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Abstract

We introduce a large and flexible class of discrete tempered stable distributions, and
analyze the domains of attraction for both this class and the related class of positive
tempered stable distributions. Our results suggest that these are natural models for sums
of independent and identically distributed random variables with tempered heavy tails,
i.e. tails that appear to be heavy up to a point, but ultimately decay faster.
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1. Introduction

Stable distributions play a central role in many applications. However, their use is limited by
the fact that they have an infinite variance, which is not realistic for most real-world applications.
This has led to the development of tempered stable distributions, which is a class of models
obtained by modifying the tails of stable distributions to make them lighter, while leaving
their central portions, essentially, unchanged. Perhaps the earliest models of this type are
Tweedie distributions, which were introduced in the seminal paper of Tweedie [35]. A more
general approach, allowing for a wide variety of tail behavior, was given in Rosiński [28]. That
approach was further generalized in several directions in [4], [12], and [29]. A survey, along
with a historical overview and many references can be found in [13]. We will focus on the class
of positive tempered stable (PTS) distributions. This class is important for many applications
including actuarial science [16], biostatistics [26], mathematical finance [36], and computer
science [6].

In a different direction, stable distributions have been modified to deal with over-dispersion
when modelling count data. Specifically, the class of discrete stable distributions was introduced
by Steutel and van Harn [32]; see also [9], [22], [23], and [33]. As with continuous stable
distributions, these models have an infinite variance, which has led to the development of a
tempered modification. In particular, Hougaard [18] introduced a class of models that has
come to be known as Poisson–Tweedie. The name comes from the fact that these can be
represented as a Poisson process subordinated by a Tweedie distribution. Many results along
with applications to a variety of areas including economics, biostatistics, bibliometrics, and
ecology can be found in, e.g. [1], [3], [10], [19], [20], [37], and the references therein.

In this paper we introduce a large class of discrete tempered stable (DTS) distributions, which
generalize the class of Poisson–Tweedie models. We then prove limit theorems for PTS and
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DTS distributions, which can be thought of as characterizing their domains of attraction. Just as
generalizations of the central limit theorem explain how stable and discrete stable distributions
approximate sums of independent and identically distributed (i.i.d.) random variables with
heavy tails, in our theorems we aim to provide a theoretical justification for the use of PTS and
DTS models in approximating sums of i.i.d. random variables with tempered heavy tails, i.e.
tails that appear to be heavy up to a point, but have been modified to, ultimately, decay faster.
For a discussion of how such models occur in practice, see [6] and [15]. Related limit theorems
for Poisson–Tweedie distributions can be found in [20]. In the continuous case, similar results
for Tweedie distributions were studied in [14] and, from a different perspective, convergence
of certain random walks to tempered stable distributions were studied in [7].

Before proceeding we introduce some notation. We write N = {1, 2, . . . }, Z+ = N ∪ {0},
R+ = [0,∞), and we write B(R+) to denote the Borel sets on R+. For a probability measure μ

with support contained in R+, we write μ̂(z) = ∫
R+ e−zxμ(dx) to denote its Laplace transform

and X ∼ μ to denote that X is a random variable with distribution μ. For a function f : R+ �→
R+ and β ∈ R, we write f ∈ RVβ to denote that f is regularly varying with index β, i.e. that

lim
t→∞

f (xt)

f (t)
= xβ for any x > 0.

We write 1A to denote the indicator function on set A, for x > 0 we write �(x) = ∫∞
0 e−t tx−1 dt

to denote the gamma function, and we write ‘
P−→’, ‘

d−→’, ‘
w−→’, and ‘

d=’ to denote, respectively,
convergence in probability, convergence in distribution, weak convergence, and equality in dist-
ribution. For c ∈ [−∞,∞], we write f (t) ∼ g(t) as t → c to denote limt→c f (x)/g(x) = 1.

2. Positive stable and PTS distributions

In this section we formally introduce positive stable and PTS distributions. We begin by
recalling some basic facts about positive infinitely divisible distributions. An infinitely divisible
distribution μ, with support contained in R+, has a Laplace transform of the form

μ̂(z) = exp

{
−bz−

∫
(0,∞)

(1− e−zx)M(dx)

}
, z ≥ 0,

where b ≥ 0 and M is a Borel measure on (0,∞) satisfying
∫

(0,∞)

(x ∧ 1)M(dx) <∞. (1)

Here, b is called the drift and M is called the Lévy measure. These parameters uniquely
determine the distribution and we write μ = ID+(M, b). For a general reference on infinitely
divisible distributions, see [30].

