultrafilter on this Boolean algebra. Using the Boolean ultrapower method, we define
the quotient structure LB/U on the class of B-names by the relations:

ó =U ô ⇐⇒ [[ó = ô ]] ∈U ;

ó ∈U ô ⇐⇒ [[ó ∈ ô ]] ∈U.

The model LB/U consists of the =U equivalence classes of B-names in L under the
membership relation ∈U . The Boolean ultrapower Łoś theorem shows that L

B/U
satisfies every statement ϕ whose Boolean value [[ϕ ]] is in U, and so this is a model
of ZFC+¬CH. We should like to emphasize that there is no need in the Boolean
ultrapower construction for the ultrafilter U to be generic in any sense, and U ∈ L
is completely fine (see extensive explanation in [18, Section 2]). By using the L-
least such ultrafilter U on B, therefore, we eliminate the need for parameters—the
Boolean ultrapower quotient LB/U is a definable interpreted model of ZFC+¬CH
inside the original model, as desired.
The samemethodworks generally. Any forceable theorywill hold in an interpreted

model, using the forcing notion and the ultrafilter U in the original model as
parameters; when forcing over L or HOD one may use the corresponding definable
well-order to eliminate the need for parameters, as we did above. Any theory that is
provably forceable over a definable innermodel will be forceable overL and therefore
amenable to this parameter-elimination method. ⊣

Apter, Gitman, and Hamkins [1] similarly establish in numerous instances that
one can find transitive inner models 〈M, ∈〉 of certain large cardinal theories usually
obtained by forcing. For example, if there is a supercompact cardinal, then there is a
definable transitive inner model with a Laver-indestructible supercompact cardinal,
and another inner model with a non-indestructible supercompact cardinal, and
anotherwith a strongly compact cardinal thatwas also the leastmeasurable cardinal,
and so on.
As we emphasized in the introduction of this article, Theorem 7 is concerned with

mutual interpretation rather than bi-interpretation. The interpretationmethods used
in this theorem are not invertible, and when following an interpretation, one cannot
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in general get back to the original model. Every interpretation of one set theory in
another will inevitably involve a loss of set-theoretic information in the models in
which it is undertaken. The main lesson of Enayat’s theorem (Theorem 13) is that
this problem is unavoidable: in fact, none of the theories above are bi-interpretable
and there is no nontrivial bi-interpretation phenomenon to be found in set theory
at the strength of ZF.
One might have hoped to invert the forcing extension interpretations by means of

the ground-model definability theorem ([19], see also [8]), which asserts that every
ground modelM is definable (using parameters) in its forcing extensionsM [G ] by
set forcing. That is, since we have interpreted the theory of the forcing extension,
can’t we reinterpret the ground model by means of the ground-model definability
theorem? The problem with this idea is that the forcing Boolean ultrapower model
MB/U that we used in Theorem 7 is not actually a forcing extension ofM, but rather

a forcing extension of its own ground model M̌/U , which in general is not the same
asM, although it is an elementary extension ofM by the Boolean ultrapower map
i :M → M̌/U . This map is an isomorphism only when U is M-generic, which is
not true here for nontrivial forcing becauseU ∈M . Indeed, the Boolean ultrapower
model M̌/U is usually ill-founded, even when M is well founded (although there
can be instances of well-founded Boolean ultrapowers connected with very large
cardinals; see [18]). Nevertheless, the method does allow us to mutually interpret
the theory ofM with the theory of what it would be like in a forcing extension ofM
after forcing with B, as explained by the following theorem:

Theorem 8. For any modelM |=ZFC and any notion of forcingB∈M , the theory
ofMwith constants for every element ofM is mutually interpretable with the theory, in
the forcing language with constants for every B-name in M, asserting that the universe
is a forcing extension via B of a ground model with the theory of M.

Proof. The latter theory, describing what it would be like in a forcing extension
ofM byB, is the same theory as used in the naturalist account of forcing in [12]. The
theory has a predicate symbol M̌ for an inner model and asserts that this satisfies
the same theory as M and that the universe is a forcing extension M̌ [G ] for some
M̌ -generic filter G ⊆ B̌. To be clear, we are not saying that the modelM is mutually
interpretable with some actual forcing extension modelM [G ], but rather only that
the theory ofM is mutually interpretable with the theory expressing what it is like
in such a forcing extension. We allow parameters in the interpretation definitions,
although in many cases these are eliminable. Assume that B is a complete Boolean
algebra in M, and let U ⊆ B be an ultrafilter in M. Inside M, we may define the
forcing Boolean ultrapower MB/U as described above, and this is a model of the
theory asserting (in the forcing language) that the universe is a forcing extension
of M̌ by B̌. That this is true is part of the theory of M, and so this interpretation
works inside any model of the theory of M. Conversely, inside any model of the
latter theory, we can define the ground model M̌ , which will be a model of the
theory ofM. ⊣

§5. Further background on interpreting in models of set theory. Before getting
to the main results, let us prove some further useful background material on
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interpretations in models of set theory. We have already mentioned in the remarks
after Definition 2 that in models of set theory, we do not need to use k-tuples
in interpretation, since we have definable pairing functions. But also, it turns
out that when interpreting in a model of ZF, we do not need the equivalence
relation:

Theorem 9. If a structure A is interpreted in a model of ZF set theory, then there
is an interpretation in which the equivalence relation is the identity.

This theorem appears as Exercise 2 of Section 4.4 of [17].

Proof. The argument amounts to what is known as “Scott’s trick.” If ≃ is
a definable equivalence relation in a model M |= ZF, then let us replace every
equivalence class [a]≃ with the Scott class [a]

∗
≃, which consists of the elements of

the equivalence class havingminimal possible∈-rank in that class. This is a definable
set inM, and from the Scott class one can identity the original≃ equivalence class. So
we can replace the original interpretation modulo≃with the induced interpretation
defined on the Scott classes. And since two Scott classes correspond to the same
interpreted object if and only if they are equal, we have thereby eliminated the need
for the equivalence relation. ⊣

This proof does not work in ZFC–, that is, in set theory without the power set
axiom, because the minimal rank instances from a class may still form a proper
class, and so Scott’s trick doesn’t succeed in reducing the class to a set. And so we
had asked the question, posting it on MathOverflow [14]:

Question 10. Is there a structure that is interpretable in a model of ZFC–, but only
by means of a nontrivial equivalence relation?

