
Macroeconomic Dynamics, 22, 2018, 1875–1903. Printed in the United States of America.
doi:10.1017/S1365100516000924

MODELING INTERNATIONAL
STOCK PRICE COMOVEMENTS
WITH HIGH-FREQUENCY DATA

HACHMI BEN AMEUR
INSEEC Business School

FREDJ JAWADI
University of Evry

WAEL LOUHICHI
ESSCA School of Management

ABDOULKARIM IDI CHEFFOU
EDC Paris Business School

This paper studies stock price comovements in two key regions [the United States and
Europe, which is represented by three major European developed countries (France,
Germany, and the United Kingdom)]. Our paper uses recent high-frequency data (HFD)
and investigates price comovements in the context of “normal times” and crisis periods.
To this end, we applied a non-Gaussian Asymmetrical Dynamic Conditional Correlation
(ADCC)-GARCH (Generalized Autoregressive Conditional Heteroscedasticity) model
and the Marginal Expected Shortfall (MES) approach. This choice has three advantages:
(i) With the development of high-frequency trading (HFT), it is more appropriate to use
HFD to test price linkages for overlapping and nonoverlapping data. (ii) The
ADCC-GARCH model captures further asymmetry in price comovements. (iii) The use of
the MES enables to measure systemic risk contributions around the distribution tails.
Accordingly, we offer two interesting findings. First, while the hypothesis of asymmetrical
and time-varying stock return linkages is not rejected, the MES approach indicates that
both European and US indices make a considerable contribution to each other’s systemic
risk, with significant input from Frankfurt to the French and US markets, especially
following the collapse of Lehman Brothers. Second, we show that the propagation of
systemic risk is higher during the crisis period and overlapping trading hours than during
nonoverlapping hours. Thus, the MES test is recommended as an indicator to help monitor
market exposure to systemic risk and to gauge expected losses for other markets.
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Tsay, and the participants of the Second International Workshop on “Financial Markets and Nonlinear Dynamics”
(Paris, June 4 and 5, 2015) for their helpful comments. Address correspondence to: Hachmi Ben Ameur, INSEEC
Business School, 27 avenue Claude Vellefaux 75010 Paris, France; e-mail: hbenameur@inseec.com.

c© 2017 Cambridge University Press 1365-1005/17 1875

https://doi.org/10.1017/S1365100516000924 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000924


1876 HACHMI BEN AMEUR ET AL.

1. INTRODUCTION

Systemic risk has been a key ingredient in theories on risk management, asset
pricing, and modern finance for a number of years. Further, in the aftermath of
the global financial crisis (2008–2009), the debate concerning systemic risk and
its measurement was also revived by several financial analysts and economists.
They pointed not only to its responsibility and culpability with regard to this
crisis, but also to its evaluation errors and the danger and severity of its rapid
propagation. Accordingly, traditional financial risk measures have been criticized
and systemic risk measurement has again become a topic of intense discussion
among economists, bankers, analysts, and policy makers. All of them unanimously
agree on the urgency to develop a successful risk management strategy and more
accurate risk assessment.1

Consequently, an ongoing research program has been developed, focusing on
at least two different lines of study. On the one hand, various robust financial asset
volatility risk measurements have been introduced to improve risk management
and measure, including the use of recent financial econometric methods [Dettling
and Bühlmann (2002), Bollerslev and Zahang (2003), Härdle et al. (2008), Ait-
Sahalia and Yu (2009), Dobrev and Szerszen, (2010), Anderson et al. (2011)].
On the other hand, a new focus on the measurement of stock market linkages—
yielding different systemic risk measures—has been noted in the recent literature,
and is designed to better model market interactions [Conditional Value-at-Risk,
noted CoVaR, by Adrian and Brunnemeir (2016), Multi-CoVaR by Cao (2012),
Marginal Expected Shortfall (MES) by Acharya et al. (2010), Brownlees and
Engle (2012), etc.]. By definition, let us recall that the VaR measures for a firm i
the highest loss that it can expect, while the CoVaR measures the Value-at-Risk
(VaR) of a given financial system with regard to a specific event that characterizes
a given institution. The �CoVaR captures the contribution of a given institution
to systemic risk and is measured as the difference between its CoVaR when the
institution is in a stress situation and its CoVaR in a normal situation. Finally,
the MES that measures the expected loss of a given institution when the financial
system falls below a given threshold.2

Our paper examines this second line of research, supporting substantial gains
in the modeling of stock price comovements by using high-frequency data (noted
HFD hereafter) and recent systemic risk measures. Investigation of intraday price
linkages is crucial to improve our understanding of shock transmission and sys-
temic risk diffusion from one market to another.

Obviously, stock market linkages and systemic risk are not new issues, and have
been the focus of several empirical studies in different forms (contagion, financial
integration) but often through low-frequency data. With the expansion of high-
frequency trading (noted HFT hereafter) across markets,3 it becomes interesting
to study price comovements more parsimoniously with HFD given the nature of
HFT.4 Indeed, HFT improves market efficiency [Hendershott and Riordan (2009)]
and liquidity [Hendershott et al. (2011)], and implies positive externalities for
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traditional traders. But HDT can also damage financial markets since it can cause
higher volatility, information asymmetry, adverse selection, worsened liquidity,
and an increase in systematic risk across markets.

In particular, HFT is a source of systemic events (i.e., the Flash Crash in the
United States on May 6, 2010, when large indices lost 5% in 30 minutes), and
can transmit shocks across markets through at least two mechanisms. First, HF
traders might stop the liquidity supply and induce illiquidity spread across markets.
Second, HF traders use cross-market arbitrages and adopt similar behaviors and
strategies as they exploit trading opportunities in microseconds. They can thus
accelerate the markets’ interdependency and correlations, making markets more
fragile [Debrev and Szerszen (2010)]. It is also widely acknowledged that market
fragmentation leads to an increase in HFT, creates cross-sectional correlations, and
stimulates price comovements and therefore financial risk [(Forbes and Rigobon
(2002)]. For all these reasons, studying intraday price comovements and intraday
systemic risk is highly recommended, and our paper focuses on and contributes to
this specific field.

