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SUMMARY
The increasing deployment of multiple unmanned vehicles systems has generated large research
interest in recent decades. This paper therefore provides a detailed survey to review a range of
techniques related to the operation of multi-vehicle systems in different environmental domains,
including land based, aerospace and marine with the specific focuses placed on formation control and
cooperative motion planning. Differing from other related papers, this paper pays a special attention
to the collision avoidance problem and specifically discusses and reviews those methods that adopt
flexible formation shape to achieve collision avoidance for multi-vehicle systems. In the conclusions,
some open research areas with suggested technologies have been proposed to facilitate the future
research development.
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1. Introduction
Over the past decade, there has been an increasing trend towards the development and deployment of
unmanned vehicles. Due to an improved degree of autonomy and personnel risk minimisation through
the reduction of the human operator interaction, unmanned vehicles are being used in a number of
specialist fields, ranging from military operations to search and rescue, to carry out high risk tasks.
In particular, for military operations, the importance of increasing the use of unmanned vehicles in
the future battlefield has been addressed by the U.S. Department of Defense (DoD). In their report,
published in 2011, it was noted that an increasing percentage of the defense budget had already been
allocated to the studying, developing and improving of unmanned vehicle systems, with the vision
of creating seamless integration of unmanned vehicle systems with conventional military assets.1 In
addition, UK Ministry of Defence has also cast its vision on unmanned vehicles and subsequently
proposed and developed the ‘Unmanned Warriors’ project. This project has first involved more than
50 autonomous vehicles operating in different environmental domains to demonstrate the cooperation
between these vehicles and their prospective benefits to the future battlefield.2

Depending on its designed mode of operation, an unmanned vehicle can be categorised as an
Unmanned Aerial Vehicle (UAV), an Unmanned Ground Vehicle (UGV), an Unmanned Surface
Vehicle (USV) or an Autonomous Underwater Vehicle (AUV).3 For further clarity, UGV refers to
a vehicle operating while in contact with the ground4 while USV refers to an autonomous marine
vehicle that navigates on the water surface.5 A number of practical platforms for each of these
autonomous vehicle types have already been built and deployed. When comparing the applications
of these platforms, one of the common limitations that has been noted is that they are typically small
in size and low in capacity, hence only capable of conducting relatively simple missions. In addition,
most of the present unmanned vehicle platforms have low levels of autonomy while some are remote-
controlled or are only semi-autonomous. To help overcome or mitigate these problems, it is often more
effective to deploy these relatively small vehicles as a fleet in formation (or multi-vehicle formation
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Fig. 1. Comparison of formation control and cooperative motion planning.

system) to carry out tasks since, when compared to a larger individual vehicle, a fleet is able to cover
a wider mission area with improved system robustness, coordination and fault-tolerant capabilities.

To better deploy multi-vehicle formation systems, extensive formation related studies have been
carried out in recent decades with formation control being the most actively investigated area. The
aim of formation control is to generate appropriate control commands to drive multiple vehicles to
achieve the prescribed constraints on their own states,6 and a large body of the research has focused
on consensus-based formation control, which utilises the inter-vehicle distance information to allow
the formation to retain a certain shape while navigating. More recently, the concept of using flexible
formation shapes for collision avoidance purposes has been proposed and studied in a number of
different papers. However, the focus of these research efforts remains on generating the commands
for low-level controllers with the absence of high-level decision-making capability.

In order to overcome this deficiency and thereby promote the utilisation of multi-vehicle formation
systems in complex missions, another research area, i.e., cooperative motion planning, has become
dominant in parallel with formation control. By taking into account information such as the mission
start and end points and the environmental constraints, the aim of cooperative motion planning is to
provide practical guidance information such as the optimised trajectories for the formation to benefit
the coordination of multiple vehicles.7 In addition, when performing the planning, apart from the costs
that are routinely considered in conventional planning, such as the shortest distance cost, constraints
specifically related to the formation itself, such as the required formation shape, also need to be
considered to facilitate the formation control.8

Figure 1 provides a comparison of formation control and cooperative motion planning by listing the
key factors that need to be considered when designing algorithms. For formation control, in addition
to control stability and robustness, vehicle dynamic constraints are important when designing the
controller;9 whereas for cooperative motion planning, safety distance from obstacles, total distance
cost, computational time and trajectory smoothness are key costs when planning the path.10,11 It
should also be noted that, as presented in Fig. 1, the large overlap between these two research topics
clearly indicates that formation control and cooperative motion planning share a number of key
concepts, and hence they should be working interactively when being implemented in multi-vehicle
formation systems. For example, when performing cooperative motion planning, the trajectory for
each vehicle should be generated with consideration for the required formation shape so that the shape
can be attained efficiently. At the same time, the formation control strategy should also be capable of
evaluating the features of the generated trajectories and decides whether or not to rigorously follow
each individual path or modify them sufficiently it to avoid collisions.
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Based upon the above discussions, in order to intelligently and securely operate a multi-vehicle
formation system, the importance of the formation control and cooperative motion planning is evident.
In fact, a large number of high quality survey papers12–14 have investigated the formation control
problem and pointed out several feasible control approaches including the leader–follower, virtual
structure (VS) and behaviour-based methods. However, most of these papers only review mobile
robots platforms and do not discuss the related technologies applied to unmanned vehicles, which have
more complex motion constraints. Also, the absence of the reviewing of cooperative motion planning
algorithms has also prevented these papers from proving a thorough vision on the development of
multi-vehicle platforms.

Therefore, the purpose of this paper is to bridge this gap and to provide a review of the different
approaches to formation control and cooperative motion planning used by unmanned vehicles over
recent decades and to provide a comparison. The key focus is placed upon the analysis of how
the different approaches are used to achieve various formation behaviours, such as the formation
forming, maintenance and variation. The advantages and disadvantages of each method are analysed
to determine common shortcomings and to consider the development trends for future research.

In addition, since this paper considers unmanned vehicles, which are usually deployed in practical
environments and are required to avoid obstacles, collision avoidance has become an important
criterion when evaluating different methodologies. Specific attention has been given to those studies
that have developed evasive strategies that implement flexible and varying formation shapes. Such
a strategy is able to provide efficient and effective collision avoidance performance and is therefore
generally preferred for practical applications.