The question was answered affirmative by Gabe Goldberg [11], assuming the
consistency of large cardinals. He pointed out that if ADL(R) holds and ä12 = ù2,
there is a projectively definable prewellordering on the reals of order type ù2, and
so the order structure 〈ù2, <〉 is interpretable in 〈Hù1, ∈〉, but there is no definable
order in this structure of type ù2, because there is, he proves, no injection of ù2 into
Hù1 in L(R). Therefore, under these assumptions, we have a structure interpretable
in a model of ZFC–, using a nontrivial equivalence relation, but not without. Can
one produce an example in ZFC?
Next, we establish the phenomenon of automatic bi-interpretability for well-

founded models of set theory.

Theorem 11. If a well-founded model M of ZF– is interpreted in itself via i :M →
M/ ≃, then the interpretation isomorphism map i is unique and furthermore, it is
definable in M.

Proof. Assume thatM is a well-founded model of ZF–, which we may assume
without loss to be transitive, and that 〈M, ∈〉 is interpreted in itself via the
interpretation map i : 〈M, ∈〉 ∼= 〈M,∈〉/ ≃, where M ⊆M is a definable class in
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M

M

i

Figure 6. Self interpretation.

M with a definable relation ∈, and ≃ is a definable equivalence relation on M ,
which is a congruence with respect to ∈.
Since models of set theory admit pair functions, however, we may assume directly

thatM ⊆M rather thanM ⊆M k with k-tuples.
Let ð = i–1 :M →M be the inverse map, viewed as a map on M . Since i is

an isomorphism, it follows that b ∈ a ⇐⇒ i(b) ∈ i(a), and consequently, ð(ā) =
{ð(b̄) | b̄ ∈ ā }. Thus, ð is precisely the Mostowski collapse of the relation ∈ on
M , which is well-founded precisely because it has a quotient that is isomorphic to
〈M, ∈〉. Thus, the map i is unique, for it is precisely the inverse of the Mostowski
collapse of

〈

M,∈
〉

/≃, as computed externally toM in the context where i exists.
What remains is to show that M itself can undertake this Mostowski collapse.

While the ≃-quotient of ∈ is a well-founded extensional relation, the subtle issue is
that ∈ may not literally be set-like, since the ≃-equivalence classes themselves may
be proper classes, and in ZF– we are not necessarily able to pick representatives
globally from the equivalence classes. So it may not be immediately clear that M
can undertake the Mostowski collapse. But, we show, it can.
InM, let I be the class of pairs (a,ā) where a ∈M and ā ∈M and there is a set

A ∈M with (i) A⊆M ; (ii) A is transitive with respect to ∈ modulo ≃, in the sense
that if x ∈ y ∈ A, then there is some x′ ∈ A such that x ≃ x′; and (iii)

〈

A,∈
〉

/ ≃ is
isomorphic to 〈TC({a}), ∈〉. Note that if (a,ā) are like this, then the isomorphism
will be exactly the inverse of the Mostowski collapse of

〈

A,∈
〉

/≃.

We claim by ∈M -induction (externally to M) that every ā ∈M is associated in
this way with some a ∈M , and furthermore, the association I is simply the map

i : a 7→ ā. To see this, suppose ā ∈M and every ∈M -element of ā is associated
via I. Since i is an isomorphism, there is some a such that i(a) = ā. Inductively,

every b̄ ∈M ā is associated with some b for which i(b) = b̄, and all such b are

necessarily elements of a. SoM can see that every b̄ ∈M ā is associated by the class
I with a unique element b ∈ a. For each b, there are various sets Bb with largest
element b̄ realizing that (b,b̄) ∈ I . By the collection axiom, we can find a single
set B containing such a set for every b ∈ a, serving as a single witnessing set. Let
A= {ā}∪B , where ā is a representative of the ≃-class of i(a). This is a set inM, it
is contained in M , and it is transitive with respect to ∈ modulo ≃. Since Bb ⊆ A,
the Mostowski collapse of

〈

A,∈
〉

/ ≃ agrees with the collapse of
〈

Bb,∈
〉

/ ≃, and so
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sends b̄ to b, for every b ∈ a. So this set A witnesses that (a,ā) ∈ I , and agrees with
i on a. So the map i is definable inM, as desired. ⊣

Notice that Theorem 11 is not true if one drops the well-foundedness assumption.
For example, on general model-theoretic grounds there must be modelsM |= ZF–

with nontrivial automorphisms i :M →M , and any suchmap is an interpretation of
M in itself (as itself), but such an automorphism can never be definable. Similarly, if
ZFC is consistent, then there is a countable computably saturatedmodel

〈

M, ∈M
〉

|=
ZFC, and such a model contains an isomorphic copy of itself as an element m, an
observation due to [21, Corollary 3.3]; see also [9, Lemma7]. This provides an
interpretation ofM in itself, using m as a parameter, but the isomorphism cannot
be definable nor even amenable to M, since M cannot allow a definable injection
from the universe to a set.

Corollary 12. Every instance of mutual interpretation amongst well-founded
models of ZF– is a bi-interpretation. Indeed, if M is a well-founded model of ZF–

and mutually interpreted with any structure N of any theory, as in the Figure 7 below,
then the isomorphism i :M →M is definable in M.

M

N

M

a

i
a

Figure 7. Mutual interpretation of well-founded models.

Proof. This follows immediately from Theorem 11, since any instance of mutual
interpretation leads to an instance of a model being interpreted inside itself, and so
by Theorem 11 the interpretation maps will be definable. ⊣

We are unsure whether we can achieve the half-way situation, where a transitive
modelM |= ZF– is mutually interpreted with some nonstandard model N |= ZF–,
without being bi-interpreted.

§6. Bi-interpretation does not occur in models of ZF. Finally, we come to the
heart of the paper, concerning the extent of bi-interpretation in set theory. Let us
begin with Enayat’s theorem, which will show that distinct models of ZF are never
bi-interpretable. As we mentioned earlier, a theory T is semantically tight, if any
two bi-interpretable models of T are isomorphic. Strengthening this, a theory T is
solid, if whenever M and N are mutually interpreted models of T and there is an
M-definable isomorphism of M with its copy M inside the copy of N defined in
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M

N
M

i

Figure 8. Bi-interpretation in a model of ZF.

