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Experimental investigations of laminar swirling jets had revealed a new form of vortex
breakdown, named conical vortex breakdown, in addition to the commonly observed
bubble form. The present study explores these breakdown states that develop for the
Maxworthy profile (a model of swirling jets) at inflow, from streamwise-invariant
initial conditions, with direct numerical simulations. For a constant Reynolds number
based on jet radius and a centreline velocity of 200, various flow states were observed
as the inflow profile’s swirl parameter S (scaled centreline radial derivative of
azimuthal velocity) was varied up to 2. At low swirl (S = 1) a helical mode of
azimuthal wavenumber m=−2 (co-winding, counter-rotating mode) was observed. A
‘swelling’ appeared at S= 1.38, and a steady bubble breakdown at S= 1.4. On further
increase to S= 1.5, a helical, self-excited global mode (m=+1, counter-winding and
co-rotating) was observed, originating in the bubble’s wake but with little effect on
the bubble itself – a bubble vortex breakdown with a spiral tail. Local and global
stability analyses revealed this to arise from a linear instability mechanism, distinct
from that for the spiral breakdown which has been studied using Grabowski profile (a
model of wing-tip vortices). At still higher swirl (S= 1.55), a pulsating type of bubble
breakdown occurred, followed by conical breakdown at 1.6. The latter consists of a
large toroidal vortex confined by a radially expanding conical sheet, and a weaker
vortex core downstream. For the highest swirls, the sheet was no longer conical,
but curved away from the axis as a wide-open breakdown. The applicability of two
classical inviscid theories for vortex breakdown – transition to a conjugate state, and
the dominance of negative azimuthal vorticity – was assessed for the conical form.
As required by the former, the flow transitioned from a supercritical to subcritical
state in the vicinity of the stagnation point. The deviations from the predictions of
the latter model were considerable.

Key words: jets, vortex breakdown

1. Introduction

Axially convected swirling flows are known to exhibit abrupt changes in spatial
structure characterized by the development of an internal stagnation point, referred to
as vortex breakdown (Leibovich 1978). Vortex breakdown (VB) has been observed
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or utilized in a variety of situations including flow over delta wings (Mitchell &
Delery 2001), tornadoes (Rotunno 2013), cylinders with rotating end walls (Escudier
1984), swirling flows in tubes (Sarpkaya 1971), turbomachinery (Escudier 1987) and
combustors (Syred & Beer 1974; Lilley 1977). Although VB has been recognized
as an important phenomenon of both fundamental and practical interest, and
studied extensively, a comprehensive understanding and consensus on its underlying
mechanisms seem to be lacking.

Flows where VB is observed include swirling jets. In this study, the phrase ‘swirling
jet’ is used in a restrictive sense, denoting the core region of a swirling round jet
surrounded by non-swirling and negligible coflow. These flows have been investigated
primarily in the turbulent regime, motivated by applications towards swirl-stabilized
combustors (Chigier & Chervinsky 1967; Oberleithner et al. 2011). In contrast, they
remain relatively less explored in the laminar regime, although, as will be elaborated
next, experimental investigations have shown distinct and intriguing aspects of VB
unique to these flows (Billant, Chomaz & Huerre 1998). While systematic numerical
studies of VB in other families of swirling flows exist, a similar investigation on
swirling jets has not been carried out. Scrutiny of various states observed for this
simple flow might aid in enriching our understanding of VB mechanisms. This serves
as motivation for the present numerical investigation of VB in swirling jets.

Prevalent forms of VB that occur in most swirling flows include the bubble (BVB)
and spiral (SVB) forms, although others have also been identified (Faler & Leibovich
1977). In dye visualizations, BVB is characterized by the presence of an approximately
ellipsoidal recirculation zone (bubble) with a size of the order of the vortex core
radius. In most open flows, BVB is generally accompanied by the presence of an
unsteady spiral structure in the bubble’s wake, which has a negligible effect on the
bubble’s structure (see Sarpkaya 1971, figure 5b). This state is referred to here as
‘BVB with a spiral tail’. SVB is identified in experiments when a dye filament injected
along the swirl axis experiences a kink, downstream of which it assumes a spiral
structure (see Sarpkaya 1971, figure 3b). Historically classified as a separate form
of VB, later studies, starting with that of Brücker (1993), indicated that SVB shares
qualitatively similar structural features with BVB implying that SVB might not be a
distinct form of VB.

Billant et al. (1998) carried out a detailed experimental investigation of laminar
swirling jets which included the first identification of a distinctly different form of
breakdown, referred to here as the conical form of VB (CVB). The jet was found
to expand radially downstream of the stagnation point for a considerable distance as
a thin conical sheet with a large opening angle (≈90◦) encompassing an enormous
recirculation zone before eventually converging back. Interestingly, Billant et al.
(1998) further inferred that BVB and CVB are possible bistable states that coexist for
an overlapping range of flow parameters. SVB was not reported in these experiments,
although new asymmetric types of BVB and CVB were observed at higher Reynolds
numbers. Additionally, for lower swirls where VB was not observed (pre-breakdown
swirls), the swirling jet was found to destabilize due to helical modes of azimuthal
wavenumber two or three.

Dye visualizations and the parameter ranges of existence of CVB were documented
in Billant et al. (1998), while axial velocity and azimuthal vorticity fields for a
single case were reported in Gallaire, Rott & Chomaz (2004). Experiments on the
effect of buoyancy on swirling jets due to imposed temperature differences between
jet and ambient fluid were reported in Mourtazin & Cohen (2007). In addition to
the previously observed BVB and CVB, they identified a ‘wide-open’ cone, where
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the thin sheet spreading conically downstream of the stagnation point was found to
curve away from the swirl axis and, beyond a short radial extent, to expand almost
perpendicularly. For a different flow configuration of coaxial swirling jets, Santhosh
& Basu (2015) reported CVB to occur as an intermediary state between two types of
BVB. CVB has also been observed in axisymmetric numerical simulations of swirling
jets by Fitzgerald, Hourigan & Thompson (2004).

Few other studies seem to have identified CVB, although features resembling this
form can be inferred in some. Interestingly, for swirl burners, overlapping regimes
of flows associated with two different flame types discussed in Syred & Beer (1974,
p. 190) closely resemble bistable states of BVB and CVB. Simulations of isothermal
annular swirling jets by Ogus, Baelmans & Vanierschot (2016) also exhibit these
features, with hysteresis being reported for cone-like and bubble states. However,
the presence of a conically expanding nozzle in such burner configurations has
confounded conclusions based on these results. Gore & Ranz (1964) noted a case
where swirling jets expanded at right angles to their axis at high swirl strengths,
a behaviour similar to the wide-open CVB (§ 4.2.3). For the case of swirling jets
with velocity profiles similar to those employed in the present study, but for higher
Reynolds numbers, Liang & Maxworthy (2005) reported cases of VB where an
approximately conical sheet can be discerned, although it is obscured by the onset of
turbulence in the recirculation region.

Being a form of VB, the conical state can also be used as a means of re-examining
and assessing theories that have been previously proposed towards understanding
physical mechanisms that govern VB. Substantial research has been devoted towards
elucidating these mechanisms by means of diverse standpoints, as outlined in a variety
of reviews (Hall 1972; Leibovich 1978, 1984; Escudier 1988; Althaus, Brücker &
Weimer 1995). Two of these have been assessed in this study and are introduced next.
The wave-propagation approach was initiated by Squire (1960) (see Escudier 1988,
p. 218) who proposed that vortex breakdown might serve as an interphase between
regions of flow that do (subcritical) and do not (supercritical) support infinitesimal
standing waves. This was extended by Benjamin (1962, 1967) as a finite-amplitude
transition to a conjugate state (supercritical to ‘adjacent’ subcritical state) analogous to
hydraulic jumps. Alternatively, Brown & Lopez (1990), using assumptions of steady
axisymmetric inviscid flow, showed that the development of negative azimuthal
vorticity could lead to stagnation point formation along the axis.

The possibility of scrutinizing intricate features of VB non-intrusively has motivated
numerous studies that employ numerical simulations. Kopecky & Torrance (1973) and
Grabowski & Berger (1976) were among the first to simulate BVB assuming steady,
axisymmetric flow. Ruith et al. (2003) carried out an extensive numerical study of VB
using both axisymmetric and three-dimensional simulations employing the same steady
inflow profile as Grabowski & Berger (1976), referred to as the ‘Grabowski profile’,
and were able to observe most features of VB reported in experiments. To examine the
effects of lateral boundary conditions on VB, Ruith, Chen & Meiburg (2004) carried
out simulations for the same inflow profile and additionally, another that modelled
swirling jets, referred to as the ‘Maxworthy profile’. They observed BVB in their
simulations for both profiles, but no CVB. To investigate various flow states reported
in experiments of Billant et al. (1998), the latter profile was chosen for further
scrutiny in this study. While for the Grabowski profile, the azimuthal component of
velocity resembles a Rankine vortex and the axial component is generally chosen
as uniform everywhere at the inflow plane, the Maxworthy profile consists of a
core region of uniform axial vorticity and velocity components surrounded by an
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almost quiescent region, with a shear layer present in between. Comparisons will be
made between the BVB states observed in the present study and that seen for the
Grabowski profile.

The objective of this study was to explore VB in swirling jets by means of
three-dimensional unsteady numerical simulations employing the Maxworthy inflow
profile, which appropriately models such flows. Specifically, detailed flow structure,
dependence on control parameters, instability mechanisms and assessments of two
theories for VB are reported. All simulations, unless otherwise mentioned, were
carried out using a so-called streamwise-invariant ‘columnar’ initial condition.
Hysteresis and bistability aspects of VB in laminar swirling jets have also been
investigated, but will be reported elsewhere for the sake of conciseness. Occasional
references to this study are made where required (see § 4.3).

Section 2 describes details of flow simulations and the stability analysis. Validation
of the numerical solver for swirling flows using previous results is reported in
§ 3, and additionally in appendix C. Next, various long-time states of flow are
distinguished and documented as swirl is varied for columnar initial conditions
in § 4. A helical instability observed in the simulations is further examined using
the tools of stability analysis in § 5. This is followed by an analysis of solutions
from the perspective of theories proposed to explain VB in § 6. Discussions on
concerns regarding employing steady inflow profiles, comparisons with experiments,
pre-breakdown flow characteristics and some additional features of global modes are
in the appendices.

