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We consider the bifurcating solutions for the Ginzburg–Landau equations when the supercon-

ductor is a film of thickness 2d submitted to an external magnetic field. We refine some results

obtained earlier [1] on the stability of bifurcating solutions starting from normal solutions.

We prove, in particular, the existence of curves d 7→ κ0(d), defined for large d and tending to

2−1/2 when d 7→ +∞ and κ 7→ d1(κ), defined for small κ and tending to
√

5/2 when κ 7→ 0,

which separate the sets of pairs (κ, d) corresponding to different behaviour of the symmetric

bifurcating solutions. In this way, we give in particular a complete answer to the question of

stability of symmetric bifurcating solutions in the asymptotics ‘κ fixed-d large’ or ‘d fixed-κ

small’.

1 Introduction

Continuing from our previous paper [1], in this paper we consider the Ginzburg–Landau

equations for a film subjected to an exterior magnetic field. Let 2d be the thickness of the

film, κ the Ginzburg–Landau parameter and h ∈]0,+∞[ a constant proportional to the

exterior magnetic field; these equations can then be written

(GL)d


(a) − κ−2f′′ − f + f3 + A2 f = 0 in ]− d, d[,

(b) f′(±d) = 0,

(c) − A′′ + f2 A = 0 in ]− d, d[,

(d) A′(±d) = h,

(1.1)

where f and A are in H2(] − d, d[). The function f is a real wave function, and in this

model A represents the only non-zero component of the interior magnetic potential. They

characterize the state of the material when it is a film (see Ginzburg & Landau [2] and

Ginzburg [3]).

A solution of (GL)d is a triple (f, A; h) in H2(]−d, d[)×H2(]−d, d[) ×]0,+∞[ satisfying

(GL)d. For given κ > 0, h > 0 and e ∈ IR, the triple (f, A; h) = (0, h(x+ e); h) is clearly a

solution of (GL)d. These solutions are called normal solutions. A superconducting solution

is a solution (f, A; h) of (GL)d, such that f is not identically 0.

In this paper we are interested in bifurcating superconducting solutions starting from

normal solutions. A continuous curve ε 7→ (f(·, ε), A(·, ε); h(ε)) will be called a bifurcating

curve of solutions starting from a normal solution (0, h0(x+ e); h0), with h0 > 0 and e ∈ IR,

if there exists ε0 > 0 such that:
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(i) (f( ·, ε), A(·, ε); h(ε)) is a solution for |ε| 6 ε0,

(ii) this solution is superconducting for ε� 0,

(iii) the map ε 7→ (f(·, ε), A(·, ε); h(ε)) is continuous from [−ε0, ε0] to H2(] − d, d[) ×
H2(]− d, d[)× IR, and satisfies

(f(·, 0), A(·, 0); h(0)) = (0, h0(x+ e); h0).

In that case, the normal solution (0, h0(x + e); h0) is called a bifurcation point for the

problem (GL)d.

We say that a bifurcating solution (f(·, ε), A(·, ε); h(ε)), with ε ∈]− ε0, ε0[, is symmetric if

f(·, ε) is even and A(·, ε) is odd on [−d, d], and that it is asymmetric otherwise.

The existence of symmetric or asymmetric bifurcating solutions starting from normal

solutions has already been studied [5–6]. Necessary conditions for the existence can also

be found elsewhere [7–8]. These studies have been recently carried on by Dancer &

Hasting [9].

Earlier [1], we studied the structure and stability of the bifurcating solutions starting

from normal solutions. Our study gave precise results in several asymptotic regimes,

like κd small or κd large for the symmetric solutions, or in the regime κd large for

the asymmetric solutions, excluding in each regime a small set where the study was not

complete. Our purpose in this paper is to complete our previous work in the case of the

symmetric bifurcating solutions by describing the transition between the various regimes.

An analogous study in the case of the asymmetric solutions is probably possible.

New numerical computations by Aftalion & Troy [10] are in good agreement with our

results. They show the existence of three curves in the (κ, d) plane, separating the pairs

(κ, d) with different behaviour. These transitions are described, by using formal expansions,

in the recent paper by Aftalion & Chapman [11]. Our paper proves mathematically, and

independently, the existence of two of these curves, denoted κ1(d) and κ2(d) in Aftalion

& Troy [10] and Aftalion & Chapman [11], in the asymptotic limits (κ 7→ 2−1/2, d 7→ +∞)

and (κ 7→ 0, d 7→ √5/2).

The plan of this study is as follows. In § 2, after recalling some of the results on

bifurcating solutions obtained mainly in our earlier work [1], we present the main results

of this paper. § 3 describes the scalings used in subsequent sections, and gives some useful

formulae. § 4 is devoted to the study of the symmetric bifurcating solutions when κd is

large. § 5 presents an analogous study when κd is small. In § 6, we add some remarks on

the stability of the symmetric bifurcating solutions when κd is large or small.

2 Main results on bifurcating solutions

Before giving the principal results of this paper, we recall some properties of the symmetric

bifurcating solutions.

2.1 Previous results on bifurcating solutions

The occurrence of bifurcation points for (GL)d is analysed by considering the spectral

properties of a system obtained by linearization of the Ginzburg–Landau equations at a

https://doi.org/10.1017/S0956792599004052 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599004052


Symmetric bifurcating solutions in the Ginzburg–Landau equations 97

normal solution (0, h0(x+ e), h0), that is the problem
− κ−2φ′′ + h2

0 (x+ e)2 φ = τ φ in ]− d, d[,
φ′(±d) = 0,

φ = φ(·; κ, d, h0) ∈ H2(]− d, d[),
(2.1)

(see Bolley & Helffer [1] for details). We consider, as in our previous paper, pairs (φ, τ)

which are solutions of (2.1) depending upon κ, d, h0 and e, such that φ is strictly positive

and satisfies the normalization condition

||φ||L2(]−d,d[) = 1. (2.2)

τ = τ(κ, d, h0, e) is consequently the lowest eigenvalue of the operator. We have proved

(see Bolley & Helffer [12, Proposition 0.1]) that, for all κ > 0, d > 0 and e ∈ IR, there

exists a unique h0 = h̄(κ, d, e) such that

τ(κ, d, e, h̄(κ, d, e)) = 1. (2.3)

Theorem 2.1 of Bolley & Helffer [6] gives sufficient conditions on h0 and e for the

existence of solutions bifurcating from (0, h0(x + e); h0). However, because in this paper

we only improve the preceding results in the case of symmetric bifurcating solutions, in

the following we restrict our review to these particular solutions. We first note that the

corresponding bifurcation points are also symmetric. This is equivalent to the condition

e = 0, so that a bifurcation point will be in the form (0, h0 x; h0) and we shall, in

general, skip the e-dependence of h0, τ, φ and write h̄(κ, d), τ(κ, d, h̄(κ, d)), φ(·; κ, d), etc.

Moreover, because of the symmetry, the bifurcation problem is here associated with a

one-dimensional null space, and the existence of a bifurcation is then a standard result

(see, for example, Chow & Hale [13]). We recall, however, a previous result which also

gives the uniqueness of the bifurcating solutions.

We have then proved:

Theorem 2.1 (Theorem 2.1 in Bolley & Helffer [6] with e = 0)

Let (κ, d) ∈]0,+∞[2 and let h0 ∈ IR×]0,+∞[ satisfying

(a) h0 = h̄(κ, d),

(b)
∂2τ

∂e2
(κ, d, h0)� 0.

