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Quasi-equivalence of bases in some
Whitney spaces
Alexander Goncharov and Yasemin Şengül

Abstract. If the logarithmic dimension of a Cantor-type set K is smaller than 1, then the Whitney space
E(K) possesses an interpolating Faber basis. For any generalized Cantor-type set K, a basis in E(K)
can be presented by means of functions that are polynomials locally. This gives a plenty of bases in
each space E(K). We show that these bases are quasi-equivalent.

1 Introduction

If X is a Banach space with unconditional topological basis ( fk)∞k=1, then any permu-
tation σ ∶ N→ N and a sequence of nonzero scalars (ρk)∞k=1 generate another basis
(ek)∞k=1 with ek = ρk fσ(k). In the case when any unconditional basis (ek)∞k=1 of X
can be represented in this form, we say that X has unique unconditional basis (up
to permutation). The property of unicity of basis is quite exceptional in the context of
Banach spaces [11].

We observe the opposite situation in the class of nuclear Fréchet (NF) spaces,
where, by T.9 in [14], all bases are absolute. In the field, similar in the above sense, bases
are called quasi-equivalent. Namely, two bases (ek)∞k=1 and ( fk)∞k=1 in an NF space X
are quasi-equivalent if there exist a permutation σ , scalars ρk ≠ 0, and an isomorphism
T ∶ X → X such that Tek = ρk fσ(k) for each k.

Let us note some results for NF spaces on this issue. The first achievement is due to
Dragilev who proved in [5] that all bases in the space of analytic functions on the unit
disc are quasi-equivalent. In [12–14], Mityagin generalized this to the case of Hilbert
scales. All bases in X are quasi-equivalent if X has a regular basis [4, 10] or a basis of
type G1 or G∞ [1]. Zaharjuta et al. showed the quasi-equivalence of bases in special
Köthe power spaces [3, 15], in tensor products of power series spaces with their duals
[8] and in some other cases. The conjecture on the quasi-equivalence of bases in NF
spaces was implicitly stated in [13] (Problem 12) and in [12], see also Problem 8 in [2].
We can quote Zobin [16], who wrote 20 years ago: “There was a common belief at that
time that the conjecture will be proven very soon. To everybody’s great surprise, it
is still an open question.” Two decades later, the status of the conjecture remains the
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Quasi-equivalence of bases in some Whitney spaces 107

same. In our opinion, the quasi-equivalence problem is one of the most important
open problems in the structure theory of NF spaces.

Here, we discuss this problem for the class of Whitney spaces. In [6], the first
author constructed bases in the spaces E(K(αn)), see Section 2 for the definition of
the set K(αn). Recently, in [7], bases were presented in the Whitney spaces for more
general Cantor-type sets K = K(αn)

(Nn)
. In the case of a “small” set K (here, this means

that the logarithmic dimension λ0(K) of the set is smaller than 1), an interpolating
Faber basis was presented in E(K). Consequently, each space has many bases, and for
small sets, at least one basis consists of polynomials. We answer in the affirmative to
the question posed in [6] about quasi-equivalence of these bases. The proof is given for
the space E(K(αn)) with αn ≥ 2, which implies λ0(K(αn)) ≤ 1. We think that a slight
modification of the proof can be applied to other cases as well.

Let X be an NF space with a topology given by an increasing sequence of semi-
norms (∣∣ ⋅ ∣∣p)∞p=1 and a basis (en)∞n=1 . Then, X is isomorphic to the Köthe echelon
space K(A) with the matrix A = (∣∣en ∣∣p)∞n , p=1 . Beginning with his first papers on this
topic, Mityagin proposed a combinatorial technique based on modifications of the
Hall–König theorem to compare Köthe matrices for different bases. This method was
widely used in the works cited above. In our paper, we explicitly construct the desired
isomorphism.

