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Abstract

We face the problems of correctness, optimality, and precision for the static analysis of

logic programs, using the theory of abstract interpretation. We propose a framework with a

denotational, goal-dependent semantics equipped with two unification operators for forward

unification (calling a procedure) and backward unification (returning from a procedure). The

latter is implemented through a matching operation. Our proposal clarifies and unifies many

different frameworks and ideas on static analysis of logic programming in a single, formal

setting. On the abstract side, we focus on the domain Sharing by Jacobs and Langen (The

Journal of Logic Programming , 1992, vol. 13, nos. 2–3, pp. 291–314) and provide the best

correct approximation of all the primitive semantic operators, namely, projection, renaming,

and forward and backward unifications. We show that the abstract unification operators are

strictly more precise than those in the literature defined over the same abstract domain. In

some cases, our operators are more precise than those developed for more complex domains

involving linearity and freeness.

KEYWORDS: abstract interpretation, logic programming, existentially quantified substitu-

tions, unification, matching, sharing

1 Introduction

Abstract interpretation (Cousot and Cousot 1992) is a general theory for static

analysis of programs. The basic idea of abstract interpretation is to use the formal

semantics of languages to analyze and verify program properties. An abstract

interpretation is specified by:

• a concrete domain and a concrete semantics, inductively defined on the syntax

of programs from a set of primitive concrete operators;

• an abstract domain, whose elements describe the program properties we want

to observe;

• the primitive abstract operators on the abstract domain, which mimic the

behavior of the corresponding concrete operators; the abstract semantics is

defined from the concrete one by replacing each concrete operator with its

abstract counterpart.
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Abstract interpretation has been widely used to design static analysis of logic

programs. In the literature, we find many proposals for the concrete domain, the

concrete semantics, the abstract domain, and the abstract operators. For instance,

Hans and Winkler (1992) focused on the abstract domains, Howe and King (2003)

on the abstract operators, and King and Longley (1995) on improving existing

analysis using a more refined concrete semantics, while Cortesi et al. (1996) proposed

a complete framework, i.e., a combination of particular concrete semantics, and

abstract domains. In many cases, the correctness of the analysis is taken for granted,

since the concrete semantics is not completely specified. However, when applying

several of these improvements to a single analysis framework, the improved analysis

may significantly differ from the original proposal, and a new proof of correctness

is needed for the overall analysis. This is especially true for logic programming,

whose basic computational mechanism, unification, is intrinsically more complex

than assignment or matching, used in other programming paradigms.

The aim of this paper is mainly to clarify and unify several different proposals

for the goal-dependent analysis of logic programs. Inspired by the work of Cortesi

et al. (1996), we propose a new denotational framework that combines and improves

many different ideas appeared in the literature. Later, we focus on the abstract

domain Sharing by Jacobs and Langen (1992), and we develop an analysis that is

strictly more precise than the others in the literature. We formally prove correctness

of the overall analysis and optimality of all the involved abstract operators.

When designing a new analysis, one needs to choose a concrete domain and

semantics, an abstract domain, and abstract operators. Although these choices

are related, in the following we will introduce them separately, showing available

alternatives, possible improvements, and the contributions of this paper.

1.1 Concrete domain

Typically, concrete semantics of logic programs are defined over substitutions.

However, substitutions are often too informative. For example, consider the one-

clause program p(x, x) and the goal p(x, y). All of {x/y}, {y/x}, {x/u, y/u}, {x/v, y/v}
are computed answers, corresponding to different choices of most general unifiers

and renamed clauses. Often, especially in the case of static analysis, we are not

interested in making any distinction among them. Thus, it would be more natural

to adopt a domain of equivalence classes of substitutions. Many frameworks for

abstract interpretation of logic programs (Jacobs and Langen 1992; Marriott et al.

1994; Levi and Spoto 2003) have adopted similar solutions for avoiding redundancy

and causality when choosing computed answers.

Nevertheless, the standard semantics of logic programs, namely, SLD resolution, is

based on substitutions and unification. Thus, any framework for logic programming

should relate, in some way, to standard substitutions, in order to prove that the

semantics reflects the underlying operational behavior. However, none of the above

frameworks formally states the correspondence between the proposed concrete

domain and standard substitutions. Although this correspondence is clear from
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an intuitive point of view, we think that substitutions are tricky objects, where

intuition often fails.

1.1.1 Our contribution

We propose a new concrete domain of classes of substitutions, called existential

substitutions, equipped with a set of primitive operators for projection, renaming,

and unification. We formally state the correspondence between substitutions and

existential substitutions and, in particular, between the corresponding unification

operators. Moreover, we show the relationship between our proposal and the domain

ESubst by Jacobs and Langen (1992).

1.2 Concrete semantics

We are interested in goal-driven analysis of logic programs. Therefore we need

a goal-dependent semantics that is well suited for static analysis, i.e., a collecting

semantics over computed answer substitutions. Unfortunately, using a collecting

goal-dependent semantics may lead to a loss of precision already at the concrete

level, as shown by Marriott et al. (1994). Basically, in any goal-dependent semantics,

the unification operator is used twice for the following reasons:

• Performing parameter passing by unifying the given goal and the call substitu-

tion with the head of the chosen clause. The result is a new goal and an entry

substitution. This operation is called forward unification.

• Propagating back to the initial goal the exit substitution (that is, the result of

the subcomputation), so obtaining the answer substitution for the initial goal.

This operation is called backward unification1:

Entry substitution
Forward unification

Backward unification

Computation

Call substitution

Answer substitution Exit substitution

For instance, given the initial goal p(x) and the call substitution {x/f(y)}, we unify

with the head of the clause p(z)← q(z) by computing the most general unifier

{x/f(y), z/f(y)}, which, projected on the variables of the clause, is simply {z/f(y)}.
Projection is needed in order to avoid an unbounded growing of the set of variables

in the entry substitution. This is acceptable at the concrete level but not at the

1 We follow Cortesi et al. (1996) and call these operators forward and backward unifications. Bruynooghe
(1991) and Hans and Winkler (1992) used procedure entry and procedure exit. Muthukumar and
Hermenegildo (1991) used call to entry and exit to success.
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abstract level, where it may lead to nonterminating analysis. The new goal and entry

substitution become q(z) and {z/f(y)}. Once we have obtained an exit substitution

for the goal q(z), for instance, {z/f(a)}, we have to relate this result to the original

goal p(x). Thus we need a so-called backward unification, which allows us to

conclude that {x/f(a)} is an answer for p(x) with call substitution {x/f(y)}.
The backward unification operator introduces a loss of precision, due to the fact

that we deal with a set of call substitutions, from which we possibly obtain a set of

exit substitutions. Now, when we go backward to obtain the answer substitutions,

we may unify a call substitution with an exit substitution that does not pertain to

the same computational path (Marriott et al. 1994).

It is possible to reduce the impact of this problem by using two different operators

for forward and backward unifications (Bruynooghe 1991; Le Charlier et al. 1991).

In this way, backward unification can be realized using the operation of matching

between substitutions.

1.2.1 Our contribution

We propose a denotational goal-dependent semantics equipped with two different

forward and backward unification operators. Backward unification uses matching,

exploiting the property that the exit substitution is more instantiated than the call

substitution. We prove that the concrete semantics is correct and show that the new

semantics is strictly more precise than semantics that do not use matching.

1.3 Abstract domain

One of the most interesting (and studied) property for logic programs is sharing.

The goal of (set) sharing analysis is to detect sets of variables that share a common

variable. For instance, in the substitution {x/f(z, a), y/g(z)} the variables x and

y share the common variable z. Typical applications of sharing analysis are in

optimization of unification (Søndergaard 1986) and parallelization of logic programs

(Hermenegildo and Rossi 1995).

The basic domain for set sharing analysis is Sharing, introduced in Langen

(1990) and Jacobs and Langen (1992). It is widely recognized that Sharing is not

very precise, so that it is often combined with other domains for freeness, linearity,

groundness, or structural information (see Bagnara et al. 2005 for a comparative

evaluation). Since this paper does not address the problem to find the best possible

domain for set-sharing analysis, we will focus on the domain Sharing.

1.4 Abstract operators

Once the concrete semantics and the abstract domain have been fixed, the next

step is to find suitable abstract operators that mimic the behavior of the concrete

ones. The theory of abstract interpretation ensures the existence of the optimal

(best correct) abstract operator for each concrete operator. Although the optimal

abstract operator enjoys a constructive characterization, this is not amenable to
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a direct implementation. Therefore, finding an algorithm to compute optimal

abstract operators is one of the main difficulties in any abstract interpretation

project.

We think that there are several reasons to look for the optimal operator, instead of

just using a correct one. In fact, one may argue that a well-designed correct operator

may be much faster than the optimal one and does not lose much precision in real

programs. Although we agree with this point, we think that knowing the optimal

abstract operator, even if we do not plan to implement it, is useful to understand

the potentiality and limits of the abstract domain in use and to guide the search

for a more precise (or more efficient) domain. Moreover, at least in the case of

sharing analysis, the more precise the abstract operators are, the smaller are the

abstract objects computed during the analysis. Therefore, it may be worth spending

more time in computing the abstract operators, in order to keep the abstract objects

simpler (and the analysis more precise).

The primitive concrete operators used in the semantics of logic programs are

renaming, projection, unification, and matching. Renaming and projections are

not problematic at all: it is generally immediate to find their optimal abstract

counterparts, which most of the time are also complete; i.e., they do not lose

precision w.r.t. the corresponding concrete operators (Cousot and Cousot 1979;

Giacobazzi et al. 2000).

Things are different for unification, which is a very complex operator. In fact,

despite several works in this field, the best correct abstraction of unification for

the domain SFL (King and Longley 1995), which combines sharing, freeness, and

linearity, is still unknown. For the domain Sharing, Cortesi and Filé (1999) have

shown that abstract unification defined in Jacobs and Langen (1992) is optimal.

However, this result has been obtained for a concrete semantics that uses the same

unification operator to compute both forward and backward unifications.

We have already said that a specialized backward unification operator may

improve precision at the concrete level. In turn, the improvement in precision is

reflected at the abstract level, if the abstract backward unification operator is

designed to mimic matching instead of standard unification. This idea is implemented

in real abstract interpreters such as GAIA (Le Charlier et al. 1991) and PLAI

(Muthukumar and Hermenegildo 1992). However, none of the papers that are

based on a specialized backward unification operator with matching (Bruynooghe

1991; Hans and Winkler 1992; Muthukumar and Hermenegildo 1992; Le Charlier

and Van Hentenryck 1994; King and Longley 1995) has ever proved optimality of

the proposed abstract operators. As we will show later, those abstract operators

that involve set-sharing information (Hans and Winkler 1992; Muthukumar and

Hermenegildo 1992; King and Longley 1995) are not optimal.

In addition, the abstract forward unification operator can be specialized in order

to exploit the peculiarity of this process: the variables that occur in the clause

head are always renamed apart w.r.t. the goal and the calling substitutions; hence

they are free and independent. However, this idea has never been applied before in

the general case but only for abstract domains that explicitly contain freeness and

linearity information.
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1.4.1 Our contribution

We provide abstract operators for renaming, projection, forward unification, and

backward unification. We prove that all our operators are optimal and that renaming

and projection are also complete. We show that abstract forward unification is able to

exploit freeness and linearity information. The new backward and forward unification

operators strictly improve over previous proposals for the domain Sharing.

Although freeness and linearity information are exploited by the forward abstract

unification operator, this information is not encoded in the abstract domain but

is just used in the internal steps of the abstract unification algorithm. This means

that the algorithm cannot be immediately extended to work with more complex

domains, such as SFL (King and Longley 1995), retaining optimality. Nonetheless,

the abstract unification is able to exploit freeness and linearity better than other

algorithms and could be used to improve the unification operation in more complex

domains.

1.5 Plan of the paper

The next section recalls some basic definitions and the notations about abstract

interpretation and substitutions. In Section 3 we define the domain of existentially

quantified substitutions and its operators. In Sections 4 and 5 we define the

concrete and abstract semantics. Finally, in Sections 6 and 7 we give the algorithms

for computing the forward and backward abstract unifications and show their

correctness and optimality. In Section 8 we compare our framework with related

work.

The paper is a substantial expansion of Amato and Scozzari (2002), which

introduces preliminary results using standard substitutions. A partial presentation

of existential substitutions appeared in Amato and Scozzari (2003).

2 Notations

Given a set A, let ℘(A) be the powerset of A and ℘f(A) be the set of finite subsets of

A. Given two posets (A,�A) and (B,�B), we denote by A
m→B (A

c→B) the space of

monotonic (continuous) functions from A to B ordered pointwise. When an order for
A or B is not specified, we assume the least informative order (x � y ⇐⇒ x = y).

We also use A � B to denote disjoint union and |A| for the cardinality of the set A.

Given complete lattices A,C , a Galois connection (Cousot and Cousot 1979)

〈α, γ〉 : C � A is given by a pair of maps α : C
m→A, γ : A

m→C such that

α(c) �A a ⇐⇒ c �C γ(a). A Galois connection is a Galois insertion when α is onto

(or, equivalently, γ is injective). We say that an abstract operator fα : A
m→A is correct

w.r.t. a concrete operator f : C
m→C when ∀c ∈ C. (α ◦ f)(c) �A (fα ◦ α)(c), which is

equivalent to ∀a ∈ A. (f ◦ γ)(a) �C (γ ◦ fα)(a) and to ∀a ∈ A. (α ◦ f ◦ γ)(a) �A fα(a).

The abstract operator is optimal when fα = α ◦ f ◦ γ. In this case fα is called the

best correct approximation of f. When α ◦ f = fα ◦ α, fα is said to be complete, while

if f ◦ γ = γ ◦ fα, then fα is γ-complete.
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In the following, we fix a first-order signature (Σ,Π) and an infinite set of variables

V. We assume that there are a constant symbol and a function symbol of arity

at least two2. We use Terms and Atoms to denote the sets of terms and atomic

formulas (atoms) respectively. Moreover, we call body or goal a finite sequence of

atomic formulas, clause an object H ← B, where H is an atom and B is a body,

and program a set of clauses. We use � for the empty body, and we write H as

a short form for H ← �. We denote with Bodies, Clauses, and Progs the set of

bodies, clauses, and programs respectively. Given a term t, we denote by vars(t) the

set of variables occurring in t and by uvars(t) the subset of vars(t) whose elements

appear once in t (e.g., uvars(f(x, y) = f(y, z)) = {x, z}). We apply vars and uvars to

any syntactic object, with the obvious meaning. We abuse the notation and write a

syntactic object o instead of the set of variables vars(o), when it is clear from the

context (e.g., if t is a term and x ∈ V, then x ∈ t should be read as x ∈ vars(t)).

We denote with ε the empty substitution and by {x1/t1, . . . , xn/tn} a substitution

θ with θ(xi) = ti = xi. Let dom(θ) be the set {x1, . . . , xn} and rng(θ) be the set

vars({t1, . . . , tn}). Thus we have that vars(θ) = dom(θ) ∪ rng(θ). Given U ∈ ℘f(V),

let θ|U be the projection of θ on U, i.e., the unique substitution such that θ|U(x) = θ(x)

if x ∈ U and θ|U(x) = x otherwise. We also write θ|−U to denote the restriction

of θ over all variables but those in U, i.e., θ|−U = θ|dom(θ)\U . Given θ1 and θ2

two substitutions with disjoint domains, we denote by θ1 � θ2 the substitution θ

such that dom(θ) = dom(θ1) ∪ dom(θ2) and θ(x) = θi(x) if x ∈ dom(θi), for each

i ∈ {1, 2}. The application of a substitution θ to a term t is written as tθ or θ(t).

Given two substitutions θ and δ, their composition, denoted by θ ◦ δ, is given by

(θ ◦ δ)(x) = θ(δ(x)). A substitution ρ is called renaming if it is a bijection from V
to V. (This is equivalent to saying that there exists a substitution ρ−1 such that

ρ ◦ ρ−1 = ρ−1 ◦ ρ = ε). A substitution θ is idempotent when dom(θ) ∩ rng(θ) = ∅.
Instantiation induces a preorder on substitutions: θ is more general than δ, denoted

by δ � θ, if there exists σ such that σ ◦ θ = δ. If ≈ is the equivalence relation

induced by �, we say that σ and θ are equal up to renaming when σ ≈ θ. The

set of substitutions, idempotent substitutions, and renamings are denoted by Subst ,

ISubst , and Ren respectively.

Given a set of equations E, we write σ = mgu(E) to denote that σ is a most

general unifier of E such that vars(σ) ⊆ vars(E). Since σ is defined up to renamings,

we use this notation only in cases in which the choice of the actual unifier does not

matter. Any idempotent substitution σ is a most general unifier of the corresponding

set of equations Eq(σ) = {x = σ(x) | x ∈ dom(σ)}. In the following, we will

abuse the notation and denote by mgu(σ1, . . . , σn), when it exists, the substitution

mgu(Eq(σ1) ∪ . . . ∪ Eq(σn)).

In the rest of the paper, we use U, V , W to denote finite sets of variables,

h, k, u, v, w, x, y, z for variables, c, s, t for term symbols or terms, a, b for constants, cl

for clauses, η, θ, σ, δ for substitutions, and ρ for renamings. All these symbols can be

subscripted or superscripted.

2 Otherwise every term has at most one variable, and the structure of terms is trivial. We need this
assumption in Section 8.1 and in the proofs of optimality of unification and matching.
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3 Domains of existentially quantified substitutions

The first question when analyzing the behavior of logic programs is what kind

of observable we are interested in. Undoubtedly, computed answers have played a

prominent role, since they are the result of the process of SLD-resolution. Moreover,

they have several nice properties: and-compositionality, condensing, and a bottom-

up TP -like characterization (van Emden and Kowalski 1976; Bossi et al. 1994).

Standard semantics for logic programs, e.g., the s-semantics in Bossi et al. (1994), are

defined over equivalence classes of atoms modulo renaming. For example, consider

the one-clause program p(x, x) and the goal p(x, y). All of p(x, x), p(y, y), p(u, u), and

p(v, v) are computed instances, corresponding to different choices of most general

unifiers and renamed clauses, but we are not interested in making any distinction

among them.

However, when we consider a denotational semantics suitable for program

analysis, computed answer substitutions are much more useful than computed

instances, since most of the domains are expressed as abstraction of sets of

substitutions. As before, we are not really interested in the substitutions but in

their quotient-set w.r.t. a suitable equivalence relation. But in this case we cannot

take renaming as the relevant equivalence relation. Let us consider the substitutions

corresponding to the computed instances in the previous example: We obtain

θ1 = {y/x}, θ2 = {x/y}, θ3 = {x/u, y/u}, and θ4 = {x/v, y/v}. Although θ1 and

θ2 are equal up to renaming, the same does not hold for θ3 and θ4. Nonetheless, they

essentially represent the same answer, since u and v are just two different variables

we chose when renaming apart the clause p(x, x) from the goal p(x, y), and therefore

are not relevant. On the other side, if θ3 and θ4 were computed answers for the goal

q(x, y, u), they would correspond to computed instances q(u, u, u) and q(v, v, u) and

therefore would be definitively different. As a consequence, the equivalence relation

we need to consider must be coarser than renaming and must take into account the

set of variables of interest, i.e., the set of variables which appear in the goal.

A semantics that takes into account classes of substitutions may follow three

possible directions:

(1) it may compute only a subset of the computed answer substitutions, provided

that the result contains at least one substitution for each equivalence class

(e.g., Cortesi et al. 1996);

(2) it may compute all the computed answer substitutions (e.g., Le Charlier et al.

1991);

(3) it may be defined using a quotient domain of substitutions (e.g., Marriott

et al. 1994).

The problem with the first two solutions is that they work by directly manipulating

substitutions. It is common knowledge that this is quite tedious and error prone

(Shepherdson 1994). This happens because substitutions are too much related to

syntax, so that the intuition of what should happen is often betrayed by the reality,

when we need to handle problems such as variable clashes and renamings. Actually,

at least one framework of the first kind, namely, the widely used one in Cortesi and
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Filé (1999), has a small flaw due to an unsound treatment of variable clashes (which

will be discussed in details in Section 8.2).

Moreover, the first approach is generally pursued by choosing a particular most

general unifier and a fixed way of renaming apart terms and substitutions. The

semantics is then parametric with respect to these choices. As stated by Jacobs and

Langen (1992), this makes it difficult to compare different semantics, since each

of them may use different conventions for mgu and renaming. We would like to

add that this also makes it difficult to state properties of a given semantics (such as

compositionality properties), since they only hold up to suitable equivalence relations.

For these reasons, we think that the best solution is to move towards a domain of

equivalence classes of substitutions. This does not mean we can avoid working with

substitutions altogether, but all the difficulties that arise, such as renaming apart and

variables clashes, may be dealt with once and for all at the domain level, reducing

the opportunities for subtle mistakes to appear.

3.1 Yet another domain of existentially quantified substitutions

In the literature there are several domains of equivalence classes of substitutions:

ESubst (Jacobs and Langen 1992), ex-equations (Marriott et al. 1994), and existential

Herbrand constraints (Levi and Spoto 2003). For all of them, the basic idea is that

some variables, in a substitution or equation, are existentially quantified, so that their

names become irrelevant. However, all these proposals depart from the standard

notion of substitution. As a result, the relationship between what they compute

and the standard set of computed answers for a goal has never been proved. We

would like to reconcile these approaches with the standard concept of substitution:

in particular, we want to prove that these domains are quotient sets of substitutions,

w.r.t. suitable equivalence relations.

We begin by introducing a new equivalence relation ∼ over substitutions, which

captures the extended notion of renaming that is needed to work with computed

answers. Inspired by the seminal paper of Palamidessi (1990), we introduce a new

domain Subst∼ of classes of substitutions modulo ∼, which will be used in the rest

of the paper3.

Given θ1, θ2 ∈ Subst , and U ∈ ℘f(V), we define the preorder:

θ1 �U θ2 ⇐⇒ ∃δ ∈ Subst .∀u ∈ U. θ1(u) = δ(θ2(u)). (1)

Intuitively, if θ1 �U θ2, then θ1 is an instance of θ2, provided we are only interested

in the variables in U.

Example 3.1

It is easy to check that {x/a, y/u} �{x,y} {y/v}, since we may choose δ = {x/a, v/u}
in (1). Note that the same does not happen if we consider the standard ordering on

substitutions, i.e., {x/a, y/u} � {y/v}. Moreover, if we enlarge the set U of variables

of interest, we obtain {x/a, y/u} �{x,y,v} {y/v}. �

3 In Section 8.1, we will prove that Subst∼ and the domain ESubst (Jacobs and Langen 1992) are
isomorphic.
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Note that in equation (1), it is important that δ is a generic substitution. If we

restrict δ to be idempotent, some equivalences do not hold anymore. For example,

{x/t(u), y/t(v)} �{x,y} {x/v, y/u}, and this is what we intuitively want, since the names

of the variables u and v are not relevant. However, to prove this relation, we choose

δ = {u/t(v), v/t(u)} in (1), and it is not an idempotent substitution.

Proposition 3.2

For any U ∈ ℘f(V), �U is a preorder.

Proof

Let U ∈ ℘f(V). By definition, θ �U θ ⇐⇒ ∃δ ∈ Subst .∀v ∈ U. θ(v) = δ(θ(v)),

which is a tautology by choosing as δ the empty substitution. Now assume θ1 �U θ2

and θ2 �U θ3. Therefore, there exist δ1 and δ2 such that ∀v ∈ U, θ1(v) = δ1(θ2(v)),

and θ2(v) = δ2(θ3(v)). Therefore, ∀v ∈ U, it holds θ1(v) = δ1(θ2(v)) = δ1(δ2(θ3(v))).

Therefore, by choosing as δ the composition δ1 ◦ δ2 we have that θ1 �U θ3. �

The next step is to define the relation

θ1 ∼U θ2 ⇐⇒ ∃ρ ∈ Ren .∀v ∈ U. θ1(v) = ρ(θ2(v)), (2)

which will be proved to be the equivalence relation induced by the preorder �U .

Example 3.3

It is easy to check that {x/v, y/u} ∼{x,y} ε by choosing ρ = {x/v, v/x, y/u, u/y}. Note

that ∼U is coarser than the standard equivalence relation ≈: there is no renaming ρ

such that ε = ρ ◦ {x/v, y/u}. As it happens for �, if we enlarge the set of variables

of interest, not all equivalences between substitutions are preserved: for instance,

{x/v, y/u} ∼{x,y,v} ε. �

Lemma 3.4

Let θ : V →V be an injective map of variables. Then there exists ρ ∈ Ren such that

ρ(x) = θ(x) for each x ∈ V and vars(ρ) = V ∪ θ(V ).

Proof

Since θ is injective, |V | = |θ(V )|, it follows that |V \ θ(V )| = |θ(V ) \ V |. Let f be

any bijective map from θ(V ) \ V to V \ θ(V ), and let us define a substitution ρ as

follows:

ρ(v) =

⎧⎪⎪⎨
⎪⎪⎩
θ(v) if v ∈ V ,

f(v) if v ∈ θ(V ) \ V ,

v otherwise.

Note that if x ∈ V , ρ(x) = θ(x) by definition. Moreover, it is easy to check that ρ is

bijective; therefore, it is a renaming. Finally, vars(ρ) = dom(ρ) = V ∪ (θ(V ) \ V ) =

V ∪ θ(V ). �

Proposition 3.5

The relation ∼U is the equivalence relation induced by �U .
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Proof

If θ1 ∼U θ2 there exists ρ ∈ Ren such that ∀v ∈ U. θ1(v) = ρ(θ2(v)). By the definition

of �U , we have that θ1 �U θ2 by choosing as δ in (1) the renaming ρ. Symmetrically,

by choosing as δ the renaming ρ−1 (the inverse of ρ), it follows that θ2 �U θ1.

Now assume that θ1 �U θ2 and θ2 �U θ1. Therefore there exist δ, δ′ ∈ Subst

such that θ2(x) = δ′(θ1(x)) and θ1(x) = δ(θ2(x)); thus θ2(x) = δ′(δ(θ2(x))) for

each x ∈ U. In general, δ and δ′ might not be renamings. Our goal is to build a

renaming ρ, obtained by modifying δ, such that θ1(x) = ρ(θ2(x)), for each x ∈ U. Let

V = vars(θ2(U)). Since each v ∈ V belongs to vars(θ2(x)) for some x ∈ U, it follows

that (δ′ ◦ δ)(v) = v for all v ∈ V . Therefore, δ|V may be viewed as an injective map

from V to V. By Lemma 3.4, there exists ρ ∈ Ren such that ρ|V = δ|V . Therefore,

for each x ∈ U, ρ(θ2(x)) = δ(θ2(x)) = θ1(x); hence θ1 ∼U θ2. �

It is worth noting that �U is coarser than � and that ∼U is coarser than renaming,

as shown by the following proposition.