From an econometric perspective, unlike previous related studies that often
rely on the modeling of unconditional price comovements with standard para-
metric time-series techniques, we applied two recent methodologies to investigate
HF stock prices and thus develop an analysis that paves the way for new lines
of research, with several advantages. First, the application of an Asymmetrical
Dynamic Conditional Correlation (ADCC)-GARCH (Generalized Autoregres-
sive Conditional Heteroscedasticity) model captures conditional correlations and
variance for stock return distributions that are robust to further asymmetry and
heteroscedasticity in the data. Second, we use a nonparametric approach based
on the MES that measures the tail-event linkages between financial assets, while
focusing on the behavior of tail distribution to measure the impact of a given high-
intensity shock affecting one market via another market. Interestingly, while the
first approach focuses on the whole distribution, the MES captures comovements
around the quantiles, which is more appropriate when checking for extreme market
risk.

Adopting an empirical approach, our study focuses on an original sample in-
cluding two key regions [the United States and Europe, which is represented
by three major European developed countries (France, Germany, and the United
Kingdom)] with implicit reference to three leading international currencies. While
the inclusion of the US market is of particular interest as the latter was at the center
of the subprime crisis and the global financial crisis (2008–2009), the choice of
European markets is explained by the fact that they were strongly affected by
these two crises as well as by the European Public Debt crisis in 2010. We use
a recent data sample including HFD (5-minute returns) to cover two subsamples:
July 2007–March 2009 and January 2014–September 2015. While the first sample
focuses on intraday price comovements and intraday systemic risk across leading
international equity markets during the crisis period, the second sample acts as a
benchmark period that enables us to investigate price comovements and systemic
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risk transmission in normal times. Interestingly, when we apply the MES (that
provides a measure of sensitivity or resilience) in normal periods (sample 2), we
test whether the MSE test could provide an indicator of actual or future losses
[Acharya et al. (2010)].

Thus, the first contribution of this study is linked to the investigation of intraday
price comovements for four major stock markets during normal and crisis peri-
ods. The second contribution comes from the nonparametric modeling (MES) of
systemic risk transmission from one market to another at different periods of the
trading day, especially during overlapping and nonoverlapping hours. The MES
is better adapted than the usual parametric method as it captures comovements
around quantiles of the distribution and movements associated with extreme risk
and events.

Overall, our findings offer three interesting results. First, the ADCC-GARCH
approach shows significant time-varying stock return linkages and points to further
asymmetry in these linkages, indicating that markets are closely connected and
that their reaction to negative shocks differs from their reaction to positive ones.
Second, the MES approach suggests that both European and US indexes signifi-
cantly contribute to each other’s systemic risk, with strong input from Frankfurt to
the French and US markets, especially following the collapse of Lehman Brothers.
Third, both analyses indicate that stock return linkages and contributions to sys-
temic risk significantly increase during overlapping trading hours (OTH) when the
US market opens, and during the crisis period. This suggests that the probability
of systemic risk transmission is higher when all of the markets are open.

The remainder of the paper is organized as follows. Section 2 briefly summarizes
a related literature survey. Section 3 presents the econometric methodology. The
empirical results are discussed in Section 4. Finally, Section 5 concludes.

2. LITERATURE

The study of comovements between international stock markets has received a
great deal of interest in the quantitative finance literature as it is an important factor
in helping investors to optimize their investment and diversification strategies.
This has led to an ongoing literature5 that includes various studies on stock return
linkages and volatility spillovers, based on diverse econometric methodologies that
can be split into three different approaches. A first approach consists of examining
the unconditional correlation between international stock market returns [Jaffe
and Westerfield (1985), Calvo and Reinhart (1996), Forbes and Rigobon (2002),
Chiang et al. (2007)], but it is not the most reliable given the nonnormality of such
returns. A second approach uses different versions of international capital markets
to test the hypothesis of market integration [see Bekaert and Harvey (1995)].
Linear and nonlinear cointegration tests are central to the third approach and
involve identifying further long-run relationships between stock prices [Girardin
and Liu (2007), Jawadi et al. (2009), Arouri et al. (2012), Chlibi et al. (2015),
Chlibi et al. (2016), etc.]. Overall, these studies have pointed to an increase in
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price comovements over the last few decades, but the conclusions in terms of stock
market integration and/or contagion phenomena vary with regard to the markets
under consideration and their shared level of fundamentals. The following three
major empirical results may be retained, however:

(i) Developed stock markets show higher integration than emerging stock markets, im-
plying that they depend on both local and global risk factors.

(ii) Financial integration across emerging markets has increased in recent years due to the
different financial reforms, liberalization, integration, and deregulation. In addition,
the increase in market integration indicates an increase in cross-market linkages and
therefore systemic risk.

(iii) Stock price comovements seem to exhibit asymmetry, nonlinearity, and threshold
effects.

As for the literature related to volatility spillover, the family of ARCH models
has been widely applied to characterize volatility dynamics in financial markets,
since ARCH models can reproduce the volatility persistence effect (clustering)
and capture the conditional heteroscedasticity that informs most stock data. Fur-
thermore, extensions of ARCH models, including the Exponential-GARCH and
Threshold-ARCH models, justify the predominance of such models since they
account for the well-known asymmetric effect, i.e., negative shocks have a greater
impact on conditional volatility than positive shocks, and enable structural breaks
and switching regimes in volatility dynamics, respectively.