A probability measure μ on R+ is said to be strictly α-stable if, for any n ∈ N and

X1, X2, . . . , Xn
i.i.d.∼ μ, we have

X1
d= n−1/α(X1 +X2 + · · · +Xn). (2)

By positivity, we necessarily have α ∈ (0, 1]. If α ∈ (0, 1) then μ = ID+(Mα, 0), where

Mα(dx) = ηx−1−α 1{x>0} dx for some η ≥ 0.
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If α = 1 then μ = ID+(0, η) for some η ≥ 0, and, thus, μ is a point mass at η. For α ∈ (0, 1),

the Laplace transform is of the form

μ̂(z) = exp

(
−η

�(1− α)

α
zα

)
, z ≥ 0.

We denote this distribution by PSα(η). Note that PSα(0) is a point mass at 0 for all α ∈ (0, 1).
For more about stable distributions on R+, see [33].

It is well known that, for α ∈ (0, 1), stable distributions have an infinite mean, which is
not realistic for many applications. This has lead to the development of distributions that look
stable-like in some large central region, but with lighter tails. Following [29], we define PTS
distributions as follows.

Definition 1. A distribution μ = ID+(M, b) is called a PTS distribution if b ≥ 0 and

M(dx) = ηq(x)x−1−α 1{x>0} dx,

where α ∈ (0, 1), η ≥ 0, and q : R+ �→ R+ is a bounded, nonnegative, Borel function
satisfying

lim
x↓0

q(x) = 1, (3)

and ∫ ∞
0

(1 ∧ x)q(x)x−1−α dx <∞. (4)

We call q the tempering function and we write μ = PTSα(q, η, b). When b = 0, we write
PTSα(q, η) = PTSα(q, η, 0).

Remark 1. In the definition, we require (3) for concreteness. In principle, it can be replaced
by the condition limx↓0 q(x) = c ∈ (0,∞). However, in this case, we can reparametrize by
incorporating c into η. On the other hand, if we allow the limit to equal 0 or∞, then we would
lose any relation to the original stable distribution. The requirement that α < 1 follows from
the fact that, under (3), these are the only possible values for which (4) can hold.

We are motivated by the case where the tempering function q satisfies the additional condition
that limx→∞ q(x) = 0. In this case, PTSα(q, η) is similar to PSα(η) in some central region,
but with lighter tails. In this sense, q ‘tempers’ the tails of the stable distribution. Despite
this motivation, none of our results require this additional condition. We now provide several
examples of tempering functions, others can be found in, e.g. [13] and [34].

Example 1. (i) When q ≡ 1, there is no tempering and PTSα(q, η) = PSα(η).

(ii) When q(x) = e−ax for some a > 0, we have the class of Tweedie distributions, which
were introduced in [35]. When α = 0.5, these correspond to inverse Gaussian distributions;
see, e.g. [31].

(iii) When q(x) = 1{0≤x<a} for some a > 0, we call this truncation. Such distributions are
important for certain limit theorems; see [8].

3. Discrete stable and DTS distributions

A discrete analogue of stable distributions was introduced in [32]. Here (2) is modified to
ensure that the right-hand side remains an integer. Specifically, [32] introduced the so-called
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‘thinning’ operation ‘◦’, which is defined as follows. If γ ∈ (0, 1] and X is a random variable
with support contained in Z+, then γ ◦X is a random variable with distribution

γ ◦X
d=

X∑
i=1

εi,

where ε1, ε2, . . . are i.i.d. random variables independent of X having a Bernoulli distribution
with P(εi = 1) = 1 − P(εi = 0) = γ . Here and throughout, we set

∑0
i=1εi = 0. Note that,

if P(s) is the probability generating function (PGF) of X, i.e. P(s) = E[sX], then the PGF of
γ ◦X is P(1− γ + γ s).

