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Abstract. Typically a magnetohydrodynamical model for neutral plasmas must
take into account both the ionic and the electron fluids and their interaction.
However, at short time scales, the ionic fluid appears to be stationary compared
to the electron fluid. On these scales, we need consider only the electron motion
and associated field dynamics, and a single fluid model called the electron mag-
netohydrodynamical model which treats the ionic fluid as a uniform neutralizing
background applies. Using Maxwell’s equations, the vorticity of the electron fluid
and the magnetic field can be combined to give a generalized vorticity field, and one
can show that Euler’s equations govern its behavior. When the vorticity is concen-
trated into slender, periodic, and nearly parallel (but slightly three-dimensional)
filaments, one can also show that Euler’s equations simplify into a Hamiltonian
system and treat the system in statistical equilibrium, where the filaments act as
interacting particles. In this paper, we show that, under amean-field approximation,
as the number of filaments becomes infinite (with appropriate scaling to keep the
vorticity constant) and given that angular momentum is conserved, the statistical
length scale, R, of this system in the Gibbs canonical ensemble follows an explicit
formula, which we derive. This formula shows how the most critical statistic of an
electron plasma of this type, its size, varies with angular momentum, kinetic energy,
and filament elasticity (a measure of the interior structure of each filament) and in
particular it shows how three-dimensional effects cause significant increases in the
system size from a perfectly parallel, two-dimensional, one-component Coulomb
gas.

1. Introduction
Plasma confinement is critical to magnetic nuclear fusion. Given a neutral plasma
in a strongly confining magnetic field, columns of electrons and ions align, and the
plasma behaves as a two-dimensional (2D) fluid. However, one of the great obstacles
to confinement comes from the increasing impact of three-dimensional (3D) effects,
defects in the alignment of columns due to fluctuations, as the plasma is further
confined (Figures 1 and 2). 2D models are insufficient to deal with this problem
and, in statistical equilibrium, fail to accurately predict the length scale of dense
plasmas in the unbounded plane under conservation of angular momentum.
Because of its mathematical simplicity and apparent applicability to highly

aligned magnetically confined plasmas (and other Euler fluids), 2D fluid models
such as Onsager’s point vortex gas [1] have dominated the statistical equilibrium
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Figure 1. Shown here in top-down projection are nearly parallel vortex filaments, at low
density and high strength of interaction, well ordered into a 2D triangular lattice known
as the Abrikosov lattice from type-II superconductors [24]. This figure (taken from a single
Monte Carlo sample) shows how the quasi-2D model is essentially a 2D model for these
parameters.

approach to plasmas and other fluids for decades. The literature on the point vortex
gas and its relatives is quite extensive. Seminal papers such as Onsager’s and Joyce
and Montgomery [2] and Edwards and Taylor [3] describe negative-temperature
states in fluids and guiding center plasmas (where temperature is virtual, treating
vortices as if they were molecules rather than collections of them). Mathematical
rigor has been applied in the form of existence proofs for the asymptotic mean-field
approach to this 2D problem in Caglioti et al. [4], Kiessling [5], and Kiessling and
Spohn [6]. (For a more complete overview, see Lim [7] and Lim and Nebus [8].) 2D
models work well for plasmas that are not well confined (sparse), but they ignore
the internal entropy of the filaments – their ‘unwillingness’ to remain aligned even
under strong confinement. This entropy creates 3D effects that become noticeable
when the confining field brings filaments close together.
Theoretical derivations for 3D fluids are difficult and tend to focus on single

columns [9, 10, 11, 12]. In 1995, Uby et al. [13] described the dynamics of the
combined magnetic and vorticity field (known as a generalized vorticity field)
of a single filament of electrons in a neutral plasma using the short time scale
electron magnetohydrodynamical (EMH) model. Earlier, Kinney et al. [14] had
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Figure 2. Nearly parallel vortex filaments are nearly parallel to the z axis in an asymptotic
sense that their deviation from straightness is a small parameter. They are infinite in length
but have a period L. Here there are 50 filaments.

used this same model to describe the interaction of a system of perfectly parallel
(2D) filaments of generalized vorticity (an alternative to the guiding center 2D
approach to plasmas but mathematically equivalent), suggesting that the two
approaches could be combined into a system of interacting, slightly 3D, nearly
parallel filaments of generalized vorticity such as Klein et al. [15] have done for
Navier–Stokes fluids. At the same time, several authors including Weinan [16]
have considered the dynamics of vorticity in the context of superconductivity and
superfluids.
This nearly parallel electron vorticity model provides a platform from which

to investigate the relatively unknown impact of 3D effects on large-scale, short-
duration structures in confined plasmas.
The EMH model is a simplification of the two-fluid magnetohydrodynamical