2. Methodology
2.1. Numerical simulations

Numerical simulations were carried out using incompact3d (Laizet & Li 2011),
a scalable, open-source flow solver capable of direct numerical simulations of
incompressible Navier–Stokes equations. Derivative computation and interpolation are
carried out using sixth-order, compact finite difference schemes. Poisson’s equation
for enforcing incompressibility is solved using spectral methods. A third-order
low-storage Runge–Kutta scheme is employed for time stepping. A three-dimensional
Cartesian grid with uniform grid spacing is used with partial staggering i.e. collocated
velocity components stored at cell vertices and pressure at cell centres. A pencil-type
domain decomposition strategy is employed by the solver for MPI parallelization.
Further details can be found in Laizet & Lamballais (2009), Laizet & Li (2011) and
Lamballais, Fortuné & Laizet (2011). All simulations were carried out on SahasraT,
a Cray XC40 system. A typical simulation with a mesh size of 241× 240× 240 and
a dimensionless duration t = 5000 (see § 2.1.1) required around 24 hours when 480
processors were employed.

2.1.1. Inflow profile
The inflow condition is chosen as the Maxworthy profile (Ruith et al. 2004) which

models a swirling jet. This steady profile is dependent on three parameters: swirl
number S, jet-to-coflow axial velocity ratio α and δ, representing the shear layer
thickness. In cylindrical coordinates,

uθ(r)=
Sr
2

(
1− erf

(
r− 1
δ

))
,

ur(r)= 0,

ux(r)= 1−
α − 1

2α

(
1+ erf

(
r− 1
δ

))
.

 (2.1)
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FIGURE 1. (a) Axial and (b) azimuthal velocity components of Maxworthy profile,
modelling a swirling jet: ——, S= 1.5, δ= 0.2, α= 100; - - - -, S= 1.5, δ= 0.3, α= 1000;
— · —, S= 1, δ = 0.1, α = 10.

Here r is the radial distance from the jet axis, and ur, uθ and ux are the radial,
azimuthal and axial components of velocity, respectively. Figure 1 shows radial
profiles ux(r) and uθ(r) for various S, α and δ. The profiles are in a dimensionless
form with all distances and velocities scaled by jet radius and axial centreline
velocity respectively. The Reynolds number Re used in the simulations is based on
these scales.

For small values of δ, S is the slope of the azimuthal velocity at r = 0. Although
more sophisticated definitions of swirl number have been employed previously, this
definition was chosen for convenience. Here, δ was set as 0.2, α = 100 signifying a
coflow strength of 1 %. Reynolds number based on scales used in the profile was fixed
at Re= 200. The model for inflow was inadvertently implemented in the flow solver
such that the jet swirled in the clockwise direction implying that S is negative (2.1).
Without loss of generality, this negative sign has been ignored when reporting values
of S.

Steady inflow conditions have been often used for VB simulations (e.g. Ruith et al.
2003), although their validity is questionable when VB occurs close to the inflow
plane (see discussion in appendix A. Most flow states reported for swirling jets in
Billant et al. (1998) were observed here, strengthening the validity of the qualitative
aspects of simulated states. The experimentally measured inflow profiles in Billant
et al. (1998) differ from the Maxworthy profile due to the use of convergent nozzles.
This and other comparisons with experimental studies are discussed in appendix B.
Incidentally, one of the profiles used by Healey (2008) to study stability characteristics
of swirling jets is the same as that used here when coflow is ignored i.e. α→∞.

2.1.2. Coordinate system, boundary and initial conditions
Solutions of the Navier–Stokes equations were computed in a Cartesian coordinate

framework (x, y, z), where x is the streamwise direction, and y and z are lateral
directions in rectangular domains. Incidentally, the tank used by Billant et al.
(1998) for their experiments was of square cross-section. In this study, two cases of
possibly spurious features involving the generation of helical structures of azimuthal
wavenumber |m| = 4 were observed that might be related to the choice of coordinate
system. The first occurred for pre-breakdown swirls (appendix D), where no VB was
observed, and the other was seen for very high swirls (§ 4.2.3), where the position
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Name Lx × Ly × Lz nx × ny × nz ∆

D20 20× 20× 20 241× 240× 240 1/12
D40 40× 40× 40 481× 480× 480 1/12
D80 40× 80× 80 481× 960× 960 1/12

TABLE 1. Details of various grids used including name, domain dimensions
(Lx × Ly × Lz), number of grid points (nx × ny × nz) and step size (∆) used.

of VB was too close to the inflow plane for reliable results. Neither case is a major
focus of this study. Nevertheless, qualitative features reported in experiments for these
flow states were observed here, implying that these structures do not strongly affect
other aspects of the flow.

A periodic boundary condition is enforced on the lateral boundaries of the Cartesian
grid, primarily for convenience, while the outlet is treated as a convecting outflow
boundary. Periodic lateral boundaries are found to function similar to free-slip
conditions and can introduce confinement effects if the domain dimensions are not
chosen appropriately. Ruith et al. (2004) have shown that for a cylindrical domain,
when free-slip conditions were applied, the flow developed a weak recirculation zone
at the outflow boundary in the coflow region. However, this does not seem to have
affected VB characteristics. Care is taken in the present simulations to extend the
domain along lateral directions when required, such that flow regions of interest
remain qualitatively unaffected by these boundaries. This is discussed in § 2.1.3.

All simulations employ what is referred to here as the ‘columnar’ initial condition,
with the swirling jet inflow profile imposed at all streamwise positions in the domain.

2.1.3. Domain and grid dimensions
In the present study, three grids on domains of different dimensions referred to

as D20, D40 and D80 were used, details of which are listed in table 1. As will
be described in detail in the following sections, three types of BVB and two types
of CVB have been identified as S was varied. Except for the pulsating BVB, D20
was found to be adequate for capturing all qualitative features of BVB including
the stability characteristics of the flow close to criticality. For these cases, the
maximum differences between steady and time-averaged long-time solutions obtained
for different S were approximately 1 %. Thus, all descriptions reported here of these
cases are based on results obtained using D20. For pulsating BVB, although the
pulsating nature of the flow was captured in the simulations on D20, the streamwise
extent was found to be insufficient and only solutions obtained on D40 are reported.
Additionally, D40 was used for cases involving low pre-breakdown swirls, where
helical modes developed at streamwise distances of x ≈ 20. For CVB, the radial
expansion of the jet into a laterally extended conical sheet necessitated further
increase in the lateral dimensions to that of D80. Even this lateral extent of D80
seems to be insufficient in preventing interactions of the flow with boundaries for the
case of the wide-open cone, as will be discussed in § 4.2.3. Further details of studies
on domain effects can be found in Pradeep (2019).

Grid clustering was not employed in the simulations. While clustering can be
advantageous in scrutinizing features of BVB in the bubble region, it does not
offer an advantage in the case of CVB. All simulations except grid convergence
studies employed a uniform grid spacing in all directions of ∆= 1/12. For this grid
resolution, the time step 1t= 0.01.
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2.1.4. Tracer visualization
Routines to track the convection of massless tracer particles for visualizing flow

features were added to the flow solver. Positioned initially at the inflow plane,
updated positions of these tracers, were calculated by the Euler method. Velocity at
the particle positions was calculated using trilinear interpolation. Tracer computations
were initiated after the flow had settled into a sustained long-time state with a set of
particles (one at radial position r= 0 and eight at equiangular positions with r= 0.1)
released from inflow boundary at regular time intervals 1t= 0.5 apart.

2.2. Local and global stability analyses
Instabilities that arise in the simulations for BVB were further examined by means
of local and global stability analyses. The framework of the Wentzel–Kramers–
Brillouin–Jeffreys (WKBJ) approximation for weakly non-parallel flows was utilized
to examine global features from the former. The methodology adopted for the
local analysis follows that in Huerre & Monkewitz (1990) and Chomaz, Huerre &
Redekopp (1991). Details on numerical implementation are elaborated in Manoharan
et al. (2015) and briefly described next. Some additional aspects are also provided in
appendix E.

The base flow quantities, Q(x, r)= [Ux Ur Uθ P]T, in cylindrical coordinates, were
extracted from the corresponding numerical results in the y = 0 plane (Cartesian
system). For cases where the base state is unstable, the ‘selective frequency damping’
approach proposed in Åkervik et al. (2006) was employed to suppress the instability
and achieve steady solutions, details of which are provided in Pradeep (2019). A
Chebyshev expansion was used for all variables and their derivatives and a family of
mappings suggested by Bayliss & Turkel (1992) was chosen to transform the grid
points to cluster near the axis of symmetry (r = 0). Governing equations for linear
perturbations, q′, were derived from the Navier–Stokes equations linearized about
the base flow. Far-field boundary conditions were applied at r = Ly. For the velocity
vector and pressure to be single valued on the jet axis, the azimuthal gradient of
these quantities must vanish as r→ 0, which yields the required boundary conditions
at r= 0. The perturbations were chosen to be of a normal mode form given by

q′(x, r, θ, t)= q̂(r) exp[i(kx+mθ −ωt)], (2.2)

where q′ = [u′x u′r u′θ p′]T, k = kr + iki is the complex axial wavenumber, m is the real
azimuthal wavenumber and ω = ωr + iωi is the complex frequency. The discretized
form of the equations reduces to a generalized eigenvalue problem

Aq̂=ωBq̂. (2.3)

Spatio-temporal analysis was carried out at all streamwise positions, x, to compute
the absolute complex frequency ω0(x) and wavenumber k0(x). For this purpose, a
grid resolution of nr = 90 radial collocation points was found to be sufficient with a
convergence of eigenvalues in the temporal analysis being 1ω ∼ O(10−5) when the
grid was refined to nr = 100. Convergence to saddle points (k0, w0(k0)) satisfying
dω/dk(k0) = 0, using Newton’s method, was carried out to an accuracy of 1ω0 ∼

O(10−5). The leading-order estimate from WKBJ theory of the required linear global
frequency ωg was computed next (Chomaz et al. 1991). Assuming a weakly non-
parallel flow, a WKB parameter, ε, representing the ratio of instability wavelength and
typical length scale of spatial variation, was introduced. A slow-scale variable X= εx
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was defined and ω0(X) was computed for X in the complex space. The saddle point
(dω0/dX= 0) closest to the real axis, X=Xs, was chosen based on contours of ω0,i(X)
in a manner similar to that used for computing ω0(x), yielding ωg.