(2.4)

Then, there exists a constant ε̃0 = ε̃0(κ, d) > 0 and a C∞ curve, ] − ε̃0, ε̃0[3 ε 7→
(f(·, ε), A(·, ε); h(ε)) of superconducting bifurcating solutions such that

f(x, ε) = ε f0(x) + ε3 f1(x) + o(ε3) in H2(]− d, d[),
A(x, ε) = A0(x) + ε2 A1(x) + o(ε2) in H2(]− d, d[),
h(ε) = h0 + ε2 h1 + o(ε2),

(2.5)

where f0 is the principal normalized positive eigenfunction φ defined by (2.1), with h0 =

h̄(κ, d), so that τ = 1, and A0 = h0 x. Moreover, there exist constants ε0 = ε0(κ, d) > 0 with

ε0 6 ε̃0, and γ0 = γ0(κ, d) > 0 such that, for 0 < |ε| 6 ε0, the solution (f(·, ε), A(·, ε); h(ε)) is

https://doi.org/10.1017/S0956792599004052 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599004052


98 C. Bolley and B. Helffer

the unique solution of (GL)d such that

(i) ||f(·, ε)||H2(]−d,d[) 6 γ0, (ii) ||A(·, ε)− A0||H2(]−d,d[) 6 γ0,

(iii) |h(ε)− h0| 6 γ0, (iv) (f(·, ε), f0)L2(]−d,d[) = ε.

We notice that the functions fi, Ai and the coefficients hi (for i = 0, 1) depend, as does

the function φ, upon κ and d. We have in particular:

f0(·) = f0(·; κ, d), A0(·) = A0(·; κ, d), h1 = h1(κ, d). (2.6)

2.2 Main results on the structure of the bifurcating solutions

The first purpose of this paper is to study the sign of h1, which is the second term in

the expansion of h(ε) defined in (2.5), and to prove the existence, for d large enough, of

a curve separating the set of pairs (κ, d) such that h1 > 0 and the set of pairs such that

h1 < 0.

We prove, in particular, the following theorem:

Theorem 2.2 [d large, κd large]

There exists a constant d0 > 0 and a C1 function κ0 : d 7→ κ0(d) defined for d > d0,

satisfying

lim
d7→+∞ κ0(d) = 2−1/2,

and such that, for κ = κ0(d) and d > d0, we have:

h1(κ0(d), d) = 0,

where h1(κ, d) is defined by (2.5). Moreover, there exists a constant a1 > 0 such that for all

pairs (κ, d) with κd > a1, d > d0 and κ�κ0(d), we have

(κ0(d)− κ) · h1(κ, d) > 0.

As a corollary, we get for the bifurcating solutions:

Corollary 2.3 There exists a1 > 0 such that, for all pairs (κ, d) with κd > a1, d > d0

and κ� κ0(d), and for h0 = h̄(κ, d), there exists ε1 = ε1(κ, d) > 0 such that the curve of

bifurcating solutions starting from the normal solution (0, h0x; h0) satisfies, for 0 < |ε| 6 ε1,

(κ0(d)− κ) · (h(ε)− h0) > 0.

We studied the sign of h1 earlier [1], but our study left the sign of h1 undetermined in

a domain defined, for any η > 0, by Ω1
η ≡ {(κ, d) : |κ− 2−1/2| 6 η, κd > a1}, where a1 is

some large constant depending upon η > 0. Theorem 2.2 completes this preceding study

in Ω1
η .

We also get (see § 4) an analogous result when κd is small, which gives the existence,

for κ small, of a curve κ 7→ d1(κ) separating the values of the parameters κ and d, where

h1(κ, d) > 0 of those where h1(κ, d) < 0. We prove the following theorem which improves

Theorem 5.8 in Bolley & Helffer [1]:
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Theorem 2.4 [κ small, κd small]

There exists a constant κ1 > 0 and a C1 function κ 7→ d1(κ) defined for 0 < κ 6 κ1,

satisfying

lim
κ 7→0

d1(κ) =

√
5

2
,

and such that, for the pairs (κ, d) with 0 < κ 6 κ1 and d = d1(κ), we have

h1(κ, d1(κ)) = 0,

where h1(κ, d) is defined in (2.5). Moreover, there exists a constant a2 > 0 such that for (κ, d)

satisfying κd 6 a2, 0 < κ 6 κ1 and d� d1(κ),

(d1(κ)− d) · h1 > 0.

As in the case when κd is large, we deduce a corresponding result for the bifurcating

solutions:

Corollary 2.5 There exists a2 > 0 such that, for (κ, d) satisfying κd 6 a2, 0 < κ 6 κ1,

d � d1(κ) and for h0 = h̄(κ, d), there exists ε1 = ε1(κ, d) such that the unique curve of

bifurcating solutions starting from the normal solution (0, h0 x; h0) satisfies, for 0 < |ε| 6 ε1,

(d1(κ)− d) · (h(ε)− h0) > 0. (2.7)

The sign of h1 was also left undetermined by Bolley & Helffer [1, Theorem 5.8], in

a domain Ω2
η ≡ {(κ, d) ; |d −

√
5

2
| 6 η, κd 6 a2}, for some a2 > 0 depending upon η.

Theorem 2.4 allows us to complete this result in Ω2
η .

3 Study of h1(κ, d) in other scalings

To prove Theorem 2.2, we rewrite the problem in other units, as previously [1].

3.1 Scalings

We have used, in preceding papers, and in particular in Bolley & Helffer [1], two different

scalings for studying (2.1). By using these units once again, we derive the main results of

this paper. Let us recall these scalings, and make the inverse transformation explicit; it

was only implicit in Bolley & Helffer [1].

(i) The first scaling is given by

y =
√
κ h0 x, a = d

√
κ h0, µ =

κ τ

h0
. (3.1)

It has the advantage of giving an operator which is independent of the parameters.

If P is the harmonic oscillator

P ≡ − d2

dy2
+ y2, (3.2)
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the spectral problem (2.1)–(2.2) becomes, for a > 0,
P f̄ = µ f̄ in ]− a, a[,
(∂yf̄)(±a; a) = 0,

f̄(·; a) ∈ H2(]− a, a[),
(3.3)

where f̄ is considered as a function of y and a, and µ as a function of a, and where

we denote by ∂yf̄ the partial derivative of f̄ with respect to y.

The eigenfunction f̄ is assumed to be normalized so that

||f̄(·; a)||L2(]−a,a[) = 1. (3.4)

We have then µ = µ(a) and f̄ = f̄(y; a) and get the relation

f̄(y; a) = (κ h0)−1/4 φ(x; κ, d, h0), (3.5)

with the parameters related by (3.1).

(ii) The second scaling gives an interval independent of the parameters. It is defined by

u =
x

2d
, a = d

√
κh0, λ̄ = 4 κ2 d2 τ. (3.6)

It will be used when κd is small or for differentiating f̄ with respect to a.

The spectral problem becomes
− ∂

2 φ̄

∂u2
+ 16 a4 u2 φ̄ = λ̄ φ̄ in ]− 1/2, 1/2[,

(∂uφ̄)(±1/2; a) = 0,

φ̄(·; a) ∈ H2(]− 1/2, 1/2]),

(3.7)

where φ̄ = φ̄(u; a) and λ̄ = λ̄(a). The eigenfunction φ̄ is normalized so that

|| φ̄(·; a) ||L2(]−1/2,1/2[) = 1, (3.8)

and we then get the relation

φ̄(u; a) = (2d)1/2 φ(x; κ, d, h).

(iii) The scalings (3.1) and (3.6) are connected by the change of variables and parameters

y = 2 a u, µ(a) =
λ̄(a)

4a2
=
κ2 d2 τ

a2
, (3.9)

and we have

φ̄(u; a) = (2a)1/2 f̄(y; a). (3.10)

Remark 3.1 These two scalings will be used when h0 = h̄(κ, d). In that case, the normalized

eigenfunction φ of (2.1)–(2.2) depends only upon x, κ and d, and we have

µ(a) = κ
(
h̄(κ, d)

)−1
and λ̄(a) = 4 κ2 d2. (3.11)

We shall give the inverse transformation in the following section.
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3.2 Variations of the parameters – an inverse scaling

The results stated in § 2.2 concern asymptotics when the product κd is large or small. The

following lemma gives an equivalent by using the parameter a.