2 Uniform distribution of points on a Cantor-type set

Here, we follow [6, 9]. Let (�s)∞s=0 be a sequence such that �0 = 1 and 0 < 3�s+1 ≤ �s
for s ∈ N0 ∶= {0, 1, . . .}. For E0 = I0,1 = [0, 1] and given Es , a union of 2s closed basic
intervals I j,s of length �s , we obtain Es+1 by replacing each I j,s for 1 ≤ j ≤ 2s by two
adjacent subintervals I2 j−1,s+1 and I2 j,s+1. Then, hs = �s − 2 �s+1 is the distance between
them. By assumption, hs ≥ �s+1 for each s. We consider a Cantor-type set K = ⋂∞s=0 Es ,
defined by the sequence (�s)∞s=0.

Denote α1 = 1 and αs = log �s
log �s−1

for s ≥ 2. Thus, �s = � α1⋯ αs
1 . By K(αs), we denote a

set associated with the sequence (αs)∞s=1.
Let x be an endpoint of some basic interval. Then, there exists a minimal number

s (the type of x) such that x is the endpoint of some I j, m for every m ≥ s. By Xk , we
denote all endpoints of type k. Hence, X0 ∶= {0, 1}, X1 ∶= {�1 , 1 − �1}, X2 ∶= {�2 , �1 −
�2 , 1 − �1 + �2 , 1 − �2}, etc. Set Ys = ∪s

k=0 Xk . Then, #(Ys) = 2s+1 . Here and below, #(Z)
denotes the cardinality of a finite set Z. Given such set, let m( j, s, Z) ∶= #(Z ∩ I j,s).
In addition, for each x ∈ R, by dk(x , Z), k = 1, 2, . . . , #(Z), we denote the distances
∣x − z jk ∣ from x to points of Z arranged in the nondecreasing order. In what follows, we
omit the parameter Z in m(⋅, ⋅, Z), dk(⋅, Z) if this does not cause misunderstanding.

We put all points from ∪∞k=0 Xk in order by means of the rule of increase of
type. For the points from X0 ∪ X1, we take x1 = 0, x2 = 1, x3 = �1 , x4 = 1 − �1 . To put
the points from X2 in order, we increasingly arrange the points from Y1, so Y1 =
{x1 , x3 , x4 , x2}. After this, we increase the index of each point by 4. This gives the
ordering X2 = {x5 , x7 , x8 , x6}. Similarly, indices of increasingly arranged points from
Yk−1 = {x i1 , x i2 ,⋯, x i2k } define the ordering Xk = {x i1+2k , x i2+2k , . . . , x i2k+2k}. We see
that x j+2k = x j ± �k , where the sign is uniquely defined by j. More precisely, every
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natural number N greater than 1 can be uniquely written as N = 1 + 2p1 + 2p2 +⋯+
2pn with 0 ≤ p1 < p2 < ⋯ < pn . Then, xN = �p1 − �p2 +⋯+ (−1)n−1�pn . Thus, for j =
N − 2pn , we have x j+2pn = x j + (−1)n−1�pn , where the degree of −1 is the number of
terms except 1 in the representation of j. For example, x12 = x4+23 = x4 + �3 , because
4 = 1 + 20 + 21 .

A useful property of this order is that for each k, the points (xp)k
p=1 are distributed

uniformly on K(αs) in the following sense.
Suppose we are given a set U = (zp)k

p=1 of points from a Cantor-type set K. We say
that points are uniformly distributed on K if, for each s ∈ N and i , j ∈ {1, 2, . . . , 2s}, we
have

∣m(i , s, U) − m( j, s, U)∣ ≤ 1,(2.1)

so any two intervals of the same level contain the same number of points from U
or, perhaps, one of the intervals contains one extra point zp , compared to another
interval.

Suppose points Z = (xp)k
p=1 are chosen by the rule of increase of type, 2q ≤ k <

2q+1 . Then, the binary representation

k = 2q + 2r +⋯+ 2t +⋯+ 2w with 0 ≤ w < ⋯ < t < ⋯ < r < q(2.2)

generates the decomposition Z = Zq ∪ Zr ∪⋯∪ Zw with Zq = Yq−1 and Zr ∪⋯∪
Zw ⊂ Xq . Let K ∶= {w ,⋯, r, q} be the set of exponents in (2.2). For fixed i ∈K, each
basic interval of ith level contains just one point from Z i .