At this juncture it needs to emphasise that motion planning is at times referred to as path planning,
and these two topics are closely related. The subtle difference between them is that path planning
focuses on a collision-free or safe path from start to goal configuration, disregarding dynamic
properties, i.e., velocity and acceleration; whereas, motion planning is the superset of path planning,
with additional dynamic properties taken into consideration.15 As a result, path planning typically
refers to the computation of robot position and orientation geometric specifications only while motion
planning involves evaluation of linear and angular velocities, taking robot or vehicle dynamics into
account. However, because the difference is relatively minor, in many review papers (such as Tam
et al.,15 Campell et al.16 and Elbanhawi et al.17), both terms have been used and share the same
meaning. In this paper, a similar convention has been followed and both motion and path planning
have not been particularly distinguished or compared. However, for reader seeking more in depth
differentiation and comparison a paper that specifically discusses the motion planning problem, readers
are referred to Goerzen et al.18

The organisation of this article is as follows. In Section 2, a general overview of the unmanned
vehicles formation is presented. The historical development as well as the system architecture of
unmanned vehicles formations are discussed. Sections 3 and 4 review the formation control strategies
and formation path planning algorithms respectively with comprehensive comparison and analysis.
Section 5 gives the conclusion remarks.

2. Unmanned Vehicles Formation
The concept of formation is inspired by natural animal behaviours such as birds flocking or fish
schooling, where a number of animals adopt certain formations to enhance the survival of the
individuals within a group strategy. By mimicking animal formation behaviour, groups of unmanned
vehicles can be deployed in formation to accomplish complex tasks and improve the level of system
autonomy.19 In the 1980s, multi-robot formation systems had become a pioneering research field.
Typical work included Fukuda's reconfigurable robot system, where the shape of a robot formation
can be adjusted depending on task requirement,20 and the ACTor-based robots and equipments
synthetic system (ACTRESS), which is a system architecture allowing multiple robots to cooperatively
accomplish tasks, developed by The Institute of Physical and Chemical Research, Japan.21

Then, as the technology became more mature, the concept, developed from the multi-robot systems,
paved the way to the utilisation of multiple unmanned vehicle platforms in real-world applications.
One of the crucial applications is the rescue missions carried out by UGV formations in disaster
areas to minimise exploration time and reduce the risk of further casualties.22–24 Similarly, a number
of efforts have been put into the deployments including the area mapping25,26 and border patrol
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Fig. 2. USV formation applications. (a) The sea mapping operation accomplished by formation consisting of
USV and manned vehicles. (b) The cooperation between USV, AUV and UAV. Both are taken from.29

and surveillance.27 In addition, some highly task-oriented missions make use of multiple unmanned
vehicles in special cases such as the lunar polar crater exploration missions conducted using a wheeled
UGV, a legged scout and several immobile payload items.28

It is important to mention that an equivalent scale of the deployment of USV formations has not
been seen in recent decades. However, it does not affect the impact brought by using the multi-USVs
in accomplishing maritime activities in the future. In the report published by the DoD, the importance
of the collaboration between multiple manned vessels and USVs has been addressed. The primary aim
is to extend the hydrographic area where human operations cannot reach.1 Figure 2 shows an example
of how manned and unmanned vessels perform a sea mapping operation. The manned surface vehicle
in the middle is acting as the leader vehicle to guide the two USVs to conduct the mission. Compared
with single vessel operation, the dimensions of the area being explored are significantly increased.

In fact, due to the nature of surface operations of USVs, more important roles are going to be played
by the USV in large-scale cross-platform cooperation acting across different unmanned vehicles. One
of the potential utilisations is the cooperation of USVs with other unmanned vehicles to form an
unmanned system network (shown in Fig. 2). The USV is unique in the sense that it is able to
communicate with both above and under water vehicles. In the cooperative formation deployment
of multiple unmanned vehicles, the USV can work as an interchange station such that the real-time
information is gathered by one USV and distributed to other vehicles to improve communication
efficiency.29

2.1. System architecture of multi-vehicle formation
A generic hierarchical architecture formation system has been proposed by Liu and Bucknall30 as
displayed in Fig. 3. The structure consists of three layers, i.e., the Task Management Layer, the Path
Planning Layer and the Task Execution Layer.31 The Task Management Layer allocates missions to
individual vehicles based upon the criteria of maximum overall performance and minimum mission
time.32 A mission can be generally defined as a set of waypoints including mission start point and
end point. In Gerkey et al.33 and Khamis et al.,34 comprehensive reviews regarding the multi-robot
task allocation have been provided with dominant methodologies being listed. It also should be noted
that due to the popularity of the utilisation of neural networks in solving robotics related problems,
in recent years there has been a large amount of work using artificial neural network such as the
self-organising map (SOM) to address multi-task allocation for unmanned vehicles. For example, Zhu
et al.35 proposed to use the SOM to plan tasks for multi-AUV systems and develop a velocity synthesis
method for path planning according to the assigned tasks. Faigl and Hollinger36 also applied the SOM
for AUV systems and have specifically investigated SOM application in data collection missions. Liu
and Bucknall37 expanded utilisation of the SOM to USV platforms and have integrated the potential
field into the SOM to achieve collision avoidance functionality.

According to mission requirements, the second layer, i.e., the Path Planning Layer, plans feasible
trajectories for the formation. This layer is comprised of three sub modules: the real-time trajectory
modification module, the data acquisition module and the cooperative path planning module. Among
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Fig. 3. Hierarchical structure of multiple unmanned vehicles system. There are three layers, i.e., task management
layer, path planning layer and task execution layer from top to bottom.30

them, the cooperative path planning module is the core of the system and determines the overall
optimised path for each vehicle. However, since a number of uncertainties may occur along the
trajectory in practical applications, the real-time trajectory modification module is added to the
system such that the formation is able to deal with emergency situations such as a suddenly
emerged obstacle. A good example of integrating path planning capability with the task-planning
requirement can be found at Munoz et al.,38 where a unified framework has been proposed for
exploration missions. Also, in Mahmoudzadeh et al.,39 a novel combinatorial conflict-free task
assignment and path planning strategy has been proposed for large-scale underwater missions and
based upon such a strategy, Zhu et al.40 incorporated a biologically inspired neural network into the
task-allocation algorithm to address the dynamics constraints of the vehicles when generating the
path.

Generated paths will then be passed down to the Task Execution Layer. This layer has the direct
connection with the propulsion system of the unmanned vehicle and generates the control laws. In
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Fig. 4. Four different formation shapes.16

order to improve system performance, real-time information, i.e., vehicle velocity and position, is fed
back to the upper layer to modify the trajectory in the near future, which generates a closed control
loop. Present dominant control strategies include that Dong et al.41 developed an approach adopting
a switching interaction topologies to solve the time-varying formation control problem for UAVs.
Yamchi et al.42 proposed a distributed predictive controller that helps improve system stability as well
as avoid collisions en route for mobile robots. Li et al.43 improved the common receding horizon
formation control to achieve stabilised tracking performance for AUVs.