The global stability analysis was implemented in a fashion similar to that of the
local temporal analysis detailed above. The modal decomposition of perturbations for
this approach is given by,

q′(x, r, θ, t)= q̃(x, r) exp[i(mθ −ωt)], (2.4)

which leads to a form as in (2.3) (e.g. Heaton, Nichols & Schmid 2009). The
eigenvalue problem was solved using the Krylov–Schur solver implemented in the
SLEPc library (Hernandez, Roman & Vidal 2005), employing a shift-and-invert
spectral transformation. A grid resolution of nx = nr = 120 was sufficient for
convergence of the unstable mode to around O(10−5). The numerical code has
also been successfully employed in analysing other flows, as will be reported in
Balakrishna, Mathew & Samanta (2019).

2.3. Conventions regarding helical modes
Some ambiguity exists in reporting the winding (spatial) and rotation (temporal) sense
of helical modes due to the fact that the modal decomposition in (2.2), (k,m, ω) can
be substituted with sign-reversed complex conjugates (−k∗, −m, −ω∗) without loss
of generality (Gallaire & Chomaz 2003). In the present study, kr, is chosen to be
positive. Thus, at a given instant, for a spiral isosurface represented by a constant
phase (krx + mθ), and following along the positive x−direction, a counter-winding
helical mode requires that m > 0. All modes observed in this study had positive
frequencies, implying that m> 0 represents co-rotating modes and vice versa.

3. Validation and convergence studies
Incompact3d has been extensively validated in a wide variety of flow situations

(Laizet & Lamballais 2009; Laizet & Li 2011). For the Maxworthy profile with
S = 1.5, α = 100, δ = 0.2 and Re = 200, Ruith et al. (2004) have reported results
from axisymmetric simulations. These were used to further validate the flow solver for
cases involving VB. In the three-dimensional simulations employing D20 (see table 1)
carried out in the present study, a helical instability was observed for S= 1.5 which
led to a time-periodic long-time flow state. Selective frequency damping (Åkervik
et al. 2006) was applied for this case to obtain steady axisymmetric solutions.
Figure 2 shows comparisons of this solution with the results of Ruith et al. (2004),
who imposed ‘radiation’ conditions on lateral boundaries. The recirculation zone
in the present study has a slightly larger radius compared to the axisymmetric
simulations of Ruith et al. (2004). Nevertheless, all qualitative features of the bubble
seem to be appropriately represented in the present simulations and the origins of
these deviations are not explored further. Interestingly, the core region containing the
bubble structurally resembles that obtained for the reference case of the Grabowski
profile studied by Ruith et al. (2003), indicating that the inflow velocity profile
outside the core might not play a significant role in influencing core structure of
axisymmetric BVB.

Three-dimensional features of flows involving VB are available only for the
Grabowski profile and are used to further validate the solver in appendix C.
Validations for both local and global stability analyses are also given in the same.
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FIGURE 2. Comparison of (a) projected streamlines, (b) axial velocity at x = 2 and
(c) radial velocity at r = 1 for steady solutions, S= 1.5, α = 100, δ = 0.2 and Re= 200:
——, three-dimensional simulations, present study; E, axisymmetric simulations, Ruith
et al. (2004).
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FIGURE 3. Comparison of temporal variations in (a) maximum magnitude of change in
velocities u(t) and u(t+ δt) between two instants t and t+ δt for the entire domain and
(b) axial velocity at position x= 6, y= 0.5 and z= 0, for S= 1.5, α = 100, δ = 0.2 and
Re= 200 for grids: ——, 241× 240× 240 (D20); - - - -, 481× 480× 480 (refined).

To check if all physical features of the flow are grid independent, simulations were
carried out on a refined grid containing twice the number of grid points as D20 (481×
480 × 480 and ∆ = 1/24) for the same choice of S and other parameters as before.
The time step was halved for the refined grid to 1t = 0.005. Figure 3(a) shows the
temporal variation of maximum magnitude of velocity change over the entire domain
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during intervals of δt= 0.5 for the two grids. Incidentally, it can be inferred from this
plot that the flow evolves towards a steady state with changes in velocity reducing
exponentially to low values in the approximate interval 500 6 t 6 1000, before an
increase representing instability growth is observed. The intermediate state of flow
immediately prior to instability growth has been referred to as a ‘quasi-steady state’
(Ruith et al. 2003). The initial evolution of the flow towards this state is the same
for both cases, but the time of onset of instabilities is earlier for the refined grid
(tQS ≈ 1100) compared to that of D20 (tQS ≈ 1290). Figure 3(b) shows variations in
axial velocity with time at a position of x= 6, y= 0.5 and z= 0. Due to the delay in
the onset of instabilities, a phase shift can be seen in the figure, although time periods
remain the same for both grids. Differences in maxima and minima of the oscillations
observed for the two cases are 0.27 % and 0.7 %, respectively. Similar observations
were made by Ruith et al. (2003) for the Grabowski profile, who reported a phase
shift in solutions between two different grids and attributed this to grid-dependent
round-off errors that are amplified by the instability. As can be observed from the
figures, instability growth rate, saturation amplitude and frequency agree well and thus
the grid D20 is assumed to be sufficient for the present investigation.

4. Sustained states of flow
A description is given next of all long-time flow states observed in this low

Reynolds number study, when the swirl number S is changed, with the remaining
control parameters fixed (α = 100, δ = 0.2 and Re = 200). Solutions were taken to
be steady when the maximum magnitude of velocity change over the entire domain
in an interval of δt = 0.5, remained at a value of O(10−12). Below a critical swirl
of Sc = 1.39, pre-breakdown helical structures and swelling without a stagnation
point were observed. At Sc, a stagnation point developed signalling the onset of VB.
The flow stabilized into steady axisymmetric BVB for S ∈ [1.4, 1.48]. BVB with an
unsteady spiral tail was observed for the range S ∈ [1.49, 1.5]. For S ∈ [1.55, 1.57], a
pulsating BVB was identified. CVB occurred for S∈ [1.58, 1.6]. At S= 2, a wide-open
CVB was present.

As noted previously, there were numerical issues in simulating pre-breakdown swirls
and this study does not focus on this swirl range. However, since some interesting
features were observed here, including the ‘trident’ structure reported in Billant et al.
(1998), a brief description of these flow states is presented in appendix D.

4.1. Bubble form of vortex breakdown
Three types of BVB were observed as S was increased, including steady BVB, BVB
with spiral tail and pulsating BVB. Properties of these flows are discussed next.

4.1.1. Route to stagnation and steady axisymmetric BVB
Figure 4(a) shows an axisymmetric steady swelling that develops centred about

x= 5 for a pre-breakdown swirl of S= 1.38. Billant et al. (1998) have not reported
the presence of a swelling and Leibovich (1978) noted, from early experiments,
that swellings are most likely ephemeral features that disappear within a short time
and considered them to be spurious artefacts in axisymmetric simulations. However,
close to the threshold of VB, the occurrence of such swellings in the core region,
as precursors to VB, has been observed in simulations using the Grabowski profile
(Grabowski & Berger 1976; Ruith et al. 2003). It should be noted that the theory of
Benjamin (1967) predicts the existence of such swellings, while Oberleithner et al.
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FIGURE 4. Projected streamlines on meridional plane for (a) pre-breakdown swelling at
S= 1.38 and (b) steady BVB at S= 1.4.

(2012) reported observing a local positive minimum in the time-averaged velocity
along the jet axis for pre-breakdown swirls in the case of turbulent swirling jets,
suggesting a swelling’s presence. In experiments on flows in cylinders with rotating
end walls, Escudier (1984) noted an ‘hour-glass structure’ that appears for swirls
slightly lower than that at which VB occurs. Wang & Rusak (1997) have noted,
based on previous results, that a continuous transition to VB with increasing swirl,
by means of a swelling, would likely occur only below a critical Reynolds number.

For S > Sc, the stagnation point moves upstream with increasing swirl, while a
bubble is formed downstream (figure 4b). The bubble observed here is commonly
described as one celled, similar to those observed in experiments of Brücker &
Althaus (1992) and simulations of Ruith et al. (2003), and is named so due to the
presence of a single toroidal vortical structure. Billant et al. (1998) have reported a
single case which shows velocity fields for BVB (figure 7) with what is possibly a
two-celled structure (Faler & Leibovich 1978). It is noted that a sustained two-celled
bubble occurred at higher swirls in hysteresis studies (§ 4.3), which will be reported
elsewhere.

4.1.2. BVB with spiral tail
Starting from S = 1.49, the flow evolved towards an axisymmetric quasi-steady

state containing a bubble but succumbed to helical instabilities leading to the eventual
appearance of a spiral structure (m = +1) in the bubble’s wake which rotates about
the jet axis at a constant frequency. Thus, an increase in S induces a transition
from a steady flow to one which is periodically unsteady, indicating a supercritical
Hopf bifurcation. The onset of breakdown at lower swirls than that above which the
helical instability arises, has been noted for turbulent swirling jets by Oberleithner
et al. (2012), who inferred the same trend to hold in the laminar regime based on the
observations reported in Liang & Maxworthy (2005). Additionally, a similar behaviour
has been confirmed for the Grabowski profile in Meliga, Gallaire & Chomaz (2012).
However, Loiseleux & Chomaz (2003) have noted the development of a single helical
mode for pre-breakdown swirls in their studies on swirling jets.

Features of this type of BVB are described using a typical case of S = 1.5. The
long-time spatial structure for this case is visualized by means of tracer particles at a
given instant as shown in figure 5(a). The figure clearly outlines the spiral structure
of m = +1 embedded in the wake (approximately x > 4), while the bubble remains
axisymmetric and unaffected by the spiral. These visualizations form the basis for
referring to this type as BVB with a spiral tail (see also Sarpkaya 1971, figure 5b).
This is qualitatively different from most cases studied using Grabowski’s profile
(Ruith et al. 2003; Meliga et al. 2012), where instability growth was observed over
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FIGURE 5. (Colour online) Meridional projections of (a) positions of tracers released from
r= 0 and r= 0.1 at t= 100 and (b) pathlines of tracers released from r= 0 for the case
of S = 1.5, outlining a bubble envelope unaffected by instability and the presence of a
spiral tail downstream.

the entire bubble region, with the bubble and the stagnation point at its nose affected,
a characteristic of SVB. This suggests that the instability features for the two flows
might be different. This was confirmed to be the case and will be discussed in § 5.