Moreover, for each basic interval I = I j,s , the points (x i , j,s)m
i=1 = Z ∩ I coincide

with points selected on I by the rule of increase of type or mirror symmetric to them.
We say that a Cantor-type set K is �- regul ar if

�2
s+1 ≥ �s�s+2 for s ∈ N.(2.3)

It is easily seen that the following Cantor-type sets have this property.
(1) Kβ , where �s = βs for s ∈ N0 with 0 < β < 1/2. In particular, the Cantor ternary

set K1/3 is �- regul ar.
(2) Kα , where αs = α for s ≥ 2 with α > 1.
(3) K(αs) with αs(2 − αs+1) ≤ 1 for s ≥ 2. Thus, a set K(αs) with αs ≥ 2 for s ≥ 2 is

�-regular.

Lemma 2.1 If a Cantor-type set K is �-regular, then the value hs
�s

increases, so
mins

hs
�s
= h0 .

Proof It is evident, because hs
�s
= 1 − 2 �s+1

�s
. ∎

We consider the space E(K(αs)) of Whitney functions on s K(αs) with the topology
defined by the norms

∣∣ f ∣∣q = ∣ f ∣q + sup
⎧⎪⎪⎨⎪⎪⎩

∣(Rq
y f )(i)(x)∣
∣ x − y∣q−i ∶ x , y ∈ K(αs), x ≠ y, i = 0, 1, . . . q

⎫⎪⎪⎬⎪⎪⎭
, q ∈ N0 ,
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where ∣ f ∣ q = sup{∣ f (i)(x)∣ ∶ x ∈ K(αs), i ≤ q} and Rq
y f (x) = f (x) − T q

y f (x) is the
Taylor remainder.

3 Correspondence between bases

Recall two theorems from [6]. Let (x i)∞i=1 be chosen by the rule of increase of type.
Define e0 ≡ 1 and ek(x) = ∏k

j=1(x − x j). In the case of rarefied sets, these functions
form an interpolating Faber basis, that is, basis of polynomials such that degrees of
polynomials coincide with numbers of basis elements. Biorthogonal functionals are
given as divided differences ξk( f ) = [x1 , x2 , . . . , xk+1] f .

Theorem 3.1 [6, T.1] If αs ≥ 2 for s ≥ 2, then the sequence (ek)∞k=0 is a Schauder basis
in the space E(K(αs)).

On the other hand, in any space E(K(αs)), we can present a variety of bases
consisting of local polynomials. Let us fix a nondecreasing sequence of natural
numbers (ns)∞s=0 with ns ↗∞ such that

lims[ns − log2(α1 α2⋯αs)] < ∞.(3.1)

Let Ns = 2ns . The condition above implies that for some Q > 0 the sequence
(2Ns �Q

s )∞s=0 is bounded and we can apply

Theorem 3.2 [6, T.2] If a nondecreasing unbounded sequence (Ns)∞s=0 of natural
numbers of the form Ns = 2ns is such that for some Q the sequence (2Ns l Q

s )∞s=0 is
bounded, then the functions (en , j, s) ∞, j=2s , n=Ns

s=0, j=1, n=Ms
form a basis in the space E(K(αs)).