For a nonexhaustive list, we summarize this body of volatility spillover lit-
erature below. Hamao et al. (1990) considered a univariate GARCH model to
investigate the interdependence between three major international stock markets
(London, New York, and Tokyo) around the time of the October 1987 crash. Their
study highlighted price volatility spillover from New York to Tokyo, London to
Tokyo, and New York to London. Koutmos and Booth (1995) used a multivariate
EGARCH model, which takes the asymmetric response of volatility to external
events into account. They distinguished between the impact of good news (market
advances) and bad news (market declines). The study revealed that volatility
spillover is far more pronounced when the news transmitted from one market to
another is bad. Koutmos (1996) confirmed the above result when studying volatil-
ity spillover among the four major European stock markets (United Kingdom,
France, Germany, and Italy). By using a bivariate GARCH model, Ng (2000)
found a significant volatility spillover effect from Japan and the United States
to six Pacific-Basin equity markets. Baele (2005) examined volatility spillover
from the aggregate European and US market to 13 local European equity mar-
kets. The author found that the intensity of both the European and the US shock
spillover increased substantially during the 1980s and 1990s. Nam et al. (2008)
focused on price and volatility spillover from the US market to five Pacific-
Basin markets: Hong Kong, Singapore, South Korea, Malaysia, and Taiwan. The
authors compared the spillover effects between the pre and postcrisis periods
and showed that the impact of US shocks on the volatility of Asian markets
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decreased significantly after the 1997 financial crisis. By using a bivariate vector
autoregression-generalized autoregressive conditional heteroskedasticity model,
Lee (2009) found evidence of volatility spillover between six Asian stock mar-
kets (India, Hong Kong, South Korea, Japan, Singapore, and Taiwan). Overall,
significant dependency on the US market seems to be confirmed by a number of
empirical studies. Furthermore, the hypothesis of price comovement increases for
major stock markets is not rejected but appears to vary according to the markets
and periods considered, suggesting more evidence of time-varying stock return
and volatility linkages.6

In order to get a better grasp of stock market comovements and systemic risk,
some recent studies have extended the topic by examining intradaily data instead
of daily or weekly information. This choice is justified by the development of
new information and communication technologies, access to information in real
time and the development of HFT. Among this body of studies, Susmel and Engle
(1994) tested hourly volatility spillover between New York and London, but the
authors did not find strong volatility spillover between the two markets. Jeong
et al. (1999) used 5-minute returns to study volatility spillover between the United
States, United Kingdom, and Canada during their OTH (9:30–11:30 a.m., New
York time) and showed that information contained in price volatility surprises
in a domestic market is subsequently transmitted to foreign markets. Moreover,
they detected some persistence in the impact of foreign volatility shocks on the
conditional variance of the domestic market. Chang et al. (2011) examined intraday
returns spillover between technology stocks quoted on the NYSE, AMEX, and
NASDAQ. The authors found that spillover effects occur within half an hour
and two hours later, and tend to follow an M-shaped intraday pattern. Overall,
these studies refine the analysis of systemic risk and stock market comovements
thanks to the use of HFD.7 However, the techniques employed are not robust to
asymmetry and have so far failed to significantly distinguish between negative
and positive shocks or high- and low-intensity shocks. In addition, the effect of
extreme market risk on another market cannot be appropriately reproduced with
the linear techniques employed in these prior studies.

To fill this gap, our study adopts two techniques (ADCC-GARCH and MES) and
applies them to recent HFD for the United States and three major European stock
markets (France, Germany, and the United Kingdom) to capture their interactions
in real time. Accordingly, the present paper contributes to the literature through
the investigation of systemic risk propagation by using nonparametric interdepen-
dence tests applied to four international equity markets during overlapping and
nonoverlapping hours. To our knowledge, this is the first study to test stock price
comovements and systemic risk with HFD by using nonparametric approaches
that simultaneously search for further asymmetry and spillover effects between
extreme market risks. The MES approach is useful to capture different forms of
price linkages and improve systemic risk modeling, since it enables us to measure
and time the contribution of a given market to the systemic risk of another market
for each quantile.
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3. ECONOMETRIC METHODOLOGY

This section briefly presents the econometric methodology: (i) the ADCC-GARCH
model and (ii) the MES methodology.

3.1. The ADCC-GARCH Model

The ARCH effect that characterizes financial data is appropriately reproduced
by the class of Autoregressive Conditional Heteroscedasticity models, including
the ARCH model [Engle (1982)] and the GARCH model [Bollerslev (1986)] and
their recent extensions (EGARCH, TARCH, PARCH, GJR-GARCH, etc.). These
specifications are used to model daily as well as intraday 5-minute conditional
volatility [Kalev et al. (2004), Bauwens et al. (2005), Baur and Jung (2006),
Louhichi (2011), Jawadi et al. (2015a), etc.]. However, the basic GARCH model
considers that conditional correlations are constant over time, although this hy-
pothesis is restrictive in practice, as observed volatilities appear to move more or
less closely together over time. In order to take these time-varying correlations into
account, several multivariate GARCH specifications have been developed.8 First,
Engle and Kroner (1995) proposed a general multivariate GARCH model: the
BEKK-GARCH. The latter is sufficiently general to include all positive definite
diagonal representations and nearly all positive definite vector representations.
However, the main drawback of the BEKK-GARCH model is the presence of a
large number of parameters, which can increase rapidly with the size of the model.
Second, Engle and Sheppard (2001) proposed the dynamic conditional correlation-
GARCH model, called the DCC-GARCH model. Cappiello et al. (2006) then
extended the DCC-GARCH model to allow for asymmetry in modeling time-
varying conditional correlations, and introduced the ADCC-GARCH model. This
new class of dynamic correlation model is much simpler in that it requires a two-
step algorithm to estimate the model parameters. In the first step, the conditional
variance is separately estimated for each time series via a univariate GARCH
model. The second step consists of generalizing Bollerslev’s Constant Conditional
Correlation (CCC) to capture further dynamic correlations. The parameters for the
conditional correlation are estimated taking the parameters from the first step into
account. Interestingly, the ADCC-GARCH provides an appropriate framework to
study price comovements and investigate systemic risk, while allowing for price
comovements to be asymmetrical since the effects of positive shocks can differ
from those of negative shocks.