2.2. System patterns of multi-vehicle formation
When deploying the formation to efficiently accomplish tasks the choice of tactical formation shape
can be essential. Based upon Campbell et al.,16 four commonly used shapes are summarised as (see
Fig. 4) follows:

• Column shape: The column shape gives a comparatively wide mission area, which is of special
usage in mine sweeping and area mapping missions.

• Line shape: The line shape forms a small mission area but can be more useful in a highly constrained
environment.

• V shape: The V shape is more suitable in normal operations as it offers a good view of the
neighbouring situation. In the meantime, easy and direct communication can be established within
the formation.

• Diamond shape: The diamond shape is a variation to the V shape, and it is also frequently used in
normal operations.

It should be noted that there are no particular restrictions on the choice of formation shape. As shown
in Fig. 3, the shape of formation is determined in the task management layer and should be selected
adaptively according to specific mission requirements or environments, thus making the formation
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‘deformable’. For example, when a formation with a wide V shape is about to enter a narrower area,
to avoid collisions with the obstacles the V shape could be modified towards a more linear shape. In
addition, when the formation shape change is taking place, compared with the conventional approach,
the design of the formation control strategy should consider additional constraints. These include16

• Inter-vehicle collision avoidance: Vehicles in the formation need to consider each other as
additional moving obstacles and take appropriate evasive actions.

• Coordinating of multiple vehicles: The designed controller should avoid the situation that waiting
or coming to full stop occurs due to one or more vehicles in the formation lagging behind.

• Avoiding deadlock situation: the movement of the vehicles should be controlled in such a manner
that the scenario where one or more vehicles block the paths of others does not occur.

3. Review of Formation Control Strategies
While in operation, the control strategy is important for the formation to maintain the formation
shape and behaviour. Three main types of formation maintenance are summarised here by the author
according to different travel scenarios:

• Formation generation and maintenance (Type 1): The formation shape has to be formed from a
condition where the unmanned vehicles are located at random positions with arbitrary headings.
Once attained the shape also needs to be maintained to continue the mission (shown in Fig. 5(a)).

• Formation maintenance during trajectory tracking (Type 2): The formation shape needs to be
rigorously maintained while the formation is in operation following a predefined trajectory (shown
in Fig. 5(b)).

• Formation shape variation and re-generation (Type 3): The formation shape needs to be maintained
as defined in Type 2; however, shape also requires adjustment and re-generation while the formation
is avoiding an obstacle (shown in Fig. 5(c)).

To achieve formation maintenance, a number of methods have been proposed including leader–
follower, VS and behaviour-based methods. The first two methods address the formation maintenance
problem better than behaviour-based approach; whereas, a formation controlled by the behaviour-
based approach has a more flexible formation shape.44 The detailed explanations of each method
will be provided in the forthcoming sections with critical assessments. However, differing from
the conventional way of reviewing the formation control, where the main focus has been placed
on the analysis of the controller design as well as the controller's performances, in the following
section, not only the design methods will be specifically reviewed and discussed, each method
will also be compared against to the three formation maintenance types. This is in fact a new
approach to categorise the formation control methods, specifically to assist with the evaluation of each
method's suitability for immediate practical applications. For example, if one method can achieve all
three types of formation maintenance at the same time, it is evident that in addition to the simple
environments containing sparse obstacles (mainly using the Type 1 and Type 2 maintenance), the
controller is also capable of satisfying the formation shape maintenance requirement for highly
complex environment involving cluttered obstacles or multiple moving obstacles (mainly Type 3
maintenance), and therefore such a method will be better suited for addressing practical application
needs.

3.1. Leader–follower formation control
In the leader–follower control approach, one vehicle is regarded as the group leader with full access to
the overall navigation information and works as the reference vehicle in the formation. In some cases
where system robustness is critical, a virtual leader can be assigned to replace the actual vehicle in
the formation.44

Apart from the leader vehicle, other vehicles in the formation are viewed as followers. Followers
operate under the guidance of the leader with the primary aim being retention of the formation shape
by maintaining the desired distance from and pose angle to the leader.

Figure 6 illustrates the leader–follower scheme designed by Wang.45 Li j and �i j are the actual
distance and angle between leader and follower vehicle while Ld

i j and �d
i j are the desired distance and

angle. The control task is to determine the linear velocity and angular velocity for follower vehicle to
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Fig. 5. Three different types of formation shape maintenance. (a) Formation generation and maintenance. (b)
Formation maintenance while tracking trajectory. (c) Formation shape variation and re-generation.

eliminate the error value of distance and angle between leader and follower such that

lim
t→inf

(Li j − Ld
i j ) = 0 (1)

lim
t→inf

(�i j − �d
i j ) = 0 (2)

Normally, two types of controllers are employed to design the control law: (1) l–l controller and
(2) l–φ controller. The first controller focuses on the relative positions between each vehicle in the
formation; while the second one deals with the distance and angle between leader and follower.46

The leader–follower approach described here is only feasible for formation control in open space,
as it only provides a solution to the Type 1 and Type 2 formation maintenance problems. Desai et al.48

improved the leader–follower approach by adding collision avoidance capability to enhance control of
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Fig. 6. Leader–follower formation control approach. Formation is maintained by keeping the desired distance
and angle between the leader and each follower.47

Fig. 7. Leader–follower formation control when the formation is encountering with an obstacle. Formation shape
is changed to avoid the obstacle48

the formation in a cluttered environment (by solving the Type 3 maintenance problem). The obstacle
was avoided by letting the vehicle maintain a new desired distance, which is the distance between the
vehicle and the obstacle. When the formation was avoiding the obstacle, the formation shape could
be adaptively changed as shown in Fig. 7, and returned to the desired shape after the risk of collision
was averted.

The work of Wang45 and Desai et al.48 has become the standard approach when the leader–
follower approach is applied to unmanned vehicle formation platforms. Adequate modifications are
made according to specific needs provided by different platforms.

One of the problems of the implementation is the vehicle's bounded control inputs or constrained
inputs. The inputs are normally subjected to a control boundary meaning the control system requires
more reaction time, so the stability of the system could also be affected.49 transformed the physical
constraints on the velocity into a geometrical representation. As shown in Fig. 8, the follower's stable
point was expanded to an arc instead of a point, which increases the system stability margin. Peng
et al.47 observed that impractically large control torque inputs could occur in conventional leader–
follower controllers, which could lead to unstable performance. A bio-inspired neuro-dynamics based
controller was developed to specifically reduce the required linear and angular velocities in initial state
and subsequently reduced the force and torque inputs.