Proposition 3.6

Given θ ∈ Subst , ρ ∈ Ren , and δ ∈ Subst , ρ ◦ θ ∼U θ and δ ◦ θ �U θ for each

U ∈ ℘f(V).

Proof

Simply choose ρ and δ as the relevant substitutions in (1) and (2). �

Now, let ISubst∼U
be the quotient set of ISubst w.r.t. ∼U . We define a new

domain ISubst∼ of existential substitutions as the disjoint union of all the ISubst∼U

for U ∈ ℘f(V), in formulas

ISubst∼ =
⊎

U∈℘f (V)

ISubst∼U
. (3)

In the following we write [θ]U for the equivalence class of θ w.r.t. ∼U . We call

canonical representatives of the equivalence class [θ]U ∈ ISubst∼ the substitutions

θ′ ∈ ISubst such that θ′ ∼U θ and dom(θ′) = U. It is immediate to see that every

existential substitution has a canonical representative, although it is not unique. For

example, two canonical representatives of [{y/f(x)}]x,y,z are {y/f(h), x/h, z/k} and

{y/f(u), x/u, z/v}. Working with canonical representatives is of great help, especially

in the proofs, since we are sure they have no variables of interest in the range.

By the definition of �U , when θ �U θ′, for all W ⊆ U it holds that θ �W θ′. This

allows us to define a partial order � over ISubst∼ given by

[θ]U � [θ′]V ⇐⇒ U ⊇ V ∧ θ �V θ′. (4)

Intuitively, [θ]U � [θ′]V means that θ is an instance of θ′ w.r.t. the variables in V ,

provided that they are all variables of interest of θ. It is easy to show that � is well

defined in ISubst∼; that is, it does not depend on the choice of the representatives.

Note that although we use equivalence classes of idempotent substitutions, we

could build an isomorphic domain by working with equivalence classes of the set

of all the substitution. In other words, if we define Subst∼ =
⊎

U∈℘f (V) Subst∼U
, we

obtain the following.
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Proposition 3.7

The posets (Subst∼,�) and (ISubst∼,�) are isomorphic.

Proof

It is enough to prove that for each U ∈ ℘f(V) and θ ∈ Subst , there exists

θ′ ∈ ISubst such that θ ∼U θ′. Let V = rng(θ) ∩ dom(θ) and W ⊆ V such that

W ∩ (U ∪ vars(θ)) = ∅ and |V | = |W |. Moreover, we take a renaming ρ such that

vars(ρ) = V ∪W and ρ(V ) = W . Then, we may define a substitution θ′ such that

θ′ = (ρ ◦ θ)|U.

Note that dom(θ′) = (dom(θ) ∪W ) ∩ U ⊆ dom(θ) and rng(θ′) ⊆ rng(θ) \ V ∪W .

Therefore, dom(θ′) ∩ rng(θ′) = ∅, i.e., θ′ ∈ ISubst . Moreover, by definition, θ′ ∼U θ.

�

The isomorphism between Subst∼ and ISubst∼ holds, since a variable in rng(θ)

is considered not of interest if it also occurs in dom(θ). Therefore {x/y, y/x} ∼{x,y}
{x/u, y/v}, since y and x in the range of {x/y, y/x} are just names for existential

quantified variables. Obviously {x/y} ∼{x,y} {x/u}, since here y only appears in the

range and is therefore considered as a variable of interest.

3.2 Operations on the new domain

It is now time to define some useful operations over ISubst∼, which will be used

as building blocks for the semantics to be defined further away in the paper. They

will also give some more insights over the structure of ISubst∼. To ease notation,

we often omit braces from the sets of variables of interest when they are given

extensionally. So we write [θ]x,y instead of [θ]{x,y} and ∼x,y,z instead of ∼{x,y,z}. When

the set of variables of interest is clear from the context or is not relevant, it will

be omitted. Finally, we omit the braces that enclose the bindings of a substitution

when it occurs inside an equivalence class; i.e., we write [x/y]U instead of [{x/y}]U .

3.2.1 Projection

We define an operator which projects an element of ISubst∼ on a given set of

variables V , given by

πV ([σ]U) = [σ]U∩V , (5)

which can be easily proved to be well defined. Moreover, the following properties

hold:

(1) πU ◦ πV = πU∩V ;

(2) πU([σ]U) = [σ]U;

(3) πV is monotonic w.r.t. �.
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3.2.2 Renaming

Another useful operation on classes of substitutions is renaming. We first define the

application of a renaming ρ ∈ Ren to a substitution θ ∈ Subst as

ρ(θ) = {ρ(x)/ρ(θ(x)) | x ∈ dom(θ)}. (6)

Intuitively, we treat θ as a syntactic object and apply the renaming to both left- and

right-hand sides. Note that ρ(θ) can be equivalently defined as ρ ◦ θ ◦ ρ−1.

Proposition 3.8

Given ρ ∈ Ren and θ ∈ Subst it holds that ρ(θ) = ρ ◦ θ ◦ ρ−1.

Proof

Let θ′ = ρ(θ). Since y = θ(y) for all y ∈ dom(θ), ρ(y) = ρ(θ(y)) by injectivity

of ρ. It follows that dom(θ′) = ρ(dom(θ)). We now prove that for each x ∈ V,

θ′(x) = ρ(θ(ρ−1(x))). We distinguish two cases:

• If x ∈ dom(θ′), it follows that x ∈ ρ(dom(θ)) and thus ρ−1(x) ∈ dom(θ). As a

consequence, ρ(θ(ρ−1(x))) = ρ(ρ−1(x)) = x = θ′(x).

• If x ∈ dom(θ′), then y = ρ−1(x) ∈ dom(θ) and θ′(x) = ρ(θ(y)). Therefore

ρ(θ(ρ−1(x))) = ρ(θ(y)) = θ′(x). �

We may lift this definition to classes of substitutions in the standard way as

follows:

ρ([σ]U) = [ρ(σ)]ρ(U). (7)

For example, let σ = {x/k, y/t(z, k)}, U = {x, y, z} and consider the renaming:

ρ = {x/u, u/x, y/z, z/y, k/h, h/k}.

If we apply ρ to [σ]U we obtain ρ([σ]U) = [{u/h, z/t(y, h)}]u,y,z . Note that we do not

need to worry about variable clashes.

Theorem 3.9

The renaming operation is well defined.

Proof

It is enough to prove monotonicity w.r.t. the preorder �U . Given θ1, θ2 ∈ Subst such

that θ1 �U θ2, we prove that ρ(θ1) �ρ(U) ρ(θ2). By Proposition 3.8, we need to show

that ρ ◦ θ1 ◦ ρ−1 �ρ(U) ρ ◦ θ2 ◦ ρ−1, which is equivalent to θ1 ◦ ρ−1 �ρ(U) θ2 ◦ ρ−1

thanks to Proposition 3.6. By hypothesis, there exists a substitution δ ∈ Subst

such that θ1(x) = δ(θ2(x)) for all x ∈ U. Therefore, for all v ∈ ρ(U), it holds

θ1(ρ
−1(v)) = δ(θ2(ρ

−1(v))), which is the thesis. �

Several properties hold for the renaming operation:

(1) (ρ1 ◦ ρ2)([θ]V ) = ρ1(ρ2([θ]V ));

(2) ρ is monotonic w.r.t. �;

(3) ρ(πV ([θ]U)) = πρ(V )(ρ([θ]U));

(4) ρ1([θ]U) = ρ2([θ]U) if ρ1|U = ρ2|U .
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We prove only the last two, since the first is trivial and the second one immediately

follows from the proof of Theorem 3.9. Note that the first point implies that

ρ : ISubst∼→ ISubst∼ is invertible.

Proposition 3.10

Renaming is a congruence w.r.t. π, i.e.,

ρ(πV ([θ]U)) = πρ(V )(ρ([θ]U)),

for [θ]U ∈ ISubst∼ and ρ ∈ Ren .

Proof

By definition ρ(πV ([θ]U)) = ρ([θ]U∩V ) = [ρ(θ)]ρ(U∩V ). Since ρ is bijective, ρ(U∩V ) =

ρ(U) ∩ ρ(V ) and therefore ρ(πV ([θ]U)) = πρ(V )([ρ(θ)]ρ(U)) = πρ(V )(ρ([θ]U)), which

concludes the proof. �

Proposition 3.11

Renaming only depends from the variables of interest; i.e., if ρ1, ρ2 ∈ Ren , [θ]U ∈
ISubst∼ and ρ1|U = ρ2|U , then ρ1([θ]U) = ρ2([θ]U). In particular, if ρ1|U = id , then

ρ1([θ]U) = [θ]U .

Proof

Let us denote ρ1(U) = ρ2(U) by W . We need to prove that ρ1(θ) ∼W ρ2(θ). It is

obvious that ρ−1
1 |W = ρ−1

2 |W . Therefore, given ρ = ρ1 ◦ ρ−1
2 , we have that for each

x ∈W , ρ(ρ2(θ)(x)) = ρ(ρ2(θ(ρ
−1
2 (x)))) = ρ1(θ(ρ

−1
1 (x))). �

3.2.3 Unification

Given U,V ∈ ℘f(V), [θ1]U, [θ2]V ∈ ISubst∼, we define the most general unifier

between these two classes as the mgu of suitably chosen representatives, where

variables not of interest are renamed apart. In formulas

mgu([θ1]U, [θ2]V ) = [mgu(θ′1, θ
′
2)]U∪V , (8)

where θ1 ∼U θ′1 ∈ ISubst , θ2 ∼V θ′2 ∈ ISubst , and (U ∪ vars(θ′1)) ∩ (V ∪ vars(θ′2)) ⊆
U ∩ V . The last condition is needed to avoid variables clashes between the chosen

representatives θ′1 and θ′2.

Example 3.12

Let θ1 = {x/a, y/t(v1, v1, v2)} and θ2 = {y/t(a, v2, v1), z/b}. Then

mgu([θ1]x,y, [θ2]y,z) = [{x/a, y/t(a, a, v), z/b}]x,y,z

by choosing θ′1 = θ1 and θ′2 = {y/t(a, w, v), z/b}. In this case we have

{x/a, y/t(a, a, v), z/b} ∼x,y,z

mgu(θ′1, θ
′
2) = {x/a, y/t(a, a, v), z/b, v1/a, w/a, v2/v}. �

We may prove that mgu over ISubst∼ is well defined and that mgu([θ1]U, [θ2]V ) is

the greatest lower bound of [θ1]U and [θ2]V w.r.t. �.
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Theorem 3.13

The operator mgu is well defined.

Proof

We begin by proving that given θ1, θ
′
1, θ2 ∈ ISubst , if θ1 ∼U θ′1 with (U ∪ vars(θ1)) ∩

(V ∪ vars(θ2)) ⊆ U ∩V and (U ∪ vars(θ′1))∩ (V ∪ vars(θ2)) ⊆ U ∩V , then mgu(θ1, θ2)

∼U∪V mgu(θ′1, θ2). We have the following equalities:

mgu(θ1, θ2)

∼U∪V mgu(θ1, θ2)|U∪V

= mgu(θ1|U, θ2, θ1|−U)|U∪V

= (mgu(θ1|U, θ2) ◦ θ1|−U)|U∪V

= mgu(θ1|U, θ2)|U∪V .

In the last step, we use the fact that dom(θ1|−U) is disjoint from vars(θ1|U) by

idempotency of θ1, and it is disjoint from vars(θ2) by the assumptions (U∪vars(θ1))∩
(V∪vars(θ2)) ⊆ U∩V . Since θ1 ∼U θ′1, there exists ρ ∈ Ren such that (ρ◦θ′1)|U = θ1|U .

The restriction of ρ to vars(θ′1|U) is an injective map of variables whose range is

vars(θ1|U). By applying Lemma 3.4, it follows that we may choose a ρ such that

vars(ρ) ⊆ θ1(U) ∪ θ′1(U) ⊆ vars(θ1) ∪ vars(θ′1) ∪ vars(U). Then vars(ρ) ∩ V ⊆ U. We

have

mgu(θ1|U, θ2)|U∪V

= mgu((ρ ◦ θ′1)|U, θ2)|U∪V

= (mgu((ρ ◦ θ′1)|U, θ2) ◦ θ′)|U∪V (for each θ′ such that dom(θ′) ∩ (U ∪ V ) = ∅)

= mgu((ρ ◦ θ′1)|U, θ2, (ρ ◦ θ′1)|−U)|U∪V (by choosing θ′ = (ρ ◦ θ′1)|−U)

= mgu(ρ ◦ θ′1, θ2)|U∪V

= (ρ′ ◦mgu(θ′1, θ2))|U∪V (by Palamidessi (1990, Theorem 5.10))

∼U∪V mgu(θ′1, θ2)|U∪V (by Proposition 3.6)

∼U∪V mgu(θ′1, θ2),

which proves the required property. Now, to prove the general theorem, assume

there are θ1 ∼U θ′1, θ2 ∼V θ′2 with (U ∪ vars(θ1)) ∩ (V ∪ vars(θ2)) ⊆ U ∩ V and

(U ∪ vars(θ′1)) ∩ (V ∪ vars(θ′2)) ⊆ U ∩ V . Then consider a new substitution θ′′1 ∼U θ′1
such that (U∪vars(θ′′1 ))∩(V∪vars(θ2)) ⊆ U∩V , (U∪vars(θ′′1 ))∩(V∪vars(θ′2)) ⊆ U∩V ,

and we repeatedly apply the previous property, obtaining

mgu(θ1, θ2) ∼U∪V mgu(θ′′1 , θ2) ∼U∪V mgu(θ′′1 , θ
′
2) ∼U∪V mgu(θ′1, θ

′
2). �

Note that in the proof, the condition (U∪vars(θ′1))∩(V ∪vars(θ′2)) ⊆ U∩V implies

that vars(θ′1) ∩ V ⊆ U ∩ V and vars(θ′2) ∩ U ⊆ U ∩ V . If we relax the condition to

vars(θ′1) ∩ vars(θ′2) ⊆ U ∩ V , then this property no longer holds and mgu ceases to

be well defined. This is actually the origin of the flaw in Cortesi and Filé (1999),

which we will examine in Section 8.2.
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Example 3.14

Consider θ1 = {x/a} and θ2 = {u/b}. Assume we have a relaxed definition of mgu

as stated above. Then, to compute mgu([θ1]x, [θ2]u,v) we may choose θ′1 = θ1 and

θ′2 = θ2 to obtain {x/a, u/b}. But with the relaxed condition we might also choose

θ′1 = {x/a, v/a} and θ′2 = θ2, since it is true that vars(θ′1) ∩ vars(θ′2) = ∅. However

mgu(θ′1, θ
′
2) = {x/a, v/a, u/b} ∼x,u,v {x/a, u/b}. �

Theorem 3.15

The operator mgu is the greatest lower bound of (ISubst∼,�).

Proof

If [θ]U∪V = mgu([θ1]U, [θ2]V ), we may assume, without loss of generality, that

θ = mgu(θ1, θ2) and θ1, θ2 are canonical representatives. It immediately follows that

θ � θ1 and therefore θ �U θ1. In the same way, θ �V θ2.

Now assume [η]U∪V � [θ1]U and [η]U∪V � [θ2]V . We want to prove that [η]U∪V �
[θ]U∪V . By the definition of �, there is a σ1 such that η(x) = σ1(θ1(x)) for each

x ∈ U. We may choose σ1 such that dom(σ1) ⊆ rng(θ1). In the same way, there is σ2

such that dom(σ2) ⊆ rng(θ2(x)) and η(x) = σ2(θ2(x)) for each x ∈ V . We may define

a new substitution σ such that

σ(x) =

⎧⎪⎪⎨
⎪⎪⎩
σ1(θ1(x)) if x ∈ U ∪ dom(σ1),

σ2(θ2(x)) if x ∈ V ∪ dom(σ2),

x otherwise.

Note this definition is correct, since the first two cases may occur simultaneously

only if x ∈ U ∩ V , which implies σ1(θ1(x)) = σ2(θ2(x)) = η(x). It is easy to check

that η ∼U∪V σ and σ = σ ◦ θ1 = σ ◦ θ2. Therefore

η ∼U∩V σ � mgu(θ1, θ2) = θ,

i.e., η �U∪V θ, which proves the thesis. �

We now give some properties which relate the mgu with the other operations on

ISubst∼, namely, renaming and projection.

Proposition 3.16

With respect to unification, ρ is a congruence. In formulas, if E is a set of equations

and [θ1]U1
, [θ2]U2

∈ ISubst∼, then the following hold:

• mgu(ρ(E)) = ρ(mgu(E))

• ρ(mgu([θ1]U1
, [θ2]U2

)) = mgu(ρ([θ1]U1
), ρ([θ2]U2

))

Proof

The first property is trivial, since the unification algorithm does not depend on the

actual name of variables. Therefore, to prove the second property, we only need to

check that mgu([θ1]U1
, [θ2]U2

) = [mgu(θ′1, θ
′
2)]U1∪U2

(according to equation (8)) implies

mgu(ρ([θ1]U1
), ρ([θ2]U2

)) = [mgu(ρ(θ′1), ρ(θ′2))]ρ(U1)∪ρ(U2). First of all, since θ′1 ∼U1
θ1,

by Theorem 3.9 ρ(θ′1) ∼ρ(U1) ρ(θ1). With the same reasoning, we obtain that
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ρ(θ′2) ∼ρ(U2) ρ(θ2). Then, we prove that (ρ(U1)∪ vars(ρ(θ′1)))∩ (ρ(U2)∪ vars(ρ(θ′2))) ⊆
ρ(U1)∩ρ(U2). It is obvious that ρ(vars(θ)) = vars(ρ(θ)). Therefore, since ρ is bijective,

(ρ(U1) ∪ vars(ρ(θ′1))) ∩ (ρ(U2) ∪ vars(ρ(θ′2)))

= ρ((U1 ∪ vars(θ′1)) ∩ (U2 ∪ vars(θ′2))) ⊆ ρ(U1 ∩U2) = ρ(U1) ∩ ρ(U2). �

Proposition 3.17

Given a set of variables V and [θ1]U1
, [θ2]U2

∈ ISubst∼, we have that

πV (mgu(πV ([θ1]U1
), [θ2]U2

)) = mgu(πV ([θ1]U1
), πV ([θ2]U2

)).

Proof

First observe that πV (mgu(πV ([θ1]U1
), [θ2]U2

))) = [θ]V∩((V∩U1)∪U2) = [θ]V∩(U1∪U2),

where θ ∈ mgu(θ′1, θ
′
2), θ

′
1 and θ′2 are canonical representatives of [θ1]V∩U1

and [θ2]U2

and vars(θ′1)∩vars(θ′2) ⊆ V ∩U1∩U2. Note that θ′2 ∼U2
θ2 and therefore θ′2 ∼V∩U2

θ2.

Moreover (vars(θ′1)∪(V∩U1))∩(vars(θ′2)∪(V∩U2)) ⊆ V∩U1∩U2, and therefore θ′1 and

θ′2 are valid representatives to compute mgu(πV ([θ1]U1
), πV ([θ2]U2

)) according to (8).

Therefore [θ]V∩(U1∪U2) = mgu(πV ([θ1]U1
), πV ([θ2]U2

)), and this proves the thesis. �

Thanks to the above properties, the algebraic structure of the domain ISubst∼ is

very similar to (locally finite) cylindric algebras (Henkin et al. 1971). In particular,

if the unit element is defined as [ε]∅, the diagonal elements are given by the

substitutions [x/y]{x,y}, and cylindrification is defined as cx([θ]V ) = πV\{x}([θ]V ),

then these operators satisfy the axioms defining a cylindric algebra. The fundamental

difference is that the underlying set ISubst∼ is not a Boolean algebra.

It would be possible, as in Palamidessi (1990), to define a “least common anti-

instance” operator that corresponds to the least upper bound in ISubst∼. However,

since it is not used in the semantic framework we are going to describe, we omit to

define this operator.

4 Concrete semantics

Since we are interested in goal-dependent analysis of logic programs, we need a

goal-dependent semantics that is well suited for static analysis, i.e., a collecting

semantics over computed answers. Unfortunately, using a collecting goal-dependent

semantics may lead to a loss of precision already at the concrete level, as shown by

Marriott et al. (1994). It is possible to reduce the impact of this problem by using

two different operators for forward and backward unifications. In particular, it turns

out that backward unification may be realized using the operation of matching

between substitutions (Bruynooghe 1991; Le Charlier et al. 1991). We follow the

same approach and define a new denotational framework based on existential

substitutions and inspired by Cortesi et al. (1994).

4.1 Concrete domain

We start to define the concrete domain for the semantics. A concrete object is

essentially a set of existential substitutions with a fixed set of variables of interest.

https://doi.org/10.1017/S1471068409990111 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409990111


634 G. Amato and F. Scozzari

In formulas

Psub = {[Θ, U] | Θ ⊆ ISubst∼U
, U ∈ ℘f(V)} ∪ {⊥Ps,�Ps},

where �Ps and ⊥Ps are the top and bottom elements respectively and

[Θ1, U1] �Ps [Θ2, U2] ⇐⇒ U1 = U2 and Θ1 ⊆ Θ2.

The notation we adopt may appear clumsy, since the set of variables of interest U

in [Θ, U] may be derived from Θ. However, when we move to the abstract domain,

we need to explicitly keep track of this set U. By using [Θ, U] in Psub, we want to

keep a consistent notation for both concrete and abstract domains.

It turns out that (Psub,�Ps) is a complete lattice, and we denote by �Ps its least

upper bound, which is given by

�Ps �Ps χ = χ �Ps �Ps = �Ps,

⊥Ps �Ps χ = χ �Ps ⊥Ps = χ, (9)

[Θ1, U1] �Ps [Θ2, U2] =

{
[Θ1 ∪Θ2, U1] if U1 = U2,

�Ps otherwise.

We now define the main operations over Psub, that is, projection on a set of

variables, unification of an object with a single substitution, and the operation

for matching two objects of Psub. All the operations are strict: when one of the

argument is ⊥Ps the result is ⊥Ps. If no argument is ⊥Ps and at least one of the

argument is �Ps the result is �Ps. Therefore, in the following, we will omit the cases

for the objects ⊥Ps and �Ps.

Given [Θ, U] ∈ Psub and V ⊆ V, we define the projection of [Θ, U] on the set of

variables V as

πPs([Θ, U], V ) = [{πV ([σ]U) | [σ]U ∈ Θ}, U ∩ V ]. (10)

The concrete unification unifPs : Psub× ISubst→ Psub is given by

unifPs([Θ, U], δ) = [{mgu([σ]U, [δ]vars(δ)) | [σ]U ∈ Θ}, U ∪ vars(δ)]. (11)

The operations πPs and unifPs are just the pointwise extensions of π and mgu.

Note that in unifPs, the argument δ may have variables that do not appear in U.

This is not always the case in literature. For example, in Cortesi and Filé (1999)

and Bagnara et al. (2005) we find a variant of unifPs that only consider the case

when vars(δ) ⊆ U. When this does not happen, the same effect is obtained by first

enlarging the set of variables of interest U and then applying unification. Although

nothing changes at the concrete level, this gives a loss of precision when we move

to the abstract side, since the composition of two optimal abstract operators is

generally less precise than the optimal abstract counterpart of the whole unifPs (see

Section 6).

Finally, we define the matching operation. The idea is to design an operator which

performs unification between two substitutions [θ1]U1
and [θ2]U2

only if the process

of unification does not instantiate the first substitution. In other words, we require

that if we compute mgu([θ1]U1
, [θ2]U2

) and only observe variables in U1, that is,

https://doi.org/10.1017/S1471068409990111 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409990111


Optimality in goal-dependent analysis of Sharing 635

πU1
(mgu([θ1]U1

, [θ2]U2
)), then we obtain exactly [θ1]U1

. The next proposition shows

this is equivalent to requiring that θ1 �U1∩U2
θ2.

Proposition 4.1

Given two existential substitutions [θ1]U1
and [θ2]U2

, we have that θ1 �U1∩U2
θ2 iff

[θ1]U1
= πU1

(mgu([θ1]U1
, [θ2]U2

)).

Proof

By Proposition 3.17 we obtain πU1
(mgu([θ1]U1

, [θ2]U2
)) = mgu(πU1

([θ1]U1
),

πU1
([θ2]U2

)) = mgu([θ1]U1
, [θ2]U1∩U2

). Since mgu is the greatest lower bound of

ISubst∼, we have that [θ1]U1
= mgu([θ1]U1

, [θ2]U1∩U2
) iff [θ1]U1

� [θ2]U1∩U2
, which,

by definition, is equivalent to θ1 �U1∩U2
θ2. �

We can now define the matching operator matchPs : Psub×Psub→ Psub as follows:

matchPs([Θ1, U1], [Θ2, U2]) = [{mgu([θ1]U1
, [θ2]U2

) |
θ1 �U1∩U2

θ2, [θ1]U1
∈ Θ1, [θ2]U2

∈ Θ2}, U1 ∪U2]. (12)

The above operator allows us to unify all the pairs of substitutions [θ1]U1
∈ Θ1 and

[θ2]U2
∈ Θ2, under the condition that the common variables in U1 and U2 may not

be further instantiated w.r.t. their values in θ1.

Example 4.2

Let Θ1 = {[x/y]x,y} and Θ2 = {[u/x]u,x, [x/t(u)]u,x}. Then

matchPs([Θ1, {x, y}], [Θ2, {u, x}]) = [{[x/y, u/y]x,y,u}, {x, y, u}].

Note that [y/t(u), x/t(u)]u,x,y , obtained by unifying [x/y]x,y with [x/t(u)]u,x, is not in

the result of matching. This is because [x/t(u)]u,x is strictly more instantiated than

[x/y]x,y w.r.t. the variable x, and therefore {x/y} �x {x/t(u)}. �

Proposition 4.3

The operations πPs, unifPs, and matchPs are continuous over Psub.

Proof

Trivial from their definitions. If we do not consider the element �Ps, they are actually

additive. �

4.2 Semantics

Using the operators defined so far, we introduce a denotational semantics for logic

programs. It computes, for a given goal G, the set of computed answers for a

program w.r.t. G modulo the equivalence relation ∼vars(G). It is a goal-dependent

collecting semantics (Cousot and Cousot 1994), in that it works by computing the

set of possibly entry and exit substitutions at each point in the program.