Formally, we note rt as a vector of stock returns and specify its dynamics as
follows:

rt = μ + εt , (1)

where rt denotes the returns’ vector, μ denotes the vector of conditional returns,
and εt is the vector of mean-corrected returns of n assets at time t.

https://doi.org/10.1017/S1365100516000924 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000924


1882 HACHMI BEN AMEUR ET AL.

We specify εt as follows:

εt = H
1
2

t zt , (2)

where Ht is a matrix of conditional variances of εt , zt � i.i.d. (0, I ), and
I denotes the identity matrix.

The matrix Ht is defined as follows:

Ht = Dt Rt Dt , (3)

where Dt is the diagonal matrix of time-varying standard deviations and Rt is the
matrix of conditional correlation of the standardized residuals.

The matrix Dt is based on time-varying standard variations from a univariate
GARCH model and corresponds to the following:

Dt =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1,t 0 0 · · · 0
0 σ2,t 0 · · · 0

0 0 σ3,t

...
...

...
. . . 0

0 0 · · · 0 σn,t

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4)

The diagonal elements of Dt are obtained from the following GARCH (p, q)
specification9:

σ 2
t = k +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j + vt , (5)

where k is a constant, vt � N(0, σ 2
v ), αi and βj are the ARCH and GARCH

parameters, respectively, and p and q are the max-lag numbers.
As for the matrix Rt, it reproduces conditional correlation of the standardized

residuals [ εt = D−1
t rt −→ N (0, Rt )] and it corresponds to the following:

Rt =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ϕ12,t ϕ13,t · · · ϕ1n,t

ϕ21,t 1 ϕ23,t · · · ϕ2n,t

ϕ31,t 0 1
...

...
...

. . .

ϕn1,t ϕn2,t ϕn3,t · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6)

Thus, in practice, a GARCH structure is used to model the correlation dynamics.
This means that an ADCC process of order (M, N) can be described as follows:

Rt = (
Q∗

t

)−1
Qt

(
Q∗

t

)−1
, (7)

Qt = (1 − a − b) Q − cT + a (εt−1εt−1) + b Qt−1 + c
(
et−1e

′
t−1

)
,
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where Q = E(εtε
′
t ) denotes the unconditional and time-invariant variance–

covariance matrices, a and b measure the effects of shocks and dynamic cor-
relations, respectively, and c captures the asymmetric effect, Q∗ is a diagonal
matrix containing the square root of the diagonal elements of Qt , et = I (εt <

0) ◦ εt (◦ denotes the Hadmard product elementwise matrix multiplication), and
T = E(ete

′
t ).

In order to ensure the stationarity and positivity for Qt , we need to check the
following required conditions:

a + b + dc < 1,

where d denotes the maximum eigenvalue of Q
− 1

2 T Q
− 1

2 .
As for Q∗

t , we specify it as

Q∗
t =

⎡
⎢⎢⎢⎢⎢⎣

√
ϕ11,t 0 0 · · · 0
0

√
ϕ22,t · · · 0

0 0
√

ϕ33,t 0 0
...

... 0
. . .

...

0 0 0 · · · √
ϕnm,t

⎤
⎥⎥⎥⎥⎥⎦ . (8)

The estimation of the ADCC-GARCH model is performed by using a two-step
procedure that allows for decreases in the complexity of the estimation process.
In particular, Engle et al. (2008) introduced a composite likelihood approach to
covariance modeling, thereby making use of these plausible methods for large-
scale applications. Interestingly, this approach resolves the problem of bias in the
two-step quasilikelihood estimators. Composite likelihood is thus maximized to
determine the parameters of the ADCC-GARCH. The advantage of this model is
that it uses a dynamic multivariate distribution on top of the dynamic marginal
distributions. It can be viewed as a simple type of dynamic copula approach
without modeling distributions specifically.

3.2. The Margin Expected Shortfall Approach

By using the ADCC-GARCH model, it is possible to capture further price depen-
dency through the dynamic correlation measure that is based on mean changes in
price. However, this model cannot capture price comovements induced by changes
in the tail distribution, a major source of systemic risk. In order to take extreme
price movements into account, quantile regressions are required, as extreme price
variations affect quantiles far more than the mean or median distribution in periods
of stress.10

The ES and/or MES approaches have been applied to measure this type of
comovement in several recent studies [Inui and Kijima (2005), Idier et al. (2014)].
They are particularly suitable to assess the measurement of systemic risk exposure.
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The main advantage of the former is that it is not affected by the problem of
subadditivity as is the VaR [Artzner et al. (1999)].

In this paper, we apply the MES approach developed by Acharya et al. (2010)
to investigate the hypothesis of intraday systemic risk transmission between in-
ternational stock indexes. This procedure aims at measuring further dependence
between intradaily extreme price variations, while identifying the markets that
contribute the most to systemic risk across time on other markets. It is worth
recalling that the MES methodology is basically applied to compute the risk
contribution of an individual asset relative to the whole portfolio. However, the
MES is defined mathematically on the basis of joint distribution, so it can also be
used to estimate the risk contribution of an index relative to another index.

Formally, Acharya et al. (2010) define MES as the marginal contribution of a
firm J to the expected shortfall of the financial system. Thus, the MES for firm J

is the expected value of the stock return RJ conditional on the market portfolio
return Ri being at or below the sample p-percent quantile. Let C be a constant that
corresponds to the level of market “tail risk,” we define the MES as follows:

MES(RJ , p) = E
(
Rj |Ri < VaR (Ri, p) = C

)
. (9)

The higher the MES of an asset, the greater its contribution to the market decline
and to systemic risk.11

This approach consists of a multistage estimation. In the first step, GARCH
models are used to produce conditional volatilities and standardized residuals. In
the second step, the ADCC specification allows us to determine the conditional
asymmetric correlation. Next, the tail expectation is estimated by a nonparametric
kernel estimation approach proposed by Scaillet (2005), who used the Nadaraya–
Watson (NW) type double kernel estimator of conditional density. This approach
has the advantage of not requiring a hypothesis regarding stock return distribution.
Brownless and Engle’s (2010) approach also provides smooth estimates of the
MES, suggesting that the dynamic MES estimate is not oversensitive to small
changes in the threshold level of systemic loss. Also, following Scaillet (2005),
we use the Gaussian Kernel function and the bandwidth h = T − 1