Another issue is system communication. When the leader–follower is implemented, robust
communication throughout the formation needs to be assured such that leader and followers are
able to exchange their pose information accurately. Unfortunately, such a communication channel is
hardly available in practical applications. Edwards et al.50 studied the malfunction problem brought
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Fig. 8. The transformation of system stable point to a arc of circle as Ad (δ, σ1, σ2).49

about by loss of communication. Orqueda et al.51 proposed a monocular vision system to assist with
recording the relative motion between leader and follower. A high gain observer is used to estimate
the derivative of leader to follower distance and bearing angle. Peng et al.52 investigated uncertainties
associated with marine surface vehicles such as un-modelled hydrodynamics and disturbances from
the environment when controlling the formation. An adaptive control law based upon neural networks
and backstepping techniques was designed to compensate for uncertainties through an online learning
scheme.

3.2. Virtual structure formation control
Another important formation control approach is the VS method proposed by Tan et al.53 The VS
as defined in this context is a collection of elements (unmanned vehicles), which maintain a rigid
geometric relationship to each other and to a frame of reference.54 The main concept behind the
VS is that by treating the formation shape as a VS or a rigid body, the formation is maintained by
minimising the position error between the VS and actual formation position. To achieve this, a bi-
directional control scheme is proposed in an interacting way that the vehicles are controlled by the
virtual force applied to the VS, while the positions of VS is determined by the positions of formation.

The specific control strategy of the VS method mainly involves three stages (see Fig. 9):

• VS position alignment (stage 1): Before moving the formation to the next point, a position error
based upon the projection of the point-to-point error in x–y coordinate may occur between the
actual positions of the formation and the corresponding positions in the VS. Hence, at this stage,
pre-defined one-to-one mapping is used to minimise such errors by following the equation:

f (X ) =
N∑

i=1

d (rW
i , IW

R (X ) · pR
i ) (3)

where N is the total number of vehicles in the formation, d(•) is the function to calculate the
distance, rW

i is the position of vehicle in the world coordinate, whereas pR
i is the corresponding

position of the vehicle in the VS coordinate, and IW
R (X ) is the coordinate transforming function

between world coordinate and VS coordinate.
• VS movement (stage 2): After the VS adjusts itself to the optimal position, a virtual force is applied

at the VS to move the VS to the next point. It should be noted that the displacement of the VS
is determined not only by the mission requirement but also the dynamic characteristics of the
vehicles. The displacement needs to be appropriately calculated such that the vehicle can reach it
in the next time step.

• Formation movement (stage 3): based upon the new position of the VS, each vehicle in the formation
can now move towards its new position by referring to its corresponding point in the VS. A control
input is generated for each vehicle, and to achieve more precise tracking performance, the vehicle
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Fig. 9. Steps of virtual structure formation control. (1) VS position alignment. The triangle in red is the initial
position of VS, and the triangle in green is the aligned VS by minimising the position error. (2) Move the VS to
next position. (3) Move the formation according to the position of VS.

is first controlled to alter its heading to the desired orientation and then transits towards the target
point.

Compared with the leader–follower approach, one of the most appealing advantages of the VS
method is an increase in fault-tolerant capability. In leader–follower control, due to the lack of feedback
of positions of each vehicle in the formation, a faulty vehicle will not be detected by other vehicles,
causing the formation to disintegrate. However, such a drawback can be overcome by using the VS
approach. It has been proven in Lewis and Tan54 that the tracking error caused by the faulty robots can
be compensated for by other robots in the VS alignment stage so that the formation can be retained
(see Fig. 10). It should be noted that such formation maintenance is only a temporary solution as
the faulty vehicle has not been repaired. To achieve comprehensive fault-tolerance, some high-level
decision processes are needed to either change the formation shape or call up a new vehicle to replace
the faulty unit.

Like the leader–follower approach, a robust communication channel is vital for the VS method
as each vehicle is highly dependent on the information being exchanged to obtain real-time
navigation data. In the work of Do and Pan,55 such a problem has been addressed by introducing
the communication limitation through a potential function. Suppose the designed controller for the
ith vehicle is ui, which was calculated not only related to its own position and velocity, but also the
communication range, which was described as a potential function βi j as follows:

βi j =
⎧⎨
⎩

= 0 if di j ≥ dcom,

> 0 if 0 < di j < dcom,

= ∞ if di j = 0.

(4)

where di j is the distance between ith and jth formation agent, and dcom is the pre-defined
communication range. It can be observed that if the distance between two vehicles is larger than
the communication range, the potential value βi j is zero and thereby the designed ui is not dependent
on jth agent information. Based on this, further work has been carried out by Do56 to solve the USV
formation control problem. An elliptical shape was adopted to simulate the dimension of the vessel
with a circular area centred on the mid-point of the vessel representing the communication range.

3.3. Behaviour-based formation control
Behaviour-based formation control was first proposed by Balch and Arkin.57 It solves the formation
control problem by using a hybrid vector-weighted control function, which is able to generate the
control command based upon various kinds of formation missions. For example, according to the
general mission requirements, four different control schemes (âŁ˜behavioursâŁ™) were developed
as move-to-goal (uMG), avoid-static-obstacle (uAO), avoid-robot (uAR) and maintain-formation (uMF)
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Fig. 10. Fault-tolerant formation control by using the virtual structure method. During a robot failure, the other
robots adjust their paths to maintain formation. The new formation has the correct formation shape as well as
the desired orientation.54

schemes. Each scheme was assigned with a gain value according to the specific mission or traffic
environment, and the final control scheme was determined as the weighted combination of these
gains by

u = a1 · uMG + a2 · uAO + a3 · uAR + a4 · uMF (5)

where a1, a2, a3, a4 are the weighting gains for controllers with high gain value representing high
importance for the corresponding behaviour. By implementing behaviour-based formation control,
not only the formation generation and keeping, but also the collision avoidance can be simultaneously
solved. It makes such a control approach superior to the other approaches in terms of practical
application. However, in essence, the designed controller is not based upon kinematic/dynamic
characteristics of the vehicles, thus the mathematical proof of system stability is highly complex,
which makes it hard to theoretically justify the performance of this approach.58 Despite this, the
behaviour-based formation control is still of great importance, and a number of studies have adopted
such an approach.

In the work of Cao et al.,59 the genetic algorithm (GA) was integrated with the behaviour-
based formation control to assist the determination of weighting gain values of each behaviour. The
simulation results show that besides improved control performance, the formation also presented a
certain adaptability in an unknown environment by optimising the gain values detailed in Eq. (5).