We call denotation an element in the set of continuous maps:

Den = Atoms→ Psub
c→ Psub. (13)
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We have the following semantic functions:

P : Progs→Den,
C : Clauses→Den c→Den,
B : Bodies→Den c→ Psub

c→ Psub.

The corresponding definitions4, given d ∈ Den and x ∈ Psub, are

P�P � = lfp λd.

( ⊔
cl∈P

PsC�cl�d

)
,

C�H ← B� d A χ = Ub
Ps

((
B�B�dUf

Ps(χ, A,H)
)
, χ, H, A

)
,

B��� d χ = χ,

B�A,B� d χ = B�B�d(dAχ)

defined by means of the following operators:

Uf
Ps : Psub× Atoms× Atoms→ Psub,

Ub
Ps : Psub× Psub× Atoms× Atoms→ Psub.

Here Uf
Ps and Ub

Ps are respectively the forward and backward unifications

(Muthukumar and Hermenegildo 1992). They are used according to the following

pattern:

• the forward unification, in order to compute the set of entry substitutions

Uf
Ps(χ, A,H) from the set of call substitutions χ;

• the backward unification, in order to compute the set of answer substitutions

Ub
Ps((B�B�dUf

Ps(χ, A,H)), χ, H, A) starting from the set of exit substitutions

B�B�dUf
Ps(χ, A,H).

The formal definitions of Uf
Ps and Ub

Ps are the following:

Uf
Ps([Θ, U], A1, A2) = πPs(unifPs(ρ([Θ, U]),mgu(ρ(A1) = A2)), vars(A2)), (14)

where ρ is a renaming such that ρ(U ∪ vars(A1)) ∩ vars(A2) = ∅ and ρ([Θ, U]) =

[{ρ([σ]U) | [σ]U ∈ Θ}, ρ(U)] is the obvious lifting of renamings from ISubst∼ to

Psub, and

Ub
Ps([Θ1, U1], [Θ2, U2], A1, A2)

= πPs(matchPs(ρ([Θ1, U1]), unifPs([Θ2, U2],mgu(ρ(A1) = A2))), U2 ∪ vars(A2)), (15)

where ρ is a renaming such that ρ(U1 ∪ vars(A1))∩ (U2 ∪ vars(A2)) = ∅. If ρ(A1) and

A2 do not unify, the results for both the operations is assumed to be ⊥Ps.

Example 4.4

Consider the goal p(x, y, z) with y = f(x, z) and the trivial program P with just one

clause

p(u,v,w).

4 Here we use the lambda notation, writing lfp λx.E(x) to denote the least fixed point of the function f
given by f(x) = E(x).
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We first compute the concrete semantics P�P � = lfp λd.C�p(u, v, w)← ��d. Accord-

ing to the semantic definition, we have that

C�p(u, v, w)← ��d = λA.λχ.Ub
Ps

((
B���dUf

Ps(χ, A, p(u, v, w)
))
, χ, p(u, v, w), A).

Since B���d = λχ.χ, this is equivalent to

λA.λχ.Ub
Ps

(
Uf

Ps(χ, A, p(u, v, w)), χ, p(u, v, w), A
)
,

from which we immediately obtain the semantics of the program P :

P�P � = λA.λχ.Ub
Ps

(
Uf

Ps(χ, A, p(u, v, w)), χ, p(u, v, w), A
)
.

We now compute the semantics of the goal p(x, y, z) with y = f(x, z). In order to

improve readability, we will omit subscripts on classes of substitutions.

P�P �p(x, y, z)[{[y/f(x, z)]}, {x, y, z}]
= Ub

Ps(U
f
Ps([{[y/f(x, z)]}, {x, y, z}], p(x, y, z), p(u, v, w)),

[{[y/f(x, z)]}, {x, y, z}], p(u, v, w), p(x, y, z)).

We first compute the forward unification

Uf
Ps([{[y/f(x, z)]}, {x, y, z}], p(x, y, z), p(u, v, w)) = [{[u/x′, v/f(x′, z′), w/z′]}, {u, v, w}],

where we have renamed x and z as x′ and z′ to avoid ambiguities, although it is not

needed. Now we can compute the semantics of the goal:

P�P �p(x, y, z)[{[y/f(x, z)]}, {x, y, z}]
= Ub

Ps([{[u/x′, v/f(x′, z′), w/z′]}, {u, v, w}], [{[y/f(x, z)]}, {x, y, z}],
p(u, v, w), p(x, y, z))

= πPs(matchPs([{[u/x′, v/f(x′, z′), w/z′]}, {u, v, w}],
[{[u/x, v/f(x, z), w/z, y/f(x, z)]}, {u, v, w, x, y, z}]), {x, y, z})

= πPs([{[u/x, v/f(x, z), w/z, y/f(x, z)]}, {u, v, w, x, y, z}], {x, y, z})
= [{[y/f(x, z)]}, {x, y, z}].

Thus, we have only one computed answer substitution for the goal p(x, y, z) with

y = f(x, z), which is {y/f(x, z)}. �

Theorem 4.5

The operators Uf
Ps and Ub

Ps are well defined, in that they are independent from the

choice of ρ. Moreover, they are continuous.

Proof

Continuity is trivial from their definition; therefore we only need to prove the

independence from the choice of the renaming ρ. We only consider the case when

none of the arguments is ⊥Ps or �Ps, since otherwise the result is always ⊥Ps or �Ps.

Moreover, note that given atoms A1 and A2, if ρ1 and ρ2 are renamings such that

ρi(vars(A1)) ∩ vars(A2) = ∅ for i ∈ {1, 2}, then ρ1(A1) and A2 unify iff ρ2(A1) and A2

unify. Therefore, we can restrict ourselves to the case in which the two atoms given

as arguments, appropriately renamed, do unify. Otherwise, the result is always ⊥Ps.
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Observe that, by Proposition 3.16, given ρ ∈ Ren , [θ1]U1
, [θ2]U2

∈ ISubst∼, we

have that ρ(mgu([θ1]U1
, [θ2]U2

)) = mgu(ρ([θ1]U1
), ρ([θ2]U2

)). By the definition of

unifPs, it follows that ρ(unifPs([Θ, U], δ)) = unifPs(ρ([Θ, U]), ρ(δ)), since vars(ρ(δ)) =

ρ(vars(δ)).

Let ρ1, ρ2 be renamings. We first show that

πPs(unifPs(ρ1([Θ, U]),mgu(ρ1(A1) = A2)), vars(A2))

= πPs(unifPs(ρ2([Θ, U]),mgu(ρ2(A1) = A2)), vars(A2))

provided that ρi(U∪vars(A1))∩vars(A2) = ∅, for i ∈ {1, 2}. Let W = ρ1(U∪vars(A1))

and δ = (ρ2 ◦ρ−1
1 )|W . Then δ may be viewed as an injective map from V toV, since

it is the composition of injective functions. By Lemma 3.4 there exists a renaming

ρ such that ρ|W = δ and vars(ρ) = vars(δ) ⊆ W ∪ rng(δ) ⊆ W ∪ ρ2(U ∪ vars(A1)).

Observe that vars(ρ) ∩ vars(A2) = ∅, since, by hypothesis, for each i ∈ {1, 2} it is the

case that ρi(U ∪ vars(A1)) ∩ vars(A2) = ∅. Thus the following equivalences hold:

πPs(unifPs(ρ1([Θ, U]),mgu(ρ1(A1) = A2)), vars(A2))

= ρ(πPs(unifPs(ρ1([Θ, U]),mgu(ρ1(A1) = A2)), vars(A2)))

(since ρ|vars(A2) = id and by Proposition 3.11)

= πPs(ρ(unifPs(ρ1([Θ, U]),mgu(ρ1(A1) = A2))), vars(A2))

(since ρ is a congruence for πPs by Proposition 3.10)

= πPs(unifPs(ρ(ρ1([Θ, U])),mgu(ρ(ρ1(A1)) = ρ(A2))), vars(A2))

(since ρ is a congruence for unifPs by Proposition 3.16)

= πPs(unifPs(ρ2([Θ, U]),mgu(ρ2(A1)) = A2), vars(A2))

(since (ρ ◦ ρ1)|U∪vars(A1) = ρ2 |U∪vars(A1) and by Proposition 3.11).

We now show that Ub
Ps is independent from the choice of the renaming. First of

all, note that by Proposition 3.16 and Theorem 3.9 the following is obtained:

ρ(matchPs([Θ1, U1], [Θ2, U2])) = matchPs(ρ([Θ1, U1]), ρ([Θ2, U2])).

Assume given ρ1, ρ2 ∈ Ren such that ρi(U1 ∪ vars(A1)) ∩ (U2 ∪ vars(A2)) = ∅, for

i ∈ {1, 2}. Let W = ρ1(U1 ∪ vars(A1)) and δ = (ρ2 ◦ ρ−1
1 )|W . As shown above, there

exists ρ ∈ Ren such that ρ|W = δ and vars(ρ) = vars(δ) ⊆ W ∪ ρ2(U1 ∪ vars(A1)).

Observe that δ|U2∪vars(A2) = id . Thus the following equivalences hold, where Z =

U2 ∪ vars(A2):

πPs(matchPs(ρ1([Θ1, U1]), unifPs([Θ2, U2],mgu(ρ1(A1) = A2))), Z)

= ρ(πPs(matchPs(ρ1([Θ1, U1]), unifPs([Θ2, U2],mgu(ρ1(A1) = A2))), Z))

= πPs(matchPs(ρ(ρ1([Θ1, U1])), unifPs(ρ([Θ2, U2]),mgu(ρ(ρ1(A1))=ρ(A2)))), Z)

= πPs(matchPs(ρ2([Θ1, U1]), unifPs([Θ2, U2],mgu(ρ2(A1) = A2))), Z).

This concludes the proof of the theorem. �

Theorem 4.6

All the semantic functions are well defined and continuous.
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Proof

The proof is trivial, since the semantic functions are obtained by composition,

application, projection, and tupling of continuous functions. Therefore, they are

continuous and compute continuous denotations. Moreover, they do not depend on

the choice of ρ in Uf
Ps and Ub

Ps, as proved in Theorem 4.5. �

Note that several frameworks have been developed for logic programs, and not

all of them use the same operators for forward and backward unifications. We will

discuss the benefits of our choices later, when we introduce the abstract operators,

since the relative merits of the different proposals mainly arise when speaking about

abstractions.

4.3 Correctness and completeness

The semantics we have defined in this section is significant only up to the point

that studying its properties, it is possible to derive some conclusions about the

properties of the real operational behavior of logic programs. We said before that

we considered as the relevant operational observable of our analysis the set of

classes of computed answers for a goal. Therefore, the best we can expect from our

collecting semantics is that it enables us to recover the set of computed answer for

each goal. Our first theorem is a partial positive answer to this question.

Theorem 4.7

(Semantic correctness)

Given a program P and an goal G, if θ is a computed answer for the goal G, then

B�G�(P�P �)G[{ε}, vars(G)] �Ps [{[θ]}, vars(G)].

Proof

The proof, quite long and tedious, may be found in Appendix A. �

Therefore, we know that all the computed answers may be obtained by our

semantics. However, the opposite is not true: the semantics given in this paper,

although more precise than a semantics that only uses unification, is not complete

w.r.t. computed answers. Actually, Marriott et al. (1994) give an example in which a

collecting goal-dependent semantics computes a substitution that is not a computed

answer. When matching is used to compute the backward unification, as is the case

in our framework, that example does not work anymore (see Example 7.3).

However, also with the use of matching, the collecting semantics computes

substitutions that are not computed answers. Consider the program P given by

the following clauses:

p(x,y) :- q(x).

q(x).

We want to compute P�P �p(x, y)[Θ, {x, y}], where Θ = {[x/y], [x/a]}. It is easy to

check that

P�P �q(x)[Δ, {x}] = [Δ, {x}]
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for each [Δ, {x}] ∈ Psub. Therefore, this implies that

P�P �p(x, y)[Θ, {x, y}] = [{[x/y], [x/a], [x/a, y/a]}, {x, y}].

The substitution [x/a, y/a] arises from calling q(x) with the substitution [x/a] and

matching the result with [x/y], which is not forbidden by matching. However, there

is no substitution in the class of [{x/a, y/a}]x,y , which is a computed answer for the

goal p(x, y) in the program P with entry substitution in Θ.

This loss of precision is not relevant for downward-closed abstract domains, where

goal-dependent collecting semantics are more precise than goal-independent ones.

This is not the case for upward-closed abstract domains, where goal-independent

semantics are more precise than goal-dependent ones. Garcı́a de la Banda et al.

(1998) dealt with this topic and showed several semantics that combine a goal-

dependent and a goal-independent computation to improve precision over all the

conditions.

5 Abstract domain and semantics

Several abstract domains have been used for analyses of sharing and aliasing. We

use the domain Sharing (Jacobs and Langen 1992; Cortesi and Filé 1999) that

computes set-sharing information:

Sharing = {[A,U] | A ⊆ ℘(U), (A = ∅ ⇒ ∅ ∈ A), U ∈ ℘f(V)} ∪ {�Sh,⊥Sh}.

Intuitively, an abstract object [A,U] describes the relations between the variables in

U: if S ∈ A, the variables in S are allowed to share a common variable. For instance,

[{{x, y}, {z}, ∅}, {x, y, z}] represents the (equivalence classes of) substitutions in which

x and y may possibly share, while z is independent from both x and y: {x/y} and

ε are two of such substitutions while {x/z} is not.

The domain is ordered like Psub, with �Sh and ⊥Sh as the greatest and least

element respectively, and [A1, U1] �Sh [A2, U2] iff U1 = U2 and A1 ⊆ A2. The least

upper bound satisfies the following property:

[A1, U1]�Sh[A2, U2] =

{
[A1 ∪ A2, U1] if U1 = U2,

�Sh otherwise.
(16)

To design the abstraction from Psub to Sharing, we first define a map αSh :

ISubst∼→ Sharing as

αSh([σ]V ) = [{occ(σ, y) ∩ V | y ∈ V}, V ], (17)

where occ(σ, y) = {z ∈ V | y ∈ vars(σ(z))} is the set of variables z such that y

occurs in σ(z). For instance, occ({x/t(y, z), x′/z, y′/z′}, z) = {x, x′, z}. We call sharing

group an element of ℘f(V).

We say that x is independent from y in [σ]V when, given αSh([σ]V ) = [S,U], there

is no X ∈ S such that {x, y} ⊆ X. Given U ∈ ℘(V), we say that x is independent

from U in [σ]V when it is independent from y for each y ∈ U different from x.

Finally, x is independent in [σ]V if it is independent from V in [σ]V .
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Proposition 5.1

The map αSh : ISubst∼→ Sharing is well defined; i.e., it does not depend on the

choice of representatives.

Proof

If σ ∼V σ′, let ρ ∈ Ren such that σ′(x) = ρ(σ(x)) for each x ∈ V . Then

occ(σ′, ρ(y)) ∩ V = {z ∈ V | ρ(y) ∈ vars(σ′(z))}
= {z ∈ V | y ∈ ρ−1(vars(ρ(σ(z))))}
= {z ∈ V | y ∈ vars(σ(z))}
= occ(σ, y) ∩ V .

Therefore, x ∈ occ(σ, y) ∩ V iff x ∈ occ(σ′, ρ(y)) ∩ V , which proves the thesis. �

The abstraction map may be lifted pointwise to αSh : Psub→ Sharing as follows:

αSh(⊥Ps) = ⊥Sh, αSh(�Ps) = �Sh,

αSh([Θ, U]) =
⊔

Sh[σ]U∈Θ
αSh([σ]U).

⎫⎬
⎭ (18)

To ease the notation, often we will write a sharing group as the sequence of its

elements in any order (e.g., xyz represents {x, y, z}), and we omit the empty set when

clear from the context. For example,

αSh([{[ε]}, {x, y, z}]) = [{x, y, z}, {x, y, z}],
αSh([{[x/y, z/a]}, {x, y, z}]) = [{xy}, {x, y, z}],

αSh([{[ε], [x/y, z/a]}, {x, y, z}]) = [{xy, x, y, z}, {x, y, z}].

Since αSh is additive, there is an induced concretization function γSh, the right adjoint

of αSh, which maps each abstract object to the set of substitutions it represents:

γSh([S,U]) = [{[θ]U | αSh([θ]U) �Sh [S,U]}, U]. (19)

Note that each abstract object represents the possible relations between variables:

a substitution in which all the variables in U are ground is always in γSh([A,U]),

independent from A.

Proposition 5.2

A Galois insertion is defined by 〈αSh, γSh〉 : Psub � Sharing.

Proof

That 〈αSh, γSh〉 is a Galois connection immediately follows from the fact that they

are an adjoint pair. Now, we want to prove that αSh is onto. Given [S, V ] ∈ Sharing

and X ∈ S , consider the substitution θX defined as

θX(x) =

⎧⎪⎪⎨
⎪⎪⎩
w if x ∈ X,

a if x ∈ V \X,

x otherwise,

where w is a fresh variable not in V . It is easy to check that αSh([θX]V ) = [{X}, S]

and therefore αSh([{[θX]V | X ∈ S}, V ]) = [S, V ]. Moreover, we have αSh(⊥Ps) = ⊥Sh

and αSh(�Ps) = �Sh. �
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5.1 The abstract semantics

The abstract semantics is obtained by replacing, in the definition of the concrete

semantics in Section 4.2, the concrete domain Psub with the abstract domain Sharing

and the basic operators, namely, least upper bound �Ps, forward unification Uf
Ps,

and backward unification Ub
Ps with their corresponding abstract counterparts. The

abstract least upper bound �Sh has been already defined in the previous section.

We recall that on the concrete side, we have defined the forward and backward

unification operators in (14) and (15) as

Uf
Ps([Θ, U], A1, A2) = πPs(unifPs(ρ([Θ, U]),mgu(ρ(A1) = A2)), vars(A2)),

Ub
Ps([Θ1, U1], [Θ2, U2], A1, A2)

= πPs(matchPs(ρ([Θ1, U1]), unifPs([Θ2, U2],mgu(ρ(A1) = A2))), U2 ∪ vars(A2)).

The abstract forward and backward unification operators are obtained by replacing,

in the above definitions, the primitive operators with their abstract counterparts,

namely, abstract projection πSh, abstract renaming ρ, abstract unification unifSh, and

abstract matching matchSh.

The abstract operators behave exactly as the concrete ones on �Sh and ⊥Sh.

Abstract projection and renaming are defined as

πSh([A1, U1], U2) =[{B ∩U2 | B ∈ A1}, U1 ∩U2], (20)

ρ([A,U]) =[ρ(A), ρ(U)]. (21)

The definition of the abstract versions of matching and unification is the main

argument of the rest of this paper. Here we show some properties of completeness

for projection and renaming. Since the concrete and abstract operators behave in

the same way on top and bottom elements, here and in the following proofs we only

consider the case when all the arguments are different from ⊥Ps/⊥Sh and �Ps/�Sh.

Theorem 5.3

πSh is correct and complete w.r.t. πPs.

Proof

Given [Θ, V ] ∈ Psub, we prove that αSh(πPs([Θ, V ], U)) = πSh(αSh([Θ, V ]), U). We first

prove that for each [φ]V ∈ ISubst∼, it holds that πSh(αSh([φ]V ), U) = αSh([φ]V∩U).

Actually

αSh([φ]V∩U) = [{occ(φ, z) ∩ V ∩U | z ∈ V}, V ∩U]

= πSh([{occ(φ, z) ∩ V | z ∈ V}, V ], U)

= πSh(αSh([φ]V ), U).

The result for the lifted αSh follows trivially. �

Theorem 5.4

Abstract renaming is correct, complete, and γ-complete w.r.t. concrete renaming.
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Proof

First of all, given ρ ∈ Ren , y ∈ V and φ ∈ Subst , we prove that occ(ρ(φ), ρ(y)) =

ρ(occ(φ, y)). Actually

occ(ρ(φ), ρ(y)) = {z ∈ V | ρ(y) ∈ vars(ρ(φ(ρ−1(z))))}

= {z ∈ V | y ∈ vars(φ(ρ−1(z)))}

= {ρ(k) | k ∈ V, y ∈ vars(φ(k))} (by letting k = ρ−1(z))

= ρ(occ(φ), y).

Then we prove that given [φ]V ∈ Psub and ρ ∈ Ren , αSh(ρ([φ]V )) = ρ(αSh([φ]V )).

Using the fact that ρ as an operation over ISubst∼ is bijective, we have

αSh(ρ([φ]V )) = [{occ(ρ(φ), z) ∩ ρ(V ) | z ∈ V}, ρ(V )]

= [{ρ(occ(φ, ρ−1(z)) ∩ ρ(V ) | z ∈ V}, ρ(V )]

= ρ([occ(φ, k) ∩ V | k ∈ V}, V ]) (by letting z = ρ(k))

= ρ(αSh([φ]V )).

This property, lifted to Psub, gives the completeness of abstract renaming. Finally,

we need to prove that renaming is γ-complete, i.e., γSh ◦ ρ = ρ ◦ γSh:

γSh(ρ([S, V ])) = γSh([ρ(S), ρ(V )])

=
[
{[θ]V | αSh([θ]V ) �Sh ρ(S)}, ρ(V )

]
=

[
{ρ([θ]V ) | αSh(ρ([θ]V )) �Sh ρ(S)}, ρ(V )

]
=

[
{ρ([θ]V ) | ρ(αSh([θ]V )) �Sh ρ(S)}, ρ(V )

]
=

[
{ρ([θ]V ) | αSh([θ]V ) �Sh S}, ρ(V )

]
= ρ(γSh([S, V ])),

which concludes the proof of the theorem. �

6 Forward unification

We briefly recall from Cortesi and Filé (1999) and Bagnara et al. (2002) the definition

of the standard operator unif ′Sh for abstract unification on Sharing. The abstract

unification is performed between a set of sharing groups A and a single substitution

δ, under the assumption that vars(δ) ⊆ U, and it is defined as

unif ′Sh([A,U], δ) = [uSh(A, δ), U], (22)

where uSh : ℘(℘f(V))× ISubst→℘(℘f(V)) is defined by induction as follows:

uSh(A, ε) = A,

uSh(A, {x/t} � θ) = uSh(A \ (rel(A, {x}) ∪ rel(A, vars(t)))

∪ bin(rel(A, {x})∗, rel(A, vars(t))∗), θ).

(23)
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The auxiliary operators used in the definition of uSh are given by:

• the closure under union (or star union) (.)∗ : ℘(℘f(V))→℘(℘f(V)),

A∗ = {
⋃

T | ∅ = T ∈ ℘f(A)}5; (24)

• the extraction of relevant components rel : ℘(℘f(V))×℘f(V)→℘(℘f(V)),

rel(A,V ) = {T ∈ A | T ∩ V = ∅}; (25)

• the binary union bin : ℘(℘f(V))×℘(℘f(V))→℘(℘f(V)),

bin(A,B) = {T1 ∪ T2 | T1 ∈ A,T2 ∈ B}. (26)

We recall that we will often abuse the notation and write rel(A, o) for rel(A, vars(o))

and x ∈ o for x ∈ vars(o), where o is any syntactic object.

Example 6.1

Take A = {xy, xz, y}, U = {w, x, y, z}, and δ = {x/t(y, z), w/t(y)}. Note that since w

does not appear in A, w is always bound to a ground term in γSh([A,U]). We have

rel(A, x) = {xy, xz}, rel(A, y) = {xy, y}, rel(A, z) = {xz}, and therefore

uSh(A, {x/t(y, z)}) =A \ {xy, xz, y} ∪ bin({xy, xz}∗, {xy, xz, y}∗)
= bin({xy, xz, xyz}, {xy, xz, xyz, y})
= {xy, xz, xyz}.

If we take B = {xy, xz, xyz}, we obtain rel(B,w) = ∅, rel(B, y) = {xy, xyz}, and

therefore

uSh(A, δ) = uSh(B, {w/t(y)})
=B \ {xy, xyz} ∪ bin(∅, {xy, xyz}∗)
=B \ {xy, xyz}
= {xz}. �

It is worth noting that unif ′Sh is not the abstract counterpart of unifPs because

unif ′Sh([S,U], δ) is defined only under the condition that vars(δ) ⊆ U. Since this is

not enough to define a goal-dependent semantics, when this solution is adopted,

there is the need of an operator to expand the set of variables of interest in a

substitution. Let us introduce the concrete operator

ιPs([Θ, U], V ) = [{mgu([σ]U, [ε]V ) | [σ]U ∈ Θ}, U ∪ V ], (27)

whose optimal abstract counterpart is simply given by

ιSh([Θ, U], V ) = [Θ ∪ {{x} | x ∈ V \U}, U ∪ V )]. (28)

By using ιPs, the operator unifPs can be equivalently rewritten as

unifPs([Θ, U], θ) = unifPs(ιPs([Θ, U], vars(θ)), θ), (29)

5 Note that due to the condition T = ∅, the notation A+ would be more appropriate. However, we retain
the notation A∗ for historical reasons.
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and now, on the right-hand side, ιPs([Θ, U], vars(θ)) is an object of the kind [Δ, U ∪
vars(θ)]. Therefore, a correct abstract forward unification operator for Uf

Ps may be

obtained as

U′fSh([Θ, U], A1, A2) = πSh(unif ′Sh(ιSh(ρ([Θ, U]), vars(ρ(A1)) ∪ vars(A2)),

mgu(ρ(A1) = A2)), vars(A2)),
(30)

provided that ρ is a renaming such that ρ(U ∪ vars(A1)) ∩ vars(A2) = ∅. However,

U′fSh is not optimal w.r.t. Uf
Ps.

Example 6.2

We keep on Example 4.4 and compute the abstract counterpart of the concrete

forward unification,

Uf
Ps([{[y/f(x, z)]}, {x, y, z}], p(x, y, z), p(u, v, w)) = [{[u/x, v/f(x, z), w/z]}, {u, v, w}].

Since the abstraction of [{[y/f(x, z)]}, {x, y, z}] is [{xy, yz}, {x, y, z}], we compute

U′
f
Sh([{xy, yz}, {x, y, z}], p(x, y, z), p(u, v, w))

= πSh([uSh({xy, yz, u, v, w}, {x/u, y/v, z/w}), {x, y, z, u, v, w}], {u, v, w})
= πSh([{xyuv, yzvw, xyzuvw}, {x, y, z, u, v, w}], {u, v, w})
= [{uv, vw, uvw}, {u, v, w}].