Here, en , j, s = ∏n
i=1(x − x i , j, s) if x ∈ K(αs) ∩ I j,s and en , j, s = 0 otherwise on K(αs)

with the points (x i , j, s)n
i=1 chosen on I j,s by the rule of increase of type if j is odd or

mirror symmetric to them if j is even.
Our next goal is to number these functions accordingly. We will denote the

resulting sequence by ( fk)∞k=0. First, for s = 0 and 0 ≤ k ≤ N0, we take fk = ek = ek ,1,0 .
Let us consider functions corresponding to s = 1. The last functional of the previous

level ξN0( f ) is defined by the points (x i)N0+1
i=1 , where the left subinterval I1,1 contains

M(l)
1 = N0/2 + 1 of them, whereas the right I2,1 does M(r)1 = N0/2. On both intervals,

we consider en , j, 1 for n starting with the corresponding M1 and ending with the
same value N1 . In order to number them, for each k, we look at the position of
xk+1 . For k = N0 + 1, the point xN0+2 belongs to I2,1, so we take fN0+1 = eN0/2, 2, 1 . It
is important to notice that the functions eN0+1 and fN0+1 have the same zeros on I2,1.
For k = N0 + 2, the point xN0+3 belongs to I1,1 and we take fN0+2 = eN0/2+1, 1, 1 . Here,
as above, eN0+2 and fN0+2 have the same zeros on I1,1. We continue in this fashion to
obtain fk as a certain en , j, 1 , where j ∈ {1, 2} is defined by the condition xk+1 ∈ I j,1. The
functions fk and ek have the same zeros on I j,1. The total number of functions en , j, 1
is #{ N0

2 + 1, . . . , N1} + #{ N0
2 , . . . , N1} = 2N1 − N0 + 1. Let us calculate the number V1

of k corresponding to s ≤ 1. It is a sum of N0 + 1 functions of the zero level and
2N1 − N0 + 1 functions of the first level, that is, V1 = 2N1 + 2. We start enumeration
from 0. Therefore, the value s = 1 corresponds to the functions ( fk)2N1+1

k=N0+1.
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Continuing in this manner, we obtain the number Vs = 2s(Ns + 1) of k correspond-
ing to levels 0, 1, . . . , s. Then, fk for Vs−1 ≤ k < Vs correspond to the levels s. Let us
consider these values in detail and, for each k, find deg f̃k , where f̃k is the analytic
continuation of the corresponding en , j, s from I j,s to R.

As in [6], we consider M(l)
s = Ns−1/2 + 1, M(r)s = Ns−1/2. Each I i ,s−1 contains

subintervals I2i−1,s and I2i ,s . For j = 2i − 1, we consider en , j, s with M(l)
s ≤ n ≤ Ns ,

while M(r)s ≤ n ≤ Ns for j = 2i . Hence, there are 2s−1 right subintervals I2i ,s and for
Vs−1 ≤ k < Vs−1 + 2s−1, we get deg f̃k = Ns−1/2. After this, each of extra 2s zeros of ek
will add one to degrees of f̃k . Hence, for k with

Vs−1 + 2s−1 + (i − 1)2s ≤ k < Vs−1 + 2s−1 + i 2s ,

we have deg f̃k = Ns−1/2 + i . Here, 1 ≤ i ≤ Ns − Ns−1/2. Indeed, the maximal value of
k on sth level is Vs−1 + 2s−1 + (Ns − Ns−1/2) 2s − 1 = Vs − 1 and max deg f̃k = Ns , as
expected.

Thus, all functions en , j, s are included in the sequence ( fk)∞k=0 and, for each fk =
en , j, s , the functions ek and en , j, s have the same zeros on I j,s . The bijection fk ↔ ek
will define the desired isomorphism T. We need to find appropriate coefficients ρk .

4 Estimations of norms

For each n ∈ N, let πn = πn ,0 ∶= �n �n−1 �
2
n−2 �

4
n−3⋯�2n− j−1

j ⋯�2n−1

0 . Similarly, for n, s ∈ N,
set πn ,s ∶= �n+s �n+s−1 �

2
n+s−2⋯�2n− j−1

j+s ⋯�2n−1

s . Each πn ,s has 2n terms.
We proceed to estimate ∣∣ek ∣∣p . Recall that the set Z = (x i)k

i=1 of zeros of ek is chosen
by the rule of increase of type. Suppose 2q ≤ k < 2q+1 . We use the representation (2.2),
the corresponding set K, and the product ∏i∈K π i .