Lemma 3.2 (cf. Bolley & Helffer [1, § 2.2.2])

Let λ̄(a) be the principal eigenvalue of (3.7), then a 7→ λ̄(a) is a strictly increasing function

of a on ]0,+∞[ which satisfies

λ̄(0) = 0 and λ̄(+∞) = +∞.
More precisely, when a 7→ 0,

λ̄(a) = 4
3
a4 + O(a8), (3.12)

and when a 7→ +∞,

λ̄(a) = 4 a2 + O (exp
(− 5

8
a2
))
. (3.13)

Note that (3.12) results from a simple argument of perturbation theory.

From Lemma 3.2, the function a 7→ λ̄(a) is one-to-one from [0,+∞[ onto [0,+∞[ and

we can define a function α on [0,+∞[ by

α : s ∈]0,+∞[ 7→ α(s) = λ̄−1(s2). (3.14)

The function α is also one-to-one from [0,+∞[ onto [0,+∞[, and is strictly increasing

from 0 to +∞.

Now, when h0 = h̄(κ, d), we have, from (3.11), λ̄(a) = 4 κ2 d2. We then get

Lemma 3.3 Let a(κ, d) be defined in (3.1) with h0 = h̄(κ, d). Then a depends only upon the

product κd by the formula

a(κ, d) = α(κ d), (3.15)

where α is defined in (3.14). Moreover, the function s 7→ α(s) is a C∞ function on ]0,+∞[

satisfying:

(i)

α(s) =
(

3
4

) 1
4 (s)

1
2 (1 + O(s2)) when s 7→ 0,

and

(ii)

α(s) =
s

2

(
1 + O

(
1

s2
exp

(
− 5

32
s2
)))

when s 7→ +∞. (3.16)

The lemma results from Lemma 3.2 and from the relation 2 κ d = (λ̄(a))1/2 recalled

in (3.11). The regularity of α results from the regularity of the principal eigenvalue with

respect to the coefficients in equation (3.7).

This inverse transformation was not made explicit in Bolley & Helffer [1], so this result

completes § 3 of that work.
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3.3 Formulae for h1

We recall that h1 is defined in (2.6), and that it is a function of κ and d. It is given by the

following formula (see Bolley & Helffer [6, § 2], or Millman & Keller [14]):

2
h1(κ, d)

h̄(κ, d)

∫ d

−d
(A0(x; κ, d))2 (f0(x; κ, d))2 dx

= −
∫ d

−d
(f0(x; κ, d))4dx+ 2

∫ d

−d

(
∂A1, 0

∂x
(x; κ, d)

)2

dx,

(3.17)

where, with the notation of Bolley & Helffer [6], A1(·; κ, d) defined in (2.5) is split as

A1(x; κ, d) = A1, 0(x; κ, d) + h1(κ, d) x,

and where A1, 0(·; κ, d) is the unique solution in H2(]− d, d[) of the following problem:
− ∂

2A1, 0

∂x2
+ f2

0 A0 = 0 in ]− d, d[,
∂A1, 0

∂x
(±d; κ, d) = 0 ,

A1, 0(0; κ, d) = 0.

(3.18)

As in Bolley & Helffer [1], we would like to consider h1 as a function of the parameters

κ and a by using the scaling (3.1). So we get

h̃1(κ, a) = h1(κ, (2κ)−1λ̄1/2(a)) for (κ, a) ∈ (IR+∗)2 ,

where we have used (3.14) and (3.15). In this scaling, h̃1 is given by

2
h̃1(κ, a)

κ

∫ a

−a
y2 f̄(y; a)2 dy =

κ√
µ(a)

· Λ̃(κ, a), (3.19)

where

Λ̃(κ, a) ≡ −
∫ a

−a
f̄(y; a)4 dy + 2 κ−2

∫ a

−a

(
∂B̄

∂y
(y; a)

)2

dy, (3.20)

and where B̄ ∈ H2(]− a, a[) is defined by

B̄(y; a) = κ A1, 0(x; κ, d) for y ∈]− a, a[.
We verify that the function B̄ depends only upon y and a. It is indeed the solution of the

following equation which results from (3.18):

∂2B̄

∂y2
(y; a) = y f̄(y; a)2 for y ∈]− a, a[,

∂B̄

∂y
(±a; a) = 0,

B̄(0; a) = 0 ,

B̄(·; a) ∈ H2(]− a, a[).

(3.21)
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3.4 Approximations of eigenfunctions for κd large

Accurate approximations for the eigen-elements of the spectral problem (3.3) will also

be needed. They have been calculated by Bolley [4], when a tends to +∞, by using a

semi-classical analysis. Let us now describe these results.

In the spirit of Helffer & Sjöstrand [15], we have constructed an approximation of f̄

and of µ valid when a tends to +∞. For this purpose, we have considered, instead of (3.3),

the problem on IR with µ = 1, i.e.

Pf = f in IR,

and a basis {φ1, φ2}, of solutions of this equation chosen such that (see Sibuya [21])

φ1(y) = exp

(
− y

2

2

)
for y ∈ IR, (3.22)

φ2(y) = exp

(
y2

2

)
· 1

y
·
(

1 + O
(

1

y2

))
as y → +∞; (3.23)

also, in this case,

φ′2(y) = exp

(
y2

2

)
·
(

1 + O
(

1

y

))
as y → +∞. (3.24)

We have proved, using techniques from Helffer & Sjöstrand [15], the following result:

Proposition 3.4 (see Proposition 2.9 in Bolley [5])

There exist positive constants C1, C2 and a0 such that for a > a0,

(i)

|µ(a)− 1| 6 C1 exp
(− 11

16
a2
)
. (3.25)

(ii)

sup
y∈[−a,a]

|f̄(y)− f̄app(y)| 6 C2 exp
(− 5

8
a2
)
, (3.26)

where f̄app is an even approximation of f̄ in the form

f̄app(y) = β(a) exp

(
−y

2

2

)
+ ρ(a) · φ2(|y|) · Ξ

(y
a

)
, (3.27)

with

β(a) = π−1/4 + O(a exp(−a2)) as a→ +∞, (3.28)

ρ(a) = π−1/4 a exp(−a2) ·
(

1 + O
(

1

a2

))
, (3.29)

and where Ξ is an even C∞(IR) cutoff function such that

Ξ(x) = 0 if |x| 6 1/2 ; Ξ(x) = 1 if |x| > 3/4.

Remark 3.5 The coefficients β(a) and ρ(a) are defined in such a way that(
∂f̄app

∂y

)
(±a; a) = 0, (3.30)
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and

|| f̄app( · ; a) ||L2(]−a,a[) = 1. (3.31)

Remark 3.6 Proposition 3.4 immediately gives the following estimate for f̄(y), when a > a0:

∀|y| ∈ [a/2, a] , |f̄(y)| 6 2π−1/4 exp

(
−y

2

2

) (
1 + O

(
1

y2

))
.

4 Localization of the zeros of h̃1(κ, a) when a is large

4.1 Reduction to an implicit theorem

Let us consider the bifurcating solutions starting from symmetric normal solutions like

(0, h0 x; h0) when h0 = h̄(κ, d) for some pair (κ, d) of parameters. As proved in Theorem

2.1, when

∂2τ

∂e2
(κ, d, h0)� 0

there exists a unique curve of bifurcating solutions starting from (0, h0 x; h0). This is

the case when κd is large enough (or small enough) (see Theorem 3.4 in Bolley &

Helffer BoHe1997). Therefore, using Lemma 3.3, this is the case when a is large (or small)

enough. Let us consider, in this section, the case when a is large.