There exists a sharing group uvw computed by the forward unification. However,

when computing unifPs(γSh([{xy, yz}, {x, y, z}]), {x/u, y/v, z/w}) we know that u, v,

and w are free in γSh([{xy, yz}, {x, y, z}]. Following Hans and Winkler (1992), we can

avoid computing the star unions when considering the binding y/v in uSh, obtaining

the smaller result [{xyuv, yzvw}, {x, y, z, u, v, w}]. If we now compute the projection

on the variables {u, v, w} we obtain the entry substitution [{uv, vw}, {u, v, w}], with

an obvious gain of precision. �

Example 6.3

Let us consider the following unification:

U′
f
Sh([{xy, xz}, {x, y, z}], p(x, y, z), p(t(u, v), h, k))

= πSh([bin({xyh, xzk, xyzhk}, {u, v, uv}), {x, y, z, h, k, u}], {u, v, h, k}).

Since the term t(u, v) is linear and independent from x, following Hans and Winkler

(1992) we can avoid to compute the star union over {xy, xz}, obtaining the abstract

object [bin({xyh, xzk}, {u, v, uv}), {x, y, z, h, k, u}]. If we project on {h, k, u, v} we obtain

bin({h, k}, {u, v, uv}) against bin({h, k, hk}, {u, v, uv}). In this way, we are able to prove

the independence of h from k. �

These examples show that when computing forward abstract unification by first

enlarging the domain of variables of interest, there is a loss of precision. In fact,

such a forward abstract unification operator is not optimal. We now show that it is

possible to design an optimal operator for forward unification that is able to exploit

linearity and freeness information that stems from the fact that variables in the third
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argument of Uf
Ps are fresh. Note that we are not proposing to embed freeness and

linearity information inside the domain but only to use all the information coming

from the syntax of the clauses.

6.1 The refined forward unification

We are going to define an abstract operator unifSh that is correct and optimal w.r.t.

unifPs.

Definition 6.4

The abstract unification unifSh : Sharing× ISubst→ Sharing is defined as

unifSh([S1, U1], θ) = [ufSh(S1 ∪ {{x} | x ∈ U2}, U2, θ), U1 ∪U2],

where U2 = vars(θ)\U1 and ufSh : ℘(℘f(V))×℘f(V)×ISubst→℘(℘f(V)) is defined

as

ufSh(S,U, ε) = S,

ufSh(S,U, {x/t} � δ) = ufSh((S \ (rel(S, t) ∪ rel(S, x)))∪
bin(rel(S, x), rel(S, t)), U \ {x}, δ) if x ∈ U,

ufSh(S,U, {x/t} � δ) = ufSh((S \ (rel(S, t) ∪ rel(S, x)))∪
bin(rel(S, x), rel(S, Y )∗)∪
bin(rel(S, x)∗, rel(S, Z)∗)∪
bin(bin(rel(S, x)∗, rel(S, Z)∗), rel(S, Y )∗),

U \ vars({x/t}), δ) if x /∈ U,

where Y = uvars(t) ∩U, Z = vars(t) \ Y .

The idea is simply to carry on, in the second argument of ufSh, the set of variables

that are definitively free and to apply the optimizations for the abstract unification

with linear terms and free variables (Hans and Winkler 1992). Actually, while the

case for x ∈ U is standard, the case for x /∈ U exploits some optimizations that are

not found in the literature. When Z = ∅, we obtain

(S \ (rel(S, t) ∪ rel(S, x))) ∪ bin(rel(S, x), rel(S, Y )∗),

which is the standard result when the term t is linear and independent from x.

However, when Z = ∅, the standard optimizations that appear, e.g., in Hans and

Winkler (1992), do not apply, since t cannot be proved to be linear and independent

from x, and we should obtain the following standard result:

(S \ (rel(S, t) ∪ rel(S, x))) ∪ bin(rel(S, x)∗, rel(S, t)∗).

We are able to avoid some star unions by distinguishing the variables in t that are

“linear and independent” (the set Y ) from the others (the set Z) and observing that

two sharing groups in rel(S, x) may be merged together only under the effect of the

unification with some variable in Z . We will come back later to this topic.
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We can now define the forward abstract unification Uf
Sh : Sharing × ℘f(V) ×

Atoms×Atoms→ Sharing. We only need to introduce the necessary renamings and

projections, as done for the concrete case,

Uf
Sh([S1, U1], A1, A2) = πSh(unifSh(ρ([S1, U1]),mgu(ρ(A1) = A2)), vars(A2)), (31)

with ρ a renaming such that ρ(U1 ∪ vars(A1)) ∩ vars(A2) = ∅.

Example 6.5

We keep on Examples 4.4 and 6.2 and compute the abstract counterpart of the

concrete forward unification,

Uf
Ps([{[y/f(x, z)]}, {x, y, z}], p(x, y, z), p(u, v, w)) = [{[u/x, v/f(x, z), w/z]}, {u, v, w}],

using our optimized forward unification operator:

Uf
Sh([{xy, yz}, {x, y, z}], p(x, y, z), p(u, v, w))

= πSh(unifSh({xy, yz}, {x/u, y/v, z/w}), {u, v, w})
= πSh([{uvxy, vwyz}, {u, v, w, x, y, z}], {u, v, w})
= [{uv, vw}, {u, v, w}].

Thus the optimized operator is able to prove that u and w are independent after the

unification. �

6.2 Correctness of forward unification

We prove that the unification operator unifSh is correct w.r.t. the concrete operator

unifPs. We begin to analyze the abstract behavior of unification when the second

argument is a substitution with only one binding. Let σ and {x/t} be the two

substitutions we want to unify. In this simple case, the resultant sharing groups can

be easily computed by exploiting the substitution δ = mgu(xσ = tσ). We show that

under suitable conditions, any sharing group either belongs to αSh([σ]U) or is of the

form occ(σ, occ(δ, v)) ∩U, where v ∈ vars(xσ = tσ).

Proposition 6.6

Let [σ]U ∈ ISubst∼ and {x/t} ∈ ISubst such that vars({x/t}) ⊆ U and σ and {x/t}
unify. If αSh([σ]U) �Sh [S,U] and δ = mgu(xσ = tσ), we obtain

αSh(mgu([σ]U, [x/t]U)) �Sh [(S \ (rel(S, x) ∪ rel(S, t)))

∪{occ(σ, occ(δ, v)) ∩U | v ∈ vars(xσ = tσ)}, U].

Proof

The proof can be found in Appendix B as Proposition B.3 �

This result may be refined by introducing further hypotheses. We have anticipated

that our abstract algorithm takes advantage of the fact that some variables are

known to be free in order to produce better results than standard abstract unification.

We may be more formal.
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Definition 6.7

We say that a variable x ∈ V is free in [θ]V when θ|V (x) ∈ V.

Note that this definition does not depend on the choice of the representative for [θ]V .

Moreover, if x is free and independent from V in [θ]V , there exists a representative

θ′ ∼V θ such that x /∈ vars(θ′). It is enough to take θ′ = θ′′|{−x}, where θ′′ is a

canonical representative.

Now, we consider again Proposition 6.6, but we assume x to be free and

independent from U in [σ]U . A result similar to the following proposition has

been already proved in the literature (e.g., Hans and Winkler 1992). Since our

treatment of substitutions is slightly different from the standard one, for the sake of

completeness we present the altered proof.

Proposition 6.8

Let [σ]U ∈ ISubst∼ and {x/t} ∈ ISubst such that vars({x/t}) ⊆ U and σ and {x/t}
unify. If αSh([σ]U) �Sh [S,U] and x is free and independent from U in [σ]U , then

αSh(mgu([σ]U, [x/t]U)) �Sh [(S \ (rel(S, x) ∪ rel(S, t))) ∪ bin(rel(S, x), rel(S, t)), U].

Proof

The proof can be found in Appendix B as Proposition B.4 �

Now we analyze the case in which x is not guaranteed to be free and independent

from U in [σ]U . We show that it is possible to consider three distinct cases depending

on the set of variables Y = {y ∈ vars(t)|vars(σ(y)) ⊆ uvars(xσ = tσ)}, that is, the set

of variables y such that all the variables in vars(σ(y)) appear once in xσ = tσ. Such

variables play a special role in the unification process. Generally speaking, we can

form new sharing groups by merging sets from rel(S, x) and rel(S, t). Obviously, any

new sharing group must be formed by choosing at least one element from rel(S, x)

and at least one from rel(S, t). We show that if we do not include any variable from

vars(t) \ Y , then we may avoid the inclusion of more than one sharing group from

rel(S, x). Intuitively speaking, variables from Y do not allow the merging of different

sharing groups from rel(S, x), since such variables appear only once and thus cannot

be bound to different occurrences of x.

Example 6.9

Let σ = {x/f(u, v)}, U = {u, v, x, y, z} and consider the binding x/f(f(y, z), z). We

have that Y = {y}, αSh([σ]U) = [S,U] = [{ux,vx,y,z}, U], rel(S, x) = {ux,vx},
and rel(S, t) = {y,z}. In the standard definition of abstract unification, uvxy would

be one of the possible resultant sharing groups. However, since uvxy is obtained

by joining two sharing groups in rel(S, x) and does not contain any variable in

vars(t) \ Y , it cannot be generated. In fact, the result of the unification is η =

{x/f(f(y, z), z), u/f(y, z), v/z} and αSh([η]U) = [{uxy,uvxz}, U]. The variables u and

v occur in the same sharing group thanks to the two occurrences of z. �
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Proposition 6.10

Let [σ]U ∈ ISubst∼ and {x/t} ∈ ISubst such that vars({x/t}) ⊆ U and σ and {x/t}
unify. Given Y ⊆ vars(t) such that for all y ∈ Y , vars(σ(y)) ⊆ uvars(xσ = tσ), if

αSh([σ]U) �Sh [S,U], then

αSh(mgu([σ]U, [x/t]U)) �Sh [(S \ (rel(S, t) ∪ rel(S, x)))

∪ bin(rel(S, x), rel(S, Y )∗) ∪ bin(rel(S, x)∗, rel(S, Z)∗)

∪ bin(bin(rel(S, x)∗, rel(S, Z)∗), rel(S, Y )∗), U],

where Z = vars(t) \ Y .

Proof

The proof can be found in Appendix B as Proposition B.6 �

Now, by combining the results from Propositions 6.8 and 6.10 we can show the

correctness of unifSh.

Theorem 6.11

(Correctness of unifSh)

The unification operator unifSh is correct w.r.t. unifPs.

Proof

The proof can be found in Appendix B as Theorem B.8 �

6.3 Optimality of forward unification

In this section we prove that the abstract unification operator unifSh is optimal

w.r.t. the concrete operator unifPs, that is to say that given [S1, U1] ∈ Sharing and

θ ∈ ISubst , the following holds:

αSh(unifPs(γSh([S1, U1]), θ)) �Sh unifSh([S1, U1], θ).

Let unifSh([S1, U1], θ) = [S,U], where U = U1 ∪ vars(θ). In the rest of this section,

we assume fixed S, S1, U,U1, θ as defined above.

For each X ∈ S , we need to exhibit a substitution δ such that αSh([δ]U1
) �Sh

[S1, U1] and αSh(mgu([δ]U1
, [θ]U)) �Sh [{X}, U]. Any resultant sharing group is

obtained by merging together sharing groups from S1 and variables in vars(θ) \U1.

We show that two sharing groups B1 and B2 may be joined by the abstract unification

algorithm only if there are two variables x1 ∈ B1, x2 ∈ B2 such that θ(x1) and θ(x2)

share some variable. Actually, we need to be careful when x1 = x2, since we need a

variable which occurs at least twice in θ(x1). More formally, given X ∈ ℘f(V) and

θ ∈ ISubst , we define a relation RθX ⊆ S1 × S1 as follows:

B1RθXB2 ⇐⇒ ∃x1 ∈ B1 ∃x2 ∈ B2 ∃y. (y ∈ vars(θ(x1)) ∩ vars(θ(x2)) ∩X) ∧
(x1 = x2 =⇒ y /∈ uvars(θ(x1))). (32)

We say that X is θ-connected when there exist B1, . . . , Bn ∈ S1 such that ∪1�j�nBj =

X ∩U1 and B1R∗θXB2 . . .R∗θXBn, where R∗θX is the transitive closure of RθX .
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Lemma 6.12

For each X ∈ S , X is θ-connected.

Proof

The proof can be found in Appendix C as Lemma C.4 �

Now we will exploit the relation RθX in order to find a substitution δ such that the

concrete unification of θ with δ mimics the behavior of the abstract unification of

θ with [S1, U1]. We define a δ that has exactly the sharing groups B1, . . . , Bn and is

obtained by instantiating θ. The idea is that if B1RθXB2 due to x1 ∈ B1, x2 ∈ B2, and

the common variable y ∈ θ(x1)∩ θ(x2), then the occurrences of y in θ(x1) and θ(x2)

are replaced by two suitable terms that unify and merge together the two sharing

groups B1 and B2.

Example 6.13

Let θ = {x/f(u), y/g(u)} and [S1, U1] = [{xw,yz}, {w, x, y, z}]. Consider B1 = xw

and B2 = yz. We choose the variables x ∈ B1 and y ∈ B2. Since u ∈ θ(x) ∩ θ(y),

we can choose the substitution δ = {x/f(w1), y/g(w2), w/w1, z/w2} obtained from

θ by replacing each occurrence of u, w, z with suitable new terms. It is easy to

verify that θ and δ unify and that αSh(mgu([δ]{w,x,y,z}, [θ]{u,w,x,y,z})) �Sh [{uwxyz},
{u, w, x, y, z}]. �

Example 6.14

Let θ = {x/f(u, u)} and [S1, U1] = [{xw,xy,xz}, {w, x, y, z}]. Consider B1 = xw,

B2 = xy, and B3 = xz. We choose the variable x ∈ B1∩B2∩B3. Then u /∈ uvars(θ(x)),

and we can choose as δ the substitution

{x/f(t(w1, w1), t(w2, w3)), w/w1, y/w2, z/w3},

obtained from θ by replacing each occurrence of u, w, y, z with suitable new terms.

It is easy to see that θ and δ unify and that αSh(mgu([δ]{w,x,y,z}, [θ]{u,w,x,y,z})) �Sh

[{uwxyz}, {u, w, x, y, z}]. �

Following this idea we can now prove that mgu and unifSh are optimal.

Proposition 6.15

For all X ∈ S there exists [δ]U1
∈ ISubst∼ such that αSh([δ]U1

) �Sh [S1, U1] and

αSh(mgu([δ]U1
, [θ]U)) �Sh [{X}, U].

Proof

The proof can be found in Appendix C as Proposition C.6 �

The optimality result for unifSh w.r.t. unifPs immediately follows from the above

proposition.

Theorem 6.16

(Optimality of unifSh)

unifSh is optimal w.r.t. unifPs.

Optimality of unifSh also implies the following corollary.
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Corollary 6.17

The result of unifSh does not depend on the order of the bindings in its second

argument.

6.4 Summing up

We may put together all the results of correctness, optimality, and completeness

shown so far to prove the main theorem of this section.

Theorem 6.18

Uf
Sh is well defined, correct, and optimal w.r.t. Uf

Ps.

Proof

The proof can be found in Appendix C as Theorem C.7 �

Generally speaking, in order to obtain optimality, it is always a better choice to

abstract a concrete operator “as a whole,” instead of abstracting each component and

then composing the abstract operators. According to this rule, we could think that a

better approximation may be reached by abstracting Uf
Ps as a whole. However, since

abstract projection/renaming is complete and γ-complete, this does not happen, as

shown by the previous theorem. Studying the direct abstraction of this composition

would still be useful to find a direct implementation that is more efficient than

computing unifSh and projecting later, but we do not consider this problem here.

Since Uf
Sh generates less sharing groups than U′fSh and since checking whether

a variable is in U is easy, we can expect an improvement in the efficiency of the

analysis by replacing U′fSh with Uf
Sh in the computation of the entry substitution.

If computing Y and Z at each step of ufSh seems difficult, it is always possible to

precompute these values before the actual analysis begins, since they depend on the

syntax of the program only. Moreover, in the definition of ufSh, when x ∈ U we know

that rel(S, x) = {{x}}, since θ is an idempotent substitution and x /∈ U1.

A further optimization is obtained by replacing rel(S, Y ) with the set of all the

sharing groups whose variables are all contained in Y . Clearly, this is a subset of

rel(S, Y ), and it is immediate to check that the result of ufSh does not change. In fact,

all the sharing groups in bin(rel(S, x), rel(S, Y )∗) that are not generated anymore

may be found in bin(rel(S, x)∗, rel(S, Z)∗).

We said before that this operator introduces new optimizations that, to the best

of our knowledge, are not used even in more complex domains for sharing analysis,

which include linearity and freeness information. We give here one example that

shows their effects.

Example 6.19

Let us consider the following unification:

Uf
Sh([{xw, xz, yw, yz}, {x, y, w, z}], p(x, y, w, z), p(f(u, h), f(u, k), s, t)).

By applying the optimizations suggested from the unification algorithm in presence

of linearity and freeness information in Hans and Winkler (1992), we may start from

the abstract object S = {xw, xz, yw, yz, u, h, k, s, t} and process the bindings one at a
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time, keeping in mind that u, h, k, s, t are initially free. This means that in the binding

x/f(u, h), the term f(u, h) is linear, and therefore we can avoid to compute the star

union in rel(S, x), thus obtaining

{k, s, t, yw, yz} ∪ bin({xw, xz}, {u, h, uh})
= {k, s, t, yw, yz, xwu, xwh, xzu, xzh, xwuh, xzuh}.

However, after this unification, the variable u can be bound to a nonlinear term.

Therefore, when we consider the next binding y/f(u, k), according to Hans and

Winkler (1992), we are forced to compute all the star unions, obtaining

{s, t} ∪ bin({yw, yz}∗, ({k} ∪ bin({xw, xz}, {u, uh}))∗) ∪ {xwh, xzh}.

Finally, in the bindings w/s and z/t we may omit all the star unions, since t and s

are free, and we get the final result

bin({yws, yzt}∗, ({k} ∪ bin({xws, xzt}, {u, uh}))∗) ∪ {xwsh, xzth}.

Observe that we obtain the sharing group ywsztk, and thus, after projecting on

{u, h, k, s, t}, we obtain the sharing group stk. However, when we consider the

second binding, we know that k is free and independent from y, and this is enough

to apply a new optimization. In fact, k can share with more than one sharing group

related to y only if k shares with u. If we compute the abstract unification with our

algorithm, we obtain

{ywsk, yztk} ∪ bin({yws, yzt}∗, bin({xws, xzt}, {u, uh})∗)
∪ bin(bin({yws, yzt}∗, bin({xws, xzt}, {u, uh})∗), {k}) ∪ {xwsh, xzth},

and when we project on {u, h, k, s, t}, the sharing group stk does not appear. In fact,

note that any sharing group generated by

bin(bin({yws, yzt}∗, bin({xws, xzt}, {u, uh})∗), {k})

contains the variable u. The result does not change by permuting the order of the

bindings. If we consider the binding y/f(u, k) before x/f(u, h), with the standard

operators we get

bin({xws, xzt}∗, ({h} ∪ bin({yws, yzt}, {u, uk}))∗) ∪ {ywsk, yztk},

and when we project on {u, h, k, s, t}, we obtain the sharing group sth, which does

not appear in our result. �

7 Matching and backward unification

To the best of our knowledge, in all the collecting denotational semantics for

logic programs, backward unification is performed by using unification instead

of matching. This means that instead of Ub
Ps, the concrete semantics uses a

backward unification operator that unifies two concrete objects in Psub with a
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substitution,

U′
b
Ps([Δ1, U1], [Δ2, U2], A1, A2)

= πPs(unif ′′Ps(ρ([Δ1, U1]), [Δ2, U2],mgu(ρ(A1) = A2)), U2 ∪ vars(A2)), (33)

where ρ is a renaming such that ρ(U1 ∪ vars(A1)) ∩ (U2 ∪ vars(A2)) = ∅ and

unif ′′Ps([Δ1, U1], [Δ2, U2], δ)

= [{mgu([θ1]U1
, [θ2]U2

, [δ]vars(δ)) | [θ1]U1
∈ Δ1, [θ2]U2

∈ Δ2}, U1 ∪U2] (34)

is simply the pointwise extension of mgu over Psub. It is worth observing that

unif ′′Ps(ρ([Δ1, U1]), [Δ2, U2], δ) is a very specific kind of unification, since ρ(U1) and

U2 are disjoint. The optimal abstract operator U′bSh w.r.t. U′bPs is very similar to that

proposed in Cortesi and Filé (1999) (see Section 8.2 for further details), and it is

given by

U′
b
Sh([S1, U1], [S2, U2], A1, A2)

= πSh(unifSh([ρ(S1) ∪ S2, ρ(U1) ∪U2],mgu(ρ(A1) = A2)), U2 ∪ vars(A2)). (35)

As said before, this choice results in a loss of precision already at the concrete level,

which leads to a loss of precision in the abstract counterpart. When we compute

U′bPs([Δ1, U1], [Δ2, U2], A1, A2), we essentially unify all pairs θ1 and θ2, elements of Δ1

and Δ2, with δ = mgu(A1 = A2) (assuming we do not need renamings). However, it

could be possible to consider only the pairs in which θ1 is an instance of mgu(θ2, δ)

w.r.t. the variables of interest in U1 ∩U2. If this does not hold, then θ1 cannot be a

success substitution corresponding to the call substitution θ2, and therefore we are

unifying two objects that pertain to different computational paths, with an obvious

loss of precision, already at the concrete level. This problem has been pointed out

by Marriott et al. (1994).

We now want to define the optimal abstract operator Ub
Sh corresponding to Ub

Ps.

This is accomplished by composing the forward unification operator unifSh with a

new operator matchSh, which is the abstract counterpart of matchPs.

Definition 7.1

Given [S1, U1], [S2, U2] ∈ Sharing, we define

matchSh([S1, U1], [S2, U2])

= [S ′1 ∪ S ′2 ∪ {X1 ∪X2 | X1 ∈ S ′′1 , X2 ∈ (S ′′2 )∗, X1 ∩U2 = X2 ∩U1} , U1 ∪U2],

where S ′1 = {B ∈ S1 | B ∩U2 = ∅} and S ′′1 = S1 \ S ′1, S ′2 = {B ∈ S2 | B ∩U1 = ∅}, and

S ′′2 = S2 \ S ′2

The idea is that we may freely combine those sharing groups in S2 that have some

variable in common with U1, i.e., X2 ∈ (S ′′2 )∗, if the projection of the result on U1

is equal to some sharing group in S1, when projected on U2. This means that new

aliasings between variables may arise in the concrete counterpart of S2 (the entry

substitution), as long as they do not affect the variables of the exit substitution.
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Definition 7.2

The abstract backward unification may be defined as

Ub
Sh([S1, U1], [S2, U2], A1, A2) = πSh(matchSh(ρ([S1, U1]),

unifSh([S2, U2],mgu(ρ(A1) = A2))), U2 ∪ vars(A2)), (36)

where ρ is a renaming such that ρ(U1 ∪ vars(A1)) ∩ (U2 ∪ vars(A2)) = ∅.

Example 7.3

Let U1 = {u, v, w}, U2 = {x, y, z}, Θ1 = {[{v/t(u, w, w)}]U1
, [{v/t(u, u, w)}]U1

}, Θ2 =

{[{y/t(x, z, z)}]U2
, [{y/t(x, x, z)}]U2

}, and ρ = id . We have

U′
b
Ps([Θ1, U1], [Θ2, U2], p(u, v, w), p(x, y, z)) = πPs([Θ, U1 ∪U2], U2),

with [θ]U1∪U2
= [{y/t(x, x, x), z/x, u/x, v/t(x, x, x), w/x}]U1∪U2

∈ Θ. Let [S1, U1] =

αSh([Θ1, U1]), [S2, U2] = αSh([Θ2, U2]), S1 = {uv, vw}, and S2 = {xy, yz}. We obtain

U′
b
Sh([S1, U1], [S2, U2], p(u, v, w), p(x, y, z)) = πSh([S,U1 ∪U2], U2)

and xyzuvw ∈ S . So, it seems that u, v, and w may share a common variable.

Note that θ is obtained by unifying σ2 = {y/t(x, z, z)} with σ1 = {v/t(u, u, w)}
but σ1(v) = t(u, u, w) is not an instance of mgu(σ2,mgu(p(x, y, z) = p(u, v, w)))(v) =

t(x, z, z). Therefore, σ1 and σ2 do pertain to different computational paths. Using the

backward unification with matching, we obtain

Ub
Ps([Θ1, U1], [Θ2, U2], p(u, v, w), p(x, y, z))

= πPs([{[y/t(x, z, z), u/x, v/t(x, z, z), w/z], [y/t(x, x, z), u/x, v/t(x, x, z), w/z]},
{x, y, z, u, v, w}], {u, v, w}),

which does not contain θ. In the abstract domain, we have

Ub
Sh([S1, U1], [S2, U2], p(u, v, w), p(x, y, z)) = πSh([{xyuv, yzvw}, U1 ∪U2], U2).

After the unification we know that x and z are independent. Note that the

abstract matching operators defined in Hans and Winkler (1992) and King and

Longley (1995) cannot establish this property. The algorithm in Muthukumar and

Hermenegildo (1992) computes the same result as ours in this particular example, but

since their matching is partially performed by first projecting the sharing information

on the term positions of the calling atom and of the clause head, this does not hold

in general. For example, their algorithm states that x and z may possibly share

when the unification is performed between the calling atom p(t(x, y, z)) and the

head p(t(u, v, w)), where t is a function symbol, p a unary predicate, and the call

substitution is the same as before. �

7.1 Correctness and optimality

We can prove that Ub
Sh is actually the best correct abstraction of the backward

concrete unification Ub
Ps. To prove correctness we only need to show that matchSh
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is correct w.r.t. matchPs. Correctness of Ub
Sh will follow from the fact that Ub

Sh is a

composition of correct abstract operators.

Theorem 7.4

(Correctness of matchSh)

matchSh is correct w.r.t. matchPs.

Proof

The proof can be found in Appendix D as Theorem D.1. �

However, the composition of optimal operators may fail to be optimal. Therefore,

optimality of matchSh does not guarantee optimality of Ub
Sh. In order to prove the

optimality result, we need to establish two additional properties on the abstract

operators matchSh and unifSh. The idea is that both these operators are used in a

very specific way in the backward unification.

Proposition 7.5

(1) matchSh is optimal w.r.t. matchPs;

(2) when matchPs is restricted to the case in which the second argument contains

a single substitution, matchSh is complete w.r.t. the second argument, i.e.,

matchSh([S1, U1], αSh([{[σ2]}, U2])) = αSh(matchPs(γSh([S1, U1]), [{[σ2]}, U2]));

(3) unifSh is optimal in a very strong way: given [S1, U1] ∈ Sharing and θ ∈ ISubst ,

there exists a substitution δ ∈ ISubst such that αSh([δ]U1
) �Sh [S1, U1] and

αSh(unifPs([{[δ]}, U1], θ)) = unifSh([S1, U1], θ).