Projected pathlines based on tracer particles released from the inlet at r = 0 are
shown in figure 5(b). The abrupt expansion associated with VB (x ≈ 1) is vividly
captured by this plot. It is evident that the tracers, after navigating over the bubble’s
envelope in an axisymmetric fashion, reverse back to enter into it near its downstream
end, following which they reside within the bubble for a considerable interval of time.
Similar results have been observed in various experiments (e.g. Sarpkaya 1971), where
the dye injected at the inlet lingered within the bubble long after the injection was
stopped. The streaks finally exited the bubble along a radially narrow region before
spiralling outward into the wake, where they take helical paths towards the outflow
boundary. The figure confirms that the flow remains axisymmetric in the bubble
region. An approximate flow-through time for a particle to exit the domain was 150,
highlighting the significant duration required to traverse the streamwise extent of
Lx = 20. Winding of the particles into a helical structure is prominent at a distance
of approximately 2 from the downstream end of the bubble. While Billant et al.
(1998) do not report cases where the spiral is positioned as seen here, experiments
in tube-vane arrangements (e.g. Sarpkaya 1971; Faler & Leibovich 1978) commonly
reveal it to be positioned around one bubble diameter downstream, similar to the
present case. Additionally, simulations based on such flow configurations (see Althaus
& Weimer 1998, figure 11) show a similar structure.

Temporal characteristics of the flow were examined by placing probes at different
streamwise positions. Three representative power spectral densities (PSD) of the
fluctuating component u′y at coordinates (x, y, z) given by (1, 0, 0), (3, 0, 0.5) and
(6, 0, 0.5) are plotted in figure 6(a). The fundamental frequency of f0 = 0.13 was
the same at all positions, with harmonics strengthening at downstream positions.
Figure 6(b) shows contours of vorticity magnitude on a cross-sectional plane at
x= 10 at two instants t= 3.75 apart, from which the rotation of the spiral vortex in
the bubble’s wake can be inferred.
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FIGURE 6. (Colour online) (a) Power spectral densities of uy for the case of S= 1.5 at
different positions (x, y, z): ——, (6, 0, 0.5); - - - -, (3, 0, 0.5); — · —, (1, 0, 0). The
fundamental frequency is 0.13. (b) Contours of vorticity magnitude, |Ω|, on plane x= 10
showing the rotation of an m = +1 spiral structure’s cross-section at two instances, an
interval of 3.75 apart. The inflow swirls clockwise.

4.1.3. Pulsating BVB
For the swirl range of S ∈ [1.55, 1.57], a ‘pulsating’ type of BVB was observed. A

representative swirl of S= 1.56 studied using D40 (see table 1) is chosen for further
scrutiny of this breakdown type. Past the initial transients and after the flow settled
into a state similar to BVB with a spiral tail (m=+1), the flow exhibited a peculiar
behaviour with a pulsating temporal variation in the flow field. This is best illustrated
by examining temporal variations in velocity components at fixed spatial positions in
the domain. The time series of ux is shown in figure 7(a) at two locations on the
flow axis including x= 1 (vicinity of stagnation point) and 5 (wake) and additionally
at x= 5, y= 0 and z= 0.5. Figure 7 shows PSD of uy at the latter location. Variations
of ux on the jet axis indicated a sinusoidal variation at one frequency, f2 ≈ 0.017,
modulated by a periodic variation at a lower frequency, f3≈ 0.001. The former seems
to be associated with pulsation events, while the latter was found to be related with
the periodic intensification of such pulsation events. For comparison, at S = 1.5, ux
remained constant with time at all locations on the axis, which can be anticipated
assuming unsteadiness as originating only from a rotating m= 1 helical mode. Except
for ux on the jet axis and for locations in the upstream part of the bubble (x 6 2),
all components at all positions, had temporal oscillations with frequencies f2, f3 and
additionally, f1 ≈ 0.093, the latter associated with the rotating helical mode, although
there was a spread in the PSD about this frequency. The lowest frequency, f3, reduced
with an increase in S for the swirl range where pulsating BVB was observed.

Dynamics of the flow is best understood by examining animations created using
snapshots of velocity fields, available as movie 1 available at
https://doi.org/10.1017/jfm.2019.401 and instantaneous streamlines in movie 2.
Figure 8 shows two representative instants showing streamlines. While a closed
set of streamlines (red) associated with the bubble and observed for the case of
S = 1.5 is present at both t = 4000 and 4100, a second set (green) representing
a toroidal structure developed at the later instant. This intermittent formation of a
‘second cell’ was seen to influence the pulsating dynamics of the flow. While not
studied here, it is noted that in hysteresis studies (see § 4.3), a two-celled BVB
with a spiral tail was observed as the next new flow state at higher swirls. This
state is characterized by a permanent second toroidal structure nested within that
which is present for the one-celled case (figure 2a). This suggests that the pulsating
behaviour is a flow feature that is observed in the intermediate swirl range between
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FIGURE 7. (a) Time series of ux for S= 1.56, at different locations (x, y, z): - - - -, (1, 0,
0); —— (black), (5, 0, 0); —— (grey), (5, 0, 0.5). (b) Power spectral density of uy at
(5, 0, 0.5).
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FIGURE 8. (Colour online) Streamlines at two different times for S = 1.56. A second
set of closed streamlines (green) are observed only at the later instant, the intermittent
appearance of which seems to cause the pulsating flow behaviour (see movie 2).

two time-periodic flows – the one and two-celled BVB with spiral tail. It is noted
that strong similarities exist between the present flow behaviour and that observed for
the Grabowski profile by Pasche, Avellan & Gallaire (2018), including the presence
of axisymmetric oscillations and multiple frequencies. However, no additional distinct
helical structures which rotate at a different frequency could be identified using
a temporal Fourier decomposition of time series of the velocity field, u(x, t). An
examination using tracer particles did not provide insights into these structural
changes, although it was observed that after traversing the bubble envelope, due to
non-axisymmetric unsteady flow in the downstream end of the bubble, some particles
were engulfed into it, while others were convected along the spiral tail in the bubble’s
wake (Pradeep 2019). This is in agreement with observations made in experiments
of Faler & Leibovich (1978), who noted a ‘simultaneous emptying and filling’ of a
bubble in this downstream region.

It is not clear whether this type of BVB has been previously observed, although low
frequency modulations have been reported for various swirling flows where VB was
observed (Stevens, Lopez & Cantwell 1999; Blackburn & Lopez 2000; Ruith et al.
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FIGURE 9. Contour lines at an instant on z= 0 plane. (a) Axial velocity (range [−0.06,
1]; levels shown −0.05, 0, 0.05 and 0.1; regions where ux 6 0 shaded grey) and (b)
vorticity magnitude |Ω| (range [0, 4.4]; levels 0.1, 0.5 and 1, grey to black) showing
radial expansion of flow into a conical sheet and presence of undulations on its surface,
for the case of S= 1.6.

2003; Pasche et al. 2018). In all cases, there are certain differences from the features
observed here, as elaborated in Pradeep (2019).

4.2. Conical form of vortex breakdown
While a pulsating BVB was observed for S = 1.57, the flow stabilized into a CVB
when simulations were carried out on grid D40 for S > 1.58. This indicated that
CVB is favoured at higher S compared to BVB. A similar trend has been observed
in the axisymmetric simulations of Fitzgerald et al. (2004). The inflow was confined
to a conical sheet downstream of breakdown which radially expanded to an extent
that it was influenced by the periodic lateral boundaries. To minimize undesired
interactions and eliminate the possibility that CVB is sustained due to lateral boundary
conditions, D80 (see table 1) was employed for further explorations. Due to the
expense associated with simulations using D80, only three cases of S= 1.6, 1.8 and
2 were studied. All had a CVB present, but the highest of these swirls exhibited a
‘wide-open’ type.

4.2.1. Instantaneous features for S= 1.6
Typical instantaneous features of CVB for a swirl of S = 1.6 are as in figure 9,

showing contours of axial velocity and vorticity magnitude on the meridional plane.
The swirling jet entering the domain axially decelerated and a stagnation point
developed close to the inlet at x ≈ 1, followed downstream by a sharp conical
expansion as a thin sheet with an opening angle of ≈90◦. This sheet enclosed a
relatively large recirculation region of nearly stagnant flow compared to BVB. The
weak reverse flow in this region had a minimum of ux around −0.06. The flow
took a paraboloid shape in the vicinity of the stagnation point, in agreement with
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FIGURE 10. Axial velocity contours on different cross-sectional planes at t = 7500 for
S= 1.6. The figures indicate that the flow is axisymmetric upstream (x6 5), but distorted
downstream.

observations in Billant et al. (1998). The maximum of axial velocity for x > 5 was
≈ 0.2 implying that there was reduced axial convection leading to long residence
times in the downstream part of the domain. Similar to experiments, the conical sheet
undulated beyond a distance of a few jet diameters downstream of the stagnation
point, as seen in figure 9(b). The azimuthal component of velocity drastically reduced
on the cone, and the flow downstream of the stagnation point was only weakly
swirling.

Cross-sectional features of CVB are shown in figure 10 by means of axial velocity
contours at various streamwise positions. The conical sheet remained approximately
axisymmetric for x= 5, while non-axisymmetric features became prominent at x= 20,
where the flow along this sheet is almost parallel to the jet axis. By x= 30, the sheet
configuration was severely weakened and distorted, with unsteady disorderly flow
features observed. In experiments, the downstream flow attained a weakly turbulent
state. Note that the recirculation zone in the core region is absent at x= 30.

Temporal features are best understood by examining videos of contours on
meridional and cross-sectional planes provided as movies 3 and 4. The entire conical
structure was found to rotate at a low frequency, similar to experiments where this
motion was reported as being a major deterrent in scrutinizing the structure of CVB.
In the vicinity of breakdown, the flow remained mostly steady with weak temporal
variations in the opening angles, while downstream (x > 10), rotation of the structure
was observed. Flow structures were observed to be mostly restricted to a region of
radius 25 for the entire duration of the simulation. Thus, it seems reasonable to
assume that CVB is not directly influenced by the lateral boundaries placed at a
radius of 40.

Visualizations based on tracer particles released, with initial positions at r0= 0 and
r0 = 0.1 (see § 2 for details), are shown at different instances in figure 11. A conical
state was established by a simulation time of ≈3000 and particles were released
starting 7800. The particles initially spread along an approximately axisymmetric
conically expanding sheet, downstream of a stagnation point in the flow. At x ≈ 15,
the radial expansion rate reduced and eventually led to the particles turning almost
parallel to the jet axis. The relatively unsteady and non-axisymmetric nature of the
downstream regions of flow can be inferred from inspecting streaklines for t > 400
with visualizations showing that while some curve radially inwards, others move
outwards, with some entrained into the weak recirculation zone. It is evident from
these visualizations that while the flow remains organized in the upstream region
containing the conical sheet, its structure is distorted elsewhere, especially within
the recirculation zone. Further, although the shortest duration in which a particle
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FIGURE 11. Meridional projection of streaklines for S = 1.6 at different times t from
the start of release (t= 150, 400 and 650), showing disorganized features at downstream
regions of cone and the recirculation zone. Only part of the domain is shown for clarity.

reached the outflow boundary was around 500, the average duration was extended
considerably due to particles getting trapped into the recirculation zone, with residence
times greater than 1000.