For α ∈ (0, 1], a distribution μ on Z+ is called discrete α-stable if, for any n ∈ N, we have

X1
d= n−1/α ◦ (X1 +X2 + · · · +Xn), (5)

where X1, X2, . . .
i.i.d.∼ μ. The class of discrete 1-stable distributions coincides with the class of

Poisson distributions. For α ∈ (0, 1), the PGF of a discrete stable distribution is of the form
∫

Z+
sxμ(dx) = exp

(
−η

�(1− α)

α
(1− s)α

)
, |s| ≤ 1,

where η ≥ 0 is a parameter. We denote this distribution by DSα(η). A useful representation of
discrete stable distributions is given in Theorem 6.7 of [33, p. 371]. It is as follows.

Proposition 1. Fix α ∈ (0, 1) and η ≥ 0. If {Nt : t ≥ 0} is a Poisson process with rate 1 and
T ∼ PSα(η) is independent of this process, then NT ∼ DSα(η).

By analogy, we define DTS distributions as follows.

Definition 2. Fix α ∈ (0, 1) and η ≥ 0. Let T ∼ PTSα(q, η) and let {Nt : t ≥ 0} be a Poisson
process with rate 1 independent of T . The distribution of NT is called a DTS distribution.
We denote this distribution by DTSα(q, η).

By a simple conditioning argument, the PGF of DTSα(q, η) is, for s ∈ (0, 1],

E[sNT ] = E[e−(1−s)T ] = exp

{
−η

∫
(0,∞)

(1− e−(1−s)x)q(x)x−1−α dx

}
. (6)

Remark 2. There are two simple ways to generalize Definition 2. The first is to allow the rate
of the Poisson process to be r > 0 not necessarily 1. However, in this case, the distribution
of NT is DTSα(qr , r

αη), where qr(x) = q(x/r). The second is to allow T ∼ PTSα(q, η, b)

with b > 0. In this case, the distribution of NT is the convolution of DTSα(q, η) and a Poisson
distribution with mean b.

We can consider the same tempering functions as for PTS distributions. This leads to the
following examples.

Example 2. (i) When q ≡ 1, we have DTSα(q, η) = DSα(η).

(ii) When q(x) = e−ax for a > 0, the corresponding distributions are Poisson–Tweedie. When
α = 0.5, these correspond to Poisson inverse Gaussian distributions, which were introduced
in [17].

(iii) When q(x) = 1{0≤x<a} for a > 0, we are in the case of truncation.
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We conclude this section by showing that we can approximate certain rescaled versions of
DTS distributions by PTS distributions. The idea is motivated by [22], where similar results
for certain generalizations of discrete stable distributions were presented. Let q be a tempering
function. For any a > 0, define Xa ∼ DTSα(q1/a, a

−αη), where q1/a(x) = q(ax). Since Xa

is defined on Z+, aXa is defined on aZ+ = {0, a, 2a, . . . }.
Proposition 2. We have

aXa
d−→ PTSα(q, η) as a ↓ 0.

Proof. From (6), it follows that the Laplace transform of aXa is given, for z ≥ 0, by

E[e−zaXa ] = exp

{
−a−αη

∫
(0,∞)

(1− e−(1−e−za)x)q(ax)x−1−α dx

}

= exp

{
−η

∫
(0,∞)

(
1− exp

(
− (1− e−za)

a
x

))
q(x)x−1−α dx

}

→ exp

{
−η

∫
(0,∞)

(1− e−zx)q(x)x−1−α dx

}
as a ↓ 0.

Here the convergence follows by the facts that (1− e−za)/a→ z,

(
1− exp

(
− (1− e−za)

a
x

))
≤ 1 ∧ (1− e−za)x

a
≤ 1 ∧ (zx) ≤ (z+ 1)(1 ∧ x),

and dominated convergence. �

4. Main results

Let μ be a probability measure on R+ such that, for t > 0,

μ({x : x > t}) = t−αL(t) for some α ∈ (0, 1) and L ∈ RV0.

Let

V (t) = tα

L(t)
and at = 1

V←(t)
,

where V←(t) = inf{s : V (s) > t} is the generalized inverse of V satisfying

V (V←(t)) ∼ V←(V (t)) ∼ t as t →∞;
see [5]. Note that at ∈ RV−1/α and, thus, an → 0 as n → ∞. The following lemma is well
known, but, for completeness, its proof is given in Section 6.