M, then M and N are isomorphic. Thus, solidity strengthens semantic tightness,
because it requires the models to be isomorphic even when one has essentially only
half of a bi-interpretation, in that only one side of the interpretation needs to be
definable in the model, rather than both.

Theorem 13 (Enayat [3]). ZF is solid.

Proof. Assume thatM and N are mutually interpreted models of ZF, where N
is definable in M and M is a definable copy of M inside N, with an isomorphism
i :M →M that is definable inM, as illustrated in the Figure 8.
Suppose that N thinks A is a nonempty subclass of M . Consider the pre-image

A′ = { i–1(x) | x ∈N A}, which is a nonempty class in M. So it must have an

∈M -minimal element a ∈M A′. It follows that i(a) is an ∈M -minimal element of

A, and so N sees ∈M as well founded. Because of this fact, the ordinals of the
models will be comparable, and they will have some ordinals isomorphically in
common. We claim that for these common ordinals, the rank-initial segments ofM,
N, andM are isomorphic. Specifically, if α is an ordinal inM, which is isomorphic
to the ordinal α = i(α) inM , and this happens to be isomorphic in N to an ordinal

α∗ in N, then we claim that N can see that 〈Vα∗, ∈〉
N is isomorphic to 〈Vα, ∈〉

M ,

which we know is isomorphic to 〈Vα, ∈〉
M . This is certainly true when α = 0, and

if it is true at α, then it will also be true at α+1, because every subset of V Nα
exists also as a class in M and therefore can be pushed via i to the corresponding

subset of VMα ; and conversely, every subset of V
M
α inM exists also as a class in N

and can be pulled back by the isomorphism with V Nα∗ . So in N we may extend the

isomorphism canonically from V Nα∗
∼= VMα to V

N
α∗+1

∼= VMα+1. Furthermore, because

V Nα∗ is transitive inN and transitive sets are rigid, the isomorphisms must be unique,
and so at limit stages the isomorphism will simply be the coherent union of the
isomorphisms at the earlier stages.
If the ordinals of N run out before the ordinals of M, then OrdN is isomorphic

to an ordinal ë in M and hence to i(ë) = ë in M . In this case, the isomorphism

from the previous paragraph will mean that N = V NOrd
∼= VM

ë
, which is isomorphic

to VMë . SoM will see that N is bijective with a set. ButM has a bijection of itself
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withM , which is contained in N. SoM will think that the universe is bijective with
a set, which is impossible in ZF.
If in contrast the ordinals of M and hence M run out before the ordinals of N,

then N would recognize that M is isomorphic to a transitive set V Nα∗ . Since it is a

set, N has a truth predicate for it, and so N can define a truth predicate for M .
Since N and i are definable in M, we can pull this truth predicate back via i to
produce anM-definable truth predicate onM, contrary to Tarski’s theorem on the
nondefinability of truth.
So the ordinals of the three models must be exactly isomorphic, and so the

isomorphisms of the rank-initial segments of the models in fact produce an

isomorphism of N = V NOrd withM = V
M
Ord and hence withM, as desired. ⊣

Albert Visser had initially proved a corresponding result in 2006 for Peano
arithmetic PA in [22]. Ali Enayat had followed with a nice model-theoretic argument
showing specifically that ZF and ZFC are not bi-interpretable, using the fact that
ZFCmodels can have no involutions in their automorphism groups, but ZF models
can, before finally proving the general version of his theorem, for ZF, for second-
order arithmetic Z2 and for second-order set theory KM in [3]. The ZF version was
apparently also observed independently by Harvey Friedman and Albert Visser, by
Fedor Pakhomov, as well as by ourselves [13], before we had realized that this was
a rediscovery.
Enayat defines that a theory T is tight, if whenever two extensions of T are

bi-interpretable, then they are the same theory.

Corollary 14. ZF is tight. That is, no two distinct set theories extending ZF are
bi-interpretable.

This corollary follows from Theorem 13, because in fact every solid theory is
tight. If T is solid, and T1 and T2 are distinct bi-interpretable extensions of T,
then consider any model M |= T1. By the bi-interpretability of the theories, M is
bi-interpretable with a model N |= T2. Since these are both models of T, it follows
by the solidity of T thatM andN are isomorphic, and soM is a model of T2. Since
the argument also works conversely, the two theories are the same.
In particular, ZF is not bi-interpretable with ZFC, nor with ZFC+CH, nor with

ZFC+¬CH, and so on. Theorem 7 therefore cannot be strengthened from mutual
interpretation to bi-interpretation, and there is no nontrivial bi-interpretation
phenomenon in set theory amongst the models or theories strengthening ZF.
Furthermore, we claim that there is no mutual interpretation phenomenon

amongst the well-founded models of ZF.

Theorem 15. Nonisomorphic well-founded models of ZF are never mutually
interpretable.

Proof. Corollary 12 shows that every instance of mutual interpretation amongst
the well-founded models of ZF is a bi-interpretation, but Theorem 13 shows that
bi-interpretation amongst models of ZF occurs only between isomorphic models. ⊣

Let us now explain how to deduce the tightness of ZF by means of the following
“internal categoricity” theorem of Jouko Väänänen. He had stated the result in [23]
for ZFC, but his argument did not use AC, and so we state and prove it here for ZF.
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Theorem 16 (Väänänen [23]). Assume that 〈V, ∈ ,∈〉 is amodel ofZFwith respect
to both membership relations ∈ and ∈, in the common language. More precisely, it is
a model of ZF∈(∈), using ∈ as the membership relation and ∈ as a class predicate and
also of ZF∈(∈), using ∈ as the membership relation and ∈ as a class predicate. Then
〈V, ∈〉∼= 〈V,∈〉, and furthermore, there is a unique definable isomorphism in 〈V, ∈ ,∈〉.