model. As time intervals become small, the ionic fluid appears stationary and its
behavior can be treated as a neutralizing background. In this model, the mag-
netic field, B = ∇ × A, and the charged fluid vorticity, ω = ∇ × v, combine
into a general vorticity field, Ω = ∇ × p, where the generalized momentum p =
mv − eA; m is the electron mass, −e is the electron charge, v is the fluid velocity
field, and A is the magnetic vector potential field. For a brief overview of the
model, see Uby et al. [13]. A detailed model discussion can be found in Gordeev
et al. [17].
In the case of dense turbulent plasmas, a statistical approach is preferable to

direct numerical PDE (Partial Differential Equation) simulations because of the
large number of dimensions (in the thousands). Given that we assume that the
generalized vorticity field takes the form of nearly parallel slender filaments with
appropriate asymptotic constraints (described below), the EMH model describes a
Hamiltonian system. Even though the model is for short time scales, this Hamilto-
nian system can be studied in a statistical equilibrium ensemble with the caveat
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that the macroscopic coherent structures self-organize over a relaxation time scale
that is short compared to the dissipation time scale.
For an analogous example, consider the large vortex that forms from initially

swirling tea in a cup – a case of freely decaying quasi-2D turbulence [18]. While this
vorticity does not last long, it can be properly treated as the statistical equilibrium
result [19], where the time scale for the inverse cascade of energy to large spatial
scales is much shorter than the Ekman dissipation time scale. Moreover, over short
durations energy dissipation in the interior of the flow can be ignored because the
viscous dissipation time scale is much longer than the Ekman dissipation time scale.
Of course, without energy dissipation, either in the interior of the flow or in the
Ekman boundary layers, the tea would swirl forever. A more rigorous approach is
discussed in [20], where it is shown that systems not in thermal equilibrium and
irreversible systems can often undergo symmetry-breaking phase transitions and
self-organize like their counterparts in equilibrium.
The same is true for confined plasmas, and we are particularly interested in short-

duration structures and how they interfere with attaining sufficient confinement
for fusion. What remains is to choose an appropriate statistical model.
Two statistical equilibrium ensembles are applicable to this problem: (1) the

canonical in which we assume that the system is not in isolation and that energy
can be exchanged with an exterior medium and (2) the microcanonical where the
system is isolated and energy and angular momentum are absolutely conserved. The
microcanonical ensemble would model a plasma experiencing no outside influence.
In a tokamak, this would imply that the magnetic confinement is shut off. The
canonical ensemble describes the case where energy is allowed to pass between the
plasma and the magnetic field (effectively an infinite reservoir). In a previous paper
we considered the microcanonical ensemble [21]. Here we address the problem of
when there is an energy/angular momentum exchange medium surrounding the
system, i.e. the canonical ensemble.
Because of the difficulty in calculating partition functions (and thus solving the

ensemble exactly), we focus on calculating an individual moment. The primary
moment for any system that is translation invariant and on the unbounded plane
is the second moment, essentially size. The size of the system gives us the most
intuitive idea of how the system is behaving and, for confined plasmas, it gives us a
good idea of how easy it is to squeeze the plasma magnetically. Lim and Assad [22]
have calculated the second moment of the canonical guiding center plasma, giving
an explicit formula for low temperature in the mean-field limit. The formula for
the nearly parallel system in the same limit (if it exists in explicit form) has never
been calculated.
In this paper, we calculate a novel explicit formula for the size (second moment)

of the system of nearly parallel generalized vorticity filaments with conserved
angular momentum. This formula comes from a free energy minimization derived
from the Gibbs canonical ensemble using the rigorous mean-field theory of Lions
and Majda [23]. We validate this formula with path-integral Monte Carlo (PIMC)
simulations. Our formula and Monte Carlo results agree well and both indicate
that 3D effects become significant at a particular density. We show that at high
densities point vortices and nearly parallel vortex filaments have qualitatively
different behavior. While the size of the point vortex plasma collapses with in-
creasing temperature [22], nearly parallel filaments, which at low density behave
exactly like point vortices, reverse their collapse, causing expansion (Sec. 6). We
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hypothesize that this reversal arises from the additional entropy of the system
present in individual filaments.