Computational difficulties abound in studying CVB due to the large radial spreading
of the cone and slow unsteady non-axisymmetric motions in the downstream regions.
The former requires a large domain to simulate the entire structure in addition to
sufficient grid resolution and appropriate numerical scheme to resolve the thin sheet.
The latter deters local grid refinement and increases the required simulation time to
capture the evolution of the cone. With the focus on qualitative behaviour, the time-
averaged flow features are reported next.

4.2.2. Time-averaged spatial structure for S= 1.6
The velocity field was time averaged for a duration of approximately 2500

starting from the time CVB was established. Additionally, assuming axisymmetry,
the flow was azimuthally averaged for further statistical convergence. Figure 12(a)
shows projected streamlines on the meridional plane. A large recirculation region
encompassed by the cone with an approximate maximum radius of around 15 and
an axial length of 25 can be seen. It is evident that the conical sheet eventually
converges radially towards the core region, forming what can be crudely described as
an enlarged ‘bubble’ containing a weak toroidal recirculation region. Counter-rotating
vortices that represent this toroid intersecting the meridional plane have been observed
in experiments of CVB (Billant et al. 1998). Figure 12(b) shows contours of the
root-mean-squared fluctuating axial velocity component (other components not shown
for conciseness). Variations of the opening angle of the cone can be inferred from this
figure, while the flow in the vicinity of the stagnation point remained steady. It was
observed that the maximum magnitudes of all components were only approximately
6 % of the velocity scale, indicating weak motions. The streamlines for x > 30
indicate an almost columnar flow. Weak axial vorticity was present here, implying
that a weakened ‘vortex core’ exists downstream of VB. It is interesting to note that
analogous structures qualitatively similar to those observed for BVB are present in
CVB.
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FIGURE 12. (Colour online) Time-averaged features of CVB at S = 1.6 shown on
meridional plane: (a) mean projected streamlines and (b) contours of root mean square
of fluctuating axial velocity.

Variations of different flow properties along projected streamlines based on the
azimuthally averaged mean flow are shown in figure 13. Figure 13(a) shows the radial
positions of streamlines, σ(x), which begin from radial positions σ(x= 0)= 0.5, 0.75
and 1 at the inflow plane. The streamlines achieved a constant slope of dσ/dx ≈ 1
in the conical part of the sheet for x < 10 (figure 13b). The streamlines had an
approximately constant curvature as the flow turned radially inward for x∈ [10, 20]. It
is interesting that an inward radial velocity develops, a feature shared with BVB. The
velocity component along the projected streamlines dropped considerably in magnitude
with x, as seen in figure 13(c). The swirling component of velocity (figure 13d) nearly
vanished within a few diameters downstream of the stagnation point implying that
the conical sheet is a weakly swirling structure. The symbols, representing circulation
parameter Γ = σuθ , show that although the streamlines radially expand with x, it
too reduces. The azimuthal vorticity, Ωθ , (figure 13e) increased in magnitude past
the stagnation point due to vortex tilting, but further downstream, dropped drastically
in relation to the loss of gradients associated with the reduction in velocities. It is
interesting to note the strong presence of both positive and negative Ωθ close to
the stagnation point associated with the inner and outer shear layers that demarcate
the conical sheet. The pressure (figure 13f ) increased to values close to the ambient
pressure p∞ of the chamber by x = 1 (see inset) and remained so along the sheet.
This confirms the assumption of Billant et al. (1998) used as part of their breakdown
criterion, that pressure at the stagnation point for CVB is given by p0 = p∞. The
Bernoulli head, H = p+ u · u/2, drops to negligible values by x≈ 10. Thus, both Γ
and H, which are preserved on streamsurfaces of axisymmetric inviscid flows, are
strongly reduced by viscous actions. While the low Re chosen for the present study
can lead to strong viscous effects, CVB seems to amplify the role of viscosity by the
formation of the thin conical sheet of flow. However, it must be noted that on the jet
axis (r= 0), H remained approximately a constant, confirming another assumption of
the criterion of Billant et al. (1998).

As S was increased further to 1.8, the conical form was sustained, although the
opening angle increased (not shown), with a larger recirculation region present.
However, it remained unclear if the domain dimensions were adequate, and thus,
details are not presented here, but can be found in Pradeep (2019).

4.2.3. Wide-open CVB
Mourtazin & Cohen (2007) reported observing what they referred to as a ‘wide-

open’ cone (see figure 7c) at high Re, where the thin sheet opened out radially within
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FIGURE 13. Streamwise variations along mean projected streamlines in solutions obtained
at S = 1.6 of (a) radial position, (b) slope of streamline, (c) projected velocity, (d)
azimuthal velocity (lines) and circulation (symbols), (e) azimuthal vorticity and ( f )
pressure drop (lines) and Bernoulli head (symbols) for streamlines starting from x = 0:
—— andE, r= 0.5; - - - - and ×, r= 0.75; — · — and6, r= 1. Insets show variations
in the vicinity of the stagnation point (x∈ [0, 2]). It can be inferred from these plots that
CVB consists of a conically expanding thin sheet along which sharp reductions occur in
velocity and pressure drop.

a short distance downstream of the stagnation point, at an angle perpendicular to the
jet axis. Similar observations have been noted in older experimental studies of swirling
jets (Gore & Ranz 1964). This phenomenon was also observed in the present study
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FIGURE 14. (a) Projected streamlines on positive z = 0 plane based on instantaneous
velocity fields for S = 2. (b) Axial velocity contours on different cross-sectional planes
for the same. This type is identified as a ‘wide-open’ CVB, with the thin sheet turning
perpendicular to the jet axis (x = 5, y = 10). Cross-section showed presence of possibly
spurious |m| = 4 modes.

for S = 2 in D80. However, structures of m = 4 were present and VB was in close
proximity to the inflow plane and thus only a brief description of this state is provided
and caution must be exercised when interpreting these results. Projected streamlines
on y= 0 plane at an arbitrary instant are plotted in figure 14(a). A stagnation point
was present at x≈ 0.8, downstream of which the flow was confined into a thin radially
expanding sheet. Unlike the CVB observed at S= 1.6, (see figures 12 and 13b), the
streamlines here were found to have a positive curvature that led to the structure
being wide open. This seems to be the major distinguishing feature of this type of
CVB, with the flow almost reversing towards the inflow plane. While the flow was
axisymmetric at upstream positions, a spurious |m| = 4 structure developed, as seen
from axial velocity contours on cross-sectional plane in figure 14(b). In spite of the
presence of this structure, the breakdown feature of sharp radial expansion seen in
experiments was still captured in the simulations. In simulations at higher Re, the
same type was observed, but with the flow being turbulent and without the |m| = 4
structures; a detailed analysis of this type of CVB will be reported elsewhere.

4.3. Other flow states observed
Hysteresis studies were carried out to examine bistability features of BVB and CVB.
These will be discussed in detail elsewhere, but a brief description of available results
including new flow states observed is listed here for completeness. BVB and CVB
were found to be bistable for swirls including S= 1.5 and 1.6. At higher swirls than
those reported here, BVB attained a two-celled bubble structure. Further increase in
S led to the appearance of an ‘asymmetric’ BVB identified by Billant et al. (1998).
Thus, all states except for the ‘asymmetric’ CVB have been observed in the low Re
simulations carried out, bolstering confidence in the qualitative features predicted by
the Maxworthy model of swirling jet.

5. Helical instability

The time-periodic behaviour and flow structure for BVB with spiral tail observed
at S = 1.5 indicates the presence of a self-excited global mode. Similar unstable
modes have been observed for the SVB and stability analysis has been used to shed
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light on the origin of these instabilities (Gallaire et al. 2006). The BVB with spiral
tail, in contrast to SVB, is characterized by the stagnation point at the bubble’s nose
being fixed in position on the axis, with the bubble approximately axisymmetric in its
upstream part (see figure 5). Thus, the helical mode that is observed in the bubble’s
wake does not significantly affect the bubble itself, suggesting that the unstable modes
associated with these two forms of VB might be different.

Local and global stability analyses were carried out using steady axisymmetric
solutions (see § 2.2) as the base state for S = 1.5 at which the BVB with spiral
tail was attained. While not observed for the Maxworthy profile, SVB has been
reported to occur due to a nonlinear steep/elephant global mode for the Grabowski
profile and it is first demonstrated using a local analysis that the frequency selection
criterion for the instability is linear and not that for a nonlinear steep mode. This is
followed by the examination of global mode features and comparisons with results
from simulations based on a global stability analysis.

5.1. Local analysis
Spatio-temporal instabilities arising for m=+1 were examined first for S= 1.5 based
on expectations from simulations. Variation along x of absolute growth rate (ω0,i) and
frequency (ω0,r) are shown in figure 15(a). A short description on the computation of
ω0 is provided in appendix E, while further details on the procedure are presented in
Pradeep (2019). The nonlinear fronts theory predicts the global frequency as ω0,r at
the transition point xCA, from convective to absolute instability, i.e. where ω0,i(x)= 0
(e.g. Pier & Huerre 2001). This frequency was found to be ω0,r(xCA)= 0.93, far higher
than the frequency ωNS = 0.83 extracted from the numerical simulation. Additionally,
for the steep mode, the associated pocket of absolute instability must almost vanish
for a globally stable base flow. As noted in Pier & Huerre (2001), this is a somewhat
paradoxical requirement – when either a linear or steep (nonlinear) global mode exists
associated with a region of absolute instability based on a linear local analysis, this
region’s presence for different cases is only necessary for the destabilization of the
former, while it is necessary and sufficient for the destabilization of the latter. This
can be inferred for the Grabowski profile based on figures 2 and 3 of Qadri, Mistry
& Juniper (2013). The absolute growth rate ω0,i(x) for the stable case of S= 1.45 is
additionally shown in figure 15(a). It is evident that the pocket of absolute instability
remains, even with a swirl reduction well below the threshold (S= 1.49) required for
the helical instability.