To prove Theorem 2.2, in the next section we show the existence of a curve d→ κ0(d),

defined for d large enough, and such that{
h1(κ0(d), d) = 0,

lim
d7→+∞ κ0(d) = 2−1/2, (4.1)

which is the boundary line between h−1
1 (]0,+∞[) and h−1

1 (] −∞, 0[). Following the ideas

of Bolley & Helffer [1], we first study h1 in the scaling (3.1) by using (3.19); this will be a

first step of the proof of Theorem 2.2.

According to (3.19) and the study of § 3.3, we note that

h̃1(κ, a) = 0 ⇐⇒ Λ̃(κ, a) = 0.

So, our purpose is to study the zero set of the map (κ, a) 7→ Λ̃(κ, a).

We prove the following proposition.

Proposition 4.1 There exists a constant a0 > 0 and a C1 function r0 : a 7→ r0(a) defined for

a > a0, satisfying

lim
a7→+∞ r0(a) = 2−1/2, (4.2)

and such that, for a > a0,

(i) Λ̃(r0(a), a) = 0,

(ii) for, κ� r0(a) : (r0(a)− κ) · Λ̃(κ, a) > 0.
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This function r0 satisfies, for some constants C > 0,{
(a) |r0(a)− 2−1/2| 6 C a4 exp

(− 1
2
a2
)
,

(b) |r′0(a)| 6 C a3 exp
(− 1

2
a2
)

when a→ +∞ .
(4.3)

This result improves Lemma 5.3 in Bolley & Helffer [1] and then, using (3.19), it improves

Proposition 5.4 of the same paper.

4.2 Approximations of some partial derivatives with respect to a or y

The proof of Proposition 4.1 will use an Implicit Function Theorem and then estimates

for the first partial derivative of f̄(·; a) with respect to a.

Proposition 4.2 . There exist constants C > 0 and a0 > 0 such that for a > a0,∣∣∣∣∣∣∣∣ ∂f̄∂a (·; a)
∣∣∣∣∣∣∣∣
C1([−a,a])

6 C a5 exp

(
−a

2

2

)
. (4.4)

Proof Let us write an equation satisfied by

y 7→ ∂f̄

∂a
(y; a).

By differentiating the equation (3.3) with respect to a in any fixed interval of ]− a, a[, we

get 
− ∂

2

∂y2

(
∂f̄

∂a

)
(y; a) + y2 ∂f̄

∂a
(y; a)− µ(a)

∂f̄

∂a
(y; a)

= µ′(a) f̄(y; a) in ]− a, a[,
∂f̄

∂a
(·; a) ∈ H2(]− a, a[).

(4.5)

Now, using the normalization condition || f̄(·; a) ||L2(]−a,a[) = 1, we get

2

∫ a

a

f̄(y; a)
∂f̄

∂a
(y; a) dy + [f̄(a; a)2 − f̄(−a; a)2] = 0,

and because f̄(·; a) is even, (
∂f̄

∂a
(·; a), f̄(·; a)

)
L2(]−a,a[)

= 0. (4.6)

It remains to compute the first partial derivative of f̄(·; a) with respect to a at y = ±a By

using that, for any a > 0

∂f̄

∂y
(±a; a) = 0,

we get, for example at y = a (and an analogous result at y = −a);
∂2f̄

∂y ∂a
(a; a) = − ∂

2f̄

∂y2
(a; a) = (µ(a)− a2)f̄(a; a). (4.7)

This computation can be justified by using an extension of f̄ into a function (y, a) 7→
ḡ(y; a), which is a C2 function on IR×]0,+∞[, and then by differentiating ḡ with respect
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to a. Now, from Proposition 3.4, we get an estimate of f̄(a; a) when a tends to +∞, and

then from (4.7),

∂2f̄

∂y ∂a
(±a; a) = 2 π−1/4

(−a2 + 1 + O (a−2
))

exp

(
−1

2
a2

)
. (4.8)

This means, in particular, that the function

y 7→ ∂f̄

∂a
(y; a)

does not satisfy the Neumann conditions at ±a. For getting estimates on this function,

we add, for large y, some even function in such a way that the sum will satisfy these

Neumann conditions.

Let us consider the function w̄(·; a) defined by

w̄(y; a) =
∂f̄

∂a
(y; a) + γ(a) φ2(|y|)Ξ

(y
a

)
for y ∈ [−a, a] ,

where φ2 and Ξ are defined in Proposition 3.4, and where

γ(a) = −
(
∂2f̄

∂y ∂a
(a; a)

)
· (φ′2(a)

)−1
=

(a2 − µ(a)) f̄(a; a)

φ′2(a)
.

This choice of γ(a) gives

∂w̄

∂y
(±a; a) = 0.

Moreover, by once again using the approximation f̄app(·; a) of f̄(·; a) given in Proposition

3.4, we get

γ(a) = 2π−1/4 a2 exp(−a2)
(
1 + O(a−1)

)
when a→ +∞. (4.9)

The new function w̄(·; a) satisfies the Neumann conditions at ±a, but not the orthogo-

nality condition necessary for our estimates, so we add to w̄(·; a) another term belonging

to the kernel of P − I . Let us define

Z̄(y; a) = w̄(y; a) + ν(a) f̄(y; a),

with

ν(a) = − γ(a)
∫ a

−a
φ2(|y|) Ξ

(y
a

)
f̄(y; a) dy,

then (
Z̄( · ; a), f̄( · ; a))

L2(]−a,a[) = 0.

We get, using (3.23) and Proposition 3.4,

ν(a) = − 2 γ(a)

∫ a

a/2

Ξ
(y
a

) [
β(a) φ1(y)φ2(y) + ρ(a) φ2(y) Ξ

(y
a

)]
dy

+O (a γ(a) exp
(− 5

8
a2
)
φ2(a)

)
when a→ +∞,

(4.10)

and then

ν(a) = O(γ(a)) when a→ +∞. (4.11)
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We have proved that the function Z̄(·; a) ∈ H2(]− a, a[) satisfies the following equations:

− ∂
2Z̄

∂y2
+ y2 Z̄ − µ(a) Z̄ = µ′(a) f̄ − γ(a) (y2 − 1)φ2(|y|)Ξ

(y
a

)
− γ(a)

a
φ′2(|y|) Ξ ′

(y
a

)
− 2 sign(a)

γ(a)

a2
φ2(|y|) Ξ ′′

(y
a

)
in ]− a, a[ ,

∂Z̄

∂y
(±a; a) = 0 ,(

Z̄(·; a), f̄(·; a))
L2(]−a,a[) = 0.

(4.12)

q

To obtain an estimate of Z̄(·; a), we need an estimate for µ′(a).

Lemma 4.3 Approximation of µ′(a) when a→ +∞
When a tends to +∞, the principal eigenvalue µ(a) of (3.7) verifies

µ′(a) = aπ−1/2 exp(−a2) · (1 + O(a−2)
)
. (4.13)

Proof Let us consider the equation (4.12). A compatibility relation gives, by the Heilman–

Feynman formula

µ′(a) + 2 = 4 a

∫ a

−a
y f̄(y; a)

∂f̄

∂y
(y; a) dy, (4.14)

because f̄(·; a) is normalized in L2(] − a, a[). Using Proposition 3.4, we then get, when a

tends to +∞,

µ′(a)) = 4 a f̄2(a; a), (4.15)

and then the lemma. q

Let us now define the spaces

Ga ≡ {φ ∈ L2(]− a, a[) ; (φ, f̄(.; a))L2(]−a,a[) }
and

Fa ≡ {φ ∈ H2(]− a, a[)⋂Ga; φ′(±a) = 0 }.
We see from (4.5)–(4.7)

|| Z̄( · ; a) ||H2(]−a,a[) 6 || (P − µ(a))−1 ||L(Ga,Fa)

· [|µ′(a)| · || f̄ ||L2(]−a,a[) + 2 a3 γ(a)φ2(a) + 2 γ(a) (φ′2(a) + φ2(a))
]
,

using that, for some positive constant C and for a > 0,

|| (P − µ(a) I)−1 ||L(Ga,Fa) 6 C a2.