Given any product ∏N
j=1 λ j with λ j ≥ 0 and p < N , by (∏N

j=1 λ j)p , we denote this
product without p smallest terms.

Lemma 4.1 Let 1 ≤ p < k. Then, hk
0 (∏i∈K π i)p−1 ≤ ∣∣ek ∣∣p ≤ 5(3 k)p (∏i∈K π i)p .

Proof Fix x ∈ K(αs). Then, ∣ek(x)∣ = ∏k
j=1 d j(x , Z) = ∏i∈K∏2 i

j=1 d j(x , Z i). Points
from Z i are distributed uniformly on K(αs). Hence, d1(x , Z i) ≤ �i , d2(x , Z i) ≤ �i−1 .
For the next two indices, we have d j(x , Z i) ≤ �i−2 , etc. Thus, ∏2 i

j=1 d j(x , Z i) ≤ π i and
∣ek(x)∣ ≤ ∏i∈K π i .

The pth derivative of ek at x is a sum of k!/(k − p)! products, where each product
contains k − p terms of the type x − x j . Hence,

∣e(p)
k (x)∣ ≤ k p

k
∏

j=p+1
d j(x , Z) = k p (∏

i∈K
π i)

p
.

This gives

∣ek ∣p ≤ k p (∏
i∈K

π i)
p

.
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As for the norms ∣∣ek ∣∣p , we completely repeat the reasoning from the proof of
Theorem 1 in [6], see page 354:

∣∣ek ∣∣p ≤ 5(3 k)p (∏
i∈K

π i)
p

.(4.1)

We now turn to lower bound of ∣∣ek ∣∣p . Clearly, ∣∣ek ∣∣p ≥ ∣e(p)
k (0)∣. As above,

∣e(p)
k (0)∣ is a sum of k!/(k − p)! products, each of k − p terms. Here, all products

have the same sign, so we can neglect all products except one with largest terms:

∣∣ek ∣∣p ≥
⎛
⎝

k
∏
j=1

d j(0, Z)
⎞
⎠

p

.(4.2)

Of course, d1(0, Z) = 0. To estimate ∏k
j=2 d j(0, Z) from below in terms of π i ,

let us consider (2.2). We use the method from Lemma 2.2 in [9]. First, consider
distances from 0 to the points from Zq ∶ d2(0, Zq) = �s−1 > hs−1 , d3(0, Zq) = �q−2 −
�q−1 > hq−2 , d4(0, Zq) = �q−2 > hq−2 , . . . Continuing in this fashion, we get

2q

∏
j=2

d j(0, Zq) ≥ hq−1 h2
q−2 h4

q−3⋯h2q−1

0 = �−1
q πq

q−1

∏
i=0

(h i

�i
)

2q−1−i

≥ �−1
q πq h2q−1

0 ,(4.3)

by Lemma 4.5.
By the rule of increase of type, the first 2q points are all endpoints of basic intervals

of (q − 1)st type. The next 2r points (in increasing order) are: �q , �r−1 − �q , �r−2 −
�r−1 + �q , �r−2 − �q , . . . They define d j(0, Zr). As above, we get

2r

∏
j=1

d j(0, Zr) ≥
�q

�r
πr h2r

0 .(4.4)

Other indices from the set K = {w , v , . . . , t, r, q} can be handled in the same way.
Combining (4.3) with (4.4) and analogous inequalities for other i ∈K yields

k
∏
j=2

d j(0, Z) ≥ hk
0 �
−1
q πq

�q

�r
πr

�r

�t
πt⋯

�v

�w
πw = hk

0 �
−1
w ∏

i∈K
π i .