Figure 15(b) shows the streamwise variation of amplitude of the unstable mode,
defined as

√
E, where E(x) is the local energy of the unstable mode. For the case

of numerical simulations, this was extracted by obtaining perturbation velocity field
u′= uS−U (uS is the saturated velocity field, chosen here at t= 104) and computing

ENS(x)= 1
2

∫ Ly

0

∫ Lz

0
(u
′2
x + u

′2
y + u

′2
z ) dy dz. (5.1)

The figure shows that the predicted absolute spatial growth rate −k0,i at xCA based on
the nonlinear front theory does not match with that computed from the simulations.
These results confirmed that the helical instability mechanism proposed in Gallaire
et al. (2006) for the Grabowski profile is different from that observed for the
Maxworthy profile.

An estimate for the complex frequency of the linear global mode, ωg, was computed
next based on ω0(x) (see § 2.2) for various S. These are compared with the frequencies
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FIGURE 15. (a) Variation of ω0 with x based on spatio-temporal analysis, with m=+1:
— · —, ω0,i(x), S = 1.45; ——, ω0,i(x), S = 1.5; E, ω0,r(x), S = 1.5; - - - - (vertical),
xCA, transition from convective to absolute instability; - - - - (horizontal), ωNS, frequency
extracted from simulations, S=1.5 (see also, figure 2a). (b) Streamwise variation of ln

√
E,

compared with predictions from local nonlinear (steep mode) and linear global theories:
——, line with slope −k0,i(xCA), based on local analysis; - - - -, xCA; — · —, amplitude
extracted from DNS;E, amplitude based on global linear analysis. Both figures confirm
that predictions based on nonlinear fronts theory are inconsistent with observations based
on simulations.

ωg,r ωg,i

S 1.48 1.485 1.5 1.48 1.485 1.5
Local linear 0.883 0.882 0.886 −0.00137 0.0054 0.02239
Global linear 0.842 0.84 0.830 −0.00444 −0.0024 0.00418
DNS — — 0.829 — — 0.00423

TABLE 2. Comparisons of global frequency ωg,r and ωg,i computed using local and
global linear analyses with simulations (DNS) at different S for the Maxworthy profile.

and growth rates obtained in simulations in table 2. At S = 1.5, the frequency ωg,r
matched reasonably well with simulations, although the temporal growth rate ωg,i was
found to be an order of magnitude higher. More importantly, the analysis predicted
correctly that the base flow is stable for S= 1.48, which is close to the lowest swirl of
S= 1.485 at which no helical instability was observed in numerical simulations. Better
estimates for growth rates and frequencies were made by the linear global analysis
discussed next, but it can be concluded from the present local analysis that the helical
mode (m = +1) associated with a BVB with spiral tail is characteristically different
from the steep global mode associated with SVB observed for the Grabowski profile.
Further investigation of this mode’s features was carried out using a global framework,
as discussed next.

5.2. Global stability analysis
For S=1.5, a single m=+1 mode was observed to be unstable when a global stability
analysis was carried out (see appendix E, figure 21b). Growth rates and frequencies
of this mode at various S are listed in table 2 and are seen to match closely with the
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FIGURE 16. (Colour online) Contours of axial velocity (upper half showing the real part
and lower half, the imaginary part, with radial distance r= |y|) of global mode for m= 1
at S= 1.5 from global analysis. The figure shows that the global mode is restricted to the
bubble’s wake (x > 4, see figure 2a). Contrast with figure 6(a), Meliga et al. (2012).

simulations. Figure 16 shows real and imaginary parts of the eigenfunction associated
with axial velocity, ũx for S = 1.5, conveniently normalized based on the maximum
velocity amplitude achieved over the entire domain. Similar behaviour was observed
for other components, confirming that the bubble region remains unaffected by the
linear mode. This should be contrasted with the marginally unstable m = 1 global
mode reported in figure 6(a) of Meliga et al. (2012), where the mode has significant
energy content in the bubble region.

The amplitude associated with the unstable global mode,
√

EG, is compared with
other results in figure 15(b). Here, the value was computed from the required
eigenfunction using a definition similar to that for ENS, but in a cylindrical coordinate
framework. For purposes of comparison with nonlinear fronts theory, the energy was
conveniently normalized such that EG(xCA) = ENS(xCA). While variation in the far
wake (x > 4.5) is in good agreement with that observed in simulations, the linear
analysis does not capture features of the saturated perturbations in the bubble region.
This indicates that the linear global mode associated with the far wake interacts
with the bubble and its near wake, suggesting possible nonlinear interactions leading
to increased amplitude in this region. This can also be inferred from the PSD
shown in figure 6(a) at x = 3 (also see figure 2a). It is interesting to note that this
increase is present in a region where the linear mode’s energy is negligible. Further
scrutiny of the azimuthally averaged distribution of individual velocity components
and comparisons with numerical results are presented in appendix F, where this
feature is further highlighted.

Summarizing the results of stability analyses, it has been established that a self-
sustained m=+1 helical global mode becomes unstable in the wake due to a linear
instability. This mode is not a nonlinear steep global mode as observed for SVB
(Gallaire et al. 2006). It can be speculated that the two states, BVB with a spiral tail
and SVB, are unique and originate through characteristically different helical modes.
While an SVB has not been observed for swirling jets, both SVB and BVB with
spiral tail have been observed to occur in swirling flows in tubes at different swirls
(Sarpkaya 1971; Faler & Leibovich 1977) and it would be interesting to explore if
similar differences exist in the latter case.

6. Assessment of some models for VB
Attempts were made to assess two major theories that have been proposed

towards explaining the phenomenon of VB. The approaches based on negative
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azimuthal vorticity amplification (Brown & Lopez 1990) and criticality of flow
(Squire 1960; Benjamin 1962) were considered. While these have been previously
tested using both experimental and numerical results for BVB, with some success,
it still remains an open question as to which explanation, if any, gives a complete
understanding of the mechanisms underlying VB. In this study, both theories are
further evaluated using CVB. Both assume steady axisymmetric inviscid flow. CVB
is, to a good approximation, axisymmetric and steady, with unsteady non-axisymmetric
developments being only secondary features that weakly distort its overall structure.
For VB in swirling jets, the presence of an outer shear layer, compounded with
the development of a recirculation zone, imply that deviations in predictions due to
viscous effects are expected.

Investigation of models for predicting the critical swirl above which breakdown
occurs is not reported here. While the critical swirl based on columnar initial
conditions occurred at S= 1.39, Billant et al. (1998) have demonstrated that hysteresis
effects, which have not been considered in this study, influence this value.

6.1. Wave theories of Squire and Benjamin
One approach towards explaining VB has been from the perspective of hydrodynamic
wave propagation. The first attempt is attributed to Squire (1960) (see Benjamin 1962),
who conjectured that VB occurred as the swirl is increased beyond a critical value
above which regions of the flow were capable of sustaining infinitesimal ‘standing
waves’. Benjamin (1962), while retaining the notions of criticality defined by Squire,
proposed that VB occurred as a finite-amplitude transition from a supercritical to
an adjacent subcritical ‘conjugate’ state. Both states were assumed to be columnar
solutions, Ψ (r), to the Squire–Long (or Bragg–Hawthorne) equation (see Benjamin
1962)

∂2ψ

∂x2
+
∂2ψ

∂r2
−

1
r
∂ψ

∂r
= r2 dH

dψ
− Γ

dΓ
dψ

(6.1)

for the same distribution of Bernoulli head H and circulation Γ on streamsurfaces.
Criticality of these base states was evaluated by searching for infinitesimal steady
modal solutions. Introducing perturbations with complex wavenumber k, and radial
eigenfunction φ(r), given by ψ(x, r)=Ψ (r)+ εφ(r) exp(kx), leads to the equation

d
dr

(
1
r

dφ
dr

)
+

(
1

r4u2
x

d(ruθ)2

dr
−

1
ux

d
dr

(
1
r

dux

dr

))
φ =−

k2

r
φ, (6.2)

where ux and uθ are velocity components of the base state Ψ . Boundary conditions
were chosen by Benjamin (1962) as φ(0)= 0 and φ(R)= 0 assuming flow in a tube
of radius R with perturbations not changing the flow rate. This is a Sturm–Liouville
problem with real and discrete eigenvalues, k2, which can be arranged in an ascending
order (Benjamin 1967). For the existence of wave-like solutions, the minimum
eigenvalue k2

m must be negative. Benjamin (1962) used Sturm’s comparison theorem
to observe that eigenfunctions for larger eigenvalues must ‘oscillate more rapidly’, i.e.
have more zeroes in the interval (0, R) compared to those for smaller eigenvalues.
Thus, the eigenfunction φ0 for k2

= 0, must have at least one zero in (0, R) if the
flow is subcritical (k2

m < 0). A modified condition for criticality in open flows can
be arrived at by solving (6.2) with k = 0 and initial conditions at r → 0 being
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φ0 = 0 and 1/r dφ0/dr = 1. The second condition reflects the notion that φ can be
normalized, without loss of generality, using a scale associated with the perturbation
axial velocity on the axis, u′x(0) (e.g. see Fraenkel 1967, equation 2.5b). It should
be clarified that some authors have reported employing dφ0/dr = 1 at r = 0 (Ruith
et al. 2003; Oberleithner et al. 2012), which would amount to a singularity for u′x at
r= 0. The initial value problem gives the least critical radius rc at which φ0 vanishes.
Assuming that waves could possibly exist only in regions where a vortex core is
present, the condition for subcritical flow reduces to the requirement that rc must
be smaller than the vortex core radius (e.g. Ruith et al. 2003). To account for the
fact that vorticity is additionally present in the shear layer for the Maxworthy profile
(2.1), the flow is approximately categorized as subcritical if rc 6 1 + δ. The critical
swirl S0 for the Maxworthy profile (δ= 0.2 and α= 100) was found to be S0 ≈ 1.66,
with rc ≈ 1.2 for S > S0 and abruptly tending to infinity for lower S (see Pradeep
2019).

Ruith et al. (2003) have previously carried out this analysis locally at various
streamwise locations of their steady solutions to the Grabowski inflow by assuming
a weakly non-parallel flow and determined that BVB is indeed associated with
transitions from supercritical to subcritical regions. A similar approach is employed
here to examine solutions obtained for the Maxworthy profile.

