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We provide a characterization of upper locally distributive lattices (ULD-lattices) in terms of
edge colourings of their cover graphs. In many instances where a set of combinatorial objects
carries the order structure of a lattice, this characterization yields a slick proof of distributivity
or UL-distributivity. This is exemplified by proving a distributive lattice structure on Δ-bonds
with invariant circular flow-difference. This instance generalizes several previously studied lattice
structures, in particular, c-orientations (Propp), α-orientations of planar graphs (Felsner, resp. de
Mendez) and planar flows (Khuller, Naor and Klein). The characterization also applies to other
instances, e.g., to chip-firing games.

1. Introduction

The concept of upper locally distributive lattices (ULDs) – and its dual, lower locally dis-
tributive lattices (LLDs) – has appeared under several different names, e.g., locally distributive
lattices (Dilworth [10]), meet-distributive lattices (Jamison [15, 16], Edelman [11], Björner and
Ziegler [7]), and locally free lattices (Nakamura [21]). Following Avann [2], Monjardet [20],
Stern [26] and others, we call them ULDs. The reason for the frequent reappearance of the
concept is that there are many instances of ULDs, i.e., sets of combinatorial objects that can be
naturally ordered to form a ULD.

ULDs were first investigated by Dilworth [9], and many different lattice-theoretical character-
izations of ULDs are known. For a survey on the work up to 1990 we refer to Monjardet [20].
We use Dilworth’s original definition, as follows.

Definition 1. Let (P ,�) be a poset. P is an upper locally distributive lattice (ULD) if P is a
lattice and each element has a unique minimal representation as a meet of meet-irreducibles, i.e.,
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708 S. Felsner and K. B. Knauer

Figure 1. The completion property of U-colourings.

there is a mapping M : P → P({m ∈ P : m is meet-irreducible}) with the properties:

• x =
∧
Mx (representation),

• x =
∧
A implies Mx ⊆ A (minimal).

Let D = (V ,A) be a directed graph. An arc colouring c of D is an U-colouring if, for every
u, v, w ∈ V with u �= w and (v, u), (v, w) ∈ A, we have:

(U1) c(v, u) �= c(v, w),
(U2) there is a z ∈ V and arcs (u, z), (w, z) such that c(v, u) = c(w, z) and c(v, w) = c(u, z) (see

Figure 1).

Definition 2. A finite poset (P ,�) is called a U-poset if the arcs of the cover graph DP of P
admit a U-colouring.

The characterization of ULDs in Section 2 has two parts.

Theorem 1.1.

(a) If D is a finite, acyclic digraph admitting a U-colouring, then D is a cover graph. Hence, the
transitive closure of D is a U-poset.

(b) Upper locally distributive lattices are exactly the U-posets with a global minimum.

The duals, in the sense of order reversal, to U-colouring, U-poset and ULD are L-colouring,
L-poset and LLD, respectively. The characterization of LLDs dual to Theorem 1.1 allows easy
proofs that the inclusion orders on the following combinatorial structures are lower locally
distributive lattices:

• subtrees of a tree (Boulaye [8]),
• convex subsets of posets (Birkhoff and Bennett [3]),
• convex subgraphs of acyclic digraphs; here a set C is convex if x, y ∈ C implies that all

directed (x, y)-paths are in C (Pfaltz [22]).

These combinatorial structures can also be seen as convex sets of an abstract convex geometry.
This is no coincidence, as every LLD is isomorphic to the inclusion order on the convex sets of
an abstract convex geometry (Edelman [11]). The L-colourings of the cover-relations of LLDs
are EL-shellings, in the language of Björner [4]. They give rise to what is called compatible
orderings of the ground set (see [12]). In a more recent work, Ardila and Maneva [1] provide yet
another characterization of LLDs.
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Dual to the representations of LLDs as convex sets, every ULD is isomorphic to the inclusion
order on the independent sets of an antimatroid (see [19]). In the present paper we represent
ULDs as inclusion orders on multisets (of colours). In a sense this corresponds to the concepts of
antimatroids with repetition [7] and locally free, permutable, left-hereditary languages [6]. There
are in fact objects like chip-firing games that naturally lead to ULD representations by multisets
and not by sets: see Section 4.5.