Later, Cao et al.60 investigated formation control in an unknown environment with moving
obstacles. A prediction model based upon the recurrence least square algorithm was used to estimate
the position of a moving obstacle, and a new behaviour named the random behaviour was established
to operate in conjunction with the conventional four behaviours, to handle the unstable state occurring
in a cluttered environment.
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Since it is hard to mathematically analyse the formation stability by using the behaviour-based
method, a hybrid control scheme that includes both the leader–follower and the behaviour-based
methods was proposed by Yang et al.61 The formation was generated and maintained by the leader–
follower while the behaviour-based scheme specifically focused on the motion planning of individual
vehicles. A supervision mechanism has been built between the leader and followers such that the
formation integrity can be ensured when the number of controlled vehicles changes. The supervision
is achieved in a way that an inter connection between the leader and each follower is established so
that the leader can have a full-time monitoring of the status of followers.

3.4. Discussion on formation control strategies
In Table I, three main formation control strategies are summarised and compared. From the deployment
platforms’ perspectives, it shows that the most widely adopted strategy is the leader–follower approach,
which has been applied not only on the mobile robot platforms, but every kind of unmanned vehicle
platform. The primary reason for such wide scale deployment is probably because the leader–
follower approach is relatively simple to design and implement. Such an approach is developed based
upon the common concept when managing a group, i.e., a leader is selected from the group to supervise
the group while other group members follow the behaviour of the leader.62 Therefore, by using the
leader–follower approach, the formation relationship is more explicit than with other approaches.
Also, as mentioned in Section 2.2.1, the leader–follower approach adopts a centralised communication
strategy, which requires vehicles in the formation to only establish connections with the leader. The
overall amount of exchanged information is much less than with a decentralised approach, and as a
consequence the communication efficiency is much higher. However, the primary disadvantage of the
leader–follower is its high dependence on the leader vehicle's performance. If the leader malfunctions
or the communication between the leader and the follower is disrupted, the formation is hard to control
and maintain.

The VS strategy provides better performance in terms of formation maintenance as the formation
is designed to follow the rigid body VS. However, such good performance in formation keeping is
not beneficial for formation modification. The change of the formation requires re-design of the VS,
which has the potential to increase the computational burden of the formation. The inflexibility in the
formation eventually leads to limited capability for dealing with collision avoidance with obstacles,
making the VS an unsuitable option for Type 3 formation maintenance (shown in the ‘Formation
maintenance type’ column in Table I).

The behaviour-based control methodology seems to be the most adoptable approach as it is able to
accomplish a number of different mission requirements through one control command. But the lack
of system stability analysis makes it unsuitable for large-scale utilisation.

As regards future development, a hybrid control strategy appears to be the trend. No single solution
exists that is appropriate for all scenarios. A hybrid approach can be developed such that in the open
space, where stabilisation of the system is the priority, the leader–follower and/or the virtual-leader
method could be used. When the formation is navigating in a complex environment, the behaviour-
based method takes over the control.

Another important development for formation control will be the integration with fault-tolerant
control. One of the benefits gained from the deployment of unmanned vehicles as a formation is the
improved system robustness that comes to the fore if and when vehicles in the formation fail. However,
this aspect is generally ignored by much of the research work accomplished thus far. Fortunately, there
have already been in-depth publications from Tousi et al.,63 Yang et al.64 and Tousi et al.,65 who have
studied the fault tolerance control from a mathematical perspective. There is no doubt that the seamless
merging of fault-tolerance control and formation control would dramatically improve the utility of
the research.

4. Review of Cooperative Formation Path Planning
In this section, algorithms developed for formation path planning will be grouped, reviewed and
analysed accordingly with some typical work listed. It should be noted that alongside formation path
planning, there has been research into another emerging path planning method in recent years, the
multi-vehicle cooperative path planning. It can be viewed as a weaker challenge than the formation
path planning with less conditions; however, solutions for the cooperative path planning are also
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Table I. Comparison of formation control strategies.

Formation
Methods Advantages Disadvantages maintenance types Platforms

Leader–follower45,47,48 1. Easy to be designed and
implemented

2. Efficient communication
within the system

1. Good performance in shape
keeping

1. Highly dependent on the
leader vehicle

2. Lack of the feedback from
the follower to the leader

Type 1, Type 2 and Type 3 Widely adopted across various
platforms

Virtual structure54–56 2. Good representation of the
relationship and the
coordination between each
vehicle in the formation

1. Not flexible for shape
deformation

2. Not easy for collision
avoidance

Type 1 and Type 2 Most applications seen on
mobile robots. Less
application on unmanned
vehicles

Behaviour-based57,59,61 1. Capable of dealing with
multi-task mission

1. Not easy to mathematically
express the system
behaviour

2. Difficult to prove and
guarantee the system
stability.

Type 1, Type 2 and Type 3 Mobile robots and UGVs are
two popular platforms
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beneficial with some core algorithms able to assist the formation with minor modifications to the
algorithms. In this section, methods for both the formation path planning and the multi-vehicle
cooperative path planning are going to be reviewed.

The path planning problem is to find a feasible route connecting the start and end points in a
collision free space while satisfying a set of constraint conditions. The problem itself can be expressed
as an optimisation process subjected to several costs, and for a 2-D path planning problem, it can be
mathematically written as follows:31

Ps(xs, ys, ϕs)
τ (t )−−−−−→

s.t .
∐

single

Pe(xe, ye, ϕe), (6)

where Ps (xs,ys,ϕs) and Pe (xe,ye,ϕe) denote the start and end point configuration, respectively, which
include start and end point coordinates and orientation. τ (t ) represents the trajectory which is subjected
to the cost

∐
single. When extending the problem to the multi-vehicle formation path planning, the

formulation can be written as follows:

Ps,i(xs, ys, ϕs)
τ (t )−−−−−−→

s.t .
∐

multiple

Pe,i(xe, ye, ϕe) i = 1, 2, . . . , N (7)

where N is the total number of vehicles in the formation and
∐

multiple is the cost for multiple vehicles
paths.

In single vehicle path planning, to obtain the most effective and efficient path,
∐

single normally
contains the least distance, the highest safety, the minimum energy consumption and so on. However, in
contrast, costs for multiple vehicles path planning (

∐
multiple) are more complicated, and a comparison

between single vehicle and multiple vehicles costs has been provided in Liu and Bucknall.30 As shown
in Fig. 11, additional costs are explained as follows:

• Internal collision avoidance: As multiple vehicles are simultaneously and cooperatively working,
each vehicle becomes a potential collision risk to other vehicles in the same group. To ensure the
safety of the group, the internal collision avoidance needs to be addressed.

• Formation behaviour: If multiple vehicles are travelling in a formation, the formation behaviours,
such as shape keeping and shape changing, are required.