2. Background
2.1. Equations of motion

We derive the standard EMH equations of motion in the manner of Uby et al. [13].
For an electron fluid (neglecting collisions with the neutralizing background),

m

[
∂v
∂t

]
=

−∇P

n
− e(E+ v× B), (1)

where m and −e are the electron mass and charge; v, n, and P are electron fluid
velocity, number density, and pressure. When electron displacement current is
neglected, Ampère’s law for the magnetic field gives

∇ × B = −μ0env, (2)

and Faraday’s law determines the electric field E.
Given that the pressure is a function of number density and the fluid is incom-

pressible, taking the curl of (1),

∂Ω
∂t

= ∇ × (v×Ω), (3)

where Ω = ∇ × p is generalized vorticity and p = mv− eA generalized momentum.
Combining (2) with the frozen-field equation, (3), we have

Ω = −e[B+ ∇ × (λ2∇ × B)], (4)

where λ = c/ωpe is the penetration depth. The electron plasma frequency is ω2
pe =

ne2/mε0 .
For a homogeneous plasma,

Ω = B− λ2∇2B, (5)

where the magnetic field and generalized vorticity have been scaled: −eB/m → B
and Ω/m → Ω. Equation (2) becomes v = λ2∇ × B and along with (3) and (5)
describes the motion of the electron fluid.
Equation (3) has the same form as the vorticity equation for ordinary fluids

from which Lions and Majda [23] derived the nonlinear Schrödinger PDE and
Hamiltonian equations for the system of nearly parallel filaments in this paper.
The stability of vortices with respect to short-wave perturbations is shown in

Ivonin [25].

2.2. Gibbs canonical ensemble

In formal notation, a canonical Gibbs’ measure has that if a state s has energy Es

and angular momentum Ms , then the probability of s is

P (Es, Is) ∝ e−βEs −μMs , (6)

where β and μ are constants. Since
∑

s P (Es,Ms) = 1,P (Es,Ms) = Z−1e−βEs −μMs ,
where Z =

∑
s e−βEs −μMs [19]. Alternatively, we can let p = μ/β be constant (for

plasmas, the Larmor frequency) and enthalpy be Hs = Es + pMs , in which case we
have an ensemble in a single conserved quantity: P (Hs) = Z−1 exp(−βHs).
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For historical reasons β is known as inverse ‘temperature’ although it is not
directly related to its molecular equivalent because the ‘molecules’ here are vortices.
The multiplier μ reflects the relationship between the angular momentum and the
energy and μ/β is the Larmor frequency (ωLarmor) [22] and can be thought of as a
‘pressure’ term defining how squeezed the system is. Because β has units of inverse
energy and μ has units of frequency over energy and μ/β has units of inverse time
or frequency.
There is little in the literature to say what β is or how to measure it, although it

does have a well-defined meaning. The temperature of a microcanonical system is
well defined as 1/Tmc = dS(E,N)/dE, the rate of increase of entropy with energy
where the microcanonical entropy S(E,N) is given by the natural logarithm of the
microcanonical partition function Zmc(E,N). One way to calculate the canonical
inverse temperature β is to invoke a large-deviation result that holds even in the case
that the Gibbs (canonical) measure is weakly inequivalent to the microcanonical
ensemble, that is, the Gibbs measure or canonical partition function Zc(β,N) is
overwhelmingly concentrated at the most-probable macrostate, for which the rela-
tionship β = dS(E,N)/dE holds. In this case, the definitions of temperature in the
canonical and microcanonical formulations are in agreement, even though the two
ensembles are not strictly equivalent – for example, this weak inequivalence allows
the specific heat in the microcanonical ensemble to take on negative values whilst
its canonical counterpart must be positive. This extends to weakly inequivalent
ensembles; the standard inverse procedure for determining canonical temperature
as a function of the fixed energy level E in the microcanonical ensemble is through
the relationship 〈E〉c(T (E)) = E, where the subscript c denotes the canonical
average.
In the EMH model, β is precisely related to the kinetic energies associated with

the macroscopic motions (flows) and magnetic fields in the plasma, and thus to the
total generalized vorticity,

∫
d3xΩ(x, y, z).

2.3. Length scale for point vortex equilibrium statistics

The low-temperature (asymptotic as β → ∞) statistics of strictly 2D point vortices,
guiding center plasmas, and 2D EMH generalized vorticity in the unbounded plane
with angular momentum conserved are well understood [7]. The point vortex gas
model has the energy functional

E2D
N = −

∑
j>i

λiλj log |Ψi − Ψj |2 , (7)

where λi and λj are the circulation constants for point vortices i and j and Ψi and
Ψj are their positions in the complex plane. This Hamiltonian derives from the 2D
Euler equations in vorticity form given that ω, the field, has the form

ω(Ψ) = −
∑

j

λj δ(Ψ − Ψj ),

where Ψ is a position in the complex plane [19].
In their paper, Lim and Assad [22] showed variationally that the mean-square

vortex position (variance) for 2D point vortices,

R2
2D =

〈
N−1

∑
i

|Ψi |2
〉

, (8)

https://doi.org/10.1017/S0022377809008137 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377809008137


A length-scale formula for confined quasi-2D plasmas 443

has a formula as N → ∞. If Ω =
∑

i λi is the total circulation and we let λi = Ω/N ,
then taking the limit on the Gibbs canonical ensemble, we have the non-dimensional
variance,

R2
2D =

Ωβ

4μ
. (9)

InMonte Carlo simulations of an ensemble of 1000 point vortices, Assad and Lim [26]
showed that the distribution of vortices is almost uniform and axisymmetric, mean-
ing that the probability distribution of vortices is nearly a perfect cylinder, sug-
gesting that R2

2D is the only valuable statistic.