5 .
If rj,t and ri,t , respectively, define the returns of two market indices, then

rj,t = σj,t εj,t , (10)

ri,t = σi,t εi,t ,

ri,t = σi,tρi,t εj,t + σi,t

√
1 − ρ2

i,t ζi,t ,(
εj,t , ζi,t

) → F,

where σj,t , σi,t , and ρi,t are, respectively, the volatilities of the market indices
j and i and the conditional correlation between the two market indices. The
disturbances εj,t and ζi,t are assumed to be independent and identically distributed.
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The joint distribution F allows for the random variables to be uncorrelated but not
independent.

4. EMPIRICAL ANALYSIS

4.1. Preliminary Analysis

Our study investigates intradaily price linkages between the US market and three
major European stock markets (Frankfurt, London, and Paris). To do this, we
used the tick prices of leading stock market indices: SP&500, DAX30, FTSE100,
and CAC40. Data were obtained from the Bloomberg database and covers two
subperiods: the crisis period from July 2007 to March 2009 and a recent benchmark
period from January 2014 to September 2015. As in previous related studies, we
relied on 5-minute stock returns. In view of our sample, the use of HFD allows us to
investigate short-term linkages between these major international equity markets
at different periods of the trading day for OTH and nonoverlapping trading hours
(NOTH). During our period of study, the CAC40, the DAX30, and the FTSE100
were continuously computed from 8:00 to 16:30 GMT. However, trading in the
US market starts at 14:30 and ends at 21:00 GMT. This means that the US market
opens during European market trading hours and continues for more than four
trading hours after the European markets have closed. Accordingly, the difference
in trading hours helps us to conduct a more precise study by separating overlapping
and nonoverlapping periods, with our sample broken down into overlapping and
nonoverlapping hours.

Descriptive statistics. Before moving on to the empirical analysis, we investi-
gated the statistical properties of the data during nonoverlapping (Tables 1 and 2)
and overlapping (Tables 3 and 4) trading hours and noted several factors. First, the
return in mean for both samples differs significantly, highlighting the impact of the
opening of the US market. Second, stock return volatilities seem to vary per trading
hour and to increase during OTH, suggesting that the opening of the US market
and the arrival of news from this market may be a source of volatility increase and
therefore systemic risk for European markets. Third, skewness is often negative
and statistically significant during overlapping and nonoverlapping hours, pointing
to further evidence of left asymmetrical distribution. Fourth, leptokurtic excess
during OTH and NOTH suggests that distribution tails are higher than those of a
normal distribution. Finally, normality is statistically rejected for all series in both
samples.

Unconditional correlation matrix. Next, we checked the linkages between
stock returns, again for NOTH (Tables 5 and 6) and OTH (Tables 7 and 8) while
computing the unconditional correlation matrix.

Overall, we noted positive and significant unconditional correlations between
the stock markets under consideration, with a high correlation for the Paris–
Frankfurt pair for all periods, apart from the OTH during the crisis period, where we
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TABLE 1. Descriptive statistics for NOTH during the bench-
mark period

RCAC RUK RDAX

Min −0.018 −0.010 −0.021
Max 0.012 0.008 0.012
Mean −1.4575E−06 −7.3341E−06 −3.5013E−06
STD 9.1312E−04 6.2211E−04 9.4104E−04
Median 2.2829E−06 −4.5712E−06 0
Kurtosis 23.256 16.719 20.470
Skewness 0.147 −0.488 −0.626
JB test 5.765E+05 2.647E+04 4.294E+05

Note: RCAC, RUK, and RDAX denote French, British, and German stock returns. STD
and JB denote standard deviation and Jarque Bera tests, respectively. NOTH refers to
nonoverlapping trading hours.

TABLE 2. Descriptive statistics for NOTH during the crisis period

RCAC RUK RDAX

Min −0.029 −0.089 −0.028
Max 0.033 0.046 0.031
Mean −1.6911E−06 −8.7675 E−06 −1.1281E−06
STD 0.0016 0.0016 0.0016
Median −6.8811E−06 0 −1.2842E−06
Kurtosis 24.886 348.468 30.554
Skewness −0.637 −3.795 0.238
JB test 6.7215E+05 1.6752E+04 1.0655E+05

note that the highest correlation is between Paris and London, suggesting further
evidence of strong intradaily price comovements. Furthermore, we noted that the
opening of the US markets stimulates these linkages and increases propagation
of systemic risk. The US market seems to be linked more strongly to Frankfurt
than to London or Paris. These findings are in line with those of Ben Ameur et al.
(2013) and Jawadi et al. (2015a). In comparison with the crisis period, the level of
unconditional correlation is highest during noncrisis periods.

While these findings indicate further evidence of dependence between the stock
markets under consideration, we need to apply more developed tests to check the
hypothesis of intraday systemic risk and intraday comovements between these
markets.