Using also the estimates of Proposition 3.4 and Lemma 4.3 on µ′(a), we deduce that, when

a→ +∞
|| Z̄(·; a) ||H2(]−a,a[) 6 C a5 exp

(− 1
2
a2
)
. (4.16)
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Using now that Z̄(·; a) and ∂f̄
∂a

( · ; a) are related by the following relation:

Z̄(y; a) =
∂f̄

∂a
(y; a) + γ(a) φ2(|y|)Ξ

(y
a

)
+ ν(a) f̄(y; a) for y ∈ [−a, a],

we get the proposition.

We shall also need later ∂a
∂κ

(κ, d) and ∂a
∂d

(κ, d) for κ and d > 0.

Lemma 4.4 Approximation of ∂a
∂κ

(κ, d) and of ∂a
∂d

(κ, d)

When a (or κ d) tends to +∞:

∂a

∂κ
(κ, d) =

a(κ, d)

κ
·
(

1 + O
(
a2 exp

(
−5

8
a2

)))
,

∂a

∂d
(κ, d) =

κ

2
·
(

1 + O
(
a2 exp

(
−5

8
a2

)))
.

Proof The two partial derivatives of a are given by differentiating the relation λ̄(a) =

4 κ2d2. We get, by differentiation with respect to κ,

∂a

∂κ
(κ, d) = 8 κd2 (λ̄′(a))−1 =

2 λ̄(a)

κ

(
λ̄′(a)

)−1
.

Now, using (3.13) and Lemma 3.3, we get the first part of the lemma.

Let us now differentiate λ̄(a(κ, d)) with respect to d; we get

∂a

∂d
(κ, d) = 8 κ2d

(
λ̄′(a)

)−1
= 4 κ (λ̄(a))1/2

(
λ̄′(a)

)−1
,

and then, using (3.13) and Lemma 3.3, we get the second part of the lemma. q

4.3 Proof of Proposition 4.1

Let us now prove Proposition 4.1. It will be done in several steps.

Step 1: Extension of the function Λ̃

By studying (3.7) and (3.5), then (3.21) and (3.20), we note that we can extend f̄(·; a) as an

even function of a to negative a, and B̄(·; a) and Λ̃(κ, a) as odd functions of a. Moreover,

from computations in Bolley & Helffer [1, Formula (5.13)]), Λ̃(κ, a) satisfies, for a large

enough,

Λ̃(κ, a) = 2−3/2 π−1/2 κ−2

[
1− 2 κ2 + (1 + κ2) O

(
a2 exp

(
−5 a2

8

)) ]
. (4.17)

We then define a parameter ā = a−1 and a function Λ̃2 of κ and ā, for (κ, ā) ∈]0,+∞[×IR
by {

(a) Λ̃2(κ, ā) ≡ Λ̃(κ, a) when (κ, ā) ∈]0,+∞[×IR \ {0},
(b) Λ̃2(κ, 0) ≡ 2−3/2 π−1/2 κ−2 (1− 2 κ2) when κ > 0.

(4.18)

From (4.18)(b),

Λ̃2(2−1/2, 0) = 0, (4.19)

and we seek to apply the Implicit Function Theorem to the function Λ̃2(κ, ā) at the point
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(κ, ā) = (2−1/2, 0) to get the existence, for ā small, of a unique C1 function ā 7→ r̄0(ā) such

that {
Λ̃2(r̄0(ā), ā) = 0,

r̄0(0) = 2−1/2.
(4.20)

The function r0, defined for a positive large enough, by

r0(a) = r̄0(ā),

will be proved to satisfy Proposition 4.1.

Step 2: The partial derivatives of Λ̃2

To apply the Implicit Function Theorem, we need to prove that Λ̃2 is continuously

differentiable in a neighbourhood of the point (κ, d̄) = (2−1/2, 0), and that ∂Λ̃2

∂κ
(2−1/2, 0) is

different from 0. The last point is immediate from (4.18)(b). We have, indeed :

∂Λ̃2

∂κ
(2−1/2, 0) = − π−1/2. (4.21)

(a) Regularity of Λ̃2(κ, ā) on ]0,+∞[×IR∗
As functions f̄(·; a) and ∂yB̄(·; a) are independent of κ and admit continuous partial

derivatives with respect to the parameter a, we deduce that Λ̃2(κ, ā) is a C1 function

with respect to (κ, ā) in ]0,+∞[×]0,+∞[ and then, by parity, in ]0,+∞[×IR∗. It

remains to study the regularity of Λ̃2 on the half straight-line D0 ≡ {(κ, 0) ; κ > 0}.
(b) Continuity of Λ̃2(κ, ā) on D0

The continuity of Λ̃2 on {(κ, 0) ; κ > 0} results from (4.17) and (4.18)(b).

Continuity of ∂Λ̃2

∂κ
(κ, 0)

Let us prove the continuity of ∂Λ̃2

∂κ
at (κ, 0) for κ > 0. We have, from (4.18)(a) and

(3.20), and with a = ā−1� 0,

∂Λ̃2

∂κ
(κ, ā) = −4 κ−3

∫ a

−a
(
∂B̄

∂y
(y; a))2 dy. (4.22)

Now, using the computations of Bolley & Helffer [1] (proof of Lemma 5.3), which

gives the last integral, we get for positive ā small enough and κ > 0,

∂Λ̃2

∂κ
(κ, ā) = − κ−3 2−1/2 π−1/2 ·

[
1 + O

(
ā−2 exp

(
−5

8
ā−2

))]
, (4.23)

with a O uniform in κ. The result is extended to negative ā with |ā| small enough,

by parity. Consequently, for ā� 0:

lim
(κ̃,ā)7→(κ,0)

∂Λ̃2

∂κ
(κ̃, ā) = − κ−3 2−1/2 π−1/2.

Thanks to (4.18)(b), the continuity of ∂Λ̃2

∂κ
at (κ, 0) follows.
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The partial derivative ∂Λ̃2

∂ā
(κ, 0)

From the relations (4.17)–(4.18), the partial derivative of Λ̃2 with respect to ā

calculated at (κ, ā) = (κ, 0), is given by the limit as η → 0 of

Λ̃2(κ, η)− Λ̃2(κ, 0)

η
= 2−3/2 π−1/2 (κ−2 + 1) O

(
η̄−3 exp

(
−5

8
η̄−2

))
.

Therefore, ∂Λ̃2

∂ā
(κ, ā) exists and

∀κ > 0,
∂Λ̃2

∂ā
(κ, 0) = 0. (4.24)

Expression of ∂Λ̃2

∂ā
(κ̃, ā) for κ̃ > 0 and ā ∈ IR∗

For the continuity of the partial derivative ∂Λ̃2

∂ā
at (κ, 0) for κ > 0, we need more

computations. Using (4.18), (3.20) and the parity of the different functions, we have

∂Λ̃2

∂ā
(κ̃, ā) = − a2 ∂Λ̃

∂a
(κ̃, a), (4.25)

with

∂Λ̃

∂a
(κ̃, a) = −2f̄(a; a)4 + 2 κ̃−2

(
∂B̄

∂y
(a; a)

)2

−4

∫ a

−a
f̄(y; a)3 ∂f̄

∂a
(y; a) dy + 4 κ̃−2

∫ a

−a
∂B̄

∂y
(y; a)

∂2B̄

∂a ∂y
(y; a) dy.

(4.26)

Equations (4.25) and (4.26) allow us to use preceding computations performed when

a→ +∞.