Figure 17 shows variation of rc along x for various flow states. Criticality is
considered for the cases of pre-breakdown (S = 1.38), stagnation point formation
(S= 1.39), steady solutions obtained for BVB with spiral tail (S= 1.5) using selective
frequency damping and time-averaged state of CVB (S= 1.6). Streamwise variation of
centreline velocity and projected streamlines are shown for reference. Additionally, the
approximate radius of the vortex core, r= 1.2, is plotted and acts as an estimate that
divides subcritical and supercritical regions. For S = 1.38, the flow was supercritical
everywhere. In the vicinity of the swelling (x ≈ 5), rc took values just above 1.2
implying that the flow is close to criticality. However, the streamwise extent of this
region was quite small while the analysis indicates waves of large wavelength (k→ 0)
when the flow is close to criticality. Thus, it is reasonable to conclude that the entire
flow is approximately supercritical. For S = 1.39, rc → 0 near the stagnation point
implying a rapid oscillation in φ0 indicating capability of flow to support waves
of small wavelength. When S = 1.4 (not shown), the entire recirculation zone was
subcritical. For S = 1.5, a large subcritical region was observed which started from
the breakdown point and extended almost till the outflow boundary. For CVB, the
weakly non-parallel approximation is valid only in the region upstream of the conical
structure. Interestingly, figure 17(d) indicates that a transition from a supercritical to
a subcritical state occurs close to the position of the stagnation point.

From these results, it can be inferred that at the very least, a strong correlation
exists between the stagnation point and recirculation zone formation and capability of
flow to support infinitesimal waves, even for the case of CVB. Additionally, the flow
is shown to be critical only when a stagnation point is present and not for S= 1.38.
The flow was found to be critical for pre-breakdown swirls for the Grabowski profile
(Ruith et al. 2003), while Oberleithner et al. (2012) reported a similar behaviour for
turbulent swirling jets as the present study. The latter speculated that viscous effects,
which can be neglected for turbulent flows, might be the reason for deviations in
predictions of the former. The present results show that this is not the case.

It must be emphasized that only linear aspects of the theory proposed by Benjamin
(1962) have been examined here. Additionally, the occurrence of wide-open CVB
observed in the simulations only for a swirl of S = 2, well above criticality, is
incompatible with the requirement of this theory that the flow should be supercritical
upstream of VB.
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FIGURE 17. Variation of critical radius with x for steady solutions of (a) S = 1.38,
(b) S= 1.39, (c) S= 1.5 and (d) time-averaged solutions of CVB at S= 1.6: —— (thick),
rc(x); —— (thin), r = 1.2 (criticality requirement); - - - -, projected streamlines; — · —,
ux(r= 0). A transition from a supercritical to subcritical state is observed at the vicinity
of VB for all cases with a stagnation point, including CVB.

6.2. Theory based on azimuthal vorticity
Starting from the same assumptions of inviscid axisymmetric steady flow that yield
(6.1), Brown & Lopez (1990) instead investigated variations of azimuthal vorticity, Ωθ ,
on streamsurfaces, ψ(x, σ )= const., where σ is the radial position of a streamsurface
at a given x. Noting that the left-hand side of (6.1) is −σΩθ , it can be reformulated
as

Ωθ =
A
σ
− Bσ , (6.3)

where A and B are constants on a streamsurface based on H and Γ that can
be determined based on inflow features. As an inviscid mechanism, the authors
proposed that the development of negative Ωθ in regions away from the axis
induced deceleration in the core (Biot–Savart law) causing tilting of streamsurfaces
which further reduced Ωθ , eventually stabilizing into a steady state governed by
equation (6.3) and containing a stagnation point when sufficient strengths of Ωθ < 0
were achieved. Thus, the initial transition to VB was hypothesized to occur when
streamwise oriented vortex lines associated with a swirling columnar core were tilted
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FIGURE 18. Azimuthal vorticity variation on a given streamsurface with x for steady
solutions of (a) S= 1.38, (b) S= 1.39 and (c) S= 1.5 and (d) time-averaged solutions of
CVB for S= 1.6. Comparisons are made between results from simulations (thick curves)
with predictions from (6.3) (thin curves) for streamsurfaces starting at inlet (σ0=σ(x=0)):
——, σ0 = 0.01; - - - -, σ0 = 0.5; — · —, σ0 = 0.8. Qualitative features are in agreement
for BVB, while predictions for CVB deviate considerably from results.

by self-induction into a counter-winding helical configuration due to generation of
negative Ωθ . It should be noted that although the mechanism in itself is inviscid,
equation (6.3) is dependent on σ , which is obtained from viscous solutions of the
numerical simulations.

Figure 18 compares the variation of Ωθ along streamsurfaces starting from σ(x =
0) = 0.01, 0.5 and 1 between that observed in the numerical simulations and that
predicted by equation (6.3) for the same cases studied in the previous section. For
all, the large positive value of Ωθ associated with the shear layer reduced in a more
or less similar fashion as that predicted by the equation; Ωθ ∼ O(−1) was observed
for the pre-breakdown solution of S = 1.38, implying that its development alone is
not sufficient for predicting VB. As S was increased, viscous effects associated with
a larger recirculation region dominated leading to large deviations from theoretical
predictions, although qualitative trends in variation and an overall decrease of Ωθ were
seen for cases containing BVB. For CVB, while the predictions match upstream of the
stagnation point, Ωθ was predicted to linearly reduce along the conical sheet, which
was not observed in the results of the simulations. This discrepancy is probably due to
the strong radial expansion associated with CVB implying that (6.3) simplifies to Ωθ ≈
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−Bσ , while for the simulations, viscous effects that dominate along the conical sheet
lead to a reduction in meridional velocity gradients. Thus, while qualitative features
are captured for BVB based on the viscous solutions obtained in simulations, this is
not the case for CVB.

7. Summary and conclusions

The introduction of swirl to axisymmetric jets leads to a remarkable sequence of
distinct states known to exist over overlapping ranges of control parameters. The
present numerical investigation was performed to extend the understanding of features
of various VB states that have been observed for these flows in the laminar regime.
To this end, a steady axisymmetric inflow condition with the swirling jet modelled
by the Maxworthy profile proposed in Ruith et al. (2004) has been used. Only states
for a given inflow condition that arise from a streamwise-invariant initial conditions
have been discussed here.

The major focus of this study is on a small range of swirl numbers, S ∈ [1.4, 1.6],
where different flow states including two forms of VB were observed, while features
of other states outside this range have also been briefly examined. For lower pre-
breakdown values of swirls, as anticipated from experimental results, helical modes of
m=−2 were observed. An axisymmetric swelling was observed at S= 1.38, followed
by a stagnation point at S= 1.39 (signifying the onset of VB) and a recirculation zone
associated with a steady BVB at S= 1.4. The steady BVB was found to destabilize
at S = 1.49, suggesting a supercritical Hopf bifurcation. Interestingly, the saturated
long-time state contained a helical mode (m= 1) in the bubble’s wake which did not
influence the dynamics in the upstream parts of the bubble, where the flow remained
approximately steady and axisymmetric. This type is referred to as BVB with spiral
tail. A local stability analysis showed that this instability arose due to the presence of
a large pocket of absolutely unstable region in the bubble’s wake. In contrast to results
obtained for the Grabowski profile for the spiral form of VB, where a nonlinear steep
global mode was associated with the instability, the local analysis indicated that a
linear frequency selection criterion is appropriate for predicting attributes of the global
mode. This was further confirmed using a linear global analysis, which also showed
that the mode’s amplitude was negligible in the entire bubble region. Together, these
results suggest that BVB with a spiral tail is characteristically different from SVB.
It would be interesting to consider aspects of helical instabilities associated with SVB
and BVB with spiral tail occurring in flows in tube-vane apparatus to further examine
the differences in underlying mechanisms.

For S∈ [1.55, 1.58], a pulsating type of BVB was observed with peculiar dynamical
features. A bubble and a helical mode in its wake were present, with the former
changing mildly in size, while the stagnation point’s location also varied weakly with
time. Two additional frequencies, along with the one associated with the helical mode,
were observed that seemed to be associated with the pulsating behaviour of the flow.
It was not clear if this type has been observed previously, although similarities exist
between some flow states described in other studies.

CVB was found to be the preferred state for S > 1.58 even in domains of limited
lateral extent. The swirling jet was found to decelerate leading to the development of
a stagnation point, downstream of which it spread out along a thin radially expanding
conical sheet which maintained its shape in the upstream parts. It was revealed that
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in addition to a toroidal vortex present in the recirculation zone contained with the
sheet, a weak vortex core existed downstream, indicating the structural similarities
between BVB and CVB. Along the streamlines associated with the conical sheet, it
was observed that all velocity components and pressure decayed rapidly, with the latter
equalling ambient pressure. The thin sheet lost its right-conical shape for the highest
swirl examined (S = 2) and curved away at an angle almost perpendicular to the
axis, leading to what is referred to as a wide-open type of CVB, similar to the state
observed in Mourtazin & Cohen (2007). Interestingly, certain structural similarities
exist between various types of CVB and Taylor cones (see Fernández de la Mora 2007,
figure 1), although the associated physical phenomena differ for the two.

CVB was used to assess theories of Benjamin (1962) and Brown & Lopez (1990)
proposed towards explaining VB. Both assume inviscid axisymmetric steady flows and
it is noted that the studies are carried out at a low Reynolds number of Re= 200. The
linear aspect of the former was found to be valid for CVB when applied locally and in
the vicinity of the stagnation point. The predictions of azimuthal vorticity variations on
streamsurfaces did not match downstream of the stagnation with numerical simulations
implying that viscous effects might play an important role in sustenance of the radially
expanding sheet in the case of CVB.

In conclusion, swirling jets are shown to exhibit certain unique features that
distinguish them from other families of swirling flows and this study serves to
complement and extend the understanding gained from previous experimental studies.
Further documentation of the behaviour of these flows will be provided by examining
hysteresis effects, which will be reported separately.
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Appendix A. Concerns regarding prescribed steady inflow profile
Employing a steady inflow profile in VB simulations invites several objections.

For swirling jets, Billant et al. (1998), Liang & Maxworthy (2005) and Oberleithner
et al. (2011) report the presence of VB close to the nozzle exit and for very high
swirls, parts of the bubble were present in the nozzle. Thus, it must be cautioned
that present results might have deviations from features of real flows, especially for
high swirls. However, a posteriori, this choice can be justified by the fact that a
majority of qualitative features observed in experiments on laminar swirling jets are
reproduced here (compare results with Billant et al. 1998, figures 6a, 8 and 16).
Additionally, Gore & Ranz (1964), who employed a rotating perforated plate fitted
into a pipe to generate a swirling jet at the pipe’s exit, noted that the stagnation
point associated with VB was always positioned downstream of the rotating plate, i.e.
downstream of the swirl generating equipment. Qualitative features of VB have been
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captured by other studies which employ steady inflow conditions including Snyder &
Spall (2000), Ruith et al. (2003) and Ruith et al. (2004).