4.2. Empirical Analysis

The ADCC-GARCH analysis. First, we applied the ADCC-GJR-GARCH
model by using the Composite Likelihood approach developed by Engel et al.

https://doi.org/10.1017/S1365100516000924 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000924


STOCK PRICE COMOVEMENTS WITH HIGH-FREQUENCY DATA 1887

TABLE 3. Descriptive statistics for OTH during the benchmark period

RCAC RUK RDAX RSP

Min −0.0079 −0.0057 −0.0102 −0.0098
Max 0.0113 0.0095 0.0112 0.0141
Mean −4.4465E−6 −5.3278E−7 −3.9831E−6 −6.0553E−6
STD 0.0011 7.3876E−4 0.0011 8.0503E−4
Median 1.5772E−5 9.9742E−6 1.7574E−4 9.6950E−06
Kurtosis 9.7761 12.3602 9.7907 25.4010
Skewness 0.0524 0.0845 −0.1222 0.5584
JB test 1.7977E+4 3.4304E+4 1.8073E+4 1.9690E+5

TABLE 4. Descriptive statistics for OTH during the crisis period

RCAC RUK RDAX RSP

Min −0.0187 −0.0130 −0.0235 −0.0183
Max 0.0212 0.0181 0.0188 0.0367
Mean −2.3301E−5 −1.6643E−5 −1.4466E−5 −3.8090E−05
STD 0.0021 0.0019 0.0021 0.0021
Median −2.8906E−05 −1.6500E−5 −1.1918E−5 −4.3364E−05
Kurtosis 9.3923 8.9849 10.8008 20.0580
Skewness −0.0780 0.1497 −0.2104 0.6268
JB test 1.5765E+4 1.3846E+4 2.3532E+4 1.1280E+5

Note: RSP denotes the US stock return. OTH refers to overlapping trading hours.

TABLE 5. Unconditional correlation matrix
for NOTH during the benchmark period

RCAC RUK RDAX

RCAC 1.000 0.777 0.892
RUK 1.000 0.735
RDAX 1.000

(2008). According to the information criteria, we retained an ADCC-GJR-GARCH
(1,1) specification. Thus, the first step consisted of modeling the stock-return re-
gression according to equation (1). Next, we recuperated its estimated residuals
as in Engle and Shepard (2006) and used them to evaluate the GJR-GARCH (1,1)
model parameters [equation (11)]. We then computed the parameters a, b, and
c of the ADCC-GJR-GARCH (1,1) model with regard to equation (7) under the
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TABLE 6. Unconditional correlation matrix
for NOTH during the crisis period

RCAC RUK RDAX

RCAC 1.000 0.759 0.803
RUK 1.000 0.679
RDAX 1.000

TABLE 7. Unconditional correlation matrix for OTH dur-
ing the benchmark period

RCAC RUK RDAX RSP

RCAC 1.000 0.821 0.917 0.725
RUK 1.000 0.794 0.748
RDAX 1.000 0.738
RSP 1.000

TABLE 8. Unconditional correlation matrix for OTH dur-
ing the crisis period

RCAC RUK RDAX RSP

RCAC 1.000 0.863 0.834 0.704
RUK 1.000 0.802 0.706
RDAX 1.000 0.707
RSP 1.000

student distribution hypothesis.

σ 2
t = k + α1ε

2
t−1 + β1σ

2
t−1 + γ It−1υ

2
t−1, (11)

where It−1 =
{

1 if υt−1 ≺ 0

0 if υt−1 � 0
and γ is the asymmetry parameter.

In practice, we computed this relationship for two different trading hours.
Tables 9 and 10 report the results for the European markets only, covering the
interval 8:00–14:30 GMT. Accordingly, we note that ARCH and GARCH effects
show the appropriate signs and are statistically significant, presenting the required
GARCH model conditions for the three European couples under consideration.
The asymmetry parameter γ is also statistically significant for all the markets, but
only for the Germany market in the OTH crisis period from July 2007 to March
2009. Overall, this suggests stationarity and stability of the estimated GARCH
model, and confirms the choice of the GJR-GARCH specification, also indicating
that volatilities exhibit significant clustering effects. Interestingly, for the OTH
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TABLE 9. ADCC-GARCH estimation for NOTH during the benchmark period

C K β1 α1 γ LLH

CAC40 GJR −8.02E–07 1.14E–08 0.880473 0.087595 0.053053 194416.6
(−0.2407) (13.1921) (227.2423) (18.4140) (8.1195)

DAX30 GJR 6.15E–07 9.77E–09 0.8871 0.0873 0.0551 193230.2
(0.1838) (12.1004) (248.9212) (17.92149) (8.275304)

FTSE100 GJR −1.34E–06 7.40E–09 0.8637 0.1116 0.0297 206499.1
(−0.5669) (13.9405) (195.5115) (19.5541) (4.1254)

CAC-UK CAC-DAX UK-DAX

a Coefficient 0.0296 0.0269 0.0272
t-statistics (12.7108) (12.5429) (12.1099)

b Coefficient 0.9458 0.9494 0.9541
t-statistics (207.0033) (232.3447) (238.8954)

c Coefficient 0.0002 0.0006 0.0009
t-statistics (1.2209) (4.1110) (3.1225)

Log likelihood 415106.7 412142.5 411867.7

period from January 2014 to September 2015, as for the ADCC specification
parameters, the parameter c is positive and significant, confirming the asymmetry
inherent to European stock data. In addition, the values of a and b confirm the
suitability of ADCC-GARCH to specify European stock return comovements,
and point to significant dynamic and time-varying correlations. This suggests
further evidence of time-varying systemic risk between these markets, while the
asymmetric character indicates excess sensitivity to a negative shock rather than to
a positive one. For NOTH, the parameter c, which allows us to take the asymmetric
effect into account, is not significant for any of the market pairs, while it becomes
significant in crisis periods for the CAC-UK and CAC-DAX pairs, suggesting that
asymmetry is more significant during turbulent times.