Proof. Let us begin by observing that by the foundation axiom, every nonempty
definable ∈-class will admit an ∈-minimal element, and similarly every nonempty
definable ∈-class will have an ∈-minimal element. Thus, both ∈ and ∈ will be
well-founded relations in this model, regardless of whether we use ∈ or ∈ as the

membership relation. In particular, the orders 〈Ord〈V,∈〉, ∈〉 and 〈Ord〈V,∈〉,∈〉 will
be comparable well-ordered classes, andwemay assumewithout loss that the former
is isomorphic to an initial segment of the latter. Thus, for every ∈-ordinal α, there
is an ∈-ordinal α to which it is isomorphic, and furthermore this ordinal is unique,
and the isomorphism is unique. We claim that 〈Vα, ∈〉 ∼=

〈

V α,∈
〉

, by induction on α.
Since these are transitive sets and hence rigid, the isomorphism is unique. The claim
is clearly true forα=0. It remains true through limit ordinals, since the isomorphism
in that case is simply the union of the previous isomorphisms. At successor stages,
we need only observe that any isomorphism of 〈Vα, ∈〉 with

〈

V α,∈
〉

extends to an
isomorphism of the power set, since any ∈-subset of Vα transfers to an ∈-subset of

V α by pointwise application of the isomorphism, and vice versa. If Ord
〈V,∈〉 is taller

than Ord〈V,∈〉, then we can see that 〈V, ∈〉 ∼=
〈

V ã,∈
〉

, where ã ∈Ord〈V,∈〉 is the first

∈-ordinal not arising from an ∈-ordinal. But now V ã+1, which is the ∈-power set of

V ã , is a subclass of V and therefore injects into V ã , contrary to Cantor’s theorem.
So the ordinals are the same height, and thus we have achieved 〈V, ∈〉 ∼= 〈V,∈〉.
This isomorphism is definable, since every Vα is isomorphic to V α by a unique
isomorphism. ⊣

Theorem 1, statements (1) and (2), can be seen as a consequence of this theorem—
and indeed the proofs we gave are roughly analogous—because if two models of ZF
are bi-interpretable, then by the resultsmentioned in Section 5, we do not need tuples
or nonidentity equivalence relations. So the interpretations will interpret eachmodel
as a subclass of the other. By the class version of the Schröder–Cantor–Bernstein
theorem, these injections can be transformed into bijection of the models, and in
this way the bi-interpretation can be transformed into a bi-interpretation synonymy
(see also [7]). Thus, we reduce to the case of twomembership relations 〈M, ∈ ,∈〉 on
the whole universe, with each relation being definable when using the other as the
membership relation. Because of this, the model will satisfy the theory ZF(∈ ,∈),
and consequently the models will be isomorphic 〈M, ∈〉 ∼= 〈M,∈〉 by Väänänen’s
theorem.

§7. Väänänen internal categoricity fails forZFC–. Theorems 13 and 16 were both
proved with arguments that made a fundamental use of the Vα hierarchy, thereby
relying on the power set axiom. Was the use of the Vα hierarchy significant? Can
one prove the analogues of the theorems for ZFC–, that is, for set theory without
the power set axiom? (See [10] for a subtlety about exactly what the theory ZFC–

is; one should include the collection axiom, and not just replacement.) The answer
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is negative. We shall prove that neither theorem is true for ZFC–, not even in the
case of well-founded models. Let us begin by proving that the Väänänen internal
categoricity theorem fails for ZFC–.

Theorem 17. There is a transitive set M and an alternative well-founded
membership relation ∈ onM, such that 〈M, ∈ ,∈〉 satisfies ZFC–(∈ ,∈), that is, ZFC–

using either ∈ or ∈ as the membership relation and allowing both as class predicates,
such that 〈M, ∈〉 is not isomorphic to 〈M,∈〉, although both are well-founded.

Proof. Let us argue firstmerely that the situation is consistentwithZFC.Assume
that Luzin’s hypothesis holds, that is, 2ù = 2ù1 ; for example, this holds after adding
ù2 many Cohen reals over a model of GCH, since in this case we would have
2ù = 2ù1 = ù2. It follows that Hù1 and Hù2 are equinumerous, and so there is a
bijection ð :Hù1 →Hù2 . Let ∈̃ be the image of ∈↾Hù1 under this bijection, and let
∈ be the preimage of ∈↾Hù2 . Thus, ð is an isomorphism of the structures

ð :
〈

Hù1, ∈ ,∈
〉

∼=
〈

Hù2,∈̃, ∈
〉

.

The first of these is a model of ZFC–(∈), using ∈ as membership, since Hù1 is a
model of ZFC– with respect to any predicate. Similarly, the second is a model of
ZFC–(∈̃), again using ∈ as membership, since we can likewise augment Hù2 with
any predicate. By following the isomorphism, an equivalent way to say this is that
〈

Hù1, ∈ ,∈
〉

is a model of ZFC–∈(∈), using ∈ as membership and ∈ as predicate,
and also a model of ZFC–∈(∈), using ∈ as membership this time and ∈ as a class

predicate. But
〈

Hù1, ∈
〉

is not isomorphic to
〈

Hù1,∈
〉

, because the first thinks every
set is countable and the second does not. So this model is just as desired.
To get outright existence of the models, observe first that by taking an elementary

substructure, we can find a countable model of the desired form in the forcing
extension. Furthermore, the existence of a countable well-founded model 〈M, ∈ ,∈〉
with the desired properties is a Σ12 assertion, which is therefore absolute to the forcing
extension by Shoenfield’s absoluteness theorem. And so therefore there must have
already been such an example in the ground model, without need for any forcing. ⊣

§8. ZFC– is neither solid nor tight. In order to show that ZFC– is not solid,
we need to provide different models of ZFC– that are bi-interpretable, but not
isomorphic. Let us begin by describing merely how this can happen in some models
of set theory. For this, we shall employ a more refined version of the argument used
to prove Theorem 17.

Theorem 18. In the Solovay–Tennenbaum model of MA+ ¬CH obtained by
c.c.c. forcing over the constructible universe, the structures

〈

Hù1, ∈
〉

and
〈

Hù2, ∈
〉

are bi-interpretable. Thus, there can be two well-founded models of ZFC– that are
bi-interpretable, but not isomorphic.

The features we require in the Solovay–Tennenbaum model are the following:

• Hù1 has a definable almost disjoint ù1-sequence of reals;
• every subset A⊆ ù1 is coded by a real via almost-disjoint coding with respect
to this sequence.
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In other words, there should be a definable ù1-sequence 〈aα | α < ù1〉 of infinite
subsets aα ⊆ ù with any two having finite intersection; and for every A ⊆ ù1 there
should be a ⊆ ù for which α ∈ A↔ a ∩aα is infinite. These properties are true in
the Solovay–Tennenbaum model L[G ], because we can define the almost disjoint
family in L, and by Martin’s axiom every subset of ù1 is coded with respect to it by
almost-disjoint coding.