Lemma 1. If X1, X2, . . .
i.i.d.∼ μ then

an

n∑
i=1

Xi
d−→ PSα(α).

We now consider the effect of tempering on this result. Let q be a tempering function and,
for � > 0, define

q�(x) = q

(
x

�

)
and μ�(dx) = c�q�(x)μ(dx),
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where

c� =
[∫
[0,∞)

q�(x)μ(dx)

]−1

is a normalizing constant. Note that, as � → ∞, we have c� → 1 and μ�
w−→ μ. Thus, for

large �, μ� is close to μ in some central region, but, if limx→∞ q�(x) = 0 then it has lighter
tails. In this sense, we interpret μ� as a tempered version of μ.

Example 3. (i) When q ≡ 1, there is no tempering and μ� = μ for each � > 0.

(ii) When q(x) = e−ax for some a > 0, we have q�(x) = e−ax/�. Thus, μ� is an Esscher
transform of μ.

(iii) When q(x) = 1{0≤x<a} for some a > 0, we have q�(x) = 1{0≤x<a�}. Thus, μ� is μ

truncated at a�. This means that if X ∼ μ then μ� is the conditional distribution of X given
the event [X < a�].

Examples 3(ii) and 3(iii) lead to different modifications of μ which, for large values of �,
are similar to μ in some central portion, but have lighter tails. We now state our main result for
convergence to PTS distributions. It characterizes the corresponding domain of attraction.

Theorem 1. Let {�n} be a sequence of positive numbers with �n → ∞, let Xn1, Xn2, . . . ,

Xnn
i.i.d.∼ μ�n for each n ∈ N, and let D be the set of discontinuities of q. Assume that the

Lebesgue measure of D is 0. If an�n→ c ∈ (0,∞) then

an

n∑
i=1

Xni
P−→ PTSα(qc, α),

where qc(x) = q(x/c) for x ≥ 0. If an�n→∞ then

an

n∑
i=1

Xni
P−→ PSα(β) (7)

with β = α. If an�n→ 0 and limx→∞ q(x) = ζ <∞, then (7) holds with β = αζ .

Proof. The proof can be found in Section 6. �
Remark 3. For most applications, the parameter � is not actually approaching∞. Instead, it is
some fixed but (very) large constant. Since at ∈ RV−1/α , we can write an� = [n−1�α]1/αL′(n)

for some L′ ∈ RV0. Now, consider the sum of n i.i.d. random variables from μ�, and assume
that the tempering function q is such that μ� has a finite variance. Theorem 1 can be interpreted
as follows. When n is of the order of �α , the distribution of the sum is close to PTSα(qc, α).
However, once n is much larger than �α , the central limit theorem will take effect and the
distribution of the sum will be well approximated by the Gaussian. A constant that determines
when such regimes occur is called the ‘natural scale’ in [15]. Thus, in this case, the natural
scale is �α . Using slightly different perspectives, this was previously found to be the natural
scale for Tweedie distributions in [14] and [15]. In particular, the result of [15] is based on the
so-called pre-limit theorem, which was first introduced in [24].

The following transfer lemma allows us to transfer convergence results from the case of
multiplicative scaling to that of scaling using the thinning operation ‘◦’. It is an extension of a
remark in [32].
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Lemma 2. Let {Xn} be a sequence of random variables on Z+ and assume that {γn} is a
deterministic sequence in (0, 1] with γn→ 0. If γnXn

d−→ X for some random variable X then

γn ◦Xn
d−→ NX,

where {Nt : t ≥ 0} is a Poisson process with rate 1 and independent of X.

Proof. This is a special case of Lemma 4, which is given below. �
Combining this with Lemma 1 provides the following lemma.

Lemma 3. Assume that the support of μ is contained in Z+. If X1, X2, . . .
i.i.d.∼ μ then

an ◦
n∑

i=1

Xi
d−→ DSα(α).

Now combining Theorem 1 with Lemma 2, we have our main result for convergence to DTS
distributions. It characterizes the corresponding domain of attraction.