Proof

Proofs of these properties can be found in Appendix D as Theorems D.2, D.3,

and D.4. �

On the last point, note that the standard definition of optimality for unifSh only

assures the existence of a set of substitutions Δ such that αSh([Δ, U1]) �Sh [S1, U1]

and αSh(unifPs([Δ, U1], θ)) = unifSh([S1, U1], θ). However, we show that any set Δ can

be reduced to a singleton. This allows us to find a single substitution to be used

for proving the optimality result for all the resultant sharing groups. Finally, using

Theorem 7.4 and Proposition 7.5 we may prove the expected result.

Theorem 7.6

Ub
Sh is correct and optimal w.r.t. Ub

Ps.

Proof

The proof can be found in Appendix D as Theorem D.5. �

To the best of our knowledge, this is the first abstract matching operator that

is optimal for the corresponding concrete operator. We now give an example of a

program in which the use of Uf
Sh and Ub

Sh gives better results than the standard

operators U′fSh and U′bSh.
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Example 7.7

We keep on Examples 4.4, 6.2, and 6.5 and consider the trivial program with just one

clause p(u, v, w) and the goal p(x, y, z) with {xy, yz}. Using our abstract operators,

we obtain the entry substitution {uv, vw} and the success substitution {xy, yz} (see

Examples 6.5 and 7.3), thus proving that x and z are independent.

We now compute the abstract semantics of the goal p(x, y, z) with {xy, yz}. From

Example 4.4, we have that the abstract semantics of P is

λA.λχ.Ub
Sh(U

f
Sh(χ, A, p(u, v, w)), χ, p(u, v, w), A).

Thus, in order to compute the semantics of the goal p(x, y, z) with {xy, yz}, we need

to compute

Ub
Sh(U

f
Sh([{xy, yz}, {x, y, x}], p(x, y, z), p(u, v, w)),

[{xy, yz}, {x, y, x}], p(u, v, w), p(x, y, z)).

From Example 6.5, we know that

Uf
Sh([{xy, yz}, {x, y, x}], p(x, y, z), p(u, v, w)) = [{uv, vw}, {u, v, w}],

from which we obtain (see Example 7.3)

Ub
Sh([{uv, vw}, {u, v, w}], [{xy, yz}, {x, y, x}], p(u, v, w), p(x, y, z))

= [{xy, yz}, {x, y, z}],

which shows that x and y are independent.

If we replace either Ub
Sh or Uf

Sh with U′fSh or U′bSh, then the success substitution

will contain the sharing group xyz. In fact, as shown in Example 6.2, the entry

substitution in the latter case would be [{uv, vw, uvw}, {u, v, w}]. If we compute the

success substitution we obtain

U′
b
Sh([{uv, vw, uvw}, {u, v, w}], [{xy, yz}, {x, y, z}], p(u, v, w), p(x, y, z)), {x, y, z})

= [{xy, yz, xyz}, {x, y, z}],

which contains the sharing group xyz. �

7.2 Programs in head normal form

It is worth noting that the improvement in the previous example is obtained with

a program in head normal form. Usually, when programs are in head normal form,

the forward and backward unifications may be replaced by renamings, which are

complete and do not cause any loss in precision. However, there is the need of

an unification operator for the explicit constraints that appear in the body of the

clauses. In general, the analyses we obtain in our framework are more precise than

those that can be obtained by using the standard domain Sharing by translating

the same program to the head normal form.
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Example 7.8
Consider again Example 7.7 and the program p(u, f(s), w)← that is not in head

normal form. Using our abstract operators, we obtain the success substitution

{xy, yz}, as in Example 7.7. If we normalize the program, we obtain the clause

p(u, v, w)← v = f(s). The entry substitution obtained from {xy, yz} by simply re-

naming the variables x, y, z to u, v, w and introducing the new variable s is {uv, vw, s}.
By using the standard operator for unification, when applying the binding v/f(s) we

obtain {uvs, vws, uvws}, and thus the success substitution will contain the sharing

group xyz, resulting in a loss of precision. �

It is possible to use our forward abstract unification in a normalized program by

enlarging the set of variables of interest only when new variables are effectively

met, instead of adding all the variables that appear in the body of a clause

once for all when the entry substitution is computed. In the example above, the

variable s can be introduced when unifying the abstract object {uv, vw} with v/f(s).

Since unifSh([{uv, vw}, {u, v, w}], {v/f(s)}) = [{uvs, vws}, {u, v, w, s}], we still obtain as

success substitution {xy, yz}, thus proving that x and z are independent.

In the general case, translating a program in head normal form will negatively

affect the precision of the analysis. To achieve the same precision in both cases, we

need to add structural information to the abstract domain (Le Charlier and Van

Hentenryck 1994).

8 Related works

8.1 Relationship with ESubst

The domain ESubst proposed by Jacobs and Langen (1992) uses a nonstandard

definition of substitution. We may prove that ESubst is isomorphic to ISubst∼.

This formalizes the intuition, which has never been proved before, that working with

ESubst is essentially like working with substitutions. Similar proofs may be developed

for ex-equations (Marriott et al. 1994) and existential Herbrand constraints (Levi

and Spoto 2003).

We now briefly recall the definition of the domain ESubst . For the sake of clarity,

in the following, we call E-substitution the nonstandard substitution defined in

Jacobs and Langen (1992). An E-substitution σ is a mapping from a finite set of

variables dom(σ) ⊆ V to Terms. This approach differs from the standard definition

of substitutions, which are mappings from V to Terms that are almost everywhere

the identity. The preorder on E-substitutions is defined as follows:

σ �E θ ⇐⇒ dom(θ) ⊆ dom(σ) ∧
(
∀t ∈ Terms. vars(t) ⊆ dom(θ)⇒
∃δ an E-substitution s.t. σt = δ(θ(t))

)
, (37)

where the application of an E-substitution to a term is defined as usual.

Let ∼E be the equivalence relation on E-substitutions induced by �E . The domain

ESubst is defined as the set of equivalence classes of E-substitutions w.r.t. ∼E , that

is, ESubst = {[σ]∼E
| σ is an E-substitution}. The next theorem shows that ESubst

is isomorphic to Subst∼ that, as shown in Proposition 3.7, is isomorphic to ISubst∼.
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Theorem 8.1

ESubst and Subst∼ are isomorphic posets.

Proof

To each E-substitution θ we may associate a substitution θ′ such that θ′(x) = θ(x)

if x ∈ dom(θ) and θ′(x) = x otherwise. Note that for each term t, θ(t) = θ′(t): an

E-substitution and the corresponding standard substitution behave in the same way

on terms.

We may prove that if θ1 �E θ2, then θ′1 �dom(θ2) θ
′
2. By definition, if θ1 �E θ2, then

dom(θ2) ⊆ dom(θ1) and ∀t ∈ Terms with vars(t) ⊆ dom(θ2), and there exists an

E-substitution δ such that θ1(t) = δ(θ2(t)). Let dom(θ2) = {x1, . . . , xn} and consider

a term t such that vars(t) = {x1, . . . , xn}. (Note that t exists iff there is at least a term

symbol of arity strictly greater than 1.) By definition, there exists an E-substitution

δ such that θ1(t) = δ(θ2(t)); that is, for any v ∈ dom(θ2), θ1(v) = δ(θ2(v)) holds. This

means that θ′1(v) = δ′(θ′2(v)) and therefore θ′1 �dom(θ2) θ
′
2.

On the converse, for each θ ∈ Subst and U ∈ ℘f(V), we associate a corresponding

E-substitution θ∗U such that dom(θ∗U) = U and θ∗U(v) = θ(v) for each v ∈ U. As for

the previous case, we have that if θ1 �U θ2, then θ∗U1 �E θ∗U2 . First of all, note that

dom(θ∗U1 ) = U = dom(θ∗U2 ). Moreover, by the definition of �U , there is δ ∈ Subst

such that θ1(v) = δ(θ2(v)) for each v ∈ U. Now, given a term t such that vars(t) ⊆ U,

we may check that θ∗U1 (t) = δ∗vars(θ2(U))(θ∗U2 (t)), and this proves θ∗U1 �E θ∗U2 .

Now, we may lift these operations to equivalence classes to obtain the function

ι : ESubst→ Subst∼ such that

ι([θ]∼E
) = [θ′]dom(θ).

The map ι is well defined: if θ1 ∼E θ2, then dom(θ1) = dom(θ2) and, by the above

property, θ′1 ∼dom(θ2) θ
′
2. Moreover, there is an inverse ι−1 given by

ι−1([θ]U) = [θ∗U]∼E
.

It is easy to check that ι−1 is well defined: if θ1 �U θ2, then θ∗U1 �E θ∗U2 .

It is immediate to check, given the properties above, that ι and ι−1 are the inverse

of each other. Moreover, they are both monotonic. If [θ1]E �E [θ2]E , then dom(θ2) ⊆
dom(θ1) and θ′1 �dom(θ2) θ

′
2, i.e., ι([θ1]∼E

) = [θ′1]dom(θ1) � [θ′2]dom(θ2) = ι([θ2]∼E
). On the

converse, if [θ1]U � [θ2]V , then [θ1]V � [θ2]V and therefore ι−1([θ1]V ) �E ι−1([θ2]V ).

We only need to prove that ι−1([θ1]U) �E ι−1([θ1])V . This follows from that fact that

given a term t with vars(t) ⊆ V , θ∗U1 (t) = θ∗V1 (t). �

It is worth noting that the most general unifier as defined in Jacobs and Langen

(1992) corresponds to mgu in ISubst∼. In formulas, given term t1 and t2, we have

that

ι([mgu(t1, t2)]∼E
) = [mgu({t1 = t2})]vars(t1=t2), (38)

where mgu on the left-hand side is the operator in Definition 1 of Jacobs and

Langen (1992) and ι : ESubst→ ISubst∼ is the isomorphism defined in the proof of

Theorem 8.1. To the best of our knowledge, this is the first proof of the relationship

between the mgu in a domain of existential substitutions and the standard mgu
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for substitutions. Moreover, it is worth noting that by adding a bottom element to

ISubst∼ and ESubst , they turn out to be isomorphic complete lattices.

8.2 A case study

In Section 3 we said that in order to define a good collecting semantics for

correct answer substitutions, there are several possible directions. We may work

with a domain of existentially quantified substitutions like ISubst∼, or we may

work with standard substitutions, being careful to keep enough representatives for

each equivalence class. We have already discussed the benefits of using equivalence

classes. In order to show the kind of problems that arise from the use of domains of

substitutions, without any equivalence relation, we want to show a small flaw of the

semantic framework defined in Cortesi and Filé (1999) for the analysis of sharing

and widely used in several other works on program analysis, such as Bagnara et al.

(2002) and Hill et al. (2004).

The framework is based upon the domain Rsub = (℘(Subst)×℘f(V))∪{�Rs,⊥Rs}
that is a complete lattice, partially ordered as follows: �Rs is the top element; ⊥Rs is

the bottom element; and [Θ1, U1] �Rs [Θ2, U2] if and only if U1 = U2 and Θ1 ⊆ Θ2.

An object [Θ, U] is a set of substitution Θ, where the set of variables of interest U

is explicitly provided.

The main operation in Rsub is the concrete unification URs : Rsub × Rsub ×
ISubst→ Rsub such that

URs(⊥Rs, ξ, δ) = URs(ξ,⊥Rs, δ) = ⊥Rs,

URs(ξ,�Rs, δ) = URs(�Rs, ξ, δ) = �Rs if ξ = ⊥Rs,

URs([Θ1, U1], [Θ2, U2], δ) = [{mgu(σ1, σ2, δ) | σ1 ∈ Θ1, σ2 ∈ Θ2,

vars(σ1) ∩ vars(σ2) = ∅}, U1 ∪U2].

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(39)

Although it is well defined for all the values of the domain, URs([Θ1, U1], [Θ2, U2], δ)

may be restricted to those values according to which U1 ∩ U2 = ∅ and vars(δ) ⊆
U1 ∪ U2, since this is the only way URs is used in the semantics defined in Cortesi

and Filé (1999).

The abstract domain is the same as the Sharing we use in our paper, with

abstraction map αSh : Rsub→ Sharing and unification USh : Sharing× Sharing×
ISubst→ Sharing defined by

αSh([Θ, U]) =
⊔

Sh
{αSh([σ]U) | σ ∈ Θ}, (40)

USh([Θ1, U1], [Θ2, U2], δ) = unifSh([Θ1 ∪Θ2, U1 ∪U2], δ). (41)

The domain of USh is restricted to the case U1 ∩U2 = ∅ and vars(δ) ⊆ U1 ∪U2.

By looking at the paper, we think that, in the idea of the authors, [Θ, U] ∈ Rsub

should have been treated as [{[σ]U | σ ∈ Θ}, U] ∈ Psub is in our framework.

However, the condition vars(σ1) ∩ vars(σ2) = ∅, introduced in URs in order to avoid

variable clashes between the two chosen substitutions, is not enough for this purpose.

Actually, URs only checks that σ1 and σ2 do not have variables in common, without
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considering their sets of variables of reference U1 and U2. This unification can lead

to counterintuitive results.

Example 8.2

Consider the following concrete unification:

URs([{{x/y}}, {x}], [{ε}, {y}], ε) = [{{x/y}}, {x, y}]. (42)

Being vars(ε) = ∅, the concrete unification operator allows us to unify {x/y} with

ε without renaming the variable y, which is not a variable of interest in the first

element but is treated as if it were. This also causes the incorrectness of USh. If

we consider equation (42) and compute the result on the abstract side by using the

abstract unification operator USh, we have

USh( αSh([{{x/y}}, {x}]), αSh([{ε}, {y}]), ε)

= USh( [{x}, {x}], [{y}, {y}], ε) = [{x, y}, {x, y}].

This is not a correct approximation of the concrete result, since

αSh([{{x/y}}, {x, y}]) = [{xy}, {x, y}] �Sh [{x, y}, {x, y}]. �

This counterexample proves that the abstract unification operator USh is not

correct w.r.t. the concrete one URs, invalidating Theorem 6.3 in Cortesi and Filé

(1999). The problem can be solved by introducing a stronger check on variable

clashes, namely, by replacing the condition vars(σ1) ∩ vars(σ2) = ∅ with (vars(σ1) ∪
U1) ∩ (vars(σ2) ∪ U2) = ∅ in the definition of URs, thus obtaining the following

operator:

U∗Rs([Θ1, U1], [Θ2, U2], δ) = [{mgu(σ1, σ2, δ) | σ1 ∈ Θ1, σ2 ∈ Θ2,

(vars(σ1) ∪U1) ∩ (vars(σ2) ∪U2) = ∅}, U1 ∪U2]. (43)

By using U∗Rs instead of URs, the proof of Theorem 6.3 in Cortesi and Filé (1999)

becomes valid.

Theorem 8.3

USh is correct w.r.t. U∗Rs.

Proof

If we look at the proof of Theorem 6.3 in Cortesi and Filé (1999), it appears that the

problem is in the base case of the inductive argument, when i = 0. Here, it is stated

that given [A1, U1] and [A2, U2] in Sharing with U1 ∩ U2 = ∅, σi ∈ γSh([Ai,Ui])

for i ∈ {1, 2} with vars(σ1) ∩ vars(σ2) = ∅, it holds that [{ρ0}, U0] �Rs γSh([R0, U0]),

where ρ0 = σ1 � σ2, U0 = U1 ∪ U2, and R0 = A1 ∪ A2. However, the substitutions

σ1 = {x/y} ∈ γSh([{x}, {x}]) and σ2 = ε ∈ γSh([{y}, {y}]) of the previous example

make the statement false. On the contrary, when U∗Rs is used instead of URs, σ1

and σ2 are required to satisfy the condition (vars(σ1) ∪ U1) ∩ (vars(σ2) ∪ U2) = ∅.
From this, it truly follows that [{ρ0}, U0] = [{σ1 � σ2}, U0] �Rs γSh([R0, U0]). The

inductive case for i > 0 is identical to that in Cortesi and Filé (1999), since for any

A,B ∈ Rsub and δ ∈ ISubst it holds that U∗Rs(A,B, δ) �Rs URs(A,B, δ). �
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Observer that in order to define a real semantics for logic programs, a renaming

operation should be introduced in the framework of Cortesi and Filé (1999). This

can be done along the lines of Cortesi et al. (1994). Due to the kind of renamings

involved, by replacing URs with U∗Rs, the semantics in Cortesi et al. (1994) does not

change. Therefore this flaw does not affect the real analysis of logic programs.

8.3 Other related works

8.3.1 Backward unification

The idea of using a refined operator for computing answer substitutions is not new

and may be traced back to the frameworks in Bruynooghe (1991) and Le Charlier

and Van Hentenryck (1994). The abstract domains considered in these papers contain

structural information, freeness, groundness, and pair-sharing but no set-sharing

information. Working within these frameworks, Hans and Winkler (1992) and King

and Longley (1995) proposed correct abstract operators w.r.t. matching for the

domain SFL. Muthukumar and Hermenegildo (1991, 1992) used a refined algorithm

for backward unification in Sharing, although it is not presented in algebraic

form. However, to the best of our knowledge, this is the first paper that formally

introduces matching from the point of view of a collecting denotational semantics,

deriving the abstract operator from the concrete one and proving correctness and

optimality. Moreover, this is the first paper that presents optimal abstract matching

for a domain for set-sharing analysis (see Example 7.3).

8.3.2 Forward/backward unification and PSD

Although the usual goal of sharing analyses is to discover the pairs of variables that

may possibly share, Sharing is a domain that keeps track of set-sharing information.

Bagnara et al. (2002) proposed a new domain, called PSD, which is the complete

shell (Giacobazzi et al. 2000) of pair-sharing w.r.t. Sharing. They recognized that

in an abstract object [S,U], some sharing groups in S may be redundant as far as

pair-sharing is concerned. Although our forward unification is more precise than

the standard unification, it could be the case that they have the same precision in

PSD. This would mean that Uf
Sh([S1, U1], A1, A2) and U′fSh([S1, U1], A1, A2) only differ

for redundant sharing groups. However, this is not the case, and Examples 6.2, 6.3,

and 6.19 show improvements that are still significant in PSD. The same holds for

backward unification in Example 7.3. It is not clear whether PSD is still complete

w.r.t. pair-sharing when our specialized operators are used.

8.3.3 Domains with freeness and linearity

Although the use of freeness and linearity information has been pursued in several

papers (e.g., Muthukumar and Hermenegildo 1991; Hans and Winkler 1992), optimal

operators for these domains have never been developed. All the abstract unification

operators for SFL (e.g., Hans and Winkler 1992; Muthukumar and Hermenegildo

1992; Hill et al. 2004) when unifying with a binding {x/t}, where neither x nor t
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are linear, does compute all the star unions. On the contrary, in ufSh we apply an

optimization that is able to avoid some sharing groups (see, e.g., Example 6.19). This

optimization could be integrated in a domain that explicitly contains freeness and

linearity information.

Actually, Hill et al. (2004) included some optimizations for the standard abstract

unification of SFL that are similar to ours, in the case of a binding {x/t} with x linear.

In addition, in Howe and King (2003) and Hill et al. (2004) the authors proposed to

remove the check for independence between x and t. We think it should be possible

to devise an optimal abstract unification for an enhanced domain including linearity

information, by combining these improvements with our results.

A first optimality result is shown in Amato and Scozzari (2003), which is based

on a preliminary version of the framework we present here. The authors considered

two domains for set-sharing and linearity (without freeness), namely, the standard

reduced product of Sharing and linearity, and the domain proposed by King (1994).

The paper presents the abstract operators for forward unification, which turn out to

be optimal in the case of a single-binding substitution. These are the only operators

in the literature that are strictly more precise than our optimized forward unification

operator for Sharing.

8.3.4 Another optimality proof

Codish et al. (2000) provided an alternative approach to the analysis of sharing

by using set logic programs and ACI1 unification. They defined abstract operators

that are proved to be correct and optimal and examine the relationship between set

substitutions and Sharing, proving that they are essentially isomorphic. However,

they do not extend this correspondence to the abstract operators, so that a proof

of optimality of Uf
Sh w.r.t. Uf

Ps starting from their results should be feasible but it is

not immediate. Moreover, since they provide a goal-independent analysis, they do

not have different operators for forward and backward unification.

9 Conclusions

We think that there are three major contributions in this paper.

• We integrate the framework of Cortesi et al. (1996) with several different

proposals that have appeared in the literature for goal-dependent analysis

of logic programs. We give formal proofs of the correctness of the resulting

analysis and of optimality of the abstract operators. The aim is to clarify the

relationships between these proposals and to provide a clear guidance for the

development of static analysis for logic programs.

• We introduce a new concrete domain of equivalence classes of substitutions

that address the problem of variable clashes by taking into account sets of

variables of interest. This problem has been considered by many authors,

but in our opinion, none of them fully developed a corresponding theory of

substitutions, in the style of Palamidessi (1990).
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• Our definition of abstract forward unification sheds new light on the role of

freeness and linearity information, suggesting new optimizations that can also

be used in more powerful domains such as SFL.

Although sharing analysis with more complex domains, including freeness and

linearity information, will likely be more precise than the analysis performed with

Sharing in our optimized framework, we think that this paper may be a guideline

for developing new analysis for logic programs. The main ideas contained in this

paper are not tied to the abstract domain in use. The framework we propose may

be instantiated with more precise abstract domains to further improve the result of

the abstract analysis. Moreover, the algorithm for the abstract forward unification

can be easily slotted into other analysis frameworks based on different concrete

semantics, including goal-independent ones.

To the best of our knowledge, this is the first work that optimizes the abstract

forward unification for sharing analysis using freeness and linearity information

implicitly, i.e., without using a domain that contains such information.

This is also the first work in which an abstract backward unification operator

using matching is proved to be optimal. We have shown that to the best of our

knowledge, all the abstract backward unification operators proposed so far for

Sharing or more powerful domains (Hans and Winkler 1992; Muthukumar and

Hermenegildo 1992; King and Longley 1995) were not optimal.

As a future work, we think that our results could be easily generalized for designing

optimal unification operators for more complex domains possibly including linearity,

freeness, and structural information. Preliminary results have appeared in Amato

and Scozzari (2003). Moreover, the problem of efficiently implementing the refined

backward unification could be addressed.

Appendix A: Correctness of the goal-dependent collecting semantics

In this appendix we provide a tedious proof that the collecting semantics we define

is correct w.r.t. computed answers. We begin by formally introducing a notation for

SLD-derivations, following Lloyd (1987) and Apt (1990). Given a goal G = g1 . . . gk
and a clause cl = H ← B such that vars(G) ∩ vars(cl ) = ∅, we write

G
cl−→
σ

(g1 . . . gi−1Bgi+1 . . . gk)σ (A 1)

when σ = mgu(gi, H). Given a goal G and a program P , an SLD-derivation of G in P

is given by a sequence of clauses cl1, . . . , cln and idempotent substitutions σ1, . . . , σn,

such that

G
cl1−→
σ1

G1
cl2−→
σ2

. . .
cln−→
σn

Gn, (A 2)

where each cl i is the renaming of a clause in P apart from G, cl1, . . . , cl i−1. The goal Gn

is called the end-goal ; n is the length of the derivation; and (σn◦σn−1◦. . .◦σ2◦σ1)|vars(G)

is the (partial) computed answer. An SLD-refutation is an SLD-derivation with the

empty end-goal (denoted by �). A leftmost SLD-derivation is an SLD-derivation in
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which we always rewrite the leftmost atom in the goal (i.e., such that i = 1 at every

step in (A 1)).

We write G
∗−→
σ

G′ to denote an SLD-derivation with end-goal G′ and partial

computed answer σ. We also write G
�i−→
σ

G′ to denote an SLD-derivation with

end-goal G′, partially computed answer σ, and length less than or equal to i. A

substitution σ is a computed answer for G in P if there is an SLD-refutation G
∗−→
σ

�.

In this appendix we will prove the relationship between the set of computed

answers for P and its collecting semantics P�P �.

A.1 Relevant denotations

We have defined a denotation as a continuous map in Atoms→ Psub
c→ Psub. We

now want to characterize the denotations that may arise as the results of our

collecting semantics.

Definition A.1

A denotation d ∈ Den is said to be relevant when

• d is strict, i.e., dA⊥Ps = ⊥Ps;

• dA[Δ, V ] is either ⊥Ps or [Δ′, V ∪ vars(A)] for some Δ′.

Note that the least denotation λA.λ[Δ, V ].⊥Ps is relevant. A relevant denotation is

well behaved, in the sense that it either does not say anything or gives information

for all and only the variables that occur in the atom A and the entry substitution

[Δ, V ].

Proposition A.2

If d is relevant, then

(1) B�B�d⊥Ps = ⊥Ps;

(2) B�B�d[Δ, V ] is either ⊥Ps or [Δ′, V ∪ vars(B)] for some Δ′;

(3) C�H ← B�d is relevant;

(4) P�P � is relevant.

Proof

The first two points easily follow by induction on the structure of the body B. For

the third point, consider the definition of C. Note that

Uf
Ps(x, A,H) = πPs(unifPs(ρ(x),mgu(ρ(A) = H)), vars(H)).

Since vars(ρ(A)) is disjoint from H by the definition of ρ and since we consider rele-

vant mgus, either vars(mgu(ρ(A) =H)) = vars(ρ(A))∪vars(H) or mgu(ρ(A) =H) =⊥.

In the latter case, C�H ← B�dA=⊥Ps; otherwise Uf
Ps(x, A,H) = [Δ′, vars(H)] for

some Δ′. By the previous point, we have that B�B�d(Uf
Ps(x, A,H)) is either ⊥Ps or

[Δ′′, vars(H)∪ vars(B)] for some Δ′′. In the first case, C�H ← B�dA=⊥Ps; otherwise,
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assuming x= [Θ, V ], we have

C�H ← B�dAx = Ub
Ps([Δ

′′, vars(H) ∪ vars(B)], x, H, A)

= πPs

(
matchPs(ρ([Δ′′, vars(H) ∪ vars(B)]),

unifPs([Θ, V ],mgu(ρ(H) = A))), V ∪ vars(A)
)
.

For the same reason as explained above and since we can ignore the case in

which ρ(H) and A do not unify, we have that unifPs([Θ, V ],mgu(ρ(H) = A)) =

[Θ′, V ∪ vars(A)] and therefore

πPs(matchPs(ρ([Δ′′, vars(H) ∪ vars(B)]), [Θ′, V ∪ vars(A)]), V ∪ vars(A))

= [Θ′′, V ∪ vars(A)],

which is what we wanted to prove.