In Section 3 we deal with distributive lattices arising from orientations of graphs. To prove
distributivity we use the following well-known characterization: Distributive lattices are exactly
those lattices that are both ULD and LLD (Theorem 2.13).

Let D = (V ,A) be a connected directed graph with upper and lower integral edge capacities
cu, cl : A→ Z. We are interested in maps x : A→ Z such that cl(a) � x(a) � cu(a) for all a ∈ A.
The circular flow-difference of x on a cycle C with a prescribed direction is

δ(C, x) :=
∑

a∈C+

x(a)−
∑

a∈C−
x(a).

Note that the circular flow-differences δ(C, x) on the cycles of a basis of the cycle space uniquely
determines the flow-difference of x on all cycles of the graph.

For a given Δ ∈ ZC we consider the set

BΔ(D, cl , cu) := {cl � x � cu | δ(C, x) = ΔC for all C ∈ C},

and call it the set of Δ-bonds on (D, cl , cu), the name bonds arising because B0(D, cl , cu) is
orthogonal to the space of flows of D. We introduce an order on Δ-bonds with prescribed circular
flow-difference, i.e., on the elements of BΔ(D, cl , cu).

Theorem 1.2. BΔ(D, cl , cu) carries the structure of a distributive lattice.

Theorem 1.2 is restated in Section 3 in a more precise version as Theorem 3.3. The power of
this result is exemplified in Section 4, where we show that several previously studied distributive
lattices an be recognized as special cases of Δ-bonds. This is shown in the following cases:

• lattices of c-orientations of graphs (Propp [23]),
• lattices of flow in planar graphs (Khuller, Naor and Klein [17]),
• lattices of α-orientations of planar graphs (Felsner [13]).

In Section 4.5 we discuss the chip-firing game on directed graphs. Important properties of this
game can be proved in the context of U-posets and ULD lattices.

2. A characterization of upper locally distributive lattices

In this section we prove Theorem 1.1. This new characterization of ULD lattices can clearly
be used to show equivalence to any of the many known characterizations of ULDs: see [20].
In our proof we will establish the equivalence to the original definition given by Dilworth [9].
Finally, we add a proof of the known fact that a lattice which is both ULD and LLD is actually
distributive.

The following lemma is the main tool for the proof.
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Figure 2. Illustration of Lemma 2.1.

Figure 3. A digraph with a U-colouring. Choosing p = x0, . . . , x5 and y = x2, we get yi = xi+2 (mod 6) for i = 0, . . . , 6.

Lemma 2.1. Let D = (V ,A) be a digraph with a U-colouring c. If (x, y) is an arc and p =

x0, . . . , xk is a directed path from x = x0 to z = xk, then there is a sequence y0, . . . , y� such
that (xi, yi) ∈ A and c(xi, yi) = c(x, y) for i = 1, . . . , � and either � = k or � < k and y� = x�+1.
Figure 2 illustrates the two cases (a) and (b). Case (b) occurs if and only if there is an edge
(x�, x�+1) on p with c(x, y) = c(x�, x�+1).

Proof. We recursively apply rule U2 to edges (xi, yi) and (xi, xi+1) to define a vertex yi+1 with
edges (yi, yi+1) and (xi+1, yi+1) such that c(xi, yi) = c(xi+1, yi+1). The iteration ends either if i = k

(case (a)), or if the two edges needed for the next application of the rule are the same, i.e.,
yi = xi+1 (case (b)). In this case c(xi, xi+1) = c(xi−1, yi−1) = c(x, y), i.e., there is an edge on
the path p whose colour equals the colour of edge (x, y). Rule U1 implies that case (b) occurs
whenever there is an edge on p whose colour equals the colour of edge (x, y).