We neglect �−1
w and note that (∏k

j=1 d j(0, Z))p ≥ (∏i∈K π i)p−1 . By (4.2), we have the
desired lower bound. ∎

In an exactly similar way, we estimate norms of elements of local bases. Let
2m ≤ n < 2m+1 , so n = ∑m i∈M 2m i , where M = {my , . . . , m2 , m1} with 0 ≤ my < ⋯ <
m2 < m1 = m. Here, we replace h0

�0
with hs

�s
and, as in [6], note that the points from

K(αs) ∖ I j,s have no influence on the estimation of ∣∣en , j, s ∣∣p for p < n, because
dist(I j,s , K(αs) ∖ I j,s) = hs−1 is larger than �s .
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Lemma 4.2 If 1 ≤ p < n, then

(hs

�s
)

n ⎛
⎝ ∏

m i∈M

πm i ,s
⎞
⎠

p−1

≤ ∣∣en , j, s ∣∣p ≤ 5(3 n)p ⎛
⎝ ∏

m i∈M

πm i ,s
⎞
⎠

p

.

It should be noted that bases above are not regular, so the arguments from [4, 10]
cannot be used to show their quasi-equivalence. We recall the definition of regular
bases.

A basis (bk)∞k=0 in an NF space X is regular if there is a fundamental system of
seminorms (∣∣ ⋅ ∣∣p)∞p=0 in X such that for each p, q with p < q, the sequence ∣∣bk ∣∣p

∣∣bk ∣∣q

monotonically tends to 0 as k →∞.
Let us show that the ratio ∣∣ek ∣∣p

∣∣ek ∣∣p+1
is not decreasing. The exact calculation of the

norm ∣∣ek ∣∣p , in general, is rather sophisticated. We restrict ourselves to small values
of k, p and the case �1 < 1

5 . We proceed to show that

∣∣e2∣∣0
∣∣e2∣∣1

< ∣∣e3∣∣0
∣∣e3∣∣1

.(4.5)

For e2(x) = x2 − x, it is easily seen that ∣e2∣0 = ∣e2(�1)∣ = �1(1 − �1), ∣∣e2∣∣0 = 2�1(1 −
�1), and ∣e2∣1 = e′2(1) = 1 with

sup
⎧⎪⎪⎨⎪⎪⎩

∣(R1
y e2)(i)(x)∣
∣x − y∣1−i ∶ x , y ∈ K(αs) , x ≠ y, i = 0, 1

⎫⎪⎪⎬⎪⎪⎭
= (R1

0e2)′(1) = 2.

Thus, the left-hand side of (4.5) is 2
3 �1(1 − �1).

On the other hand, for e3(x) = x(x − 1)(x − �1), we have ∣e3∣0 = ∣e3(1 − �1)∣ =
�1(1 − �1)(1 − 2�1) and supx , y∈K ∣e3(x) − e3(y)∣ = e3(�2) − e3(1 − �1). From this,
∣∣e3∣∣0 = 2�1(1 − �1)(1 − 2�1) + �2(1 − �2)(�1 − �2). It is straightforward to show that
∣e3∣1 = e′3(1) = 1 − �1 .

We proceed to analyze (R1
y e3)(x) = e3(x) − e3(y) − e′3(y)(x − y) = (x − y)[x2 +

x y − 2y2 − (1 + �1)(x − y)]. We will denote by g the function in square brackets.
Now, the task is to find the maximum value of ∣g(x , y)∣ on the set K(αs) × K(αs),
which is a subset of E1 × E1 , where E1 = [0, �1] ∪ [1 − �1 , 1]. The set E1 × E1 is a union
of four squares. For the squares Q1 = [0, �1] × [0, �1], Q2 = [1 − �1 , 1] × [0, �1], Q3 =
[1 − �1 , 1] × [1 − �1 , 1], the representation g(x , y) = (x − y)(x + 2y − 1 − �1) implies
∣g(x , y)∣ ≤ 1 − �1 , as is easy to check. Let us consider (x , y) ∈ Q4 = [0, �1] × [1 − �1 , 1].
Here, for a fixed x, the function h(y) ∶= ∣g(x , y)∣ is an upward parabola (y − x)(x +
2y − 1 − �1) with the vertex below the line y = 1 − �1 . Hence, max1−�1≤y≤1 h(y) =
h(1) = −x2 + x�1 + 1 − �1. For x ∈ [0, �2] ∪ [�1 − �2 , �1], the function−x2 + x�1 + 1 − �1
attains its maximum at x = �2 . Thus,

sup{
∣(R1

y e3)(x)∣
∣x − y∣ ∶ x , y ∈ K(αs), x ≠ y} = ∣g(�2 , 1)∣ = 1 − �1 + �1�2 − �2

2 .