Proof. Let us assume we have the two properties isolated above. The structure
〈

Hù1, ∈
〉

, of course, is a definable substructure of
〈

Hù2, ∈
〉

, which gives one direction
of the interpretation. It remains to interpret

〈

Hù2, ∈
〉

inside
〈

Hù1, ∈
〉

and to prove
that this is a bi-interpretation. The second assumption above implies, of course, that
2ù = 2ù1 , and so at least the two structures have the same cardinality. But more,
because the almost-disjoint sequence is definable in Hù1 and all the reals are there,
the structure

〈

Hù1, ∈
〉

in effect has access to the full power set P(ù1); the subsets
A⊆ ù1 are uniformly definable in the structure

〈

Hù1, ∈
〉

from real parameters. And
furthermore, every set inHù2 is coded by a subset ofù1. Specifically, if x ∈Hù2 then
x is an element of a transitive set t of size ù1, with 〈t, ∈〉 ∼= 〈ù1,E〉 for some well-
founded extensional relation E on ù1. The set x can be in effect coded by specifying
E and the ordinal α representing x in the structure 〈ù1,E〉. Since Hù1 contains all
countable sequences of ordinals, it can correctly identify which relations E onù1, as
encoded by a real via the almost-disjoint coding, are well-founded and extensional.
Let us define an equivalence relation a ≃ a′ for reals a,a′ ⊆ ù coding such pairs
(α,E) and (α′,E ′) that represent the same set, which happens just in case there is an
isomorphismof the hereditaryE-predecessors ofα to the hereditaryE ′-predecessors
of α′; in other words, when the transitive closures of the corresponding encoded sets
{x} and {x′} are isomorphic. The isomorphism itself is a map of size at most ù1,
which can therefore be seen definably in the structure

〈

Hù1, ∈
〉

. Andwe can recognize
when the set x coded by (α,E) is an element of the set y coded by (â,F ), since this just
means that (α,E) is equivalent to (ã,F ) for some ã F â . Since every element ofHù2 is
coded in this way by relations onù1 and hence ultimately by reals a ⊆ù, we see that
〈

Hù2, ∈
〉

is interpreted in
〈

Hù1, ∈
〉

by the codes (α,E) for well-founded extensional
relations E on ù1, which are themselves coded by reals via almost-disjoint coding.
Ultimately, objects x ∈Hù2 are represented by a real a ⊆ coding a pair (α,E) which
codes a transitive set having x as an element at index α in that coding.
This interpretation is a bi-interpretation, because Hù1 can construct suitable

codes for any object x ∈ Hù1 , and thereby recognize how itself arises within the
interpreted copy of Hù2 . And conversely, Hù2 can define Hù1 as a submodel and it
can see how the objects inHù2 are represented inside that model via almost disjoint
coding. The models

〈

Hù1, ∈
〉

and
〈

Hù2, ∈
〉

are therefore well-founded models of
ZFC– that are bi-interpretable, but they are not isomorphic, because the first model
thinks every set is countable and the second does not. ⊣

We can improve the previous theorem to achieve an actual synonymy of the two
structures as follows.

Theorem 19. If ZFC is consistent, then it is consistent that there is a membership
relation ∈ definable in

〈

Hù1, ∈
〉

such that
〈

Hù1,∈
〉

∼=
〈

Hù2, ∈
〉

, putting these structures
into bi-interpretation synonymy.
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Proof. The argument relies on a result of Leo Harrington [16], showing that it
is relatively consistent with ZFC that MA+¬CH hold, yet there is a projectively
definable well-ordering of the reals; in fact, Harrington achieves this in a forcing
extension of L. (Many thanks to Gabe Goldberg [11] for pointing out Harrington’s
paper in response to our MathOverflow question concerning the possibility of this
theorem.) In such a model, we can choose least elements within each equivalence
class of reals in the interpretation used in the proof of Theorem 18, and thereby omit
the need for an equivalence relation in the first place. So every element ofHù2 will be
coded by a real. Since the decoding of hereditarily countable sets can be undertaken
inside Hù1 , we thereby have a definable injection of Hù1 into the coding reals, and
so by the Cantor–Schröder–Bernstein theorem, Hù1 is bijective with the coding
reals. Because the Cantor–Schröder–Bernstein theorem is sufficiently constructive,
this bijection is definable inside

〈

Hù1, ∈
〉

, and so we may pull back the interpreted
membership relation on the coding reals to get a definable relation ∈ on all of Hù1 ,
such that

〈

Hù1,∈
〉

∼=
〈

Hù2, ∈
〉

, as desired. This is a bi-interpretation synonymy, since
Hù1 can see how it is represented in that coding, and Hù2 can define Hù1 and also
see how its elements are coded. ⊣

We find it interesting to compare Theorems 18 and 19 with [3, Corollary 2.5.1],
which says that ZFC–+“every set is countable” is solid, and similarly Corollary
2.7.1, which asserts that ZFC–+“V =Hκ+ for some inaccessible cardinal κ” also
is solid.
The following theorem explains somewhat the need in Theorem 18 for assuming

that we were working close to L.

Theorem 20. If there is no projectively definableù1-sequence of distinct reals, then
〈

Hù2, ∈
〉

cannot be interpreted in
〈

Hù1, ∈
〉

. In particular, in this case the structures are
not bi-interpretable nor even mutually interpretable.

The hypothesis is a direct consequence of sufficient large cardinals, since it is a
consequence of ADL(R). But meanwhile, it can also be forced by the Lévy collapse
of an inaccessible cardinal; and since it implies ù1 is inaccessible to reals, it is
equiconsistent with an inaccessible cardinal.

Proof. IfHù2 were interpreted inHù1, then since the former structure definitely
has an ù1-sequence of distinct reals, such a sequence would be definable (from
parameters) in the structure

〈

Hù1, ∈
〉

. But this latter structure is interpreted in the
reals in second-order arithmetic, by coding hereditarily countable sets by relations
onù. Bymeans of this interpretation, first-order assertions in

〈

Hù1,∈
〉

can be viewed
as projective assertions. And so there would be a projectively definable ù1-sequence
of distinct reals, contrary to our assumption. ⊣

Meanwhile, we can extend Theorem 18 from the consistency result to prove
outright in ZFC that there are always transitive counterexample models to be
found.