Theorem 2. Assume that the support of μ is contained in Z+. Let {�n} be a sequence of positive
numbers with �n →∞, let Xn1, Xn2, . . . , Xnn

i.i.d.∼ μ�n for each n ∈ N, and let D be the set of
discontinuities of q. Assume that the Lebesgue measure of D is 0. If an�n→ c ∈ (0,∞) then

an ◦
n∑

i=1

Xni
P−→ DTSα(qc, α),

where qc(x) = q(x/c) for x ≥ 0. If an�n→∞ then

an ◦
n∑

i=1

Xni
P−→ DSα(β) (8)

with β = α. If an�n→ 0 and limx→∞ q(x) = ζ <∞, then (8) holds with β = αζ .

5. Generalization

In this section we extend our results to a more general framework. Let P = {μθ : θ ∈ �}
be a parametric family of nonnegative random variables. If X is a random variable on Z+ and
θ ∈ �, then we define θ ◦P X to be a random variable with distribution

θ ◦P X
d=

X∑
i=1

εi,θ ,

where ε1,θ , ε2,θ , . . .
i.i.d.∼ μθ are independent of X. By a conditioning argument, it is not difficult

to show that the Laplace transform of θ ◦P X is given by

LX(− log μ̂θ (z)) for z ≥ 0, (9)

where LX is the Laplace transform of X. Now assume that � ⊂ (0,∞) and there is a sequence
{θn} in � with θn → 0 as n → ∞. We write θ → 0 to mean convergence along any such
subsequence. Assume further that there is an infinitely divisible distribution μ with support
contained in R+ such that

lim
θ→0

log(μ̂θ (z))

θ
→ log(μ̂(z)) for z ≥ 0.
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Note that the operator ‘◦’ corresponds to the case where � = (0, 1], μ̂θ (s) = (1− θ + θe−z),

and μ̂(x) = ee−z−1.

Definition 3. Fix α ∈ (0, 1), η ≥ 0, and let Z = {Zt : t ≥ 0} be a Lévy process, where
Z1 ∼ μ. If T1 ∼ PSα(η) is independent of Z then the distribution of ZT1 is denoted by SP

α (η).
Similarly, if T2 ∼ PTSα(q, η) is independent of Z then the distribution of ZT2 is denoted by
TSP

α (q, η).

We now state the main result of this section.

Lemma 4. Let {Xn} be a sequence of random variables on Z+ and assume that {θn} is a
deterministic sequence in � with θn→ 0. If θnXn

d−→ X for some random variable X then

θn ◦P Xn
d−→ ZX,

where {Zt : t ≥ 0} is a Lévy process with Z1 ∼ μ and independent of X.

Proof. The proof can be found in Section 6. �
From here we can immediately obtain analogues of Lemma 3 andTheorem 2 for this situation,

i.e. in those results we can replace the operator ‘◦’ with ‘◦P ’ and the distributions DSα(η) and
DTSα(q, η) with SP

α (η) and TSP
α (q, η), respectively. Note that, if X1, X2, . . .

i.i.d.∼ SP
α (η) then

n−1/α ◦P (X1 +X2 + · · · +Xn)
d−→ X1 as n→∞.

However, the distributions SP
α (η) do not, in general, satisfy a stability relation of the form (5).

For such a relation to hold, we must place stronger assumptions of the parametric family P .
Several interesting examples, where such assumptions hold, are discussed in [23].

Remark 4. If μθ is infinitely divisible for every θ ∈ � then we can extend the operation ‘◦P ’
to every nonnegative random variable X. Specifically, we let θ ◦P X be a random variable
with distribution having Laplace transform as in (9). In this case, the result of Lemma 4 still
holds. However, if μθ is not infinitely divisible then we can always find a nonnegative random
variable X for which (9) does not define a valid Laplace transform. A simple example is to let
P(X = t) = 1 for any t > 0 for which [μ̂θ (z)]t is not a valid Laplace transform.

6. Proofs

The proofs of Lemma 1 and Theorem 1 are based on verifying conditions for the convergence
of sums of a triangular array. The general theory can be found in, e.g. [21] or [25]. However,
when all random variables are positive, the conditions can be simplified. In this case, they can
be stated as follows.