Remark 1. The proof does not imply that yi �= xj in all cases, as is suggested by Figure 2. An
example is given in Figure 3. From the analysis below it follows that in all bad cases D is infinite
or not acyclic.
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From now on we assume that D = (V ,A) is a finite, connected and acyclic digraph with a
U-colouring c. The assumptions imply that the transitive closure of D is a finite poset PD. From
the next two propositions it will follow that D is transitively reduced, i.e., the cover graph of PD.
Hence, PD is a U-poset.

Proposition 2.2. There is a unique sink in D.

Proof. Since D is acyclic and finite it has a sink. Suppose that there are two sinks s0 and s1.
Let p be a shortest (s0, s1)-path in the underlying undirected graph. In D the first and the last
edge of p are oriented towards the sources. Hence, there is a last vertex x on p which is a source
on p, i.e., the final part of p is y ← x→ x1 → · · · → s1. With z = s1 this is the precondition of
Lemma 2.1, but both outcomes yield a contradiction: (a) is impossible because s1 is a sink; (b) is
impossible because it implies that there is a shorter (s0, s1)-path than p.

We define the colourset c(p) of a directed path p as the multiset of colours used on edges of p.

Proposition 2.3. If D has a unique sink s and p, p′ are directed (x, z)-paths, then c(p) = c(p′).
In particular this allows us to define the colourset c(x) of a vertex x as the colourset of any
(x, s)-path.

Proof. First assume that z = s. In a top-down induction we show that the coloursets of all
(x, s)-paths are equal.

Assume that we know that c(v) is well defined for all vertices v that are accessible from x via
directed paths in D. Let p and p′ be (x, s)-paths with different initial edges. Let y be the successor
of x on p′ and let a be the colour of (x, y). The edge (x, y) and the path p form the precondition
for Lemma 2.1. Since z = s is the sink, the situation has to be as in (b). Let p′′ be the path y →
y1 → · · · y� → · · · s. The assumption for y yields c(p′) = a⊕ c(y) = a⊕ c(p′′). The colouring
rule U2 implies that c(xi, xi+1) = c(yi, yi+1) for all i = 0, . . . , �− 1 and a = c(x, y) = c(x�, x�+1);
therefore, a⊕ c(p′′) = c(p). This shows that c(x) = c(p′) = c(p) is well defined.

If p is a directed (x, z)-path, then the concatenation p ◦ q with a (z, s)-path q yields an (x, s)-
path; hence c(x) = c(p ◦ q) = c(p)⊕ c(q) = c(p)⊕ c(z). This shows that c(p) = c(x)� c(z) de-
pends only on the end-vertices.

Since the colourset of a directed (x, z)-path in D depends only on the end-vertices, we also
know that all (x, z)-paths have the same length. This implies that D is transitively reduced. We
have thus shown the following, which is slightly stronger than statement (a) of Theorem 1.1.

Corollary 2.4. If D = (V ,A) is a finite, connected and acyclic digraph with a U-colouring
c, then D is a cover graph and its transitive closure is a U-poset PD with a rank function
and a 1.

Let P be a U-poset with a global minimum 0. Define a mapping γ : P → Nk, where k is
the number of colours of the U-colouring. Assuming that the colours used by c are 1, . . . , k, the
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ith component of γ(x) is the multiplicity of colour i on any (0, x)-path in the cover graph DP .
Identifying vectors in Nk with multisets of colours, we have γ(x) = c(0)− c(x).

Lemma 2.5. Let P be a U-poset with a global minimum 0. The mapping γ : P → Nk is an
order-preserving embedding of P into the dominance order on Nk.

Proof. The implication from y �P z to γ(y) � γ(z) follows from the fact that extending a path
requires more colours. In particular, the number of edges of colour i on a (0, z)-path is at least as
large as on a (0, y)-path, i.e., γi(y) � γi(z). In fact y <P z implies γ(y) �= γ(z).