Table 11 reports the results for OTH, when all markets are simultaneously open.
Accordingly, while ARCH and GARCH compounds still show the expected

signs and point to the stability and stationarity of the GARCH process, the asym-
metric effect depends on the OTH or NOTH period, and the crisis or benchmark
period. For the OTH benchmark period from January 2014 to September 2015
(Table 12), the parameter c is significant for all the markets pairs, while it be-
comes significant only for the pairs that include the US market during the crisis
period from July 2007 to March 2009. This suggests that during the crisis period,
information from the US market is treated differently, and its effect varies with its
sign and size.
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TABLE 10. ADCC-GARCH estimation for NOTH during the crisis period

C K β1 α1 γ LLH

CAC40 GJR −4.94E–06 7.02E–09 0.923380 0.067254 0.024529 179618.9
(−1.0094) (8.3069) (357.3342) (17.8408) (5.0394)

DAX30 GJR 3.62E–06 5.48E–09 0.9246 0.0703 0.0180 182248.3
(0.8374) (8.2763) (368.0805) (18.24831) (3.7501)

FTSE100 GJR −1.54E–06 1.45E–08 0.895950 0.084560 0.040613 180747.2
(−0.3185) (11.5240) (274.6111) (18.8578) (6.7779)

CAC-UK CAC-DAX UK-DAX

a Coefficient 0.0222 0.0163 0.0201
t-statistics (13.0460) (8.9337) (9.1135)

b Coefficient 0.9594 0.9771 0.9549
t-statistics (284.0662) (322.4510) (166.6741)

c Coefficient −0.0001 −0.0006 −0.0001
t-statistics (−0.9481) (−4.0005) (−0.6342)

Log likelihood 378399.8 379843.4 376386.3

Furthermore, comparison of the results from the two samples indicates that
volatility drivers increase during the overlapping hours, confirming our preliminary
analysis. This again points to evidence of more significant volatility clustering
effects after the US market opens, in line with Ben Ameur et al. (2013) and
Jawadi et al. (2015b). It also indicates time variations in conditional volatilities
and correlations.

To check this result, we also computed the conditional correlation between stock
returns during NOTH (Figure 1) and overlapping hours (Figure 2). Accordingly,
our analysis confirmed the high level of correlation between European stock returns
for the first sample, particularly for the Paris–Frankfurt pair, suggesting strong
integration between these markets. The time-variation character associated with
conditional correlation is also confirmed, indicating that the comovement process
is continuous and evolves over time. As for Figure 2, a significant conditional and
time-varying correlation between the US market and the three European markets
may also be noted, confirming our previous analysis. Interestingly, while these
findings point to fewer diversification benefits across these markets, the high level
of comovement indicates that the probability of systemic crisis is not insignificant
when a given market is going through a period of stress.

Figures 1–4 show the conditional correlation for each market index. We calcu-
lated the conditional correlation during nonoverlapping trading hours and over-
lapping trading hours for the crisis period from July 2007 to March 2009 and for
the benchmark period from January 2014 to September 2015.
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TABLE 11. ADCC-GARCH estimation for OTH during the crisis period

C K β1 α1 γ LLH

CAC40 GJR −9.65E–06 6.97E–09 0.947864 0.042763 0.018670 46266.28
(−0.6974) (3.3322) (235.6588) (8.2250) (2.9613)

DAX30 GJR 1.00E–05 3.35E–09 0.947537 0.050892 0.006761 47070.97
(0.8524) (2.5831) (247.1614) (9.2426) (1.0345)

FTSE100 GJR −5.46E–06 7.78E–09 0.950095 0.038837 0.018926 46936.44
(−0.4078) (3.6870) (231.7352) (7.8777) (3.2834)

SP500 GJR −1.98E–05 5.67E–09 0.9507 0.0350 0.0281 46801.58
( −1.5634) (3.4865) (255.6320) (7.5950) (4.3611)

CAC-UK CAC-DAX CAC-SP UK-DAX UK-SP DAX-SP

a Coefficient 0.0165 0.0198 0.0399 0.0165 0.0406 0.0394
t-statistics (5.2516) (6.0301) (8.8553) (5.2516) (9.7552) (8.9679)

b Coefficient 0.9761 0.9740 0.9516 0.9761 0.9481 0.9527
t-statistics (223.4628) (222.5876) (176.8258) (223.4628) (182.8965) (181.0651)

c Coefficient 0.0005 −6.98E–05 −0.0005 0.0005 0.0001 −0.0015
t-statistics (1.7932) (−0.1636) (−0.5658) (1.7932) (0.1972) (−1.6678)

Log likelihood 99187.59 98752.36 97376.84 99187.59 97782.31 98260.36
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TABLE 12. ADCC-GARCH estimation for OTH during the benchmark period

C K β1 α1 γ LLH

CAC40 GJR 1.80E–05 1.53E–08 0.9009 0.0663 0.04225 52300.21
(2.1800) ( 6.6813) (130.8302) (8.0449) (4.0961)

DAX30 GJR 2.01E–05 1.35E–08 0.910216 0.066600 0.034642 51775.83
(2.3565) (5.9185) (145.9485) (8.2816) (3.5606)

FTSE100 GJR 1.19E–05 6.53E–09 0.9173 0.0556 0.0308 55777.70
(2.0353) (6.1028) (146.9978) (7.5414) (3.5798)

SP500 GJR 7.63E–06 7.91E–09 0.906113 0.0354 0.0916 55464.89
(1.2893) (6.9886) (142.6707) (5.4628) ( 8.9008)

CAC-UK CAC-DAX CAC-SP UK-DAX UK-SP DAX-SP

a Coefficient 0.0204 0.0196 0.0242 0.0195 0.0202 0.0185
t-statistics (6.2576) (6.0180) (5.6258) (7.0197) (6.1050) (4.5319)

b Coefficient 0.9623 0.9622 0.9550 0.9698 0.9671 0.9696
t-statistics (172.9806) (154.7314) (113.6921) (231.7372) (185.0174) (126.2658)

c Coefficient 0.0020 0.0007 0.0020 0.0015 0.0029 0.0009
t-statistics (4.1162) (3.3530) (2.4100) (3.6896) (5.1929) (1.6924)

Log likelihood 112821.8 112279.1 111177.6 111851.6 114632.9 110891.5
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FIGURE 1. Conditional correlation for NOTH over the benchmark period.