Theorem 21. The theory ZFC– is not solid, and not even semantically tight, not
even for well-founded models. Indeed, there are transitive models 〈M, ∈〉 and 〈N, ∈〉
of ZFC– that form a bi-interpretation synonymy, but are not isomorphic.
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Proof. By Theorem 19, there are such transitive sets in a forcing extension
of L. In that model, by taking a countable elementary substructure, we can find
countable transitive sets with the desired feature. And furthermore, the assertion
that there are such countable transitive sets like that, for which the particular bi-
interpretation definitions work and form a synonymy, is a statement of complexity
Σ12. By Shoenfield absoluteness, this statement must already be true in L, and hence
also in V. So there are countable transitive models 〈M, ∈〉 and 〈N, ∈〉 of ZFC– that
form a bi-interpretation synonymy, but are not isomorphic. ⊣

And we can also use the argument to show that ZFC– is not tight.

Theorem 22. ZFC– is not tight.

Proof. We shall find two extensions of ZFC– that are bi-interpretable, but not the
same theory. Let us takeT1 andT2 be the theories describing the situation of

〈

Hù1, ∈
〉

and
〈

Hù2, ∈
〉

in Theorem 18. Specifically, let T2 assert ZFC
– plus the assertion that

ù1 exists but not ù2, that ù1 = ù
L
1 , that ù2 = ù

L
2 , and that every subset of ù1 is

coded by a real using the almost-disjoint coding with respect to the L-least almost-
disjoint family 〈aα | α < ù1〉. Let T1 be the theory ZFC

– plus the assertion that
every set is countable and that the interpretation of Hù2 in Hù1 used in the proof
of Theorem 18 defines a model of T2. That is, T1 asserts that the interpretation
does indeed interpret a model of T2. These two theories are bi-interpretable, using
the interpretations provided in the proof of Theorem 18, because any model of T1
interprets a model of T2, and any model of T2 can define its Hù1 , which will be a
model of T1, and the composition maps are definable just as before. ⊣

§9. Zermelo set theory is neither solid nor tight. We should like now to consider
the case of Zermelo set theory. We shall prove that nontrivial instances of bi-
interpretation occur in models of Zermelo set theory, and consequently Zermelo
set theory is neither solid nor tight. Specifically, we shall prove the following:

Theorem 23.

(1) Z is not semantically tight (and hence not solid ), not even for well-founded
models: there are bi-interpretable well-founded models of Zermelo set theory
that are not isomorphic.

(2) Every model of ZF is bi-interpretable with a transitive inner model of Zermelo
set theory, in which the replacement axiom fails.

(3) Z is not tight: there are distinct bi-interpretable strengthenings of Z.

Our argument will make fundamental use of the model-construction method of
AdrianMathias [20]. Mathias had used his methods to construct diverse interesting
models of Zermelo set theory, some of them quite peculiar, such as a transitive inner
model of Zermelo set theory containing all the ordinals, but not having Vù as an
element. Let us briefly review his method. The central definition is that a class C is
fruitful, if

(1) every x ∈ C is transitive;
(2) Ord⊆ C ;
(3) x ∈ C and y ∈ C implies x∪y ∈ C ;
(4) x ∈ C and y ⊆ P(x) implies x∪y ∈ C .
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Fruitful classes, Mathias proves, lead to transitive models of Zermelo set theory as
follows.

Theorem 24 (Mathias [20, Proposition 1.2]). If C is fruitful, thenM =
⋃

C is a
supertransitive model of Zermelo set theory with the foundation axiom.

A transitive set M is supertransitive, if it contains every subset of its elements,
that is, if x ⊆ y ∈M → x ∈M . In the context of Zermelo set theory, we take the
foundation axiom in the form of the ∈-induction scheme, which is equivalent over Z
to the “transitive containment” assertion that every set is an element of a transitive
set.
The importance of the theorem is that Mathias explains how to construct a great

variety of fruitful classes TQ,G , defined in terms of a function Q : ù → Vù and a
family G of functions from ù to ù, which specify rates of growth for the allowed
sets. Namely, a transitive x is in TQ,G just in case its rate-of-growth function

fQx (n) = |x∩Q(n)|

is in G. Under general hypotheses, he proves, TQ,G is fruitful.
For our application, it will suffice to consider one of his key examples, described

in [20, Section 3]. Namely, we consider the case of TR,F , where R(n) = Vn is the
rank-initial segment function and F is the collection of functions f bounded by one
of the superexponential functions bk of the form

bk : n 7→ 2
2·
·
·
2n

}

k

for some k ∈ ù. Mathias proves in this instance that TR,F is fruitful, and therefore
by Theorem 24 the class M =

⋃

TR,F is a supertransitive model of Zermelo set
theory. The elements ofM are precisely those sets x whose transitive closure has a
rate of growth in Vn bounded by some bk .

x ∈M ⇐⇒∃k ∀n |TC({x})∩Vn| ≤ bk(n).

Since each bk has a fixed superexponential depth k, it follows that each of them has
strictly slower asymptotic growth than the full tetration function

n 7→ |Vn|= 2
2·
·
·
2
}

n – 1,

and therefore the set Vù is not inM because it grows too quickly [20, Theorem3.8].
In order to prove the claims of Theorem 23, we shall show that the original

ZF model 〈V, ∈〉 is bi-interpretable with the Zermelo model 〈M, ∈〉 defined by
M =

⋃

TR,F above. We already have one direction of the interpretation, since we
have defined M as a transitive inner model inside V. The difficult part will be
conversely to provide an interpretation of 〈V, ∈〉 inside 〈M, ∈〉. For this, we shall
make use of the Zermelo tower hierarchy, defined for any set a in V as follows:

(1) V (a)0 =∅;

(2) V (a)α+1 = {a}∪
(

P(V (a)α ) – {∅}
)

, for successor ordinals;

(3) V (a)ë =
⋃

α<ëV
(a)
α , for limit ordinals ë.
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Mathias had introduced the Zermelo tower idea in [20, Section 4], but defined and
considered it only at finite stages and ù, whereas we continue the construction,
crucially, through all the ordinals. Our reason for doing so is that the full Zermelo
tower V (a) is a definable copy of the original universe, as we prove here:

Lemma 25. For any set a, the universe 〈V, ∈〉 is definably isomorphic to the full
Zermelo tower 〈V (a), ∈〉.