3. The nearly parallel vortex filament model
We define nearly parallel vortex filaments as in [15].
Nearly parallel vortex filaments are C2([0, L]) curves that we can represent with

a complex parametrizationΨi(τ), whereΨi(τ) = xi(τ)+iyi(τ) and τ ∈ [0, L). They
have a special asymptotic form. Given that L ∈ O(1), if we take any two values of
τ , τ0 , and τ1 such that τ0 < τ1 , and let Δτ = τ1 − τ0 such that Δτ ∈ O(ε), where
ε � 1, then for any filament i, the amplitude |Ψi(τ1) − Ψi(τ0)| ∈ O(ε2). In words
this means that, for a small rise of length ε in the filament, the amplitude must be
on the order of ε2 . This assumption guarantees a certain degree of straightness in
the filament that allows for the derivation of the quasi-2D equations of motion. The
other asymptotic assumption is of the vortex core size, h, which has the property
h � ε. In this model we assume that the vortices have no cross section, i.e. the
vorticity field, ω, has the form

ω =
∑

i

δ(Ψ(τ) − Ψi(τ)), (10)

where Ψ(τ) = x(τ)+ iy(τ) corresponds to the 3D Cartesian position (x(τ), y(τ), τ).
Combining the energy functionals of Kinney et al. [14] and Uby et al. [13], we

have

EN = α

∫ L

0
dτ

N∑
i=1

1
2

∣∣∣∣∂Ψi(τ)
∂τ

∣∣∣∣
2

−
∫ L

0
dτ

N∑
i=1

N∑
j>i

log |Ψi(τ) − Ψj (τ)|, (11)

where α is the core-elasticity constant in units of energy/length and results from
an asymptotic matching procedure [11,13]. This functional resembles the 2D point
vortex energy in that the interaction is logarithmic in the plane. For two filaments
i and j, only points in the same plane, the same value of τ , interact. Two points at
different values of τ only interact if they are both on the same filament. The first
term is a local self-induction term that causes the filaments to bend. The additional
conserved quantity, angular momentum, is given by

MN =
∑

i

∫ L

0
dτ |Ψi(τ)|2 , (12)

with the assumption that the magnetic field B is uniform and axisymmetric,
centered around the central axis. The angular momentum is not generalized, how-
ever, because, as is well known, an external magnetic field cannot influence equi-
librium statistics. Therefore, MN is only angular momentum and contains none of
the magnetic moment.
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Lions and Majda [23] introduced a broken-segment model in Sec. 2.2, Equa-
tion (2.20) of their paper. For each i,Ψi(τ) is piecewise linear withM segments. Each
vertex or ‘bead’ is at a multiple of ε = L/M . Therefore, we define ψi(k) = Ψi((k −
1)ε), and the curve for filament i is given by the vector Ψi = (ψi(1), . . . , ψi(M)).
With this representation, we rewrite the conserved quantities

EN (M) = α
N∑

i=1

M∑
k=1

1
2

|ψi(k + 1) − ψi(k)|2
ε

−
N∑

i=1

N∑
j>i

M∑
k=1

ε log |ψi(k) − ψj (k)|,

(13)

MN (M) =
N∑

i=1

M∑
k=1

ε|ψi(k)|2 . (14)

The Gibbs probability measure for a state s = (Ψ1 , . . . ,ΨN ) is then

P (s) = Z−1 exp(−βEN (M) − μMN (M)), (15)

where the partition function has the form

ZN (M) =
∫

CM N

dΨ1 · · · dΨN exp(−βEN (M) − μMN (M)). (16)

Note that a careful choice of parameters β, μ, etc. causes any non-nearly-parallel
states to have such large energies that their probabilities are negligible. For such
parameter ranges, we can assume that the Gibbs canonical model is physical. Our
Monte Carlo simulation naturally rejects states with non-nearly-parallel lines.
We note that while it is possible to simulate the system with Monte Carlo it is

not possible to solve explicitly for ZN for any given value of M . In their paper,
Lions and Majda [23] go on to derive a nonlinear Schrödinger equation that can
give approximate values for P (s). Their PDE captures a great deal of the statistics,
but they do not provide any explicit formula for the length scale R, which is our
goal. We refer the reader to their paper to learn more about their derivation and
the model.