Another concern regarding fixing the inflow profile occurs when it is subcritical,
i.e. can support steady axisymmetric infinitesimal waves (Benjamin 1962). The flow
upstream of VB has predominantly been reported to be supercritical in various studies
on VB in tube flows (e.g. Faler & Leibovich 1978; Leibovich 1984). For turbulent
swirling jets, Oberleithner et al. (2012) have noted that the inflow is subcritical at
swirls where VB was observed in time-averaged fields. The Maxworthy profile was
found to be supercritical for S < 1.66 (see § 6.1). Except for the wide-open CVB
at S = 2 (§ 4.2.3), all states of flow reported here occurred for S lower than this
value. The major focus of this study is on BVB and CVB which occurred within
a small range of swirl above the critical value associated with the onset of VB, i.e.
S ∈ [1.39, 1.6] and thus the use of steady inflow conditions in this range is deemed
to be appropriate.

Appendix B. Comparisons with experiments

As introduced previously, Billant et al. (1998) have reported qualitative features of
various states experimentally observed for laminar swirling jets including that of CVB.
Their investigation employed a converging nozzle through which the jet entered into a
chamber of square cross-section. This led to variations in the axial velocity profile as a
function of swirl imparted, requiring an additional control parameter dependent on the
nozzle’s convergence ratio. To remove this dependence, Liang & Maxworthy (2005)
employed a short pipe of constant cross-section in place of the nozzle, although this
led to mild non-uniformities in velocity and relatively stronger turbulence levels at the
pipe outlet compared to a contracting nozzle. The authors chose a similar definition
of swirl as that used here, but their ReD = 1000 (based on diameter) is well above
that used here.

While better models for the inflow velocity field measured by Billant et al. (1998)
are available (Gallaire & Chomaz 2003), the authors of the present study have opted
to employ the simpler Maxworthy profile which models a steady laminar swirling
jet exiting a non-contracting outlet with the axial velocity component unaffected
by changes to swirl S. Thus, it must be emphasized that there exist significant
differences between this study and that of Billant et al. (1998) with respect to the
inflow profile. Despite this difference, many qualitative similarities exist. Although
Billant et al. (1998) chose a different definition for the swirl number compared
to that used in this study, for the profiles studied here, both yield approximately
the same value. For comparison, the Reynolds number definition chosen by Billant
et al. (1998) based on nozzle diameter is approximately twice that used here, with
the range studied by these authors (300 < ReD < 1200) being similar to that in the
current investigation (Re = ReD/2 = 200). Billant et al. (1998) used two nozzles of
exit diameters 25 and 40 mm and a tank with a square cross-section of side 40 cm
implying a non-dimensional lateral length of 20 and 32 based on exit radius of
nozzle, which is similar to the lateral dimensions of D20 and D40, respectively; it is
much smaller compared to that of D80. The swirl integral chosen by Mourtazin &
Cohen (2007), Si, when applied for the Maxworthy profile used here, gives Si= 0.91,
0.98 and 1.05 for S= 1.39, 1.5 and 1.6, respectively. The Reynolds number range is
comparable with ReD ∈ [150, 600].
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Local (steep mode) Gallaire et al. Global linear Qadri et al. DNS Ruith et al.

ωg,r 1.206 1.22 1.166 1.1624 1.174 1.18
ωg,i — — 0.0349 0.0343 0.0347 0.0359

TABLE 3. Comparisons of global frequency ωg,r and growth rate ωg,i predicted in present
study based on local (steep mode) and global linear stability analyses along with those
extracted from numerical simulations (DNS) with those reported in studies of Gallaire et al.
(2006), Qadri et al. (2013) and Ruith et al. (2003) respectively for the Grabowski profile
(S= 1, α = 1 and Re= 200).

Appendix C. Validation using results reported for Grabowski profile
The numerical code for spatio-temporal and the global linear stability analysis

are validated using the results reported by Gallaire et al. (2006) and Qadri et al.
(2013), respectively. This is done for the Grabowski profile for S = 1, α = 1 and
Re = 200, with the base flow extracted from the quasi-steady state attained in
numerical simulations for convenience. Furthermore, the frequency and growth rate
computed from the simulations are compared with Ruith et al. (2003). Table 3 lists
global complex frequency ωg from all studies including the present study (see also
Pradeep 2019). It is evident that all reported quantities are satisfactorily predicted by
the codes employed in this study.

Appendix D. Pre-breakdown helical structures
While VB occurs for strong swirl strengths, jets exhibit certain intriguing behaviours

even for weaker ‘pre-breakdown swirls’, where a stagnation point is not present
(Billant et al. 1998; Gallaire & Chomaz 2003; Loiseleux & Chomaz 2003), including
the development of a double-helical mode. Since the focus of this study is on VB,
only a preliminary investigation in this swirl range was carried out employing the grid
D40 (see table 1 and § 2.1.3). Helical instabilities were observed for these domain
dimensions for S> 1. Some of the results obtained are presented here for the sake of
completeness using a representative swirl of S= 1.2. Further details can be found in
Pradeep (2019).

A counter-rotating helical mode of m=−2 eventually dominated in the downstream
regions of the flow as highlighted by figure 19, where contours of ux are shown to
highlight similarities between the ‘trident’ state observed in experiments (see Billant
et al. 1998, figures 16, 18). However, in additional to the m=−2 mode, weak |m| =
4 helical structures were also observed, which seemed to be generated due to the
Cartesian grid employed (not shown) and corrupted the flow features.

The streamwise position of the upstream front of the m = −2 mode was found
to be well downstream of the inflow plane (x ≈ 20). An axial momentum deficit
was observed to develop in the core region close to the inflow plane, which acted
as a precursor to stagnation point formation as discussed in § 4.1.1. For swirls just
above the critical value where VB was observed (S= 1.39), the helical structures were
positioned further downstream with x≈ 20 and were not observed for higher swirls in
the domain chosen for study.

Appendix E. Additional details of stability analysis
Some additional details of the stability analysis performed in the present study are

provided here, with the focus on the estimation of the linear global mode features
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FIGURE 19. (Colour online) Features of pre-breakdown flow state for S= 1.2 at t= 5500:
contours of axial velocity on (a) meridional plane and (b) cross-sectional plane at x= 25.
An m=−2 mode was present, with a front located at x≈ 20. Note that the jet at inflow
swirls clockwise (§ 2.1.1).

from the local analysis for the case of m= 1 and S= 1.5, which has been examined
in § 5. Assuming a parallel flow, a temporal analysis (see (2.3)) was performed using
base flow velocity profiles at a few different x positions in the bubble and wake
regions. Two temporal branches which were unstable for a range of axial wavenumber
kr, were identified (not shown, see Pradeep 2019). The dispersion relation, ω(k), was
computed for each by tracking the variation of ω with kr as the latter was varied in the
range [−3, 3] in increments of 0.025. The local absolute frequency and wavenumber
(k0 and ω0) are defined based on that point in the complex k-space, at which the
perturbation group velocity dω/dk = 0 (a saddle) and the Briggs–Bers criterion is
satisfied (Huerre & Monkewitz 1990). To identify this, a rational function was used
to fit the discrete dispersion relation, ω(kr, 0), and analytic continuation was used to
extend it for ki 6= 0. Figure 20(a) shows contour lines of ωi for that temporal branch
which yielded the required saddle for S= 1.5, with the saddle highlighted using a ‘+’
symbol. Starting from this estimate, Newton’s method was used to find the root of
the equation dω/dk = 0, which involved solving (2.3) for different complex k. After
convergence to required accuracy of (k0, ω0), it was visually confirmed that the two
spatial branches, k+ and k− (Huerre & Monkewitz 1990), pinch at this saddle point,
thus satisfying the Briggs–Bers condition. This is shown in figure 20(b). Streamwise
variation of ω0 was evaluated next by using the computed value at a given x as
the initial guess for Newton’s method and repeating the procedure in neighbouring
locations to find ω0(x) at all streamwise stations of the base flow (figure 15a). For the
WKBJ analysis, a similar procedure was employed to analytically continue ω0(x) in
the complex x-plane to identify a saddle satisfying dω0/dX = 0, which is associated
with the required global frequency ωg. This is shown in figure 21(a). Additionally,
the temporal spectrum computed directly using the linear global analysis (see (2.4))
is shown in figure 21(b) for S= 1.5, m= 1 and grid resolution of nx = nr = 110.

Appendix F. Energy distribution among velocity components for unstable global
mode at S= 1.5

Comparisons of energy distribution of velocity components between simulations and
the unstable mode in global stability analysis for the case of S= 1.5 are considered.
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FIGURE 20. (Colour online) Results from spatio-temporal analysis at x= 5 for the case
S= 1.5. (a) Contour lines of ωi in complex k-plane based on analytic continuation using
a rational function. (b) Pinching of the k+ (red curve) and k− (green curve) branches,
as obtained from spatial analysis about the saddle point, (k0, ω0). The saddle point is
highlighted using a ‘+’.
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FIGURE 21. (a) Contour lines of ωi in complex X-plane based on analytic continuation
using a rational function: +, saddle point. (b) The temporal spectrum obtained directly
from a linear global analysis: +, unstable eigenvalue. Both figures are for the case of
S= 1.5.

The azimuthally averaged energy contribution of a component is defined as

Ēθi (x, r)= 1
2

∫ 2π

0
|u′i|

2r dθ; i= x, r, θ . (F 1)

Figure 22 compares the amplitude distribution of perturbation velocity components,
defined as un

i =
√

Ēθi and conveniently normalized based on the maximum total energy
achieved in the numerical simulations. This was determined to occur at a position of
x≈ 5.25 and r≈ 1.7. The figures corroborate previous inferences that the linear global
mode closely resembles the nonlinearly saturated perturbation observed in simulations
except in regions around the bubble.
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FIGURE 22. (Colour online) Comparisons of azimuthally averaged normalized perturbation
velocity components (a) un

r , (b) un
θ and (c) un

x computed from global analysis (left)
and numerical simulations (right). All quantities were conveniently normalized with the
maximum magnitude achieved on the entire domain. Results of linear global analysis
match features of perturbation obtained from simulations quite well in the far-wake region,
but not in the bubble’s vicinity.
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