Proposition 3. Let kn be a sequence of positive integers with kn→∞, letM be a Borel measure
on (0,∞) satisfying (1), and let {Xnm : n = 1, 2, . . . , m = 1, 2, . . . , kn} be nonnegative
random variables such that, for every n, the random variables Xn1, Xn2, . . . , Xnkn are i.i.d.
and Xn1

P−→ 0 as n→∞. If, for every s > 0 with M({s}) = 0, we have

lim
n→∞ knP(Xn1 > s) = M((s,∞)) (10)

and
lim
ε↓0

lim sup
n→∞

knE[Xn1 1{Xn1<ε}] = 0, (11)
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then
kn∑

m=1

Xnm
d−→ ID+(M, 0).

Proof. Let νn be the distribution ofXn1, let ν = ID+(M, 0), and let ν̂n(u) = ∫
R+ e−uxνn(dx)

and ν̂(u) = ∫
R+ e−uxν(dx) be the Laplace transforms of νn and ν, respectively. The Laplace

transform of the distribution of
∑kn

m=1 Xnm is [ν̂n(u)]kn . We need to show that

lim
n→∞[ν̂n(u)]kn = ν̂(u), u ≥ 0.

We will write the left-hand side in a simpler form. Specifically, we have

lim
n→∞[ν̂n(u)]kn = lim

n→∞ exp{kn log[ν̂n(u)]}
= lim

n→∞ exp{kn[ν̂n(u)− 1]}

= lim
n→∞ exp

(
−kn

∫
[0,∞)

(1− e−ux)νn(dx)

)
,

where the second equality follows from the facts that log(x) ∼ (x − 1) as x → 1 and
limn→∞ ν̂n(u) = 1 for each u ≥ 0 since Xn1

P−→ 0 as n→∞.
Since, for fixed u, fu(x) = (1 − e−ux) is a bounded and continuous function of x, by the

Portmanteau theorem for vague convergence (see Theorem 1 of [2]), (10) implies that, for any
ε > 0,

lim
n→∞ kn

∫
[ε,∞)

(1− e−ux)νn(dx) =
∫
[ε,∞)

(1− e−ux)M(dx).

By (11) and well-known facts about the exponential function, we have

0 ≤ lim
ε↓0

lim inf
n→∞ kn

∫
[0,ε)

(1− e−ux)νn(dx)

≤ lim
ε↓0

lim sup
n→∞

kn

∫
[0,ε)

(1− e−ux)νn(dx)

≤ lim
ε↓0

lim sup
n→∞

ukn

∫
[0,ε)

xνn(dx)

= 0.

Combining the above with Lebesgue’s dominated convergence theorem yields

lim inf
n→∞ kn

∫
[0,∞)

(1− e−ux)νn(dx)

= lim
ε↓0

lim inf
n→∞ kn

∫
[0,ε)

(1− e−ux)νn(dx)+ lim
ε↓0

lim inf
n→∞ kn

∫
[ε,∞)

(1− e−ux)νn(dx)

= lim
ε↓0

∫
[ε,∞)

(1− e−ux)M(dx)

=
∫

(0,∞)

(1− e−ux)M(dx).
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Similarly, we can repeat the above with lim sup in place of lim inf. Then, combining these
results, we have

lim
n→∞[ν̂n(u)]kn = lim

n→∞ exp

(
−kn

∫
[0,∞)

(1− e−ux)νn(dx)

)

= exp

(
−

∫
(0,∞)

(1− e−ux)M(dx)

)
,

which is the Laplace transform of ID+(M, 0), as required. �
Before proceeding, we define the Borel measures

Mn(A) = n

∫
[0,∞)

1A(anx)μ(dx), A ∈ B(R+),

and

M∞(A) =
∫
[0,∞)

1A(x)αx−α−1dx, A ∈ B(R+).

Note that M∞ is the Lévy measure of the distribution PSα(α).

Lemma 5. The following hold:

lim
n→∞Mn((s,∞)) = M∞((s,∞)), s > 0, lim

ε↓0
lim sup
n→∞

∫
[0,ε)

xMn(dx) = 0.