4. Free energy theory
4.1. Free energy of most-probable macrostate

Given a functional for the free energy for a system, F , it is possible to solve for
the statistics of the most-probable macrostate by minimizing F with respect to
the desired statistic. In our case the statistic is defined as the mean-square vortex
position for a given number of filaments N ,

R2 =
〈

(LN)−1
N∑

i=1

∫ L

0
dτ |Ψi(τ)|2

〉
, (17)

where Ψi(τ) = xi(τ) + iyi(τ) is a complex number representing the 2D position of
filament i at z = τ and the average 〈∗〉 is with respect to the 3D Gibbs probability
measure in Ψi , PN = Z−1

N

∫
dΨ1 · · · dΨN exp(−βEN − μMN ), where EN is defined

by (11) and MN by (12).
In our system we write the free energy as follows:

FN = 〈EN 〉 +
μ

β
〈MN 〉 − 1

β
SN , (18)
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where SN is the entropy and 〈EN 〉+(μ/β)〈MN 〉 is the total enthalpy. Temperature
T = 1/β.
The function ZN can be considered a sum over microstates, si , or it can be an

average over a set of macrostates, σj . Equation (16) is a sum over microstates.
Alternatively, the partition function is given by the formula

ZN =
∑

j

exp(−βEN [σj ] − μMN [σj ])P [σj ], (19)

where EN is the energy, MN is the angular momentum, and P is the probability
for macrostate σj .
Since SN [σj ] = log P [σj ], using (18), we can say that

ZN =
∑

j

exp(−βEN [σj ] − μMN [σj ] + S[σj ])

=
∑

j

exp(−βFN [σj ]). (20)

Because of conservation laws, we assume in physics that the most-probable macro-
state or energy state, j = m, has a probability so much larger than the probabilities
of all other macrostates that sum contributions from other macrostates can be
neglected and

ZN = exp(−βFN [σm]). (21)

Therefore, we have an equation for the free energy,

FN = − 1
β

log ZN . (22)

Even though this free energy is only the free energy of the most-probable macro-
state, it can be considered the system’s free energy.
As mentioned in Sec. 3, we cannot solve for ZN . We need to approximate it to

derive the free energy functional. One way to do this is with a mean-field theory.

4.2. Mean-field theory

In Lions and Majda [23], they developed a mean-field PDE that describes the prob-
ability distribution of the filaments in top-down projection. One of the solutions
to that PDE is a uniform distribution which is exact in the limit as β → ∞ (low
temperature) and N → ∞, given appropriate scaling of other parameters to avoid
a blow up of the energy functional. The uniform distribution is over a cylinder of
radius 2R and height L. It causes the interaction energy and angular momentum to
become constants and imposes a ‘spherical constraint’ on the integral. We include
this constraint as a microcanonical or exact constraint into the partition function,

Z ′
N (M) =

{∫
dΨ e(−βE (M )−μM R2 )δ

(
R2 −

M∑
k=1

M−1 |ψ(k)|2
)}N

, (23)

where

E(M) = α

M∑
k=1

1
2

|ψi(k + 1) − ψi(k)|2
ε

− N

/
4

M∑
k=1

ε log R2 . (24)
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Note that the sum over N has become a power because the iterated integrals have
separated into a product of integrals with the disappearance of the interdepend-
ences in the interaction term.
This constraint eliminates fluctuations in interaction energy and angular mo-

mentum (as the limit in β of themean-field theory implies), leaving only fluctuations
in local self-induction energy. This elimination provides the best opportunity for
comparison with the 2D length-scale work of [22] that also eliminates these two
types of fluctuation.

4.3. Spherical model solution

Equation (23) is a multidimensional Gaussian integral with a spherical constraint
– so called because it forces the vector Ψ to stay on the (M − 1)-sphere of radius√

MR. To evaluate it we turn to the spherical model of [27]. The spherical model
was first used in fluid mechanics in an energy–entropy theory for transitions to
super-rotation in barotropic flows coupled to massive rotating spheres [8].
The spherical model comprises a number of steps for evaluating integrals of the

form (23), beginning by putting the Dirac delta function into integral form and
ending with a steepest descent evaluation of the integral over Ψ.
In integral (Fourier) form the Dirac delta reads

δ

(
MR2 −

M∑
k=1

|ψ(k)|2
)

=
∫ ∞

−∞

dσ

2π
exp

[
−iσ

(
MR2 −

M∑
k=1

|ψ(k)|2
)]

, (25)

and allows us to combine the function in the exponent in (23) with the exponent of
the spherical constraint. (Whereas before σ was used as a symbol for a macrostate,
here it is an integration variable.)