The fourth point follows by the fact that given the proof of the third point, C�cl�d

is relevant for each clause cl and that least upper bounds of relevant denotations

are easily seen to be relevant. �

A.2 Unused variables

Definition A.3

Given [φ]V ∈ ISubst∼ and x ∈ V, we say that x is unused in [φ]V when [φ]V =

mgu
(
πV\{x}([φ]V ), [ε]{x}

)
.

First of all, note that this definition does not depend on the choice of representa-

tives. If a variable x is unused in [φ]V , it means that [φ]V does not constraint in any

way its value. In other words, x is free and independent from all the other variables

in V . This is made clear by the following characterization.

Proposition A.4

The variable x ∈ V is unused in [φ]V iff it is free and independent in [φ]V .

Proof

If x is free and independent in [φ]V , we may assume without loss of generality that

x /∈ vars(φ). Let V ′ = V \ {x}. We have that

mgu(πV ′([φ]V ), [ε]{x}) = mgu([φ]V ′ , [ε]{x}) = [φ|V ′]V = [φ]V ,

which proves that x is unused. On the other hand, assume φ is a canonical

representative and mgu([φ]V ′ , [ε]{x}) = [φ]V . Then φ|V ′ ∼V φ. It is obvious that

x is free and independent in [φ|V ′]V = [φ]V , since x /∈ dom(φ|V ′) and x /∈
rng(φ). �

A.3 ISubst∼ and composition

The operations described in Section 3.2 are those required to provide a collecting

semantics for logic programs over the domain ISubst∼. Note that we do not define

any notion of composition, although it plays a central role with the standard

https://doi.org/10.1017/S1471068409990111 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409990111


666 G. Amato and F. Scozzari

substitutions. Actually, composition cannot be defined in our framework, since

given any element of ISubst∼, variables not of interest are considered up to

renaming only and therefore cannot be named. Nonetheless, in order to prove

the equivalence between the standard semantics based on SLD-resolution and our

collecting semantics, we will need to relate the composition of substitutions with

unification in ISubst∼.

Lemma A.5

(Composition lemma)

Let σ1, σ2, σ3 ∈ Subst , U,V ∈ ℘f(V). Then it holds that

mgu([σ3 ◦ σ2]U, [σ2 ◦ σ1]V ) = [σ3 ◦ σ2 ◦ σ1]U∪V

provided that

• dom(σ1) ∩U = ∅;
• if y ∈ σ2(σ1(V )) \ σ2(σ1(U ∩ V )), then y /∈ dom(σ3) ∪ σ3(σ2(U)).

Proof

Let θ ∈ [σ3◦σ2]U , η ∈ [σ2◦σ1]V be canonical representatives such that (vars(θ)∪U)∩
(vars(η)∪V ) ⊆ U∩V . By definition, there exist ρ, ρ′ ∈ Ren such that θ = (ρ′◦σ3◦σ2)|U
and η = (ρ ◦ σ2 ◦ σ1)|V .

Then mgu([σ3 ◦ σ2]U, [σ2 ◦ σ1]V ) = [mgu(θ, η)]U∪V . It holds that mgu(θ, η) =

mgu(η(Eq(θ))) ◦ η. It follows that η(Eq(θ)) = {η(x) = η(θ(x)) | x ∈ U} = {η(x) =

θ(x) | x ∈ U}, since θ is a canonical representative. If x ∈ U ∩ V , then η(x) =

θ(x) becomes ρ ◦ σ2 ◦ σ1(x) = ρ′ ◦ σ3 ◦ σ2(x), that is, ρ ◦ σ2(x) = ρ′ ◦ σ3 ◦ σ2(x),

since dom(σ1) ∩ U = ∅ by hypothesis. Thus {η(x) = θ(x) | x ∈ U ∩ V } and

{ρ(y) = ρ′ ◦ σ3(y) | y ∈ σ2(U ∩ V )} have the same set of solutions. If x /∈ V , then

{η(x) = θ(x) | x ∈ U \ V } = {x = θ(x) | x ∈ U \ V }.
Now δ = {ρ(y)/ρ′ ◦σ3(y) | y ∈ σ2(U ∩V )}∪{x/θ(x) | x ∈ U \V } is an idempotent

substitution. Actually, all the ρ(y)’s are distinct variables and different from U \ V ;

therefore δ is a substitution. Moreover, dom(δ) ⊆ vars(η(V )) ∪ (U \ V ) is disjoint

from rng(δ) = vars(θ(U)).

Let ρ′′ be the substitution:

ρ′′(x) =

⎧⎪⎪⎨
⎪⎪⎩
ρ′(x) if x ∈ σ3(σ2(U)),

ρ(x) if x ∈ σ2(σ1(V )) \ σ2(σ1(U ∩ V )),

x otherwise.

Note that thanks to the second hypothesis of the lemma, we are sure that the

first and second cases in the definition of ρ′′ may not occur together. We want to

prove that δ(η(x)) = ρ′′(σ3(σ2(σ1(x)))) for each x ∈ U ∪ V . Since ρ′′ restricted to

vars(σ3(σ2(σ1(U∪V )))) is an injective map from variables to variables, by Lemma 3.4

this implies δ ◦ η ∼U∪V σ3 ◦ σ2 ◦ σ1, which is the statement of the theorem.

Thus if x ∈ U \ V , then η(x) = x and δ(η(x)) = θ(x) = ρ′(σ3(σ2(x))) =

ρ′′(σ3(σ2(x))) = ρ′′(σ3(σ2(σ1(x)))) because dom(σ1) ∩ U = ∅ and by the definition

of ρ′′.
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If x ∈ U ∩ V , then δ(η(x)) = δ(ρ(σ2(x))), since dom(σ1) ∩ U = ∅, and thus

δ(η(x)) = ρ′(σ3(σ2(x))), which is equal to ρ′′(σ3(σ2(σ1(x)))) because dom(σ1)∩U = ∅
and by the definition of ρ′′.

If x ∈ V \ U, then δ(η(x)) = δ(ρ(σ2σ1(x))). Let y ∈ vars(σ2(σ1(x))). If we assume

that y ∈ vars(σ2(U ∩ V )), then δ(ρ(y)) = ρ′(σ3(y)) = ρ′′(σ3(y)) by the definition of

δ and ρ′′. If y /∈ vars(σ2(U ∩ V )), then δ(ρ(y)) = ρ(y) = ρ′′(y) = ρ′′(σ3(y)) by the

definition of ρ′′ and the second condition in the theorem. In both cases we obtain

δ(ρ(y)) = ρ′′(σ3((y))) for each y ∈ vars(σ2(σ1(x))). Therefore, for each x ∈ U ∩ V ,

δ(η(x)) = δ(ρ(σ2(σ1(x)))) = ρ′′(σ3(σ2(σ1(x)))), and this concludes the proof. �

A.4 Proof of correctness

Let DP be defined as λd.
⊔

Ps{C�cl�d | cl ∈ P } and Di
P be the ith iteration of DP

with D0
P = λA.λx.⊥Ps. Note that Dω

P = P�P � and that Di
P is relevant for each i.

Lemma A.6
(Correctness lemma)

Let i ∈ �, [φ]V ∈ ISubst∼, G ∈ Bodies, and P ∈ Progs. If [φ]V∪G = mgu([φ]V , [ε]G)

and Gφ
∗−→
σ

� is a leftmost SLD-refutation, with at most i steps, where all clauses

are renamed apart from V , G, φ, and the program P , then B�G�Di
P [{[φ]}, V ] �Ps

[{[σ ◦ φ]}, V ∪ vars(G)].

Remark A.7
The condition [φ]V∪G = mgu([φ]V , [ε]G) is used to check that the chosen represen-

tative φ does not bind any variable in vars(G) \ V . All the variables in vars(G) \ V
are forced to be unused, according to Definition A.3.

Remark A.8
The theorem probably holds under weaker conditions on the variables of the SLD-

resolution. However, proving the result in this case would be more difficult. Since

the obtained generalization is not very interesting, we valued that it was not worth

the effort.

Proof
The proof is by double induction on i and on the structure of the goal G. Assume

fixed Φ = {[φ]V } such that [φ]V∪G = mgu([φ]V , [ε]G).

We start with the case i = 0. The only SLD-refutation of length 0 is the SLD-

derivation for the empty goal �, whose computed answer substitution is ε. In the

collecting semantics, we have B���Di
P [{[φ]}, V ] = [{[φ]}, V ] = [{[ε ◦ φ]}, V ], which

is the required result.

If i > 0, assume the lemma holds for all j < i, and we prove it for i, by induction

on the structure of goals. The case for the empty goal has been already examined, so

we assume G = A,G′, where A is an atom. To ease the exposition, we first consider

the atomic case in which G′ = � and then analyze the general one.

Atomic goal. Given the not-empty SLD-derivation Gφ
∗−→
σ

�, we may decompose

it as

Gφ
ρ(cl )
−−→
σ1

(C1 . . . Cn)ρσ1
∗−→
σ2

�,
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where cl = H ← C1 . . . Cn is a program clause; σ1 = mgu(Gφ,Hρ); and ρ is a

renaming of cl apart from G, V , φ, and the program P . Note that this implies the

standard renaming condition for SLD-resolutions; i.e., ρ(cl) is renamed apart from

Gφ. Since G is atomic,

B�G�Di
P [Φ, V ] = Di

PG[Φ, V ] �Ps C�H ← C1 . . . Cn�D
i−1
P G[Φ, V ],

which, in turn, is equal to Ub
Ps(B�C1 . . . Cn�D

i−1
P (Uf

Ps([Φ, V ], G,H)), [Φ, V ], H, G). We

know that

Uf
Ps([{[φ]}, V ], G,H) = πPs(mgu(ρ′([φ]V ), [mgu(ρ′(G) = H)]ρ′(G)∪H ), vars(H)),

where ρ′ is any renaming such that ρ′(vars(G)∪V )∩ vars(H) = ∅. We can choose as

ρ′ the renaming ρ−1, since ρ(vars(cl)) ∩ vars(G) = ∅ and ρ(vars(cl)) ∩ V = ∅ implies

that ρ−1(vars(G) ∪ V ) ∩ vars(H) = ∅. In turn, this implies that

mgu(ρ′([φ]V ), [mgu(ρ′(G) = H)]ρ′(G)∪H )

= ρ−1(mgu([φ]V , [mgu(G = ρ(H))]G∪ρ(H))

= ρ−1(mgu([φ]V , [mgu(G = ρ(H))]G∪ρ(H), [ε]G))

= ρ−1(mgu([φ]V∪G, [mgu(G = ρ(H))]G∪ρ(H))

= ρ−1([mgu(φ,mgu(G = ρ(H)))]V∪G∪ρ(H)).

The last pass is only valid when (V ∪ vars(G) ∪ vars(φ)) ∩ (vars(G) ∪ vars(ρ(H)) ⊆
(V ∪ vars(G)) ∩ (vars(G) ∪ vars(ρ(H))) = vars(G). This is the case because vars(φ) ∩
ρ(vars(cl )) = ∅, thanks to our choice of ρ.

By standard properties of substitutions, we obtain

ρ−1([mgu(φ,mgu(G = ρ(H)))]V∪G∪ρ(H))

= ρ−1([mgu(Gφ = (ρ(H))φ) ◦ φ]V∪G∪ρ(H))

= ρ−1([mgu(Gφ = ρ(H)) ◦ φ]V∪G∪ρ(H))

= ρ−1([σ1 ◦ φ]V∪G∪ρ(H)),

since vars(φ) ∩ vars(ρ(H)) = ∅. For the same reason, σ1 ◦ φ ∼vars(ρ(H)) σ1. It follows

that

ρ−1(σ1 ◦ φ) ∼vars(H) ρ
−1(σ1) = ρ−1 ◦ σ1 ◦ ρ ∼vars(H) σ1 ◦ ρ.

Therefore Uf
Ps([{[φ]}, V ], G,H) = [{[σ1 ◦ ρ]}, vars(H)] and

Ub
Ps(B�C1 . . . Cn�D

i−1
P (Uf

Ps([Φ, V ], G,H)), [Φ, V ], H, G) �Ps

Ub
Ps(B�C1 . . . Cn�D

i−1
P [{[σ1 ◦ ρ]}, vars(H)], [Φ, V ], H, G).

Note that the SLD resolution (C1 . . . Cn)ρσ1
∗−→
σ2

� can be seen as (C1 . . . Cn)

(σ1 ◦ ρ)
∗−→
σ2

�. In order to apply the inductive hypothesis on the latter derivation,

we need to verify that [σ1 ◦ ρ]vars(cl) = mgu([σ1 ◦ ρ]vars(H), [ε]vars(C1 ...Cn)). By definition

σ1◦ρ = mgu(Gφ,Hρ)◦ρ. Moreover, since ρ(vars(cl))∩vars(Gφ) = ∅ and ρ(vars(cl))∩
vars(Hρ) = vars(Hρ), it follows that for all v ∈ ρ(vars(cl) \ vars(H)), v /∈ vars(σ1).

Hence, for each v ∈ vars(cl) \ vars(H), σ1(ρ(v)) = ρ(v). Moreover, if ρ(v) occurs in

(σ1 ◦ ρ)(x) for some x, then ρ(v) occurs in ρ(x), and this is only possible if x = v.
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By Proposition A.4, this proves that mgu([σ1 ◦ ρ]vars(H), [ε]vars(C1 ...Cn)) = [σ1 ◦ ρ]vars(cl).

Thus, by inductive hypothesis, we have that

Ub
Ps(B�C1 . . . Cn�D

i−1
P [{[σ1 ◦ ρ]}, vars(H)], [Φ, V ], H, G) �Ps

Ub
Ps([{[σ2 ◦ σ1 ◦ ρ]}, vars(cl)], [Φ, V ], H, G).

We know that unifPs([{[φ]}, V ],mgu(ρ(H) = G)) = [{[σ1◦φ]}, V∪vars(G)∪vars(ρ(H))].

Therefore, choosing ρ as the renaming for Ub
Ps, we obtain

matchPs(ρ([{[σ2 ◦ σ1 ◦ ρ]}, vars(cl)]), [{[σ1 ◦ φ]}, V ∪ vars(G) ∪ vars(ρ(H))])

= matchPs([{[ρ ◦ σ2 ◦ σ1]}, vars(ρ(cl))]), [{[σ1 ◦ φ]}, V ∪ vars(G) ∪ vars(ρ(H))])

= matchPs([{[σ2 ◦ σ1]}, vars(ρ(cl))]), [{[σ1 ◦ φ]}, V ∪ vars(G) ∪ vars(ρ(H))]).

Since vars(ρ(cl)) ∩ (V ∪ vars(G) ∪ vars(ρ(H))) = vars(ρ(H)) and σ2 ◦ σ1 �vars(ρ(H))

σ1 ◦ φ (being vars(φ) ∩ vars(ρ(H)) = ∅), the following holds:

matchPs([{[σ2 ◦ σ1]}, vars(ρ(cl))]), [{[σ1 ◦ φ]}, V ∪ vars(G) ∪ vars(ρ(H))])

= [mgu([σ2 ◦ σ1]ρ(cl), [σ1 ◦ φ]V∪G∪ρ(H)), V ∪ vars(G) ∪ vars(ρ(H))].

We would like to apply the composition lemma (Lemma A.5) to this unification.

We need to check that

• dom(φ) ∩ ρ(cl ) = ∅;
• y ∈ σ1φ(V ∪ vars(G) ∪ ρ(H)) \ σ1φ(ρ(H)) then y /∈ dom(σ2) ∪ σ2σ1(ρ(cl)).

The first property trivially follows by the hypothesis that ρ renames cl apart from

φ. For the second condition, note that since σ1 = mgu(Gφ,Hρ), if y ∈ σ1(φ(G)),

then y ∈ σ1(ρ(H)) = σ1(φ(ρ(H))). Therefore y ∈ σ1(φ(V ∪ vars(G))) \ σ1(φ(ρ(H))) iff

y ∈ σ1(φ(V \ G)) = φ(V \ G). However, since such a variable does not appear in

the initial goal of the SLD-resolution Gφ and since the resolution is renamed apart

from φ, it happens that it does not appear in vars(σ2) and thus in dom(σ2). We

now show that y /∈ σ2(σ1(ρ(cl))). By hypothesis, y /∈ σ1(φ(ρ(cl))), and since ρ(cl) is

renamed apart from φ, it follows that y /∈ (σ1(ρ(cl))). Moreover, as we have seen

before, y /∈ vars(σ2); hence y /∈ vars(σ2(σ1(ρ(cl)))).

It turns out that we may apply the composition lemma (Lemma A.5) and obtain

[mgu([σ2 ◦ σ1]ρ(cl), [σ1 ◦ φ]V∪G∪ρ(H)), V ∪ vars(G) ∪ vars(ρ(H))]

= [{σ2 ◦ σ1 ◦ φ}, ρ(cl ) ∪ V ∪ G].

By projecting on G ∪ V we obtain

B�G�Di
P [Φ, V ] �Ps [{σ2 ◦ σ1 ◦ φ]}, V ∪ vars(G)],

which concludes the proof of the atomic case.

Nonatomic goal. In this case, decompose the (leftmost) SLD-resolution for G =

A,G′ in the following way:

Aφ,G′φ
∗−→
σ1

G′φσ1
∗−→
σ2

�, (A 3)
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where both the subderivations have length strictly less than i. Note that since the

complete derivation is renamed apart from V ,G, φ, and the program P , the same

holds for the first subderivation. Moreover, since [φ]V∪G = mgu([φ]V , [ε]G), each

v ∈ A is free and independent in [φ]V∪G, i.e., [φ]V∪A = mgu([φ]V , [ε]A). Therefore,

we may apply what was proved in the atomic case above, obtaining

Di
PA[Φ, V ] �Ps [{σ1 ◦ φ}, V ∪ vars(A)].

The second subderivation in (A 3) is renamed apart from

• V , since the complete derivation is renamed apart from V ;

• A and G′, since the complete derivation is renamed apart from G;

• σ1 ◦ φ, since the complete derivation is renamed apart from φ and the second

part is renamed apart from σ1;

• P , since the complete derivation is renamed apart from P .

Moreover, assume x ∈ vars(G′)\vars(V ∪A) and x = y ∈ vars(V ∪G). By hypothesis,

[φ]V∪G = mgu([φ]V , [ε]G), which implies that φ(x) ∈ V and φ(x) /∈ vars(φ(y)). Since

vars(σ1) = W ∪ X, where W is a fresh set of variables disjoint from V ∪ G and

φ and X ⊆ vars(Aφ), it happens that φ(x) /∈ vars(σ1). Therefore σ1(φ(x)) = φ(x)

and φ(x) /∈ vars(σ1(φ(y))). This implies that [σ1 ◦ φ]V∪G = mgu([σ1 ◦ φ]V∪A, [ε]G′ )

by Proposition A.4. This means that we may apply the inductive hypothesis on the

second subderivation, obtaining

B�G′�Di
P [{σ1 ◦ φ}, V ∪ vars(A)] �Ps [{σ2 ◦ σ1 ◦ φ}, V ∪ vars(G)].

Since B�A,G′�Di
P [Φ, V ] = B�G′�Di

P (Di
PA[Φ, V ]) by the above disequalities and

monotonicity of B, we obtain

B�A,G′�Di
P [Φ, V ] �Ps [{σ2 ◦ σ1 ◦ φ}, V ∪ vars(G)],

which concludes the proof. �

Now we may use standard properties of SLD-resolution together with Lemma A.6

to prove the required correctness theorem.

Theorem A.9

(Semantic correctness)

Given a program P and an goal G, if θ is a computed answer for the goal G, then

B�G�(P�P �)G[{ε}, vars(G)] �Ps [{[θ]}, vars(G)].

Proof

If θ is a computed answer for a goal G and ρ is a renaming, then θ′ = (ρ◦θ)|vars(G) is

a computed answer too (Apt 1990) and θ ∼vars(G) θ
′. Consider any such θ′ with the

property that vars(θ′) ∩ vars(P ) = ∅, and let G
∗−→
θ′

� be a leftmost SLD-resolution

for θ′. Since there exists a leftmost SLD-resolution G
∗−→
θ′

� that is renamed apart

from P , the thesis follows, by Lemma A.6. �
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Appendix B: Correctness of forward unification

Lemma B.1

Given δ, σ ∈ Subst , v ∈ V, it is the case that occ(δ ◦ σ, v) = occ(σ, occ(δ, v)).

Proof

By definition, x ∈ occ(δ ◦ σ, v) iff v ∈ δ(σ(x)); i.e., there exists w ∈ V such that

w ∈ σ(x) and v ∈ δ(w). In other words, x ∈ occ(δ ◦ σ, v) iff there exists w ∈ V such

that w ∈ occ(δ, v) and x ∈ occ(σ, w) iff x ∈ occ(σ, occ(δ, v)). �

Proposition B.2

Let t ∈ Terms, σ ∈ Subst , and U ∈ ℘f(V) such that vars(t) ⊆ U. Let αSh([σ]U) �Sh

[S,U]. Then the following property holds:

∀v ∈ V.v ∈ vars(tσ) ⇐⇒ occ(σ, v) ∩U ∈ rel(S, t).

Proof

Note that v ∈ vars(tσ) iff ∃u ∈ t such that v ∈ σ(u). In turn, this holds iff ∃u ∈ t such

that u ∈ occ(σ, v) iff occ(σ, v) ∩ vars(t) = ∅ iff (occ(σ, v) ∩U) ∩ vars(t) = ∅. Note that

X = occ(σ, v)∩U ∈ S and therefore X ∩ vars(t) = ∅ iff X ∈ rel(S, t) by the definition

of rel. �

Proposition B.3

Let [σ]U ∈ ISubst∼, {x/t} ∈ ISubst such that vars({x/t}) ⊆ U and σ and {x/t}
unify. If αSh([σ]U) �Sh [S,U] and δ = mgu(xσ = tσ), we obtain

αSh(mgu([σ]U, [x/t]U)) �Sh [(S \ (rel(S, x) ∪ rel(S, t)))

∪{occ(σ, occ(δ, v)) ∩U | v ∈ vars(xσ = tσ)}, U].

Proof

Since vars({x/t}) ⊆ U, we have mgu([σ]U, [x/t]U) = [mgu(σ, {x/t})]U . Then, by the

definition of δ, it holds that mgu(σ, x = t) = mgu(Eq(σ) ∪ xσ = tσ) = mgu(xσ =

tσ) ◦ σ = δ ◦ σ (Palamidessi 1990, Proposition 6.1). Therefore, we only need to show

that

αSh([δ ◦ σ]U) �Sh [(S \ (rel(S, x) ∪ rel(S, t)))

∪{occ(σ, occ(δ, v)) ∩U | v ∈ vars(xσ = tσ)}, U]. (B 1)

By the definition of αSh, we have to show that for all v ∈ V, occ(δ ◦ σ, v) ∩ U ∈
(S \ (rel(S, x) ∪ rel(S, t))) ∪ {occ(σ, occ(δ, v)) ∩U | v ∈ vars(xσ = tσ)}. Let v ∈ V. We

have the following cases:

• v ∈ vars(xσ = tσ): by Lemma B.1, {occ(δ ◦ σ, v) ∩ U | v ∈ vars(xσ = tσ)} =

{occ(σ, occ(δ, v)) ∩U | v ∈ vars(xσ = tσ)}.
• v /∈ vars(xσ = tσ): thus v /∈ vars(δ) and occ(δ ◦ σ, v) = occ(σ, v). We know that

occ(σ, v)∩U ∈ S , by the definition of S . Moreover, we show that occ(σ, v)∩U /∈
rel(S, x)∪ rel(S, t). Since v /∈ vars(xσ = tσ), we can apply Proposition B.2 twice

to the terms x and t and obtain occ(σ, v) ∩U /∈ rel(S, x) ∪ rel(S, t).

By collecting the results of the two cases, equation (B 1) is proved. �
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Proposition B.4

Let [σ]U ∈ ISubst∼, {x/t} ∈ ISubst such that vars({x/t}) ⊆ U and σ and {x/t}
unify. If αSh([σ]U) �Sh [S,U] and x is free and independent from U in [σ]U , then

αSh(mgu([σ]U, [x/t]U))

�Sh [(S \ (rel(S, x) ∪ rel(S, t))) ∪ bin(rel(S, x), rel(S, t)), U].

Proof

First of all note that without loss of generality, we may assume x /∈ vars(σ). Then,

by Proposition B.3, we have that

αSh(mgu([σ]U, [x/t]U))�Sh [(S \ (rel(S, x) ∪ rel(S, t)))

∪{occ(σ, occ(δ, v)) ∩U |∈ vars(xσ = tσ)}, U],

where δ = mgu(xσ = tσ). Since x /∈ vars(σ), we have that xσ = tσ is equal to

x = tσ. Moreover, x /∈ vars(tσ), since x /∈ vars(t) and x /∈ vars(σ) by hypothesis.

Thus δ = mgu(x = tσ) = {x/tσ}. It follows that vars(xσ = tσ) = {x} ∪ vars(tσ).

Therefore, the following equalities hold:

{occ(σ, occ(δ, v)) ∩U | v ∈ vars(xσ = tσ)}
= {occ(σ, occ(δ, v)) ∩U | v ∈ {x} ∪ vars(tσ)}
= {occ(σ, occ(δ, v)) ∩U | v ∈ vars(tσ)} (since x ∈ dom(δ), occ(δ, x) = ∅)
= {occ(σ, {x, v}) ∩U | v ∈ vars(tσ)} (since δ = {x/tσ})
= {(occ(σ, x) ∪ occ(σ, v)) ∩U | v ∈ vars(tσ)}
= {({x} ∪ occ(σ, v)) ∩U | v ∈ vars(tσ)} (since x /∈ vars(σ)).