https://doi.org/10.4153/S0008439521000114 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000114


Quasi-equivalence of bases in some Whitney spaces 113

Similarly,

sup{∣(R1
y e3)′(x)∣ ∶ x , y ∈ K(αs) , x ≠ y} = ∣e′3(1) − e′3(�1)∣ = 1 − �2

1

that exceeds 1 − �1 + �1�2 − �2
2 . Therefore, ∣∣e3∣∣1 = 2 − �1 − �2

1 . It follows that the right-
hand side of (4.5) exceeds 2�1(1−�1)(1−2�1)

2−�1−�2
1

and (4.5) is proved.

5 Quasi-equivalence of bases

Suppose αs ≥ 2 for s ≥ 2 and a sequence (ns)∞s=0 satisfying (3.1) is given. Then,
the space E(K(αs)) has a polynomial basis (ek)∞k=0, by Theorem 3.1, and a local
polynomial basis (en , j, s) ∞, j=2s , n=Ns

s=0, j=1, n=Ms
, by 3.2. In Section 3, we established a bijection

between these bases. We are now in a position to indicate lengths of intervals, which
are included in πm ,s that define norms of the corresponding basis elements. Let
fk = en , j, s be fixed. For n = deg f̃k , by construction, we have 2m ≤ n < 2m+1 for some
ns−1 − 1 ≤ m ≤ ns . Therefore, the product ∏m i∈M πm i ,s in Lemma 4.2 includes πm ,s =
�s+m⋯�2m−1

s and other πm i ,s that start from �t with s ≤ t < s + m.
For the corresponding ek , by (2.2), each interval of sth level may contain n or n + 1

points. It cannot contain n − 1 points, because, given s, we chose first functions fk =
en , j, s on intervals with minimal number of points. Hence, n 2s ≤ k ≤ (n + 1)2s and
2s+m ≤ k ≤ 2s+m+1 , as n + 1 ≤ 2m+1. This means that the product ∏i∈K π i in Lemma
4.1 includes πm+s = �s+m⋯�2m+s−1

0 and others π i that start from �i with 0 ≤ i < s + m.
The feature of the sequence (x i)∞i=1 mentioned above is that, given k with fk = en , j,s ,

the set (x i)k
i=1 ∩ I j,s defines zeros of fk on this interval. Hence,∏m i∈M πm i ,s coincides

with the product of n smallest terms of ∏i∈K π i . The rest gives the desired coefficient

ρk ∶= ∏
i∈K

π i/ ∏
m i∈M

πm i ,s = (∏
i∈K

π i)
n

.

Of course,

(∏
i∈K

π i)
q
= ρk

⎛
⎝ ∏

m i∈M

πm i ,s
⎞
⎠

q

,(5.1)

for q < n, because, by definition, each term in∏m i∈M πm i ,s does not exceed each term
in ρk .

We are able to present the main result of the paper.

Theorem 5.1 Let αs ≥ 2 for s ≥ 2 and a sequence (ns)∞s=0 satisfy (3.1). Then, the bases
(ek)∞k=0 and (en , j, s) ∞, j=2s , n=Ns

s=0, j=1, n=Ms
of the space E(K(αs)) are quasi-equivalent.

Proof Let Tek = ρk fk , k ∈ N0, where ( fk)∞k=0 is the enumeration of the system
(en , j, s)s , j,n given in Section 3. It can be extended linearly to an operator T acting
on the whole space. We aim to prove that T is an isomorphism. First, we show that
for each p, there are q and Cp such that

∣∣Tek ∣∣p = ρk ∣∣ fk ∣∣p ≤ Cp ∣∣ek ∣∣q for all k.(5.2)
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Without loss of generality, we can consider p in the form p = 2u with u ∈ N. Fix such
p. Let q = 2v with v = u + 10.