4.4. Free energy derivation for R

Now we can determine the free energy functional, which ought to be minimal under
the constraints of the system, via steepest descent. Determining the free energy as
a function of the particular statistic, R, is more useful than having an equation for
the partition function itself because we can determine R by minimizing the free
energy with respect to it and then solving for R.
Given the partition function defined in (23) and the free energy in (18), asM,N →

∞, the value for R2 , defined in (17), for the minimal free energy is

R2 =
β′2α′ +

√
β′4α′2 + 32α′β′μ

8α′β′μ
, (26)

where α′ = α/N and β′ = βN are scaled non-extensively. The proof of this result
is given in Appendix A, and we drop primes henceforth.
The resulting expression for the square length scale R2 is useful for comparison

with the length-scale result of Lim and Assad [22] because, if we take the limit

lim
α→∞

β2α +
√

β4α2 + 32αβμ

8αβμ
=

β

4μ
, (27)

we get back the 2D point vortex result for the length scale, which shows that our
formula and the Lim and Assad [22] formula agree for perfectly straight filaments.
However, for finite α the two formulae show a significant difference. The 2D

formula is linear in β; our formula is nonlinear. In fact, for decreasing β, the sign
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Figure 3. The bisection algorithm works by bisecting the filament to sample point positions.
First the center point is selected, then the two points half-way from the center to the end
points, then four more points, eight, and so on until some maximum number of points are
sampled. These are snapshots of one filament at different steps in the sampling process.

of the slope of our formula changes at β = β0 , where

β3
0 =

4μ

α
. (28)

That the system collapses and then starts to expand as ‘temperature’, 1/β, increases
indicates a significant departure from the strictly 2D where the system size only
collapses. In Sec. 6, we show that Monte Carlo Simulations confirm this result and
that the straightness assumptions of the model hold through much of the expansion
phase.

5. Monte Carlo
Path-integral Monte Carlo Simulations methods emerged from the path-integral
formulation invented by Dirac that Richard Feynman later expanded [28], in
which particles are conceived to follow all paths through space. One of Feynman’s
great contributions to the quantum many-body problem was the mapping of path
integrals onto a classical system of interacting ‘polymers’ [29]. Ceperley used Feyn-
man’s convenient piecewise-linear formulation to develop his PIMC method which
he successfully applied to He-4, generating the well-known lambda transition for
the first time in a microscopic particle simulation [30]. Because it describes a system
of interacting polymers, the PIMC method applies to classical systems that have a
‘polymer’-type description like nearly parallel vortex filaments.
The PIMC method has several advantages. It is a continuum Monte Carlo al-

gorithm, relying on no spatial lattice. Only time (length in the z direction in the
case of vortex filaments) is discretized, and the algorithm makes no assumptions
about types of phase transitions or trial wavefunctions.
The Monte Carlo simulation begins with a random distribution of filament end

points in a square of side 10, and there are two possible moves that the algorithm
chooses at random.

(a) It moves a filament’s end points, ψi(1) and ψi(M + 1). The index i is chosen at
random, and filament i’s end points are moved a uniform random distance.

(b) It keeps end points stationary and, following the bisection method of Ceperley
(Fig. 3), grows a new internal configuration for a randomly chosen filament [30].
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In each case, the energy of the new state, s′, is calculated and retained with
probability

A(s → s′) = min{1, exp(−β[Es ′

N (M) − Es
N (M)] − μ[Ms ′

N (M) − Ms
N (M)])}, (29)

where s is the previous state. This effectively samples states from the Gibbs prob-
ability distribution in (15).
Our stopping criterion is graphical in that we ensure that the cumulative arith-

metic mean of the energy,

Ek
cum = k−1

k∑
i=1

EN (si) +
μ

β
MN (si), (30)

where si refers to the state resulting from the ith move and k is the current move
index, settles to a constant. The energy is almost guaranteed to settle in the case
of the Gibbs’ measure because of the tendency for the system to select a particular
energy state (mean energy) and remain close to that state. Typically, we run for
1 million moves (accepted plus rejected) or 50 000 sweeps for 20 vortices. Afterwards,
we collect data from about 200 000 moves (1000 sweeps) to generate statistical
information.

6. Results
6.1. Comparison

We simulated a collection of N = 20 vortices each with a piecewise-linear repres-
entation withM = 1024 segments and ran the system to equilibration, determined
by the settling of the mean and variance of the total energy. We ran the system for
20 logarithmically spaced values of β between 0.001 and 1 plus two points, 10 and
100. We set α = 107 (enforcing straightness), μ = 2000, and L = 10. Decreasing β
simulates an increase in temperature, 1/β. Units are arbitrary, with those chosen
for α and β (e.g. ergs per centimeter and inverse ergs) determining those of R
(e.g. centimeters) or vice versa. We calculate two arithmetic averages: the mean
square vortex position,