Moreover, for each v ∈ vars(tσ), by Proposition B.2 it holds that occ(σ, v) ∩
U ∈ rel(S, t). Therefore, {({x} ∪ occ(σ, v)) ∩ U | v ∈ vars(tσ)} ⊆ bin({x}, rel(S, t)).
Since x /∈ vars(σ) and x ∈ U, it follows that occ(σ, x) = {x} and thus {x} ∈
rel(S, x) being αSh([σ]U) �Sh [S,U]. As a consequence bin({x}, rel(S, t)) ⊆ bin(rel(S, x),

rel(S, t)) from which it follows that αSh([mgu(Eq(σ) ∪ x = t)]U) �Sh [(S \ (rel(S, x) ∪
rel(S, t))) ∪ bin(rel(S, x), rel(S, t)), U]. �

Proposition B.5

Given s, t ∈ Terms and W,Y ∈ ℘f(V) such that s and t unify, vars(s = t) ⊆W and

Y ⊆ uvars(s = t), δ = mgu(s = t) enjoys the following properties:

(1) ∀v ∈ vars(s). occ(δ, v) ∩ vars(s) = ∅ ⇒ occ(δ, v) ∩ vars(t) = ∅,
(2) ∀v ∈ vars(s). occ(δ, v) ∩ vars(s) ⊇ {x1, x2} ∧ x1 = x2 ⇒ occ(δ, v) ∩ Z = ∅,

where Z = vars(t) \ Y .

Proof

We prove the two points separately.

(1) If occ(δ, v) ∩ vars(s) = ∅, then v /∈ dom(δ) and therefore v ∈ δ(s). Since δ is an

unifier for s and t, it should be v ∈ δ(t), and therefore there exists y ∈ t such

that y ∈ occ(δ, v).
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(2) First of all, note that given two terms s and t in a given signature Σ, the result

of mgu(s = t) does not change if we enlarge Σ with a new constant symbol.

Therefore, assume without loss of generality that there is a constant symbol a

in the signature. The proof proceeds by contradiction.

Assume that there exist x1, x2 ∈ vars(s), v ∈ W such that x1, x2 ∈ occ(δ, v)

and occ(δ, v) ∩ Z = ∅. Let σ = {x = a | x ∈ W } and consider the substitution

δ′ = {z/(δ(z))σ | z ∈ Z}. Note that this is an idempotent substitution, since

it is ground. Now consider δ′′ = mgu(Eq(δ) ∪ Eq(δ′)), which clearly exists

and, by the definition of δ′, is δ′′ = {x/a | x ∈ vars(δ(Z))} ◦ δ. Therefore,

occ(δ′′, v) = occ(δ, v) because v /∈ vars(δ(Z)) being occ(δ, v) ∩ Z = ∅.
Moreover, δ′′ = mgu(Eq(δ)∪Eq(δ′)) = mgu({s = t}∪Eq(δ′)) = mgu(sδ′ = tδ′)◦
δ′ = δ′ �mgu(sδ′ = tδ′). By the definition of δ′, it holds that vars(tδ′)∩Z = ∅,
and thus vars(tδ′) ⊆ Y . From the definition of Y it follows that vars(tδ′) ⊆
uvars(s = t), and thus vars(tδ′) ⊆ uvars(sδ′ = tδ′), since rng(δ′) = ∅. Therefore

the term tδ′ is linear and independent from sδ′ and occ(mgu(sδ′ = tδ′), v) =

occ(mgu(sδ′ = tδ′) � δ′, v) = occ(δ, v).

If we apply the result for linear and independent terms (e.g., King 2000,

Proposition 3.1), we obtain an absurd, since it is not possible that both x1 and

x2 are elements of occ(mgu(sδ′ = tδ′), v).

This concludes the proof. �

Proposition B.6

Let [σ]U ∈ ISubst∼, {x/t} ∈ ISubst such that vars({x/t}) ⊆ U and σ and {x/t}
unify. Given Y ⊆ vars(t) such that for all y ∈ Y , vars(σ(y)) ⊆ uvars(xσ = tσ), if

αSh([σ]U) �Sh [S,U], then

αSh(mgu([σ]U, [x/t]U)) �Sh [(S \ (rel(S, t) ∪ rel(S, x)))

∪ bin(rel(S, x), rel(S, Y )∗) ∪ bin(rel(S, x)∗, rel(S, Z)∗)

∪ bin(bin(rel(S, x)∗, rel(S, Z)∗), rel(S, Y )∗), U],

where Z = vars(t) \ Y .

Proof

By Proposition B.3, we have that

αSh(mgu([σ]U, [x/t]U))�Sh [(S \ (rel(S, x) ∪ rel(S, t)))

∪{occ(σ, occ(δ, v)) ∩U | v ∈ vars(xσ = tσ)}, U],

where δ = mgu(xσ = tσ). We show that

{occ(σ, occ(δ, v))∩U | v ∈ vars(xσ = tσ)}
⊆ bin(rel(S, x), rel(S, Y )∗) ∪ bin(rel(S, x)∗, rel(S, Z)∗)

∪ bin(bin(rel(S, x)∗, rel(S, Z)∗), rel(S, Y )∗) ∪ {∅},
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from which the thesis follows. The following equalities hold, for all v ∈ vars(xσ = tσ):

occ(σ, occ(δ, v)) ∩U

=
⋃
{occ(σ, w) ∩U | w ∈ occ(δ, v)}

=
⋃
{occ(σ, w) ∩U | w ∈ occ(δ, v) ∩ vars(xσ)}

∪
⋃
{occ(σ, w) ∩U | w ∈ occ(δ, v) ∩ vars(tσ)}
(by partitioning the variables in occ(δ, v) ⊆ vars(δ) ∪ {v}).

By applying Proposition B.5 to the equation xσ = tσ we get occ(δ, v)∩ vars(xσ) = ∅
iff occ(δ, v) ∩ vars(tσ) = ∅. Since the case occ(δ, v) = ∅ is trivial, it only remain to

consider the case occ(δ, v) = ∅ that implies occ(δ, v) ∩ vars(tσ) = ∅ = occ(δ, v) ∩
vars(xσ). In the following, let A =

⋃
{occ(σ, w) ∩ U | w ∈ occ(δ, v) ∩ vars(xσ)} and

B =
⋃
{occ(σ, w) ∩ U | w ∈ occ(δ, v) ∩ vars(tσ)}. Note that by Proposition B.2,

occ(σ, w)∩U ∈ rel(S, {x}) if w ∈ vars(xσ) and x ∈ U, which implies A ∈ rel(S, {x})∗.
For the same reason, B ∈ rel(S, vars(t))∗, i.e.,

occ(σ, occ(δ, v)) ∩U ∈ bin(rel(S, {x})∗, rel(S, vars(t))∗),

which is the standard result for abstract unification without considering freeness or

linearity. We can do better if we proceed by cases on occ(δ, v) ∩ vars(tσ).

• occ(δ, v) ∩ vars(tσ) ⊆ vars(σ(Y )): Let Z ′ = vars(tσ) \ vars(σ(Y )) it follows that

occ(δ, v) ∩ Z ′ = ∅. Therefore, by Proposition B.5(2) applied to the terms xσ

and tσ, we have that �x1, x2 ∈ vars(xσ) such that x1, x2 ∈ occ(δ, v). Since

occ(δ, v) ∩ vars(xσ) = ∅, it follows that there exists x′ ∈ vars(xσ) such that

occ(δ, v) ∩ vars(xσ) = {x′}. This implies that A ∈ rel(S, {x}). Moreover, by

Proposition B.2 applied to the set of variables Y , B ∈ rel(S, Y )∗ and this proves

occ(σ, occ(δ, v)) ∩U ∈ bin(rel(S, {x}), rel(S, Y )∗).

• Otherwise: We have the case that occ(δ, v)∩vars(tσ) � vars(σ(Y )), i.e., occ(δ, v)∩
vars(σ(Z)) = ∅. Therefore, there exists w ∈ occ(δ, v) ∩ vars(σ(Z)), and using

Proposition B.2 we have that occ(σ, w) ∩ U ∈ rel(S, Z). This implies that

B ∈ {B1 ∪ . . . Bn ∪ C1 ∪ . . . Cp | Bi ∈ rel(S, Y ), n � 0, Ci ∈ rel(S, Z), p � 1} =

rel(S, Z)∗ ∪ bin(rel(S, Y )∗, rel(S, Z)∗). As a final result we have that

occ(σ, occ(δ, v)) ∩U ∈ bin(rel(S, {x})∗, rel(S, Z)∗ ∪ bin(rel(S, Y )∗, rel(S, Z)∗))

= bin(rel(S, {x})∗, rel(S, Z)∗) ∪
bin(bin(rel(S, {x})∗, rel(S, Z)∗), rel(S, Y )∗),

which proves the theorem. �

Lemma B.7

Let [σ]V ∈ ISubst∼, θ ∈ ISubst such that vars(θ) ⊆ V and σ and θ unify. Assume

given U ⊆ V such that for each x ∈ U,

(1) x is free in [σ]V ;

(2) x is independent from vars(θ) in [σ]V ;

(3) if x ∈ dom(θ) then x is independent in [σ]V .
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If αSh([σ]V ) �Sh [S, V ], then αSh(mgu([σ]V , [θ]V )) �Sh [ufSh(S,U, θ), V ].

Proof

The proof is by induction on |dom(θ)|. Assume |dom(θ)| = 0; then θ = ε and

αSh(mgu([σ]V , [ε]V )) = αSh([σ]V ) �Sh [S, V ] = [ufSh(S,U, ε), V ].

Now assume that it holds for |dom(θ)| � n, and we show it holds for |dom(θ)| =
n + 1, too. Let θ be θ′ � {x/t}. We distinguish two cases: either x ∈ U or x /∈ U.

(1) (x ∈ U) By the definition of ufSh we have that

ufSh(S,U, {x/t} � θ′)

= ufSh((S \ (rel(S, x) ∪ rel(S, t))) ∪ bin(rel(S, x), rel(S, t)), U \ {x}, θ′).

Since x ∈ U ∩ dom(θ), by hypothesis x is free and independent in [σ]V . Thus

we can apply Proposition B.4, from which we obtain that

αSh(mgu([σ]V , [x/t]V ))

�Sh [S \ (rel(S, x) ∪ rel(S, t)) ∪ bin(rel(S, x), rel(S, t)), V ].

Let [σ′]V = mgu([σ]V , [x/t]V ) and U ′ = U \ {x}. We may assume without loss

of generality that vars(σ)∩U = ∅, and we obtain σ′ = mgu(Eq(σ)∪{x = t}) =

σ � {x/tσ}. Given u ∈ U ′, we have σ′(u) = σ(u) = u ∈ V; hence u is free in

[σ]V . If u = v ∈ vars(θ′), then v = x and therefore u /∈ σ′(v) = σ(v). Thus u

is independent from vars(θ′) in [σ′]V . Moreover, if u ∈ dom(θ′), then u = x,

u /∈ t and u /∈ vars(σ), and therefore u /∈ vars(σ′) ⊆ vars(σ) ∪ vars(x = t). This

means that u is independent in [σ′]U . Therefore, by inductive hypothesis,

αSh(mgu([σ]V , [θ]V )) = αSh(mgu([σ′]V , [θ
′]V ))

�Sh [ufSh(S
′, U ′, θ′), V ] = [ufSh(S,U, θ), V ],

which concludes this part of the proof.

(2) (x /∈ U) By the definition of ufSh we have that

ufSh(S,U, {x/t} � θ) = ufSh((S \ (rel(S, x) ∪ rel(S, t)))

∪ bin(rel(S, x), rel(S, Y )∗) ∪ bin(rel(S, x)∗, rel(S, Z)∗)

∪ bin(bin(rel(S, x)∗, rel(S, Y )∗), rel(S, Z)∗)), U \ vars({x/t}), δ),

where Y = uvars(t) ∩U and Z = vars(t) \ Y . Since Y ⊆ U, for all u ∈ Y and

for all v ∈ vars(x = t) with v = u, it is the case that v and u do not share

variables, i.e., v = u⇒ σ(u) /∈ σ(v). Therefore σ(u) ∈ uvars(xσ = tσ). Then we

can apply Proposition B.6 to obtain

αSh([σ]V , [x/t]V ]) �Sh (S \ (rel(S, t) ∪ rel(S, x)))

∪ bin(rel(S, x), rel(S, Y )∗) ∪ bin(rel(S, x)∗, rel(S, Z)∗)

∪ bin(bin(rel(S, x)∗, rel(S, Z)∗), rel(S, Y )∗), V ].

Again, assume vars(σ) ∩ U = ∅, σ′ = mgu(Eq(σ) ∪ {x = t}) = mgu(xσ =

tσ) ◦ σ, and U ′ = U \ vars({x/t}). Given u ∈ U ′ and u /∈ vars(x = t) and

since u by hypothesis does not share with any variable in x = t, we have
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u /∈ vars({xσ/tσ}). As a result σ′(u) = σ(u) = u ∈ V. Moreover, for each

variable v, u ∈ σ′(v) iff u ∈ σ(v). Therefore, if v ∈ vars(θ′) and v = u, v and

u are independent in [σ′]V . Finally, if u ∈ dom(θ′), then u /∈ vars(σ), which

implies u /∈ vars(σ′). By inductive hypothesis we have

αSh(mgu([σ]V , [θ]V )) = αSh(mgu([σ′]V , [θ
′]V ))

�Sh [ufSh(S
′, U ′, θ′), V ] = [ufSh(S,U, θ), V ],

which proves the lemma. �

Theorem B.8

(Correctness of unifSh)

The unification operator unifSh is correct w.r.t. unifPs.

Proof

Given [Δ, V ] = unifPs([Δ1, V1], δ), we know that if [θ]V ∈ Δ, then

[θ]V = mgu([θ1]V1
, [δ]vars(δ)) = mgu([θ1]V1

, [ε]V1∪vars(δ), [δ]vars(δ)).

Note that if αSh([θ1]V1
) �Sh [S, V1], then

αSh(mgu([θ1]V1
, [ε]V1∪vars(δ))) �Sh [S ∪ {{x} | x ∈ vars(δ) \ V1}, V1 ∪ vars(δ)]

and each variable in vars(δ) \ V1 is free and independent in mgu([θ1]V1
, [ε]V1∪vars(δ)).

Therefore, by applying Lemma B.7, we obtain

αSh([θ]V ) �Sh unifSh([S, V1], δ).

The theorem follows by the pointwise extension of αSh to elements of Psub. �

Appendix C: Optimality of forward unification

We first introduce some notations. Given [S1, U1] ∈ Sharing and θ ∈ ISubst , let

unifSh([S1, U1], θ) = [S,U1 ∪ vars(θ)] and X ∈ S . To ease the notation, let us define

U2 = vars(θ)\U1, S2 = {{x} | x ∈ U2}, U = U1∪U2, X1 = X∩U1, and X2 = X∩U2.

We begin by checking some properties of the unification algorithm in ufSh. To

simplify the notation, in the rest of this section we will use a slightly modified

version of the operator ufSh that uses the rule ufSh(T ,V , ε) = (T ,V ) (instead of the

original rule ufSh(T ,V , ε) = T ). The only consequence of this modification is that

the new operator returns a pair whose first argument is the same as in the original

operator and whose second argument is a set of variables guaranteed to be free

after the unification.

Remark C.1

Given (T ′, V ′) = ufSh(T ,V , θ) the following properties are easily checked from the

definition:

(1) V ′ ⊆ V ;

(2) if x ∈ V ′ ∩ rng(θ) and x ∈ θ(v), then v ∈ V ;

(3) ufSh(T ,V , θ � θ′) = ufSh(T
′, V ′, θ′).
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Let [H,U] = αSh([θ]U). We want to prove that each X ∈ S is obtained as union of

a number of sharing groups in H . However, these sharing groups cannot be joined

freely but only according to some conditions.

Lemma C.2

For each X ∈ S , either X ∈ H or there are B1, . . . , Bk ∈ H such that ∪i�kBi = X and

for each i � k, Bi ∩U1 = ∅.

Proof

The proof proceeds by induction on the number of bindings n in θ. If n = 0, then

θ = ε, S = S1 ∪ S2, and H = {{x} | x ∈ U1 ∪ U2}. If X ∈ S2, then X = {x} for

some x ∈ U2, i.e., X ∈ H . Otherwise, if X ∈ S1, then X =
⋃
{{x} | x ∈ X}. Since

x ∈ vars(S1) entails x ∈ U1, we may take as Bi’s the singletons {x} for each x ∈ X,

and we have the required result.

If n = 0, then θ = θ′ � {x/t} and ufSh(S1 ∪ S2, U2, θ) = ufSh(T ,V , {x/t}), where

(T ,V ) = ufSh(S1 ∪ S2, U2, θ
′). Let [H ′, U] = αSh([θ

′]U). We distinguish the cases x ∈ V

and x /∈ V .

Assume x ∈ V . If X ∈ T \ (rel(T , t) ∪ rel(T , x)), then X ∩ vars({x/t}) = ∅. By

inductive hypothesis, X = B1∪. . .∪Bh, where each Bj ∈ H ′. Since Bj∩vars({x/t}) = ∅,
we have Bj ∈ H , and therefore the property is satisfied. Otherwise, X = A1∪A2, where

A1 ∈ rel(T , x) and A2 ∈ rel(T , t). Note that since x /∈ vars(θ′), rel(H ′, x) = {{x}}.
Since {x} ∩ U1 = ∅, it is not possible to join {x} with any other sharing group in

H ′, and therefore rel(T , x) = {{x}} and A1 = {x}. Now assume, without loss of

generality, A2 ∈ rel(T , y), with y ∈ vars(t). By inductive hypothesis A2 = C1∪ . . .∪Ch

with each Cj ∈ H ′. First of all, note that for each j, either Cj ∩ vars({x/t}) = ∅,
which entails Cj ∈ H , or Cj = occ(θ′, w) for some w ∈ vars(t), which entails

{x} ∪ Cj = occ(θ, w) ∈ H . Therefore, it is possible to take k = h and Bj equal to

either Cj or Cj ∪ {x} so that Bj ∈ H . Since there is at least one index l such that

y ∈ Cl , Cl = occ(θ′, y) and x ∈ Bl . Therefore ∪jBj = X. Moreover, either h = 1 or

h > 1 and Cj ∩U1 = ∅ for each j � h.

Now assume x /∈ V . If X ∈ T \ (rel(T , t)∪ rel(T , x)), then X ∩ vars({x/t}) = ∅ and

everything is as for the case x ∈ V . Otherwise, the three cases in the definition of ufSh

may be subsumed saying that X = A1 ∪A2, where A1 ∈ rel(S, x)∗ and A2 ∈ rel(S, t)∗.

Assume, by inductive hypothesis, that A1 = C1
1 ∪ . . . ∪ C1

h , where each C1
j ∈ H ′ and

A2 = C2
1 ∪ . . . ∪ C2

l , where each C2
j ∈ H ′. Since x /∈ vars(θ′), rel(H ′, x) = {{x}}.

Therefore there exists C1
j such that C1

j = {x}. We assume without loss of generality

that C1
1 = {x}. As for the case with x ∈ V , we may define B2

j equal to either C2
j or

C2
j ∪ {x} so that B2

j ∈ H . The same holds for all the elements of the kind C1
j for

j > 1. Moreover, there is at least one j such that C2
j = occ(θ′, y) for some y ∈ vars(t),

i.e., such that x ∈ B2
j . Then, we have a collection of elements B1

j and B2
j such that

each B1
j , B

2
j ∈ H and whose union gives X. We only need to prove that B1

j ∩U1 = ∅
and B2

j ∩ U1 = ∅ for each j. Note that if C2
j ∩ U1 = ∅, then B2

j ∩ U1 = ∅. Assume

C2
j ∩ U1 = ∅. By inductive hypothesis, this happens if C2

j ∈ rel(S, t). (Otherwise C2
j

is obtained by joining more than one element in H ′, and therefore it must contains

some variable in U1.) Thus, there exists y ∈ vars(t) such that y ∈ C2
j , and therefore

B2
j = C2

j ∪ {x} and B2
j ∩ U1 = ∅. In the same way, if C1

j ∩ U1 = ∅ the same
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holds for B1
j . Note that given C1

j , by inductive hypothesis either C1
j /∈ rel(S, x), and

therefore C1
j ∩ U1 = ∅, or C1

j ∈ rel(S, x), and therefore x ∈ C1
j , which entails again

C1
j ∩U1 = ∅. �

Corollary C.3

X = {x | vars(θ(x)) ∩X = ∅}.

Proof

By Lemma C.2 we know X = B1 ∪ . . . ∪ BN with Bi ∈ H . If x ∈ X, then x ∈ Bi for

some i � N. Assume Bi = occ(θ, w). Then w ∈ Bi ⊆ X and w ∈ vars(θ(x))∩X. In the

opposite direction, assume z ∈ vars(θ(x))∩X. Since there is only one sharing group

B in H such that z ∈ B, namely, B = occ(θ, z), it must be the case that B = Bj for

some j ∈ {1, . . . , N} and therefore x ∈ Bj ⊆ X. �

Lemma C.4

For each X ∈ S , X is θ-connected.

Proof

First note that if X is θ-connected and Y ⊆ U2, then given θ′ = θ � θ′′ it holds that

X ∪ Y is θ′-connected.

The proof is by induction on the number of bindings in θ. If θ = ε there is

nothing to prove, since X ∈ S1 ∪ S2, and thus X1 ∈ S1.

Let θ = θ′ � {x/t}, [H ′, U] = αSh([θ
′]U), and (S, V ′) = ufSh(T ,V , {x/t}), where

ufSh(S1 ∪ S2, U2, θ
′) = (T ,V ).

We distinguish two cases according to the fact that x ∈ V or not. Consider the

case x ∈ V , which implies x ∈ U2. By hypothesis x /∈ vars(θ′); therefore, by Lemma

C.2, rel(T , x) = {{x}}. Therefore S is obtained by joining to each Q ∈ rel(T , t) the

new sharing group {x} and removing {x} from T . It happens that each Q ∈ S is

θ-connected since (1) either Q ∈ T (2) or Q = Q′ ∪ {x} for Q′ ∈ T and x ∈ U2. In

the first case, Q is θ′-connected by inductive hypothesis; hence it is also θ connected,

and the thesis follows. In the latter case, Q′ is θ′-connected, and thus Q′ ∪ {x} is

θ-connected, since x ∈ U2.

The other case is when x /∈ V . If we take Q ∈ S and assume Q ∈ T \ (rel(T , x) ∪
rel(T , t)), then it is θ′-connected by inductive hypothesis, and thus it is θ-connected.

Otherwise, take Q = Q1 ∪ Q2 with Q1 ∈ rel(T , x) and Q2 ∈ rel(T , Y )∗, where

Y = uvars(t) ∩ V . Given y ∈ Y , since y ∈ V , for each binding x′/t′ in θ′, if

y ∈ vars(t′), then x′ ∈ U2 (see Remark C.1). Therefore rel(H, y) = {K} with K ⊆ U2,

and by Lemma C.2, the same holds for rel(T , y). This means Q2 ⊆ U2. Thus

Q ∩U1 = Q1 ∩U1. Since Q1 is θ′-connected by inductive hypothesis, it follows that

Q1 is θ-connected.

Now, take Q1 ∈ rel(T , x)∗ and Q2 ∈ rel(T ,Z)∗, where Z = vars(t) \ Y . Thus

Q1 = A1 ∪ . . . ∪ Ak with Ai ∈ rel(T , x). By inductive hypothesis, Ai is θ′-connected,

and therefore it is θ-connected. It follows that for each i � k there exist Bi
1, . . . , B

i
ki
∈

S1 such that ∪j�kiB
i
j = Ai ∩ U1 and Bi

j1
R∗θAi

Bi
j2

for j1, j2 � ki. The same holds

for Q2 = C1 ∪ . . . ∪ Ch with Ci ∈ rel(T ,Z): for any Ci ∩ U1 = ∅ we have that

Ci ∩U1 = ∪j�hiD
i
j with Di

j1
R∗θCi

Di
j2

for all j1, j2 � hi.
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We need to show that given any Bi
m and Dj

n, B
i
mR∗θQDj

n. Actually, it is enough to

show that for each i � k, j � h such that Cj ∩ U1 = ∅, there are m, n such that

Bi
mRθQD

j
n.

Since x ∈ Ai and x ∈ U1, without loss of generality we may assume that x ∈ Bi
1.

On the other hand, although vars(t) ∩ Cj = ∅, we cannot infer that there exists any

Dj
n such that vars(t) ∩ Dj

n = ∅, since it may well happen that vars(t) ∩ Cj ⊆ U2 even

though U1 ∩ Cj = ∅.
Assume Cj ∈ rel(T , z) for some z ∈ Z ∩ U1. Then, we may assume without loss

of generality that z ∈ D
j
1, and Bi

1RθQD
j
1 follows from the definition of RθQ, being

z ∈ Q. Otherwise, Cj ∈ rel(T , z) for some z ∈ Z ∩U2. By applying Lemma C.2, we

have Cj = E1 ∪ . . . ∪ Ep with Ei ∈ H ′ and Ei ∩ U1 = ∅. (This holds even if p = 1,

since Cj ∩U1 = ∅.) Since rel(H ′, z) = {occ(θ′, z)}, occ(θ′, z)∩U1 = ∅; i.e., there exists

z′ ∈ U1 such that z ∈ vars(θ′(z′)). Then z′ ∈ Cj , and we may assume, without loss

of generality, that z′ ∈ D
j
1. Again, we have Bi

1RθQD
j
1 by the definition of RθQ.

Observe that if Q2 ∩U1 = ∅, by symmetry and transitivity, this alone proves that

Bi
mR∗θXBi′

m′ and Dj
nR∗θQD

j ′

n′ for each i, m, i′, m′ and j, n, j ′, n′. Otherwise, there is no Dj
n,

and we need to prove in other ways that Bi
mR∗θQBi′

m′ . Since Q2 ∩ U1 = ∅, Ci ⊆ U2

for each i. This means Ci = occ(θ′, y) for some y ∈ U2, and since Ci ⊆ U2 it follows

immediately that y ∈ V . Then, since y ∈ Z , it must be the case that y /∈ uvars(t),

and therefore Bi
1RθQB

i′

1 by the definition of RθQ.

It remains the case Q = Q1 ∪ Q2 ∪ Q3 with Q1 ∈ rel(T , x)∗, Q2 ∈ rel(T , Y )∗, and

Q3 ∈ rel(T ,Z)∗. However, this is a trivial corollary of the previous two cases, since

we know that Q1 ∪ Q3 is θ-connected and Q2 ⊆ U2. �

Fixed X ∈ S , our aim is to provide a substitution δ with αSh([δ]U1
) � [S1, U1] and

αSh(mgu([δ]U1
, [θ]U)) � [{X}, U]. By Lemma C.4, X1 = B1∪ . . .∪Bn with Bi ∈ S1 and

BiR∗θXBj for each i, j � n (where X1 = X ∩ U1). We let K1 = {B1, . . . , Bn}. We now

want to define a substitution δ such that αSh([δ]U1
) = [K1, U1]. For each sharing

group B ∈ K1, let us consider a fresh variable wB . Let W = {wB | B ∈ K1}. For

each variable x, let Bx = {B1
x, . . . , B

k
x} be the set rel(K1, x). Let N be the maximum

cardinality of all the Bx for x ∈ X1, i.e., N = maxx∈X1
|Bx|. For each x ∈ X1, we

define two terms:

sx = t(c(wB1
x
, wB1

x
), c(wB2

x
, wB2

x
), . . . , c(wBk

x
, wBk

x
)︸ ︷︷ ︸

k = |Bx| times

, c(wB1
x
, wB1

x
), . . . , c(wB1

x
, wB1

x
)︸ ︷︷ ︸

N − |Bx| times

).

s′x = t(c(wB1
x
, wB2

x
), c(wB2

x
, wB3

x
), . . . , c(wBk

x
, wB1

x
)︸ ︷︷ ︸

k = |Bx| times

, c(wB1
x
, wB1

x
), . . . , c(wB1

x
, wB1

x
)︸ ︷︷ ︸

N − |Bx| times

).