Figure 1 shows that there is high volatility in the conditional correlation in
comparison with the OTH time interval. In particular, the highest conditional
correlation is between the CAC40 and DAX30 pair for the two periods of time
NOTH and OTH, again suggesting strong linkages between Paris and Frankfurt.
The time-variation character associated with conditional correlation is also con-
firmed, indicating that the comovement process is continuous and evolves over
time. Conditional correlations between the European markets decrease during the
overlapping [14:30 to 16:30 (GMT)] period. For the crisis period, there is less
volatility for the conditional correlation, and the level is very close for all the
markets, suggesting higher integration between the market indices. For NOTH,
the highest conditional correlation is also between the CAC40 and the DAX30 pair.

While these different findings indicate significant comovements between in-
tradaily stock prices, and offer some evidence of intraday systemic risk trans-
mission, the contribution to systemic risk is not directly measured, and we might
wonder about the variation in market interactions when we only focus on extreme
market risk. To improve this analysis and directly evaluate the contribution to sys-
temic risk, we examine the interaction between distribution tails through a quantile
regression approach. To this end, we applied the MES, which is a nonparametric
approach.
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FIGURE 2. Conditional correlation for OTH over the benchmark period.
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FIGURE 3. Conditional correlation for NOTH over crisis period.
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FIGURE 4. Conditional correlation for OTH over the crisis period.

The margin expected shortfall analysis. We computed the MES for each stock
index under consideration during nonoverlapping trading hours and overlapping
trading hours. We also computed the MES statistics for the two samples under
consideration: the crisis period and the benchmark period. We reported the main
results in Figures 5, 6, 7 and 8.

During the benchmark period, it seems that variations in the DAX30 have more
impact than the FTSE100 on extreme variations in the CAC40 index. For the
DAX30, the CAC40 has the most impact, while for the FTSE100, the impact of
the CAC40 and the DAX30 are similar.

Regarding the crisis sample, we noted two clearly differentiated phases. Over
the periods February 2008 to November 2008, the contribution to systemic risk
for all market indices increased, while their contribution was moderate during the
rest of the period under consideration.

During this sample period, we mainly found that the DAX30 has the highest
impact on the extreme risk of the other markets. The MES level also generally
increases during overlapping hours. This means that extreme risk increases and
systemic risk transmission is higher when the US market is open.

During the crisis, two subperiods that can be clearly distinguished are those
before and after September 2008, which corresponds approximately to Lehman
Brothers’ bankruptcy. After this event, the contribution to systemic risk increased
for all the market indices and was very close for all the markets under consideration.

https://doi.org/10.1017/S1365100516000924 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000924


1896 HACHMI BEN AMEUR ET AL.

01/2014 05/2014 09/2014 01/2015 05/2015 09/2015
0

1

2

3

4

5

6

7

8

x 10
−3 Contribution to the systemic risk of the cac40 EUR2

 

 
dax30
ftse100

01/2014 05/2014 09/2014 01/2015 05/2015 09/2015
0

1

2

3

4

5

6

7

8

x 10
−3 Contribution to the systemic risk of the dax30 EUR2

 

 
cac40
ftse100

01/2014 05/2014 09/2014 01/2015 05/2015 09/2015
0

1

2

3

4

5

6

7

8

x 10
−3 Contribution to the systemic risk of the ftse100 EUR2

 

 
cac40
dax30

FIGURE 5. MES dynamics for NOTH over the benchmark period.
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FIGURE 6. MES dynamics for NOTH during the crisis period.
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FIGURE 7. MES dynamics for OTH during the benchmark period.
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FIGURE 8. MES dynamics for OTH during the crisis period.
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5. CONCLUDING REMARKS

This paper set out to investigate stock price comovements and systemic risk
transmission across the United States and three major stock markets (France,
Germany, and the United Kingdom). To do this, we used recent and original HFD
covering the subprime period and a recent, calm (benchmark) period. Formally, two
different econometric methodologies were applied, the ADCC-GARCH model
and the MES, to evaluate stock price comovements and measure systemic risk
contributions, respectively. To our knowledge, this paper is the first to investigate
these two hypotheses by using OTH and NOTH. Accordingly, our investigation
points to several interesting findings. First, we show significant time-varying and
asymmetrical stock return linkages, indicating that markets are linked, and that
their reaction to negative shocks differs from their reaction to positive shocks.
Second, the MES approach shows that both European and US indexes significantly
contribute to each other’s systemic risk, with a strong contribution from Frankfurt
to the French and US markets, especially after the collapse of Lehman Brothers.
Third and perhaps most interestingly, both analyses indicate that stock return
linkages and contributions to systemic risk significantly increase during the crisis
period and with the opening of the US market, which means that propagation of
systemic risk is higher during OTH. These findings have at least two implications.
On the one hand, it is clear that controlling the openness of the US market would
help to forecast further systemic risk across European markets. On the other hand,
unlike Idier et al. (2014), we consider that the MES could be useful to better
forecast and avoid further market downturns and crises induced by increased
systemic risk between stock markets.

NOTES

1. In this context, the Basel III committee suggests completing traditional microprudential measures
with a list of macroprudential rules to take systemic risk into account.

2. See Kuester et al. (2006) for more details on the prediction performance of these different
measures.

3. HFT refers to the introduction of new traders by using computer algorithms and computerized
trading. For Stothard (2012), HFT represents 40% of total European and 50% of total US equity trading
orders.

4. HFD was used first by Harris (1986) Taylor and Xu (1997), Anderson et al. (1998) and Schwert
(1998). The first two studies used 5-minute returns, while Schwert (1998) worked with 15-minute
returns.

5. See Arouri and Jawadi (2007) for a nonexhaustive literature review.
6. See Bekaert and Wu (2000) for a literature survey on volatility spillovers.
7. There are still too few studies investigating price comovements with HFD.
8. See Bauwens et al. (2006) for a study of multivariate GARCH models.
9. σt is not limited to the standard univariate GARCH (p, q) and can include any GARCH process

with Gaussian distributed errors that satisfy appropriate stationarity conditions, ensuring the existence
of unconditional variance.

10. For more details on the advantages of using quantiles, see Krause and Paolella (2014).
11. See Banulescu and Dumitrescu (2015) for more details on the Component Expected Shortfall.
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