• Cooperation behaviour: The cooperation behaviour is the most important factor, which can be
expressed in two different forms as the time cooperative behaviour and the time and position
cooperative behaviour. Illustrations of these two different forms are displayed in Fig. 12. The first
one only imposes time requirements on the final trajectories, i.e., by following planned trajectories,
each vehicle within the group should leave and arrive at each mission point simultaneously or in
order. Since no formation behaviour is represented en route except the start and end points, the
path planning problem involving such behaviour is known as the multi-vehicle cooperative path
planning.
In contrast, the second form not only places the requirement on time but also on instantaneous
position of each vehicle. Generated trajectories should, to the most extent, maintain the pre-defined
distances between each other thereby solving the formation path planning problem.

• Total distance: To achieve the most efficient outcome, the total distance of all trajectories should
be optimised.

4.1. Path planning algorithms and the categorising
A number of different path planning algorithms have been proposed, and according to Tam et al.66

these algorithms can be categorised into two different general approaches based upon its searching
characteristics (as shown in Fig. 13):

• Deterministic path planning.
• Heuristic path planning.

The deterministic searching approach is accomplished through the following of a set of defined
steps and has the advantage of completeness and consistency. A searching result can be guaranteed
to be found as long as it exists; also, the output remains the same each time if there is no variation
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multiple vehicles path planning
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Formation shape
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Total path
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Fig. 11. Comparison of costs between single vehicle path planning and multiple vehicles path planning.30

of searching environment. Therefore, the deterministic algorithm can also be referred to as an exact
algorithm. Popular deterministic approaches include the artificial potential field (APF), the roadmap-
based algorithm and the optimisation method.

The heuristic searching approach is proposed to specifically solve the problem that can-not be
efficiently addressed by a deterministic approach. Also, it is able to provide an approximate solution
when exact solutions are hard to find67 and thus the heuristic algorithm can also be referred to as
an approximation algorithm. However, since it only searches the subspace of the search space, the
global optimality of the results cannot be guaranteed, i.e., only near optimal result can be obtained. In
addition, because the algorithm stochastically searches within the space, the consistency of the results
is not as good as those delivered by the deterministic method.68 Typical heuristic algorithms include
the evolutionary algorithm (EA) such as the GA, the particle swarm optimisation (PSO) and the ant
colony optimisation (ACO).66

Another promising classification strategy for path planning algorithms, as proposed in Sharma
et al.,69 is to evaluate the algorithm depending upon if it has been developed in a deliberative or
reactive way. For example, when the environment is partially known to the vehicle, algorithms can
only generate the trajectory within a certain area and therefore has to constantly and reactively update
the trajectory as the vehicle is navigating; hence, such a strategy is regarded as a reactive approach.
Conversely, when the environment is fully mapped a deliberative approach is adopted and in this case,
the generated trajectory is able to provide full guidance information to the vehicle and is always used
as the global reference path. In Fig. 14, favourable path planning algorithms have been re-grouped
based upon reactive or deliberative approaches. It can be seen that compared with Fig. 13, EA and
roadmap-/grid-based algorithms now belong to the deliberative approach; whereas, potential field
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Fig. 12. Cooperative path planning. (a) Time cooperative trajectories: by following the generated paths, vehicles
need depart from the start point and arrive at end point simultaneously but without the need to keep the relative
position to each other. (b) Time and position cooperative trajectories: apart from the same departing and arriving
time, vehicles also need to keep the relative distance en route, and they tend to move in a formation.31
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Fig. 13. The categorising of path planning algorithms based upon deterministic and heuristic approaches.

algorithms are grouped in the reactive category together with the optimisation method (especially the
model predictive control).

In the following sections, literature in regard to multiple vehicles path planning is going to be
reviewed based upon the adopted searching methodology.
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Fig. 14. The categorising of path planning algorithms based upon reactive and deliberative approaches.69

4.2. The potential field method
The APF method was first proposed by Khatib70 to control a robot manipulator. The method converts
the configuration space into the potential field, which consists of an attractive field (Uatt) around the
target point and repulsive fields (Urep) around obstacles. The attractive field is proportional to the
distance to the target point and is influential over the whole space; whereas the repulsive fields are
inversely proportional to the distance to the obstacles and are only effective in certain areas around
obstacles. The path is calculated by following the total force at each location, which is the gradient
of the sum of fields as follows:

Ftotal = Fatt + Frep = ∇(Uatt ) + (−∇(Urep)) (8)

In terms of the implementation of the APF in formation path planning, in addition to the attractive
and repulsive fields, new fields are needed to represent cooperative formation behaviours. An internal
attractive potential field first needs to be constructed to maintain the formation shape (shown as the
red line in Fig. 15) such that when a vehicle is away from its formation position, the force is capable
of dragging it back to prevent destruction of the formation shape. In addition, internal repulsive fields
are also needed to prevent two vehicles from moving too close and colliding with each other (blue
line in Fig. 15).

Wang et al.72 constructed such potential fields by referring to the concepts of electric fields. Each
vehicle was treated as a point source in the electric field with varying electrical polarity. If the distance
between vehicles was larger than the expected value, opposite charges were used to attract them to
move towards each other; otherwise, like polarities were used to prevent them from colliding if the
distance between vehicles was less than the expected value.

Paul et al.73 also built the fields to solve the problem of UAV formation path planning. To increase
control accuracy, an attractive potential field was a function of the error value between desired distance
and actual distance, such that any deflection from the desired position can be quickly modified and
corrected.

Yang et al.74 published work on motion planning for an AUV formation in an environment with
obstacles based upon the APF. The algorithm concentrated on overall mission requirements instead of
the development of an individual vehicle's control law and treated the AUV formation as a multi-body
system with each vehicle modelled as a point mass with full actuation. Potential fields for formation
path planning were constructed for particular mission requirements, ocean environment and formation
geometry.

It should be noted that the primary disadvantage of using the APF is the local minima problem.
It is caused by the sum of total forces at certain point equalling zero, which results in the vehicle
becoming ‘trapped’ at that point. Many researchers solved this problem by constructing new kinds
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Unmanned
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Fig. 15. The formation path planning using the APF. An internal attractive potential field first needs to be
constructed to maintain the formation shape (shown as the red line). Internal repulsive fields are also needed to
prevent two vehicles from moving too close and colliding with each other (shown as the blue line).71

of fields such as the Harmonic Potential Fields,75–78 which is constructed by the harmonic function
containing no local minima.