Estimates for the first terms in (4.26)

In (4.26), the parameter κ̃ appears only in factor before the second and the third

terms. So, we study only terms depending upon a. The analysis performed in

Bolley [5] and partially recalled in Proposition 3.4, gave estimates for the three first

terms. These terms satisfy, when a tends to +∞,

f̄(a; a)4 = O(exp(−2a2)), (4.27)

∂B̄

∂y
(a; a)2 = O

(
a2 exp

(
−5

4
a2

))
. (4.28)

and as consequence of Lemma 4.2, using also that f̄ is bounded,∫ a

−a
f̄3(y; a)

∂f̄

∂a
(y; a) dy = O

(
a2 exp

(
−1

2
a2

))
when a→ +∞. (4.29)
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The partial derivative ∂2B̄
∂a ∂y

Let us now consider the partial derivative ∂B̄
∂a

(·; a). Integrating (3.21) gives

∂2B̄

∂a ∂y
(y; a) = a f̄(a; a)2 +

∫ y

−a
2t f̄(t, a)

∂f̄

∂a
(t; a) dt.

Therefore, using this relation and the usual approximation of f̄ (Proposition 3.4),

we get, as a tends to +∞, uniformly on [−a, a],
∂2B̄

∂a ∂y
(y; a) = O

(
a2 exp

(
−1

2
a2

))
. (4.30)

Moreover, computations in Bolley & Helffer [1] (proof of Lemma 5.3) give

∂B̄

∂y
(y; a) = −2−1π−1/2 exp(−y2) + O

(
a exp

(
−5

8
a2

))
. (4.31)

Consequently, when a→ +∞,∫ a

−a
∂B̄

∂y

∂2B

∂a ∂y
dy = +O

(
a3 exp

(
−1

2
a2

))
. (4.32)

In this step, the terms, and then the O, do not depend upon κ.

Coming back to (4.25) and (4.26), we get, from the preceding steps (4.27)–(4.29)

and (4.32), an estimate of ∂Λ̃2

∂ā
(κ̃, ā). We have proved

Lemma 4.5 For (κ̃, ā) ∈]0,+∞[×IR∗ and ā small enough,

∂Λ̃2

∂ā
(κ̃, ā) = O

(
ā−5 exp

(
− 1

2ā2

))
,

where the O is uniform for κ̃ in a compact set of ]0,+∞[.

Continuity of ∂Λ̃2

∂ā
at (κ, 0)

It results from Lemma 4.5 that, for all κ > 0, ∂Λ̃2

∂ā
(κ̃, ā) tends to 0 as (κ̃, ā) tends to

(κ, 0). Using (4.24), we get the continuity of ∂Λ̃2

∂ā
at any point (κ, 0).

(c) Conclusion

The preceding steps imply that the Implicit Function Theorem can be applied to

Λ̃2 at (2−1/2, 0). The following lemma results:

Lemma 4.6 There exists a constant ā0 > 0 and a C1 function ā 7→ r̄0(ā) defined,

for |ā| 6 ā0 such that (4.20) is satisfied, that is such that{
Λ̃2(r̄0(ā), ā) = 0,

r̄0(0) = 2−1/2 .
(4.33)

https://doi.org/10.1017/S0956792599004052 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599004052


112 C. Bolley and B. Helffer

As a consequence, we get the existence of a C1 function a → r0(a) defined for

a > ā−1
0 , by

r0(a) = r̄0

(
1

a

)
,

such that (4.2) and Part (i) of Proposition 4.1 are satisfied.

To prove (ii), we note, using (4.18)(b) with the parameter ā = a−1, that for κ > 0,

Λ̃2(κ, 0) · (r̄0(0)− κ) > 0,

with r̄0(0) = 2−1/2. By continuity of Λ̃2, it results that, for κ > 0 and ā small enough,

Λ̃2(κ, ā) · (r̄0(ā)− κ) > 0.

Part (ii) in Proposition 4.1 follows.

For getting the asymptotic behaviour of r′0, we note that

r′0(a) = − 1

a2
r̄′0(a−1) =

1

a2

(
∂Λ̃2

∂ā
(κ, ā)

)
·
(
∂Λ̃2

∂κ
(κ, ā)

)−1

,

so that, using (4.23) and Lemma 4.5, we get (4.3)(b), and then (4.3)(a).

4.4 Proof of Theorem 2.2

Let us now prove Theorem 2.2, which is written in the physical parameters κ and d. The

proof is a consequence of Proposition 4.1, where the parameters κ and a were used.

The first problem is to prove the existence of a curve d 7→ κ0(d) defined for large d

and κ0(d) near 2−1/2, such that, for (κ, d) = (κ0(d), d), the parameter h1(κ, d) cancels. We

have studied this problem in the previous section in the parameters κ and a for large a,

where we have used that h1 = h̃1(κ, a) is equal to 0 if and only if Λ̃(κ, a) = 0. But, from

Lemma 3.3, we have

a(κ, d) = α(κd),

so that Λ̃ can be written as a function of κ and d: we then define

Λ(κ, d) = Λ̃(κ, α(κd)) for (κ, d) ∈ (IR+∗)2.

The existence of a curve r0 : a 7→ r0(a) (see Lemma 4.6) defined for a > a0 such that

Λ̃(r0(a), a) = 0 for a > a0 will give us the existence of κ0 for large d such that (4.1) is

satisfied.

The zeros of Λ̃ are given by the relation

κ = r0(a) with a = α(κd),

so that we get a relation between κ and d giving Λ = 0.

We then let

F(κ, d) ≡ κ − (r0 ◦ α)(κd), (4.34)

and we note that

lim
d7→+∞F(2−1/2, d) = 0.
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It is then easy to apply an Implicit Function Theorem to the function F at the point

(2−1/2,+∞) (or, if we prefer, at the point (2−1/2, 0) to a function (κ, d̄) 7→ F̄(κ, d̄) defined

by F̄(κ, d̄) = F(κ, d−1) with d̄ = d−1 and extended to null and negative d̄), for getting the

existence of a C1-curve κ0 : d 7→ κ0(d) defined for large d, and such that h1(κ0(d), d) = 0

for large d.

The continuity and differentiability of F in a neighbourhood of (2−1/2,∞) comes, indeed,

from the composition of the two functions a 7→ r0(a) and s 7→ α(s) by using that, from

Lemma 4.6, r0 is continuously differentiable in a neighbourhood of ∞. The continuity and

the differentiability of α for large s (κ > 0 is close to 2−1/2 and d is large) comes from

Lemma 3.3. We also have to verify that ∂F
∂κ

(2−1/2, d) is different from zero when d tends

to 0.

Let us show that ∂F
∂κ

(2−1/2, d) = 1 + O (d3 exp(−d2)
)

as d → +∞. We have, by differen-

tiating (4.34) and with σ = 21/2d:

∂F

∂κ
(2−1/2, d) = 1− d r′0(α(σ)) α′(σ),

with, from Lemma 3.3, α(σ) = 2−1/2d(1 + O (d−2 exp
(− 5

16
d2
))

when d→∞. However,

r′0(a) = − 1

a2
r̄′0(a−1) ,

and

r̄′0(ā) = −
(
∂Λ̃2

∂ā
(κ, ā)

)
·
(
∂Λ̃2

∂κ
(κ, ā)

)−1

,

so that, using (4.23) and Lemma 4.5, we get

r′0(α(σ)) = O (α(σ)3 exp
(− 1

2
α(σ)2

))
.

Now, from Lemma 3.3, we have, when d→ +∞,

r′0(α(σ)) = O (d3 exp
(− d2

))
,

and

α′(s) = 2s
(
λ̄′
)−1

=
(
1 + O (d−2 exp

(− 5
16
d2
)))

.