Proof. The isomorphism from V to V (a) is simply the operation replacing every
hereditary instance of∅ in a set with a. Specifically, we define the replacing operation
x 7→ x(a) as follows:

∅(a) = a.

x(a) = {y(a) | y ∈ x}.

A simple argument by transfinite induction now shows that this is an isomorphism

of every Vα with V
(a)
α , which establishes the theorem. ⊣

Next, we show that for suitable sets a, the Zermelo tower is contained within the
Zermelo universeM we defined above.

Lemma 26. If a is any infinite transitive set in M, then V (a) ⊆M .

Proof. Suppose that a is an infinite transitive set in M. It therefore obeys the
growth rate requirement, and so there is some k for which |a∩Vn| ≤ bk(n) for every

n. Notice that a ∪V (a)α is a transitive set, and since (i) u(a) is infinite for every set u,
and (ii) every element of Vn is hereditarily finite, it follows that

(a ∪V (a)α )∩Vn = a ∩Vn.

Consequently, a ∪V (a)α obeys the growth-rate requirement, and consequently every

V (a)α is inM. So V (a) ⊆M . ⊣

Lemma 27. For any set a ∈M , the class V (a) is definable in M from parameter a.

Proof. One might naturally want to define V (a) in M by transfinite recursion,

as we did in defining the hierarchy V (a)α above. The problem with this is that M
is a model merely of Zermelo set theory, in which such definitions by transfinite
recursion do not necessarily succeed. Nevertheless, in instances as here where we
know independently that the recursion does have a solution in M, the recursive
definition does in fact succeed in defining it.
But instead of that definition, let us consider another simple definition. Define

that a terminal ∈-descent from a set x is a finite ∈-descending sequence of sets from
x to ∅

x = xn ∋ xn–1 ∋ ··· ∋ x1 ∋ x0 =∅.

We claim that V (a) consists inM precisely of those sets x for which every terminal
∈-descent passes through the set a, in the sense that a = xi for some i. Certainly

every x ∈ V (a) is like this, since if y ∈ x ∈ V (a)α+1, then either x = a or y ∈ V
(a)
α , and

by induction the terminal descents from y will pass through a. Conversely, assume
that every terminal ∈-descent from x passes through a. So either x = a, in which
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case it is in V (a), or else the assumption about terminal descents is also true of the
elements of x. By ∈-induction, therefore, the elements of x are all in V (a), and this

implies that x is in V (a)ã at an ordinal stage ã beyond the stages where the elements

of x are placed into V (a). ⊣

If we take a = ù, or some other definable infinite transitive set in M, then we
don’t need a as a parameter, and so we’ve proved that 〈V, ∈〉 and 〈M, ∈〉 are at least
mutually interpretable; each has a definable copy in the other.

Lemma 28. The mutual interpretation of 〈V, ∈〉 and 〈M, ∈〉 is a bi-interpretation.

Proof. We’ve seen already thatM is a definable transitive inner model of V, and
〈V, ∈〉 is definably isomorphic to its copy 〈V (a), ∈〉 in M, isomorphic by the map
x 7→ x(a), which is definable in V, assuming as we have that we use a = ù or some
other definable infinite transitive set inM.
Conversely, we’ve seen thatM can define the model 〈V (a), ∈〉. Inside that model,

we define the copy M (a) of M, just as M is definable in V. For this to be a bi-
interpretation, we need to show that the isomorphism ofM withM (a) is definable
in M. This isomorphism is precisely the function i : x 7→ x(a), applied to x ∈M .
The problem again, however, is thatM is not able in general to undertake recursive
definitions, since it satisfies only Zermelo set theory, which does not prove that
recursive definitions have solutions. Nevertheless, we claim that i ↾ x ∈M for any
x ∈M . The reason is that the transitive closure of i ↾ x = {(y,y(a)) | y ∈ x } can
be seen to obey the growth-rate requirement, as x does with its transitive closure
and the sets y(a) are either a or have no elements in any Vn, as in Lemma 26 above.
Thus,M can see the isomorphism i ↾ x of 〈x, ∈〉 with 〈x(a), ∈〉 for any set x ∈M .
If x is transitive, then since transitive sets are rigid, this isomorphism is unique, and
since different transitive sets are never isomorphic, 〈x, ∈〉 will not be isomorphic to
any 〈y, ∈〉 that M (a) thinks is transitive. So M can define i ↾ x for transitive sets
x by the assertions that it is an isomorphism of 〈x, ∈〉 with a set 〈y, ∈〉 for a set y
that M (a) thinks is transitive. These maps all agree with and union up to the full
isomorphism x 7→ x(a) of M with M (a), which is therefore definable in M. So we
have a bi-interpretation of 〈V, ∈〉 with 〈M, ∈〉. ⊣

Let us now put all this together and explain how we have proved Theorem 23.

Proof of Theorem 23. The argument we have given shows that every model
V |= ZF is bi-interpretable with a transitive inner modelM of Zermelo set theory,
which is not a model of ZF, because it does not even have Vù as an element. This
establishes statement (2) of Theorem 23.
For statement (1), we can perform the construction inside awell-foundedmodel of

some sufficient fragment of ZF. For example, let us undertake the entire construction
inside some Vë, satisfying Σ2-collection, say. We thereby get a transitive model
Më ⊆ Vë of Zermelo set theory, without Vù , but with 〈Vë, ∈〉 and 〈Më, ∈〉 bi-
interpretable. So there are well-founded models of Zermelo set theory that are
bi-interpretable, but not isomorphic.
Finally, let us consider statement (3). We consider the two extensions of Zermelo

set theory describing the situation that enabled us to make the main example for
statement (2). That is, the first theory is ZF itself; and the second theory, which
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we denote ZM, asserts Zermelo set theory Z, plus the assertion that the class V (ù),
defined as in our main argument, is a model of ZF, and the assertion that M is
isomorphic to M (ù) inside that class by the isomorphism definition we provided.
These two theories are different, but the argument that we gave above for the models
shows that they are bi-interpretable. ⊣

Let us close this section bymentioning that the construction is quitemalleablewith
respect to the instance of replacement we want to eliminate. Alternative versions of
the construction will construct supertransitive inner modelsM that satisfy Zermelo
set theory, and which have Vα as a set for every ordinal α < ë, but do not have Vë
as a set.