Recently, another effective way to deal with the local minima problem was reported in Garrido
et al.10 and Gomez et al.,11 which employed the Fast Marching Method (FMM) to construct
the potential field. Differing from the conventional way of combining all fields to generate the
total potential field; the FMM produces the potential field by simulating the propagation of an
electromagnetic wave. A propagation index ranging from 0 to 1 is first calculated at each point
to indicate the speed of propagation of the wave, i.e., 0 value means the wave cannot pass and hence
is given to obstacle area. The wave then emits from the start point by obeying the propagation index
and stops when the target point is reached. The generated potential field represents the local arrival
time of the wave and only has the minima potential at the start point.

4.3. Evolutionary algorithm
The EA method including GA, PSO and ACO is a heuristic search algorithm based upon biological
evolution process. When applied to the path planning problem, the EA mimics the natural selection
process in the way that possible paths are treated as individuals and evolve themselves through
mutation, reproduction and recombination by comparison against a fitness function. The function,
as a weighted function consisting of several optimisation criteria, determines the quality of each
individual and only the individual with the best fitness result will survive as the final path.

In terms of using the EA for multiple vehicles cooperative path planning, a two-layer evolution
process is normally used. In Fig. 16, each vehicle has its own EA process, which generates an optimal
trajectory subject to each individual vehicle's planning conditions. Then, all the individual paths are
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Fig. 16. The two-layered EA process for multiple vehicles cooperative path planning.

compared against a master fitness function in the Master EA process to achieve cooperative behaviour.
The master fitness function takes costs such as the internal collisions, the target point arrival time and
the distance between each vehicle into consideration, and re-evolves individuals to make them suitable
for multiple vehicle cooperation. Note that the cooperative behaviour addressed by the EA method
normally belongs to time cooperative behaviour because of the characteristic of the randomness of
EA search, which makes it hard to follow the rigorous condition of formation shape maintenance.

Among the applications of EA in multiple vehicle path planning, Zheng et al.79 proposed a co-
evolving and cooperating path planner for multiple UAVs based upon the GA. In order to make the
generated path practical, dynamic characteristics constraints such as the minimum path led length,
the minimum flying height, and the maximum climbing angle were incorporated into the algorithm.
However, the computation speed was not fast enough to make the algorithm applicable for real-time
planning. Hence, Kala80 and Qu et al.81 improved it by introducing new evolution operators to increase
the convergence speed of the algorithm.

4.4. Optimal control method
Using the optimal control method is another main approach for multiple vehicle cooperative path
planning. This approach considers the path planning problem as a numerical optimisation problem by
following a set of constraints.82 It breaks down the multiple vehicle path planning into several single
vehicle path planning processes, and the multi-vehicle cooperation is achieved by satisfying a set of
pre-defined ‘cooperation constraints’.

A general form of using the optimal control method for multiple vehicle path planning was reported
in Schouwenaars et al.83 The group consisted of a number of N vehicles, and for the pth vehicle in
the group, a fuel-optimal cost function was first defined as follows:

Jp =
T∑

i=1

q
′
p|spi − sp f | +

T∑
i=1

r
′
p|upi| + p

′
p|spT − sp f | (9)
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where spi, upi and sp f denote the state, input and final state of the vehicle, respectively. q
′
p, r

′
p and p

′
p

are the weighting factors. Constraints for single vehicle optimisation included boundary conditions
for the vehicle's state and control inputs, and position constraints to avoid static and moving obstacles.
Then, a ‘cooperation constraint’ was defined, in this case, to keep two vehicles away from each other
by a certain distance to maintain the safety as

|xpi − xqi| ≥ dx |ypi − yqi| ≥ dy (10)

where (xpi, ypi) and (xqi, yqi) are the coordinates for pth and qth vehicle at time step i, and dx

and dy are the two safety distances. By subjecting to all constraint conditions, mixed integer linear
programming (MILP) was used to find the optimal control input u for each vehicle, which could finally
generate a feasible path by substituting it into the system dynamic functions. Yilmaz et al.84 expanded
such a method to a larger scale multiple vehicle cooperation such as AUV–USV cooperation, AUV-
Shore station cooperation and AUV–AUV cooperation. To achieve these cooperation, constraints were
developed to ensure sufficient distances were maintained to keep robust communication.

However, even though the MILP is powerful enough to handle different constraints for the
optimisation problem, high computation complexity is its main disadvantage and prevents its use
for on-line planning. To improve MILP, Bemporad and Rocchi85 applied receding horizon control
(RHC) to solve optimisation problems for UAV formations. Unlike conventional methods that seek
for the optimal result for the whole time period, an on-the-fly strategy is used by the RHC to only
minimise the cost function for a relatively short horizon in each time step and compute the according
control input, which could largely decrease the computation time. Based on such an online scheme,
Chen et al.86 designed a formation hybrid formation path planner by combining the RHC and the APF
methods for UAVs. An additional control force generated by APF was added to the system control
input to improve the collision avoidance capability of the formation.

4.5. Discussion on formation path planning
Formation path planning, working as a command generator for the formation control system (referring
to Fig. 3), takes the description of the environment as the input and produces sets of waypoints as
trajectories. The APF method, the EA and the optimal control method are three mainstream approaches
used for multi-vehicle path planning, and a comparison of these approaches is listed in Table II. Among
them, the potential field and the evolutionary based methods are the most widely adopted approaches.
These are significantly different from single vehicle path planning, where the grid based87–89 or the
road map based methods90–93 are preferred.

A possible reason is the multiple-vehicle system needs a path planning algorithm to have fast
computation speed as a number of vehicles are involved; however, both the road map and the grid-
based methods need significant memory capacity to store the environment information, which has
the potential to decrease the speed of the algorithm. More importantly, the trajectories generated by
the potential field or the EA are more practical than other methods. The potential field method can
produce a smooth and continuous path and the EA is able to optimise the trajectory's costs for different
mission requirements.

However, the FMM-based potential field method may have more advantages than the EA. First,
in terms of the algorithm completeness and consistency, the FMM performs well whereas the
evolutionary method lacks consistency and the conventional potential field method is not complete.

Second, the FMM is able to achieve various cooperative behaviours. Generated trajectories can
either be time cooperative, or time-and-position cooperative, and a ‘deformable’ formation shape can
be easily established, which is difficult to achieve with the other methods. In Gomez et al.11 and
Garrido et al.,10 a generic formation path planning algorithm based upon the FMM has been proposed
and employed for indoor robot formations. From the simulation results, the formation is able to adjust
its shape to avoid complex obstacles such as a narrow pathway.