Therefore,

∂F̄

∂κ
(2−1/2, d) = 1 + O (d3 exp(−d2)

)
as d→ +∞ . (4.35)

4.5 Conclusion

The Implicit Function Theorem applied to F at the point (2−1/2, 0), gives the existence of

a constant d0 > 0 and of a C1 curve κ0 : d 7→ κ0(d) defined for d > d0, such that

F(κ0(d), d) = 0 with lim
d7→+∞ κ0(d) = 2−1/2.

We then get Theorem 2.2.
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5 The sign of h1 when κd is small

Let us now consider the case when κd is small. Theorem 5.9 in Bolley & Helffer [1]

establishes, in that case, the existence of a family of bifurcating solutions, starting from

the normal solution (0, h0x; h0), where h0 = h̄(κ, d), and parametrized, in a neighbourhood

of the normal solution, by

σ = 2κd , d , ε̄ = (2d)−1/2 ε and u =
x

2d
∈ [−1/2, 1/2],

for ε̄ small enough. These solutions are described by (g(·; σ, d, ε̄), V (·; σ, d, ε̄);
η(σ, d, ε̄)) where

g(u; σ, d, ε̄) = f(x; κ, d, ε);

V (u; σ, d, ε̄) = A(x; κ, d, ε) with u ∈ [−1/2, 1/2]

η(σ, d, ε̄) = 2d h(κ, d, ε).

(5.1)

From Bolley & Helffer [1], this family of bifurcating solutions admits an expansion in

power of ε̄ such that, for ε̄ small,

g(·; σ, d, ε̄) = ε̄ g0(·; σ, d) + ε̄3 g̃(·; σ, d, ε̄),
V (·; σ, d, ε̄) = V0(·; σ, d) + ε̄2 V1(·; σ, d) + o(̄ε2) in H2(]− 1/2, 1/2[),

∂uV (±1/2; σ, d, ε̄) = η(σ, d, ε̄) = η0(σ, d) + ε̄2 2d ¯̄h1(σ, d) + o(̄ε2),

where g̃(·; σ, d, ε̄) ∈ H2(]− 1/2, 1/2[) satisfies

(g0(·; σ, d), g̃(·; σ, d))L2(]−1/2,1/2[) = 0,

and where g0(·; σ, d) is the normalized principal eigenfunction of (3.7) in the new par-

ameters.

Let us define

¯̄h0(σ, d) = h̄
(
(2d)−1σ, d

)
and ¯̄h1(σ, d) = h1

(
(2d)−1σ, d

)
;

we then get

η0(σ, d) = 2d ¯̄h0(σ, d).

Moreover, in Bolley & Helffer [1, Theorem 5.8], we have obtained results on the sign

of ¯̄h1(σ, d), outside the domain Ω2
η defined in § 2. Our purpose in this subsection is first

to study the sign of ¯̄h1(σ, d) in this domain, and then to come back to the initial units

(κ and d) for getting Theorem 2.4.

We get from the expansion of the bifurcating solutions a formula analogous to (3.19)

in our new scaling,

2
¯̄h1(σ, d)
¯̄h0(σ, d)

∫ 1/2

−1/2

V0(u; σ, d)2 g0(u; σ, d)2 du

= −
∫ 1/2

−1/2

g0(u; σ, d)4 du+ 2−1 d−2

∫ 1/2

−1/2

(
∂V1,0

∂u
(u; σ, d)

)2

du,

(5.2)

https://doi.org/10.1017/S0956792599004052 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599004052


Symmetric bifurcating solutions in the Ginzburg–Landau equations 115

where V1,0(u; σ, d) = A1,0(x; κ, d), so that V1,0(·; σ, d) satisfies
− ∂

2V1,0

∂u2
+ 4d2 g0(·; σ, d)2 V0(·; σ, d) = 0 in ]− 1/2, 1/2[,

∂uV1,0(±1/2; σ, d) = 0,

V1,0(±1/2; σ, d) = 0.

(5.3)

We proceed now as in the preceding section. We denote by ¯̄Λ2 the right-hand side of

(5.2). It is a function of σ > 0 and d > 0 given by

¯̄Λ2(σ, d) ≡ −
∫ 1/2

−1/2

(g0(u; σ, d))4 du+ 2−1 d−2

∫ 1/2

−1/2

(
∂V1,0

∂u
(u; σ, d)

)2

du, (5.4)

but we note that the Ginzburg–Landau equations parametrized by σ and d can be

extended to negative values of σ in such a way that g0(·; σ, d) is an even function of σ.

From (5.4) and (5.3), ¯̄Λ2(σ, d) is an even function of σ.

We have ¯̄h1(σ, d) = 0 if and only if ¯̄Λ2(σ, d) = 0, and we are interested in solving the

problem near d =
√

5/2. When σ = 0, we see that

V1,0(u; 0, d) =
4
√

3

3
d2 u3 −√3 d2 u,

so that

¯̄Λ2(0, d) = − 1 +
4d2

5
for d > 0. (5.5)

We now apply the Implicit Function Theorem to ¯̄Λ2 at (σ, d) = (0,
√

5/2) to get the

existence of a curve σ 7→ d̄1(σ) defined for σ in a neighbourhood of 0, and such that
¯̄Λ2(σ, d̄1(σ)) = 0,

d̄1(0) =
√

5
2
.

(5.6)

The regularity of the function ¯̄Λ2 with respect to (σ, d) in [0,+∞[×]0,+∞[ will result from

the regularity of the functions g0 and ∂uV1,0. However, g0(·; σ, d) satisfies

− ∂
2g0

∂u2
+ σ2 η0(σ, d)2 u2 g0 = σ2 g0 in ]− 1/2, 1/2[,

(∂ug0)(±1/2; σ, d) = 0,

g0(·; σ, d) > 0,

g0(·; σ, d) ∈ H2(]− 1/2, 1/2]),

(5.7)

and ∂uV1,0 satisfies (5.3). These are Sturm–Liouville type equations, so by standard

theorems we get that g0 and ∂uV1,0 are C∞ with respect to the parameters σ and d in a

neighbourhood of (0,
√

5/2). Consequently, ¯̄Λ2 is a C∞ function in (σ, d) for (σ, d) in a

neighbourhood of (0,
√

5/2).

We now just observe that, according to (5.5):

∂ ¯̄Λ2

∂d
(0,
√

5/2) =
2
√

5

5
� 0. (5.8)
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Thus, the Implicit Function Theorem implies the existence of a C1 curve σ 7→ d̄1(σ)

defined for σ small and satisfying (5.6).

Using now the relation σ = 2κd, we can proceed as in the proof of Theorem 2.2 to get

the existence of a C1 curve κ 7→ d1(κ) defined for κ small and satisfying Theorem 2.4. The

last part of the theorem and Corollary 2.5 follows from the estimate, proved for κd small,

Bolley & Helffer [1, Formula (5.24)]:

h(κ, d, ε) = h̄(κ, d)−
√

3

4d2

(
1− 4d2

5
+ (1 + 4d2) O(κ2d2)

)
ε2 + Oκ,d(ε3). (5.9)

6 Remarks on the stability of the symmetric bifurcating solutions

6.1 Local stability for the problem (GL)d

Let (κ, d) be in (]0,+∞[)2. A solution (f̂, Â; ĥ) of the Ginzburg–Landau equations (GL)d
is said to be locally stable if, at fixed ĥ, it gives a local minimum of the GL functional

(∆G)h(f, A) attached to (GL)d, with respect to the pairs (f, A). Otherwise, it is said to be

unstable. We recall that the GL functional (∆G)h(f, A) is defined on H1(]− d, d[)2 by (see,

for example, Bolley & Helffer [1])

(f, A) 7→ (∆G)h(f, A) =

∫ d

−d

[
κ−2 f′2 − f2 +

1

2
f4 + A2 f2 + (A′ − h)2

]
dx. (6.1)

From Bolley & Helffer [1, Theorem 4.5], we see that, for κd large, the symmetric

bifurcating solutions are unstable. This instability is completely determined for κd large

enough, whatever the sign of h1(κ, d). So, the preceding sections are not useful for this

study. But, when κd is small, Theorem 2.4 allows us to improve Theorem 4.3 of Bolley &

Helffer [1] by the following theorem:

Theorem 6.1 There exist strictly positive constants a0 and a1 such that, for (κ, d) in ]0,+∞[)2

satisfying κd 6 a0 and 0 < κ 6 a1, and for h0 satisfying (2.4), there exists ε0 > 0 such that

for 0 < ε 6 ε0, the following properties are satisfied:

(i) When d < d1(κ), the bifurcating solutions starting from the normal solution (0, h0 x; h0)

are locally stable.