Theorem 29. For every limit ordinal ë, the universe 〈V, ∈〉 is bi-interpretable with
a transitive inner model 〈M, ∈〉 satisfying Zermelo set theory with foundation, such
that Vα ∈M for every α < ë, but Vë /∈M .

Proof. We useM =
⋃

TQ,G , where Q : ë→ Vë is Q(α) = Vα , and G consists of
the functions f that are bounded by one of the functions bâ , for some â < ë, defined
by

(1) b0(α) = α;
(2) bâ+1(α) = 2

bâ (α);
(3) if ç is a limit ordinal, then bç(α) = supâ<çbâ(α).

This is defined with cardinal arithmetic, not ordinal arithmetic. The class TQ,G

consists of all transitive sets x whose rate-of-growth function

fQx (α) = |x∩Vα |

is bounded by one of the functions bâ , for someâ<ë. It follows thatT
Q,G is a fruitful

class, and the resulting Zermelo modelM =
⋃

TQ,G is a transitive inner model of
Zermelo set theory with foundation (in the form of the ∈-induction scheme). Every
Vα for α < ë is inM, with growth rate bounded by bα , but Vë is not inM, since this
growth rate exceeds any given bâ for fixed â < ë. And 〈V, ∈〉 is bi-interpretable with
〈M, ∈〉 by analogous arguments to the above. ⊣

One can use this idea to produce many non-tight theories extending Zermelo
set theory. For example, for any theory true in the model M that we produced in
the proof of Theorem 23 will be bi-interpretable with ZF. For example, that model
M satisfies the principle that every definable function from a set to the ordinals is
bounded, which can be seen as a weak form of replacement not provable in Z, but
true in M precisely because it is a transitive inner model (with all the ordinals) of
a model of ZF. In Theorem 29 we similarly arranged that Vα exists for all α up to
some large definable limit ordinal ë, which is itself another instance of replacement,
and so this gives another extension of Zermelo set theory that is bi-interpretable
with ZF.
Let us conclude the paper by distinguishing the theory form of bi-interpretation

from a natural model-by-model form of bi-interpretation that might hold for the
models of the theory. Specifically, we define that
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Definition 30. Theories T1 and T2 are model-by-model bi-interpretable if every
model of one of the theories is bi-interpretable with a model of the other.

The definition in effect drops the uniformity requirement for bi-interpretability of
theories, since it could be a different interpretation that works in one model than in
another, with perhaps no uniform definition that works in all models of the theory.
This is precisely what we should like now to prove.

Theorem 31. There are theories T1 and T2 that are model-by-model bi-
interpretable, but not bi-interpretable.

Proof. Consider the theories

(1) T1 = ZF.
(2) T2 = {α∨â | α ∈ ZF∧â ∈ ZM} (That is, T2 = ZM∨ZF.),

where ZM is the theory used in the proof of Theorem 23. Observe thatM |= T2 if
and only ifM |= ZF orM |= ZM. The reverse implication is immediate, and if the
latter fails, then M 6|= α and M 6|= â for some α ∈ ZF and â ∈ ZM, which would
meanM 6|= α∨â , violating the former.
Now observe simply that every model of ZF is bi-interpretable with itself, of

course, and this is a model of T2. And conversely, every model of T2 is either a
model of ZF already, or else a model of ZM, which is bi-interpretable with a model
of ZF. So these two theories are model-by-model bi-interpretable.
Let us now prove that the theories are not bi-interpretable. Suppose toward

contradiction that (I ,J ) form a bi-interpretation, so that I defines a model of T1
inside any model of T2 and J defines a model of T2 inside any model of T1, and
the theories prove this and furthermore have definable isomorphisms of the original
models with their successive double-interpreted copies. Let M be a model of ZM
that is not a model of ZF. Let IM be the interpreted model of ZF defined insideM.
This is also a model of ZM, since ZM ⊆ ZF, and so we may use I again to define

I I
M
to get another model of ZF inside that model. Because we interpreted a model

of T2 by I, it follows that I
IM and IM are bi-interpretable as models. But these are

both models of ZF, and so by Theorem 13 they are isomorphic. By interpreting with

J to get the corresponding interpreted ZMmodels, it follows that J I
IM

and J I
M
are

isomorphic. Because (I ,J ) form a bi-interpretation, the first of these is isomorphic
to IM, which is a ZF model, while the second is isomorphic toM, which is not. This
is a contradiction, and so the theories are not bi-interpretable. ⊣

The essence of the proof was that we had a theory ZM that was not solid, but it
was a subtheory of a solid theory ZF, with which it was bi-interpretable.

§10. Final remarks. We have investigated the nature of mutual and bi-
interpretation in set theory and the models of set theory. There is surely a vibrant
mutual interpretation phenomenon in set theory, with numerous instances ofmutual
interpretation amongst diverse natural extensions of ZF set theory. This mutual-
interpretation phenomenon, however, is less than fully robust in several respects.
First, theories extending ZF are never bi-interpretable, and indeed, there cannot be
even a single nontrivial instance of models of ZF set theory being bi-interpretable.
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Worse, amongst the well-founded models of ZF, there cannot even be nontrivial
instances of mutual interpretation. The basic lesson of this is that, when one follows
the mutual interpretations we mentioned above, there is no getting back. One cannot
recover the original model. When you move from a well-founded model of ZFC
with large cardinals to the corresponding determinacy model, you cannot define
a copy of the original model again, and the same when interpreting in the other
direction. In this sense, interpretation in models of set theory inevitably involves
and requires the loss of set-theoretic information.
Meanwhile, we have showed that several natural weak set theories avoid this

phenomenon, including Zermelo–Fraenkel set theory ZFC– without the power set
axiom and Zermelo set theory Z. It remains open just how strong the weak set
theories can be, while still admitting non-trivial instances of bi-interpretation. In
addition, there remain interesting open questions concerning the circumstances in
whichHù1 and Hù2 might be bi-interpretable or bi-interpretation synonymous.
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