Given q = q(p), there are only finitely many values k with n ≤ q, where n = deg f̃k .
For such k, (5.2) is valid with an appropriate choice of Cp . Hence, we can assume that
k is so large that we can use above lemmas.

By Lemma 4.2, ∣∣ fk ∣∣p = ∣∣en , j, s ∣∣p ≤ 5(3 n)p (∏m i∈M πm i ,s)p . By (5.1),

ρk ∣∣ fk ∣∣p ≤ 5(3 n)p (∏
i∈K

π i)
p

.

On the other hand, by Lemma 4.1, �k
1 (∏i∈K π i)q−1 ≤ ∣∣ek ∣∣q , because h0 ≥ �1 .

To obtain (5.2), it remains to find Cp such that

5(3 n)p (∏
i∈K

π i)
p
≤ Cp�

k
1 (∏

i∈K
π i)

q−1
.(5.3)

Let ∏i∈K π i = ∏k
γ=1 λγ with λ1 ≤ ⋯ ≤ λk . Then,

(∏
i∈K

π i)
p
= λp+1⋯λq−1 (∏

i∈K
π i)

q−1
.

We note that ∏i∈K π i contains πm+s = �s+m �s+m−1 �
2
s+m−2⋯�2m+s−1

0 = ∏2s+m

γ=1 λ′γ with
λ′γ ↑. The product ∏q−1

γ=p+1 λγ does not exceed ∏q−1
γ=p+1 λ′γ , because including the terms

from other π i can only reduce the result.
We see that λ′γ = �s+m−i for γ ∈ {2i−1 + 1, . . . , 2i}with 2 ≤ i ≤ s + m. For p = 2u , q =

2v , we have ∏q−1
γ=p+1 λ′γ = �2u

s+m−u−1⋯�2v−1−1
s+m−v = �κ1 with

κ =
v−2
∑
i=u

2i α2 ⋯ αs+m−i−1 + (2v−1 − 1) α2 ⋯ αs+m−v ≥ 2s+m−2(v − u − 1).

Indeed, we neglect the last summand and use the fact that all α i are bounded below
by 2. The problem now reduces to establishing that

5(3 n)p �
2s+m−2(v−u−1)
1 ≤ Cp�

k
1 ,

for n < 2m+1 and k ≤ 2s+m+1 . It is easy to check that our choice v = v + 10 provides this
inequality together with (5.3) and (5.2).

The same reasoning applies to the inverse inequality: for each p, there are q and
Cp :

ρk ∣∣T−1 fk ∣∣p = ∣∣ek ∣∣p ≤ Cp ∣∣ fk ∣∣q for all k,

but we will not need it.
For each f = ∑∞k=0 ξk( f ) ek ∈ E(K(αs)), we define T f = ∑∞k=0 ξk( f )ρk fk . It is a

simple matter to check that T is a bijection. Let us show its continuity.
The basis (ek)∞k=0 is absolute. Hence, the norms ∣∣∣ f ∣∣∣q ∶= ∑∞k=0 ∣ξk( f )∣ ∣∣ek ∣∣q are

well-defined for each q. It is a standard fact that the topology given by these norms is
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complete. By the open mapping theorem, for any q, there exist r, C > 0 such that

∣∣∣ f ∣∣∣ q ≤ C ∣∣ f ∣∣ r .(5.4)

Fix any p ∈ N and f ∈ E(K(αs)). Then, by (5.2) and (5.4),

∣∣T f ∣∣p ≤
∞

∑
k=0

∣ξk( f )∣ ρk ∣∣ fk ∣∣p ≤ Cp
∞

∑
k=0

∣ξk( f )∣ ∣∣ek ∣∣q ≤ Cp C∣∣ f ∣∣r .

Thus, T is an isomorphism, which is our claim. ∎
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