Proof. We have, for s > 0,

lim
n→∞Mn((s,∞)) = lim

n→∞V (V←(n))μ

((
s

an

,∞
))

= lim
n→∞V

(
1

an

)
1

V (s/an)

= s−α

= M∞((s,∞))

and, recalling that α ∈ (0, 1) yields

lim
ε↓0

lim sup
n→∞

∫
[0,ε)

xMn(dx) = lim
ε↓0

lim sup
n→∞

nan

∫
[0,ε/an)

xμ(dx)

= lim
ε↓0

lim sup
n→∞

V

(
1

an

)
an

∫
[0,ε/an)

xμ(dx)

= lim
ε↓0

lim sup
n→∞

ε−αV

(
ε

an

)
an

∫
[0,ε/an)

xμ(dx)

= lim
ε↓0

ε1−α lim sup
n→∞

∫
[0,ε/an)

xμ(dx)

(ε/an)
∫
(ε/an,∞)

μ(dx)

= lim
ε↓0

ε1−α α

1− α

= 0,

where the first convergence follows by Theorem 2 of [11, p. 283]. �

https://doi.org/10.1017/jpr.2018.3 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.3


40 M. GRABCHAK

Proof of Lemma 1. Since an → 0, Slutsky’s theorem implies that anX1
P−→ 0. From here,

the result follows by combining Lemma 5 with Proposition 3. �

Lemma 6. Let h, h1, h2, . . . be a sequence of Borel functions and let D be a Borel set with
Lebesgue measure 0 such that, for any x ∈ Dc and any sequence of real numbers x1, x2, . . .

with xn→ x, we have hn(xn)→ h(x). Then, for any s > 0,

lim
n→∞

∫
(s,∞)

hn(x)Mn(dx) =
∫

(s,∞)

h(x)M∞(dx).

Proof. Fix s > 0. Let mn = Mn((s,∞)), m∞ = M∞((s,∞)), and define the proba-
bility measures M

(s)
n (dx) = m−1

n 1{x>s}Mn(dx) and M
(s)∞ (dx) = m−1∞ 1{x>s}M∞(dx). From

Lemma 5 and the Portmanteau theorem, it follows that M
(s)
n

w−→ M
(s)∞ . Further, since M

(s)∞
is absolutely continuous with respect to the Lebesgue measure, it follows that M

(s)∞ (D) = 0.
From here, a standard result about weak convergence, see, e.g. Example 32 of [27, p. 58],
implies that

lim
n→∞

∫
(s,∞)

hn(x)M(s)
n (dx) =

∫
(s,∞)

h(x)M(s)∞ (dx).

The result follows by combining this with the fact that mn→ m∞. �

Proof of Theorem 1. The proof is based on verifying that the assumptions of Proposition 3
hold. Toward this end, note that

nP(anX1n > s) = nc�n

∫
(s/an,∞)

q�n(x)μ(dx)

∼ n

∫
(s/an,∞)

q

(
x

�n

)
μ(dx)

=
∫

(s,∞)

q

(
x

an�n

)
Mn(dx).

By Lemma 6, this converges to

∫
(s,∞)

q

(
x

c

)
M∞(dx) = α

∫
(s,∞)

qc(x)x−1−α dx,

where we interpret q(x/c) = 1 if c = ∞ and q(x/c) = ζ if c = 0. Further,

lim
ε↓0

lim sup
n→∞

nE[anX1 1{anX1<ε}] = lim
ε↓0

lim sup
n→∞

nanc�n

∫
[0,ε/an)

xq

(
x

�n

)
μ(dx)

= lim
ε↓0

lim sup
n→∞

nan

∫
[0,ε/an)

xq

(
x

�n

)
μ(dx)

≤ K lim
ε↓0

lim sup
n→∞

∫
[0,ε)

xMn(dx)

= 0,

where the penultimate line follows by Lemma 5 and K is any upper bound on q. �
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Proof of Lemma 4. First note that, by Slutsky’s theorem, for any t > 0,

−Xn log(μ̂θn(z)) = −θnXn

log(μ̂θn(z))

θn

d−→ −X log(μ̂(z)).

Let Ln be the Laplace transform of the distribution of Xn. The Laplace transform of the
distribution of θn ◦P Xn is then Ln(− log(μ̂θn(z)). Since convergence in distribution implies
convergence of Laplace transforms,

lim
n→∞Ln(− log(μ̂θn(z)) = lim

n→∞E[exp(Xn log(μ̂θn(z)))] = E[exp(X log(μ̂(z)))].

Observing that

E[e−zZX ] = E[E[e−zZX | X]] = E[(μ̂(z))X] = E[exp(X log(μ̂(z)))]
yields the result. �
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