R2
MC = (MN)−1

N∑
i=1

M∑
k=1

|ψi(k)|2 , (31)

and the mean square amplitude per segment,

a2 = (MN)−1
N∑

i=1

M∑
k=1

|ψi(k) − ψi(k + 1)|2 , (32)

where ψi(M + 1) = ψi(1).
Measures of the Monte Carlo R2

MC, (31), correspond well to the 3D R2 , (26), in
Fig. 4, whereas the strictly 2D R2

2D, (9), continues to decline when the others curve
up with decreasing β values, suggesting that the 3D effects are not only real in the
Monte Carlo simulation but that the mean field is a good approximation with these
parameters.
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Figure 4. The mean square vortex position, defined in (31), compared with (26) and (9) shows
how 3D effects come into play around β = 0.16. That, in the 2D formula, R2

2D continues
to decrease while the Monte Carlo and the quasi-2D radii curve upwards with decreasing
β suggests that the internal variations of the vortex lines have a significant effect on the
probability distribution of vortices.

6.2. Straightness holds

In order to be considered straight enough, we need

a �
L

M
=

10
1024

∼ 0.0098. (33)

Straightness holds for all β values, shown in Fig. 5. These conditions hold on
average. We ignore extreme low-probability cases as not contributing significantly
to the statistics. Because of these straightness constraints, coupled with filaments
having no attractive interactions, hairpins (kinks or, in quantum terminology,
instantons) do not occur.
Aside from straightness constraints, the reader might question whether allowing

vortex filaments to entangle violates the model’s assumptions. While this is a
valid concern, it is not an assumption of the model. Since this fluid is almost-
everywhere inviscid, it contains asymptotically small regions of non-zero viscosity
and, while a totally inviscid fluid cannot allow vortices to change topology (cross
over each other) from state to state, an almost-everywhere inviscid fluid allows
vortex reconnections and crossovers to occur due to microscopic viscous effects.
Therefore, in our simulations vortices are allowed to cross one another. We are not
claiming to model vortex reconnection, which is a mysterious process, but only the
before and after effects of it.
Concerning the question of how vortices can cross one another and still remain

nearly parallel, we point to the extremely high density (tiny value of R2), which
allows even the straightest filaments to entangle.
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Figure 5. This figure shows the mean slope per segment, ε/a, where ε ∼ 0.0098 and a is given
by (32), and that straightness holds for all β values. The point at which R2 begins to increase
with decreasing β (Fig. 4) has a mean slope of 35 and, even at the smallest β = 10−3 , the
segments have an average angle of 82◦ with respect to the complex plane.

7. Conclusion
The decreasing-β, R-expansion suggests that, by adding degrees of freedom to the
2D model to make it a quasi-2D model, we add a mechanism for the vortices to
resist confinement through entropic effects. As β decreases past the transition, the
system’s R2 goes from being the result of interaction-versus-angular momentum
competition to an entropy-versus-angular momentum competition. In the 2D sys-
tem this third-dimension entropy is not there. Although there is another kind of
entropy in the 2D model that will slow the compression as β → 0 to a constant
value, it is not enough to cause an increase in the system size. In the 3D system,
the degrees of freedom are exponentially greater, which causes the expansion seen
in Fig. 4.
The explicit formula for the length scale provides a way to quickly explore the

parameter space of the statistical system and find areas of interest for a more in-
depth study, and to determine hard to measure parameters, such as α and β, from
the system size, R. The periodic geometry we are using applies to very large tori as
well as columns. Therefore, these results can apply to a tokamak as well as stellar
atmospheres. The expansion of the system shows that tight confinement of plasma
columns is much more difficult when 3D effects are taken into account than a
2D system implies. However, non-uniformities in the distribution of filaments may
allow tighter confinement towards the core than in the periphery of the system.
Such a possibility has been suggested by Kiessling and Neukirch [31] and in our
earlier paper on the microcanonical ensemble [21]. Therefore, further research on
the density distribution is called for.
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Appendix A. Proof of formula for R2

The theorem follows from a steepest descent argument. In employing steepest
descent, we need to start with an integral of the form

∫
dx e−M F [x]. Then, if

F [x0 ] < F [x] for all x �= x0 , i.e. its minimum value is at x0 ,

lim
M →∞

M−1 log
(∫

dx e−M F [x]
)

= F [x0 ].