Third, differing from the conventional potential field method of only constructing attractive and
repulsive fields; some other fields representing different costs can also be used by the FMM. In Garrido
et al.,94 a weighting matrix that addresses different path constraints was used and blended with the
potential field to generate the path. The final trajectory was optimised in terms of the least energy
consumption, the shortest distance and the plainest terrain.
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Fig. 17. The split-merge formation collision avoidance strategy. When the formation encounters a small-size
obstacle, which only has the collision risk with the vehicle in red, the red vehicle needs to take manoeuvres
while the others remain unaffected.

However, some limitations of current multi-vehicle path planning also need be taken into
consideration:

• The collision avoidance strategies were not effective enough to deal with the complex
environments. Most publications used either rigid formations or dynamic formations to avoid
the obstacles. However, this may not be the best solution, and in some cases the formation
could be partially maintained to seek a more optimised result. For example, as shown in
Fig. 17, the split-merge strategy can be adopted when the formation encounters a small sized
obstacle.

• Formation path planning in an environment with true dynamic obstacles has not been studied. For
the purpose of simplicity, most of the dynamic obstacles moved only at slow or constant speed.
In reality, such obstacles normally have unpredictable movement patterns, which requires a path
planning algorithm to be integrated with advanced sensors and a prediction algorithm. In Yao
et al.,95 the Kalman filter was used to predict the path of a moving obstacle in the immediate
future, and the path planning algorithm can accordingly adjust the path to avoid the obstacles more
effectively.

• Environmental factors were not included in the problem. In real applications, environmental aspects
such as wind for UAVs and sea currents for AUVs or USVs have immediate influences on the
vehicle. Harsh environment conditions can severely degrade or even cut-off the communication,
especially for the multi-vehicle systems. For example, when deploying multiple USVs to investigate
a flooded area, the communication between vessels and the ground station can be affected by debris
or line-of-sight obstructions. To address such issues, UAVs can be used as communication relay to
retain the communication and support the mission of USVs.

5. Conclusion and Future Research Areas
A review of the multiple unmanned vehicles formation system has been presented in this paper.
The principle structure of the multi-vehicle system as well as the critical development technologies
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Table II. Comparison of cooperative multi-vehicle path planning algorithms.

Deployment Algorithm Algorithm Cooperative Capability for
Method platforms completeness consistency behaviour type multi-optimisation

Potential field method72–74 Mobile robots
AUV
UAV

Incomplete Consistent 1. Time and position cooperative behaviour
2. Time cooperative behaviour

No

Fast marching method based
potential field10,11

Mobile robots Complete Consistent 1. Time and position cooperative behaviour
2. Time cooperative behaviour

Yes

Evolutionary79,81 algorithm
Genetic algorithm
Partical swarm optimisation

Mobile robots
UAV

Probabilistic
complete

Inconsistent 1. Time cooperative behaviour Yes

Optimal control method83,86

Mixed integer linear programming
Model predictive control

Mobile robots
UAV
AUV

Complete Consistent 1. Time and position cooperative behaviour
2. Time cooperative behaviour

Yes
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have been reviewed. In terms of the key research involved in the multi-vehicle formation system,
both the formation control and cooperative path planning are important. Even though they are two
different research topics, a number of overlaps make them coherent. For example, the problem
of collision avoidance, which primarily resides in the path planning problem, has many solutions
in formation control literature, having designed and generated necessary control commands to
manoeuvre the vehicle. In the meantime, the recent path planning trend is towards the kinodynamic
planning, for which velocity, acceleration and force/torque limitations must be satisfied.96 The
paths generated by the kinodynamic planning algorithms are physically compliant with the vehicle's
dynamics, which facilitates the controllers to track, and are also able to avoid obstacles in the
environment.97,98

Compared with single platform deployment, a relatively small number of multi-vehicle
system deployments have been seen in recent decades. However, there is considerable potential
future development for such systems as the multi-vehicle system is more effective and able
to undertake complex missions for which single vehicles are incapable. It is without doubt
that by fully implementing a formation control and navigation system into current unmanned
system platforms, the autonomy and efficiency of unmanned vehicles can be successfully
enhanced.

To further push the boundary of the research of multi-vehicle systems, extensive work needs to be
carried out from both control and path planning perspectives. First, as presented in this review, most
of the work only focuses on single types of platforms, and the problem of formation control and path
planning for multi-vehicle cross-platform system has not been rigorously addressed. In the future,
the dominant approach to deploy multi-vehicle systems may be to use various types of vehicles
to cooperatively work together to provide the persistent autonomy. For example, a cross-platform
system consisting of UAVs, USVs and AUVs can be deployed for search and rescue missions in
post-disaster scenarios, where the UAV provides long-range detection capability, the USV works as
a communication relay station and the AUV is responsible for underwater search and detection. To
effectively operate such a combined system, new considerations must be given to the development
of the associated control algorithms. In terms of formation control, as each type of vehicle has its
unique dynamic characteristics, such a system becomes highly heterogeneous and consequently its
formation control become more challenging. In addition, when deploying such cross-platform systems
to conduct persistent mission, the energy consumption will become a significant limitation and would
need to be properly addressed by balancing the energy usage issue with other requirements. With
respect to the path planning, computation efficiency is the major issue that needs to be specifically
taken into account as a cross-platform system would normally be conducting missions in a 3-D
environment. Path planning algorithms reviewed in this paper normally belong to grid-based path
planning algorithm, which are powerful in dealing with 2-D environments but lack effectiveness in
3-D. Therefore, the sampling-based algorithm such as the rapidly exploring random tree97 can be
modified and improved for this application.

Another important research area is development of multi-vehicle systems towards the swarm
concept. Because the number of vehicles involved in a swarm is far more than that in a formation,99

the required algorithm for operating a swarm is different and more complex. This has therefore led to
a phenomenon that a large number of bio-inspired control methods such as insect colonies and flocks
of birds, have been adopted as they are capable of providing solutions to the complex problem that
conventional approaches cannot address.100 In fact, when developing the algorithm for a swarm, due
to the large amount of vehicles, which provides a certain degree of redundancy, new functionality
called the obstacle enclosure can be considered as a potential research area. This in fact will be
a new way of dealing with moving obstacles. For example, for a conventional formation system,
generating the safe evasive actions is always the priority when the formation encounters moving
obstacles. However, for a swarm system, instead of avoiding the obstacles, part of the swarm can
be used to enclose an obstacle to effectively block its trajectory and delay its movement, while the
rest of the swarm can continue to transit towards the target point. It might still be viewed as having
accomplished the mission even if not all the vehicles but only part of them arrive at the target point.
To successfully implement such a strategy, the choice of the obstacle enclosure time would be critical
and should be calculated according to the movement of the obstacle. Also, internal collision within the
swarm when performing the enclosure might not be negligible and must be addressed in the algorithm
design.
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