Note that if N = 0, then X1 = ∅ and sx, s
′
x are undefined for any variable x.

We introduce the following notation: given a term t we distinguish different

occurrences of the same variable by calling (y, n) the nth occurrence of a variable y

in t, where the order is lexicographic. For instance, a term f(x, g(y, y, x)) can be seen

as the term f((x, 1), g((y, 1), (y, 2), (x, 2))). For each y ∈ vars(θ(U1)) ∩ X, we choose

a variable xy ∈ U1 such that y ∈ θ(xy). Let a be a constant. We are now ready to

define the substitution δ in the following way: for each variable x ∈ U1, δ(x) is the
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same as θ(x) with the difference that each occurrence (y, i) of a variable y ∈ θ(x) is

replaced by tx,y,i defined as

• tx,y,i = a if y /∈ X, else

• tx,y,i = sx if x = xy and i = 1, or

• tx,y,i = s′x otherwise.

Note that by Corollary C.3, if x ∈ X1, then θ(x) is not ground. Therefore, by

construction, dom(δ) = U1 and rng(δ) = W . It is easy to check that αSh([δ]U1
) =

[K1, U1], since given a variable wB , it appears in δ(x) iff x ∈ B and therefore

occ(δ, wB) ∩ U1 = B. For all the other variables occ(δ, v) = ∅ if v ∈ U1 and

occ(δ, v) = {v} ⊆ U1 otherwise. Let us compute the value of mgu([δ]U1
, [θ]U).

Lemma C.5

mgu(δ, θ) = mgu{w1 = w2 | w1, w2 ∈W } ◦ ρ ◦ θ,

where ρ = {v/sxv | v ∈ vars(θ(U1)) ∩X} ∪ {v/a | v ∈ vars(θ(U1)) \X}.

Proof

Since txv ,v,1 = sxv , by using the properties of equation sets it follows that

mgu(δ, θ) = mgu({v = tx,v,i | x ∈ U1, (v, i) is an occurrence of v in θ(x)}) ◦ θ
= mgu(E) ◦ ρ ◦ θ,

where E = {txv ,v,1 = tx′ ,v,j | x′ ∈ U1, (v, j) is an occurrence of v in θ(x′)}. Let us define

a relation between variables:

vR′u ⇐⇒ ∃y ∈ vars(θ(v)) ∩X. u = xy ∧ (u = v ⇒ y /∈ uvars(θ(v)))}.

Note that R′ is not a symmetric relationship. Moreover, it depends on θ and X,

just as RθX . However, since in this proof θ and X are fixed, we decided to omit

the indexes in order to simplify notation. By exploiting the above definition, we can

rewrite mgu(E) as follows:

mgu(E) = mgu({s′v = su | v, u ∈ X1, vR′u}). (C 1)

The above characterization shows that Eq(δ) ∪ Eq(θ) is solvable, since su and s′v are

terms that unify by construction. Moreover, note that

mgu{su = s′v} = mgu{wB = wB′ | B ∈ Bu ∧ B′ ∈ Bv}.

We want to prove that mgu{s′v = su | v, u ∈ X1, vR′u} = mgu{w1 = w2 | w1, w2 ∈W }.
It is obvious that mgu{s′v = su | v, u ∈ X1, vR′u} = mgu{wB = wB′ | v, u ∈ X1. B ∈
Bv, B

′ ∈ Bu, vR′u} = mgu{wB = wB′ | BR̂B′}, where R̂ is the relation on K1 × K1

given by

BR̂B′ ⇐⇒ ∃x, y ∈ X1. B ∈ Bx ∧ B′ ∈ By ∧ xR′y.
Since equality is transitive and reflexive, we know that

mgu{wB = wB′ | BR̂B′} = mgu{wB = wB′ | BR̂∗B′},

where R̂∗ is the symmetric and transitive closure of R̂. We now prove that R̂ ⊆
RθX ⊆ R̂∗, from which the thesis follows by Lemma C.4.
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If BR̂B′ there are x, y ∈ X1 such that B ∈ Bx∧B′ ∈ By∧xR′y. However B ∈ Bx iff

x ∈ B ∈ S1 and B′ ∈ By iff y ∈ B′ ∈ S1. Now, assume z ∈ vars(θ(x))∩X and y = xz .

Then z ∈ vars(θ(x)) ∩ vars(θ(y)) ∩ X, and this proves that BRθXB
′. On the other

side, assume BRθXB
′; i.e., there are x ∈ B, y ∈ B′, z ∈ vars(θ(x)) ∩ vars(θ(y)) ∩ X

such that x = y =⇒ z /∈ uvars(θ(x)). Since x ∈ B and y ∈ B′, B ∈ Bx and B′ ∈ By .

Since z ∈ vars(θ(U1))∩X, xz is defined and Bxz = ∅. Assume that x = y = xz . Then

z ∈ uvars(θ(x)) and thus xR′y and BR̂B′. Otherwise, we may assume without loss

of generality that x = xz . If y = xz then xR′y and thus BR̂B′. If y = xz we can

choose any B′′ ∈ Bxz . We know that xR′xz , yR′xz , and thus it holds that BR̂B′′ and

B′R̂B′′, from which BR̂∗B′ follows. The case y = xz is symmetric. �

Proposition C.6

αSh(mgu([δ]U1
, [θ]U)) �Sh [{X}, U].

Proof

First of all, note that mgu([δ]U1
, [θ]U) = [mgu(δ, θ)]U since vars(θ) ⊆ U. We proceed

with two different proofs when W = ∅ and W = ∅. If W = ∅, then according to

Lemma C.5, we can choose w̄ ∈ W and define the substitution σ = {w′/w̄ | w̄ =
w′ ∈W } = mgu(E). It only remains to prove that occ(σ ◦ ρ ◦ θ, w̄) ∩U = X.

It follows easily that occ(σ◦ρ◦θ, w̄) = occ(ρ◦θ,W ) = occ(θ, vars(θ(U1))∩X)∪W ) =

occ(θ, vars(θ(U1))∩X)∪W . Since U ∩W = ∅ it follows that occ(σ ◦ ρ ◦ θ, w̄)∩U =

occ(θ, vars(θ(U1)) ∩X).

By definition, occ(θ, vars(θ(U1)) ∩ X) = {y | vars(θ(y)) ∩ vars(θ(U1)) ∩ X = ∅}.
Thus, for any of such y, we have that vars(θ(y))∩X = ∅ and thus, by Corollary C.3,

y ∈ X. It follows that occ(θ, vars(θ(U1)) ∩ X) ⊆ X. For the opposite direction, by

Lemma C.2 there exist B1, . . . , Bk ∈ H such that ∪Bi = X and Bi ∩U1 = ∅ for each

i. Since Bi ∈ H , there exists v such that Bi = occ(θ, v). Moreover, v ∈ X, since v ∈ Bi

by the definition of occ and θ(v) = v. Since Bi ∩ U1 = ∅ it follows that there exists

y ∈ Bi ∩U1 such that v ∈ θ(y) ⊆ θ(U1) and thus Bi ⊆ occ(θ, vars(θ(U1)) ∩X). Thus

X ⊆ occ(θ, vars(θ(U1)) ∩X).

When W = ∅, mgu(E) = ε and X = X2. In this case, by Lemma C.2, X2 = occ(θ, x)

for some x ∈ U2. Since X2 ∩U1 = ∅, x /∈ vars(θ(U1)), i.e., x /∈ dom(ρ) and therefore

occ(ρ ◦ θ, x) = occ(θ, x) = X2. �

Note that in this proof, we worked with a signature endowed with a constant a

and term symbols c and t of arity two and N respectively. Actually, it is evident that

the proof may be easily rewritten for the case in which the signature has a constant

and a symbol of arity at least two. Given s of arity n, we may replace in δ a term

t(t1, . . . , tN) with c(t1, c(t2, c(. . . , tN))). Then, we replace c(t1, t2) with s(t1, t2, a, a, . . . , a),

where a is repeated n− 2 times.

Theorem C.7

Uf
Sh is well defined, correct, and optimal w.r.t. Uf

Ps.
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Proof

By equation (31), we need to prove that

πSh(unifSh(ρ([S1, U1]),mgu(ρ(A1) = A2)), vars(A2)) =

αSh(πPs(unifPs(ρ(γPs([S1, U1])),mgu(ρ(A1) = A2)), vars(A2))).

By Theorems 5.3 and 5.4, we know that πSh is correct and complete and that abstract

renaming is correct and γ-complete. Moreover, by Theorem 6.16, abstract unification

unifSh is optimal. We have the following equalities:

αSh(πPs(unifPs(ρ(γPs([S1, U1])),mgu(ρ(A1) = A2)), vars(A2)))

= πSh(αSh(unifPs(ρ(γPs([S1, U1])),mgu(ρ(A1) = A2)), vars(A2))) (by Theorem 5.3)

= πSh(αSh(unifPs(γPs(ρ([S1, U1])),mgu(ρ(A1) = A2))), vars(A2)) (by Theorem 5.4)

= πSh(unifSh(ρ([S1, U1]),mgu(ρ(A1) = A2)), vars(A2)) (by Theorem 6.16).

Thus Uf
Sh is correct and optimal w.r.t. Uf

Ps. The fact that it is well defined (i.e.,

it does not depend on the choice of the renaming ρ) is a direct consequence of

optimality. �

Appendix D: Matching

Theorem D.1

(Correctness of matchSh)

matchSh is correct w.r.t. matchPs.

Proof

Consider [Θi, Ui] �Ps γSh([Si, Ui]) for i ∈ {1, 2} and [σ]U1∪U2
∈ matchPs([Θ1, U1],

[Θ2, U2]). We need to prove that

αSh([σ]U1∪U2
) ∈ matchSh([S1, U1], [S2, U2]).

Assume [σ] = mgu([σ1], [σ2]) with [σ1] ∈ Θ1 and [σ2] ∈ Θ2. Let σ1 and σ2 be two

canonical representatives for [σ1] and [σ2] such that vars(σ1)∩vars(σ2) = U1∩U2. If

σ1 �U1∩U2
σ2, there exists δ ∈ Subst such that σ1(x) = δ(σ2(x)) for each x ∈ U1 ∩U2.

We may assume, without loss of generality, that dom(δ) = vars(σ2(U1 ∩U2)). Now,

the following equalities hold:

σ = mgu(Eq(σ2),Eq(σ1))

= mgu({σ2(x) = σ2(σ1(x)) | x ∈ U1}) ◦ σ2

= mgu({x = σ1(x) | x ∈ U1 \U2} ∪ {σ1(x) = σ2(x) | x ∈ U1 ∩U2}) ◦ σ2

(by partitioning dom(σ2), since σ2(σ1(x)) = σ1(x) for x ∈ U1)

= mgu({x = σ1(x) | x ∈ U1 \U2}) ◦ δ ◦ σ2

(since σ1(x) = δ(σ2(x)) and dom(δ) = vars(σ2(U1 ∩U2)))

= σ1|U1\U2
◦ δ ◦ σ2

= σ1|U1\U2
� (δ ◦ σ2).

(D 1)

Now, given a variable v, by Lemma B.1, occ(σ, v) ∩ (U1 ∪ U2) = (occ(σ1|U1\U2
, v) ∩

U1) ∪ (occ(σ2, occ(δ, v)) ∩ U2). We want to prove that occ(σ, v) ∩ (U1 ∪ U2) ∈
matchSh([S1, U1], [S2, U2]).
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Since dom(σ) = U1 ∪U2, we may assume that v /∈ U1 ∪U2; otherwise occ(σ, v) ∩
(U1 ∪ U2) = ∅. We recall that S ′1 = {B ∈ S1 | B ∩ U2 = ∅} and S ′′1 = S1 \ S ′1,
S ′2 = {B ∈ S2 | B ∩ U1 = ∅} and S ′′2 = S2 \ S ′2, according to Definition 7.1. We

distinguish two cases:

• v /∈ rng(δ), which implies v /∈ rng(σ1|U2
). Note that if v ∈ dom(δ), then

occ(σ2, occ(δ, v)) = ∅ ∈ S ′2; otherwise occ(σ2, occ(δ, v)) = occ(σ2, v) ∈ S ′2. So, it

always holds that occ(σ2, occ(δ, v)) ∈ S ′2. We now distinguish some subcases.

If v ∈ rng(σ1), then occ(σ1|U1\U2
, v) = occ(σ1, v). Moreover, since v ∈ rng(σ1),

v /∈ vars(σ2) and thus occ(σ2, v) = {v}. We have that occ(σ, v) ∩ (U1 ∪ U2) =

occ(σ1, v) ∈ S ′1. Otherwise, if v ∈ rng(σ2), then v /∈ vars(σ1) and occ(σ1, v) =

{v}. Therefore occ(σ, v) ∩ (U1 ∪ U2) = occ(σ2, occ(δ, v)) ∈ S ′2. Otherwise, if

v /∈ rng(σ1) ∪ rng(σ2), then occ(σ, v) ∩ (U1 ∪U2) = ∅.
• v ∈ rng(δ). We want to prove that occ(σ, v) = X1 ∪ X2, where X1 = occ(σ1, v)

and X2 = occ(σ2, occ(δ, v)) enjoy the following properties: X1 ∈ S ′′1 , X2 ∈ S ′′2
∗,

X1 ∩ U2 = X2 ∩ U1. First of all, note that occ(σ1|U1\U2
, v) ∩ U1 = X1 \ U2.

Moreover, occ(σ2, occ(δ, v)) ∩ U1 = occ(σ2|U1
, occ(δ, v)) ∩ U1, which in turn is

equal to occ(δ◦σ2|U1
, v)∩U1 = occ(σ1|U2

, v)∩U1 = occ(σ1, v)∩U1∩U2 ⊇ X1∩U2.

This proves that occ(σ, v) = X1 ∪X2 and X1 ∩U2 = X2 ∩U1.

While it is obvious that X1 ∈ S1 and X2 ∈ S∗2 , we still need to prove

that X1 ∈ S ′′1 and X2 ∈ S ′′2
∗. For each y ∈ occ(δ, v), by the definition of

δ we have that y ∈ σ2(U1 ∩ U2) and therefore occ(σ2, y) ∩ U1 = ∅. This

proves that X2 ∈ S ′′2
∗. Moreover, if v ∈ rng(δ), then v ∈ rng(σ1|U2

) and thus

occ(σ1, v) ∈ S ′′1 . �

Theorem D.2

(Weak completeness of matchSh)

The operator matchSh is optimal on the first argument and complete on the second

one when matchPs is restricted to the case in which the second argument contains a

single substitution. In formulas,

matchSh([S1, U1], αSh([{σ2}, U2])) = αSh(matchPs(γSh([S1, U1]), [{[σ2]}, U2])),

for each [{[σ2]}, U2] ∈ Psub and [S1, U1] ∈ Sharing.

Proof

Since matchSh is correct w.r.t. matchPs, it follows that

αSh(matchPs(γSh([S1, U1]), [{[σ2]}, U2])) �Sh matchSh([S1, U1], αSh([{[σ2]}, U2])).

So, we only need to prove that

matchSh([S1, U1], αSh([{[σ2]}, U2])) �Sh αSh(matchPs(γSh([S1, U1]), [{[σ2]}, U2])).

Assume, without loss of generality, that σ2 is a canonical representative of [σ2]U2

and rng(σ2) ∩U1 = ∅. Take B ∈ S , where [S,U1 ∪U2] = matchSh([S1, U1], [S2, U2]),

with [S2, U2] = αSh([{[σ2]}, U2]). We have three cases:
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• If B ∈ S ′1, then B ∈ S1 and B ⊆ U1 \ U2. Let δ = {x/v | x ∈ B} ∪ {x/a |
x ∈ vars(σ2(U1 \ B))} and σ1 = (δ ◦ σ2)|U1

, where v is a fresh variable.

It follows that dom(σ1) = U1 and rng(σ1) = {v} with occ(σ1, v) = B;

therefore [σ1, U1] �Ps γSh([S1, U1]). Clearly σ1 �U1∩U2
σ2, since U1 ∩ U2 ⊆

U1 \ B. Let σ = mgu(σ1, σ2). Since B ∩ dom(σ2) = ∅ and v is a fresh

variable, it follows that occ(σ, v) = B, and thus B ∈ αSh(matchPs(γSh([S1, U1]),

[{[σ2]}, U2])).

• If B ∈ S ′2, there exists v ∈ V such that occ(σ2, v) ∩ U2 = B. Let X =

vars(σ2(U1))) and take δ = {x/a | x ∈ X}. Then σ1 = (δ ◦ σ2)|U1
is such that

occ(σ1, v) ∩ U1 = ∅ for each v ∈ V; therefore σ1 ∈ γSh([S1, U1]). Moreover

mgu(σ2, σ1) ∈ matchPs(γSh([S1, U1]), [{[σ2]}, U2]). By the proof of Theorem

D.1, equation (D1), we have mgu(σ1, σ2) = δ ◦ σ2. Since B ∩ U1 = ∅, v /∈
X = vars(δ), and therefore occ(δ ◦ σ2, v) ∩ U2 = occ(σ2, v) ∩ U2 = B. Hence

B ∈ αSh(matchPs(γSh([S1, U1]), [{[σ2]}, U2])).

• We now assume B = X1 ∪
⋃
X with X ⊆ S ′′2 , X1 ∈ S ′′1 ,

⋃
X ∩ U1 = X1 ∩ U2.

Then, for each H ∈ X, there exists vH ∈ V such that occ(σ2, vH ) ∩ U2 = H .

Since H ∩ U1 = ∅ for each H ∈ X, vH ∈ Y = vars(σ2(U1)). Consider the

substitution

δ = {vH/v | H ∈ X} � {w/a | w ∈ Y , ∀H ∈ X.w = vH}

for a fresh variable v and

σ1 = (δ ◦ σ2)|U1
� {x/v | x ∈ X1 \U2}.

We want to prove [{[σ1]}, U1] ∈ γSh([S1, U1]). By the definition of σ1 we have

that occ(σ1, v) ∩ U1 = (occ(σ2, {vH | H ∈ X}) ∩ U1) ∪ X1 \ U2 = (
⋃
X ∩ U1) ∪

X1 \ U2 = X1 ∈ S1. Otherwise, for w = v we have that either occ(σ1, w) = ∅
when w ∈ U1 or occ(σ1, w) = occ(σ2, w), which is disjoint from U1. In both

cases, occ(σ1, w) ∩ U1 = ∅ ∈ S1. By the definition of σ1, [mgu(σ1, σ2)] ∈
matchPs(γSh([S1, U1]), [{[σ2]}, U2]). Moreover, we know from (D 1) that

mgu(σ2, σ1) = δ ◦ σ2 � {x/v | x ∈ X1 \U2}.

Let σ = mgu(σ1, σ2). Note that occ(σ, v) ∩ (U1 ∪U2) = X1 \U2 ∪ occ(σ2, {vH |
H ∈ X})∩U2. By the definition of vH , occ(σ2, vH )∩U2 = H; hence occ(σ, v)∩
(U1 ∪U2) = (X1 \U2) ∪

⋃
X = X1 ∪

⋃
X = B.

This proves the theorem. �

Theorem D.3

(Optimality of matchSh)

matchSh is optimal.
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Proof

Given [S1, U1], [S2, U2] ∈ Sharing, we have

αSh(matchPs(γSh([S1, U1]), γSh([S2, U2])))

= αSh(�Ps{matchPs(γSh([S1, U1]), [{[σ]}, U2]) | αSh([σ]U2
) �Sh [S2, U2]})

(since matchPs is additive)

= �Sh{matchSh([S1, U1], [X,U2]) | X = αSh([σ]U2
) �Sh [S2, U2]}

(by completeness of �Sh and Theorem D.2)

= matchSh([S1, U1],�Sh{[X,U2] | X = αSh([σ]U2
) �Sh [S2, U2]})

(since matchSh is additive).

Since αSh defines a Galois insertion, it is surjective, and therefore �Sh{[X,U2] | X =

αSh([σ]U2
) �Sh [S2, U2]} = [S2, U2], and we obtain

αSh(matchPs(γSh([S1, U1]), γSh([S2, U2]))) = matchSh([S1, U1], [S2, U2]),

which concludes the proof. �

Theorem D.4

(Strong optimality of unifSh)

Given [S1, U1] ∈ Sharing and θ ∈ ISubst , there exists a substitution δ ∈ ISubst such

that αSh([δ]U1
) �Sh [S1, U1] and

αSh(unifPs([{[δ]}, U1], θ)) = unifSh([S1, U1], θ).

Proof

The optimality result proved in Theorem 6.16 shows that there exists [Θ1, U1] �Ps

γSh([S1, U1]) such that αSh(unifPs([Θ1, U1], θ)) = unifSh([S1, U1], δ). We need a stronger

result that proves that Θ1 can be chosen as a singleton.

Assume unifSh([S1, U1], θ) = [S,U1 ∪ U2], where U2 = vars(θ) \ U1 and S =

{X1, . . . , Xn}. Following the construction in Appendix C, for each Xi let us define

Xi
1, X

i
2, K

i, Ki
1, W

i, six, s
′i
x, U as in the proof of optimality for unifSh. We choose

Wi,Wj such that Wi ∩Wj = ∅ if i = j, and we denote by wi
B the elements of Wi.

For each y ∈ vars(θ(U1)) ∩ (∪1�i�nX
i), we choose a variable xy ∈ U1 such that

y ∈ θ(xy). Then, we define the substitution δ in the following way: for each variables

x ∈ U1, δ(x) is the same as θ(x), with the exception that each occurrence (y, j) of a

variable y ∈ θ(x) is replaced by tx,y,j = t(t1x,y,j , . . . , t
n
x,y,j), where

• tix,y,j = a if y /∈ Xi;

• tix,y,j = six otherwise, if x = xy and j = 1;

• tix,y,j = s′ix otherwise.

By construction dom(δ) = U1 and rng(δ) =
⋃

1�i�n W
i. It is easy to check that

αSh([{δ}, U1]) = [
⋃

1�i�n K
i
1, U1] �Sh [S1, U1]. Using the properties of the equation

https://doi.org/10.1017/S1471068409990111 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068409990111


686 G. Amato and F. Scozzari

sets we can prove that

mgu(δ, θ)

= mgu({v = tx,v,j | x ∈ U1, (v, j) is an occurrence of v in θ(x)}) ◦ θ
= mgu(E) ◦ ρ ◦ θ,

where

ρ = {v/txv ,v,1 | v ∈ vars(θ(U1))},
E = {tixv ,v,1 = tix′ ,v,j | i ∈ {1, . . . , n}, v ∈ Xi, x′ ∈ U1,

(v, j) is an occurrence of v in θ(x′)}.

Now, each Ei = {tixv ,v,1 = tix′ ,v,j | x′ ∈ U1, (v, j) is an occurrence of v in θ(x′), and v ∈
Xi} is the same equation that appears in (C 1) for X = Xi. Therefore, for each

i ∈ {1, . . . , n} such that Wi = ∅, we choose a single wi ∈ Wi and define ηi with

dom(ηi) = Wi \ {wi} and ηi(wi
B) = wi for each wi

B ∈ Wi. If Wi = ∅, we choose

ηi = ε. We know from the proof of Lemma C.5 that ηi = mgu(Ei), and mgu(E) =

η =
⊎

1�i�n η
i, since vars(Ei) ∩ vars(Ej) = ∅ for i = j. Therefore

mgu(δ, θ) = η ◦ ρ ◦ θ.

We now want to prove that αSh([η ◦ ρ ◦ θ]U1∪U2
) �Ps [{Xi}, U1 ∪ U2] for each

i ∈ {1, . . . , n}. If Xi
1 = ∅, then Wi = ∅, and we have occ(η◦ρ◦θ, wi) = occ(ηi◦ρ◦θ, wi).

Following the proof of Lemma C.5 with X = Xi, we have that occ(η◦ρ◦θ, wi)∩U =

Xi. When Xi
1 = ∅, we may choose vi ∈ θ(Xi

2). In this case, occ(η ◦ ρ ◦ θ, vi) ∩ U =

occ(θ, vi) ∩U = Xi as proved in Proposition C.6. �

As for Proposition C.6, in the proof of this theorem we assume that we have term

symbols for each arity. However, it is possible to rewrite terms so that a constant

symbol and a binary term symbol suffice.

Theorem D.5

Ub
Sh is correct and optimal w.r.t. Ub

Ps.

Proof

Correctness immediately follows by the fact that Ub
Ps is obtained by tupling and

composition of correct semantic functions.

By using Theorems D.2 and D.4, it is possible to prove that

matchSh([S1, U1], unifSh([S2, U2], θ))

= αSh(matchPs(γSh([S1, U1]), unifSh(γSh([S2, U2]), θ)));

i.e., that the composition of matchSh and unifSh, as used in Ub
Sh, is optimal.

Assume given [S1, U1] and [S2, U2] ∈ Psub and θ ∈ ISubst . Consider [{[σ]}, U2] ∈
γSh([S2, U2]) obtained by Lemma D.4 such that unifPs([{[σ]}, U2]), θ) = [{[δ]}, U2 ∪
vars(θ)] and αSh([{[δ]}, U2 ∪ vars(θ)]) = unifSh([S2, U2], θ). Then, we have

matchSh([S1, U1], unifSh([S2, U2], θ))

= matchSh([S1, U1], αSh(unifPs([{[σ]}, U2], θ)))

= αSh(matchPs(γSh([S1, U1]), unifPs([{[σ]}, U2], θ)))
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by Theorem D.2, so that in general

matchSh([S1, U1], unifSh([S2, U2], θ)) �Sh

αSh(matchPs(γSh([S1, U1]), unifPs(γSh([S2, U2]), θ))).

The proof that Ub
Ps is optimal follows from this result, completeness of πSh, and

γ-completeness of ρ. �
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