This works because, as M increases, the distribution that e−M F [x] represents be-
comes narrower and focuses on x0 until the distribution has zero value at all
other x.
Let us assume that N is large and take the limit over M first. We can pull the

constant terms out of the integral of Z ′
N (M) over Ψ. Because F is positive definite,

under Fubini’s theorem we may switch the integrals to obtain

Z ′
N (M) = eN 2 βL/4 log R2 −μN LR2

∫ ∞

−∞

dσ

2π

∫
dΨ e−N F ′[iσ ], (A 1)

where

F ′[iσ] = αβ

M∑
k=1

1
2

|ψ(k + 1) − ψ(k)|2
ε

+ iσ

( M∑
k=1

|ψ(k)|2 − MR2
)

(A 2)

is the part of the free energy still dependent on Ψ.
The interior integral needs evaluation. Let s = iσ and define a new partition

function

Z ′(M) =
∫ i∞

−i∞

ds

2π

∫
dΨ e−F ′[s], (A 3)

be that interior. Let us put F ′ in matrix form:

F ′[s] = −sMR2 + KΨ†AΨ + sΨ†Ψ, (A 4)

where K = αβ/ε and the M × M matrix A has the form

Ai,i = 1,

Ai,i+1 = Ai+1,i = A1,M = AM,1 = −1
2
,

Ai,j = 0, other i, j.

The integral in (A 3) is Gaussian. We can evaluate it, knowing the eigenvalues
of the matrix A. These eigenvalues have the form λi = 1 − cos(2π(i − 1)/M) (not
related to the previous use of λi as strength of vorticity) [23,27], and so

Z ′(M) =
∫ i∞

−i∞

ds

2π
esM R2

πM
∏

i

1
s + Kλi

. (A 5)
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We need to put Z ′(M) back into the correct form for steepest descent. Following
the example of Berlin and Kac, let s = K(η − 1); then

Z ′(M) =
∫ i∞

−i∞

dη

2π
KπM (η − 1)−1e−M log(K )eM f [η ], (A 6)

where

f [η] = KR2(η − 1) − M−1
M∑
i=2

log(η − cos(2π(i − 1)/M)) (A 7)

and η � 1.
We leave the i = 1 term out of the sum in f [η] so that we can evaluate f further

by taking the limit on the second term,

lim
M →∞

M−1
M∑
i=2

log(η − cos(2π(i − 1)/M)) =
1
2π

∫ 2π

0
dω log(η − cos(ω)),

which gives

f [η] = KR2(η − 1) − 1
2π

∫ 2π

0
dω log(η − cos(ω))

= KR2(η − 1) − log(η + (η2 − 1)1/2). (A 8)

To apply steepest descent, we determine the saddle point η = η0 where f [η] has its
minimum value, f [η0 ]. Taking the derivative and setting it equal to zero,

∂f

∂η
= KR2 − 1√

η2 − 1
= 0, (A 9)

implying that

η0 =

√
1

(KR2)2 + 1. (A 10)

Having evaluated f , we can give an equation for the original free energy. Letting
Nβ → β′ and α/N → α′,

F [η0 ] = −β′L/4 log R2 + μLR2 + M log(K) − Mf [η0 ], (A 11)

and evaluate it as M → ∞. We will drop primes on β and α in the following.
The term in the limit M log(K) does not depend on R2 , and it is an unnecessary

component representing the entropy of the broken filaments in the non-interacting
case, and we drop it. Now we fill in the expressions for η0 and K as defined
above:

lim
M →∞

Mf[η0 ]

= lim
M →∞

KR2(η0 − 1) − M log(η0 + (η2
0 − 1)1/2)

= lim
M →∞

MKR2
(√

1
(KR2)2

+ 1 − 1
)

− M log
(√

1
(KR2)2

+ 1 +
1
KR2

)
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= lim
M →∞

M
αβM

L
R2

(√
1

((αβM/L)R2)2 + 1 − 1
)

− M log
(√

1
((αβM/L)R2)2 + 1 +

1
(αβM/L)R2

)
, (A 12)

which, because it is an energy for a filament, ought to be finite. The first term is
the energy of the filament, Efil, and the second, the entropy, Sfil, and each by itself
is finite, so we take each limit separately:
(i) the energy:

Efil = lim
M →∞

M
αβM

L
R2

(√
L2

(αβMR2)2 + 1 − 1
)

=
L

2αβR2 . (A 13)

(ii) the entropy:

Sfil = lim
M →∞

M log
(√

1
((αβM/L)R2)2 + 1 +

1
(αβM/L)R2

)
=

L

αβR2 . (A 14)

These two results imply that

lim
M →∞

Mf [η0 ] = − L

2αβR2

and

F [η0 ] = LμR2 − βL/4 log R2 +
L

2αβR2 . (A 15)

We minimize with respect to R2 ,

∂F

∂R2 = Lμ − βL

4R2 − L

2αβR4 = 0, (A 16)

and solve for R2 ,

R2 =
β/4 ±

√
(β/4)2 + 4μ(1/2αβ)

2μ

=
β2α +

√
β4α2 + 32αβμ

8αβμ
, (A 17)

where we take the ‘plus’ solution as giving physical results.
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