(ii) When d > d1(κ), the bifurcating solutions starting from the normal solution (0, h0 x; h0)

are unstable,

where d1(κ) is the function defined in Theorem 2.4.

Proof We come back to the proof of Theorem 4.3 in Bolley & Helffer [1]. We consider

here the local stability of symmetric bifurcating solutions in
(
H1(]− d, d[))2

, so that the

perturbations are not restricted to symmetric functions. In that case, the eigenvalue τ = 0

of the spectral problem
(a)

{ − κ−2φ′′ + h2
0 x

2 φ− φ = τ φ in ]− d, d[
φ′(±d) = 0,

(b)

{ − v′′ = τ v in ]− d, d[
v′(±d) = 0,

(6.2)
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with (φ, v) ∈ (H2(]−d, d[))2, associated to the normal solution (0, h0x; h0) has a multiplicity

of two (with
(

0
c

)
, where c ∈ IR, as an eigenvector). The study of the stability of the

bifurcating solutions is then reduced to the study of the sign of the two lowest eigenvalues,

denoted λ(1)(ε, κ, d) and λ(2)(ε, κ, d) of the operator(
H2(]− d, d[))2 3

(
g

b

)
7−→

( −κ−2g′′ + (A2 + 3f2 − 1) g + 2Af b

−b′′ + f2 b+ 2Af g

)
, (6.3)

with A = A(·, κ, d, ε) , f = f(·, κ, d, ε) and Neumann conditions, when ε is small. When

ε = 0, 0 is the lowest eigenvalue.

When |ε| > 0, using a perturbation analysis, we have seen that the sign of the eigenvalues

λ(1)(ε, κ, d) and λ(2)(ε, κ, d), is given, for ε small, by the sign of two reals denoted λ
(1)
2 and

λ
(2)
2 which depend upon κ and d.

We have proved that λ(2)
2 (κ, d) > 0 when κd is small (see Bolley & Helffer [1, Lemma

7.3 i]), and that the sign of λ(1)
2 (κ, d) is given by the sign of h1(κ, d) (see Bolley & Helffer

[1, (7.6)]). Therefore, Theorem 6.1 results from Theorem 2.4. q

6.2 Local stability for a reduced symmetric problem

When κd is large, the problem is different. Our study (see Bolley & Helffer [1, Theorem 4.5])

of the stability of the bifurcating solutions with respect to the GL functional (∆G)h, has

proved that the symmetric bifurcating solutions are unstable for κd large enough. If we

now restrict ourselves to symmetric solutions (as was done elsewhere [17–20]), we restrict

the domain of the GL functional to a subset of
(
H1(]− d, d[))2

corresponding to these

solutions. This subset is defined, for fixed κ and d, by

Hsym = {(f, A) ∈ (H1(]− d, d[))2 ;

∀x ∈]− d, d[, (f(−x), A(−x)) = (f(x),−A(x))}.
By considering this problem, the stability of a symmetric bifurcating solution is different

when κd is large. We prove the following theorem:

Theorem 6.2 There exist constants d0 > 0 and a0 > 0 such that, for (κ, d) in (]0,+∞[)2

satisfying κd > a0 and d > d0, and for h0(κ, d) satisfying (2.4), the following properties are

satisfied.

(i) When κ > κ0(d), the bifurcating solutions starting from (0, h0 x; h0) are locally stable

by respect to the functional (∆G)h, in restriction to the set Hsym.

(ii) When κ < κ0(d), they are unstable,

where κ0 : d 7→ κ0(d) is the map defined in Theorem 2.2.

Proof It is sufficient to prove that the bifurcating solutions give local minima for (∆G)h,

when h is fixed. So, as in the proof of Bolley & Helffer [1, Theorem 4.5], we study the

Hessian of the functional in restriction toHsym corresponding to the symmetric solutions.

The study of the local stability is then reduced to an analysis of the spectrum of the

self-adjoint operator attached to this problem. This leads us to study the corresponding
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linearized GL equations (6.3) at the triple (f(., ε, κ, d), A(·, ε, κ, d); h(ε, κ, d)), but when the

solutions (g, b) are sought in Hsym

⋂(
H2(]− d, d[))2

. q

By the choice h0(κ, d) = h̄(κ, d), the lowest eigenvalue for this problem, when ε = 0,

is equal to zero with multiplicity one (but two for the full problem). The corresponding

eigenspace is generated by

ū1(·; κ, d) =

(
f0(·; κ, d)

0

)
,

where f0(·; κ, d) is the normalized eigenfunction of (2.1) where τ = 1. By regular pertur-

bation analysis, we get,

Lemma 6.3 Let d > 0, κ > 0 and h0 satisfying (2.4). Then, there exists ε0 such that, for

0 < |ε| 6 ε0, the eigen-elements corresponding to the first lowest eigenvalue of (6.3) with

(g, b) in Hsym

⋂(
H2(]− d, d[))2

, are described by
µ(1)(ε, κ, d) = ε2µ

(1)
2 (κ, d) + o(ε2),

g(1)(x, ε, κ, d) = f0(x; κ, d) + o(ε) in H2(]− d, d[),
b(1)(x, ε, κ, d) = 2 ε A1,0(x; κ, d) + o(ε2),

(6.4)

with

µ
(1)
2 (κ, d) = − 4

h1(κ, d)

h0(κ, d)

∫ d

−d
(A0(x; κ, d))2 (f0(x; κ, d))2 dx. (6.5)

To prove Theorem 6.2, it is then sufficient to note that, using the symmetry of f0(·; κ, d)
and A0(·; κ, d), we have

λ
(1)
2 (κ, d) = µ

(1)
2 (κ, d),

and then to apply Theorem 2.2. We have, indeed, h1(κ, d) < 0 when κ > κ0(d) and

h1(κ, d) > 0 when κ < κ0(d).

7 Conclusion

This study gives a complete answer to the stability of bifurcating symmetric solutions

when κd is large or small. However, we still have no information on the sign of h1

in domains of the type {(κ, d) ; a1 < κd < a2} for (a1, a2) ∈ (IR+∗)2. Let us note that

alternative proofs of some of the results (see Theorem 2.2 and Theorem 2.4) can also be

obtained by other techniques, as is shown by Hastings [20].

References

[1] Bolley, C. & Helffer, B. (1998) Stability of bifurcating solutions for the Ginzburg–Landau

equations. Rev. Math. Physics, 10(5), 579–626.

[2] Ginzburg, V. L. & Landau, L. D. (1950) On the theory of superconductivity. Zh. Eksperim. i

teor. Fiz. 20, 1064–1082. (English translation: D. Ter Haar (ed.), Men of Physics: L. D. Lan-

dau, I, Pergamon, 1965, 138–167.)

[3] Ginzburg, V. L. (1955) On the theory of superconductivity. Nuovo Cimento, 2, 1234.

https://doi.org/10.1017/S0956792599004052 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599004052


Symmetric bifurcating solutions in the Ginzburg–Landau equations 119

[4] Bolley, C. (1991) Familles de branches de bifurcations dans les équations de Ginzburg–
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