For the converse suppose γ(y) � γ(z) but y ��P z. From the first part and y �= z we know
z �<P y. Let x be maximal with the property x �P z and x �P y. Consider the first edge (x, y′)

on an (x, y)-path in DP , and let p be an (x, z)-path. This is a situation for Lemma 2.1. Since
the colour of edge (x, y′) also occurs on p, we are in case (b). This case, however, is impossible
because y′ �P z, y′ �P y and y′ � x contradict the choice of x.

It is easy to see that an embedding γ : P → Nk yields an embedding γ′ : P → {0, 1}k′ . Since
generally k′ > k, embedding into the grid instead of the cube might be useful.

Lemma 2.6. Let P and γ be as above. For all z, y ∈ P there is a w ∈ P with γ(w) = γ(y) ∨ γ(z)

where ∨ is the componentwise maximum.

Proof. For any fixed y we proceed with top-down induction. Given z, consider a maximal x
with the property x �P z and x �P y. Let (x, y′) be the first edge on an (x, y)-path in DP and
let p be an (x, z)-path. Case (b) of Lemma 2.1 is impossible because y′ would have prevented us
from choosing x. Hence, we are in case (a) and there is a z′ covering z such that the edges (z, z′)

and (x, y′) have the same colour i and, moreover, the path from x to z has no edge of colour i.
Induction implies that there is a w′ such that γ(w′) = γ(z′) ∨ γ(y). Since γ(z′) = γ(z) + ei and for
the ith component we have γi(z) = γi(x) < γi(y), we can conclude γ(z′) ∨ γ(y) = γ(z) ∨ γ(y),
i.e., w′ may also serve as w.

Proposition 2.7. If a U-poset has a global minimum 0, then it is a lattice.

Proof. The mapping γ is an order embedding of P into Nk (Lemma 2.5) and the image γ(P ) is
join-closed (Lemma 2.6). Together this implies that P has unique least upper covers (joins exist).
Since P has a 0 there is a lower cover for every pair of elements. Uniqueness for greatest lower
covers (meets) follows from the existence of unique joins.

The next goal is to show that every element of P has a unique minimal representation as a meet
of meet-irreducibles. Let C(x) be the set of colours of the edges emanating from x in the cover
graph. In the next lemma we associate a meet-irreducible element with every colour i ∈ C(x).

Lemma 2.8. Let P be a U-poset with a 0 and let x �= 1 be an element of P . For every i ∈ C(x)

there is a unique maximal element yi such that:

• yi � x and
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• γi(yi) = γi(x).

The element yi is meet-irreducible and γj(yi) > γj(x) for all j ∈ C(x) \ {i}.

Proof. Let i ∈ C(x) and consider the set Si(x) of all y � x with γi(y) = γi(x). The set Si(x)

contains x; hence it is non-empty, and by Lemma 2.6 it contains a unique maximal element yi.
The element yi is meet-irreducible, otherwise we could find a successor of yi in Si(x). For every
j ∈ C(x) there is an element xj with γ(xj) = γ(x) + ej . For j �= i the element xj is in Si(x);
hence γ(xj) � γ(yi) and γj(x) < γj(xj) � γj(yi).

Proposition 2.9. A U-poset with a global minimum 0 is an upper locally distributive lattice.

Proof. We claim that Mx = {yi : i ∈ C(x)} is the unique minimal set of meet-irreducibles with
x =

∧
Mx.

Let z be any lower bound for Mx, i.e., an element with z � yi for all i ∈ C(x). Since γ is
order-preserving and Nk is closed under taking meets, we have γ(z) �

∧
{γ(yi) : i ∈ C(x)}. From

γi(yi) = γi(x) it follows that
∧
{γ(yi) : i ∈ C(x)} = γ(x). Since γ is order-preserving, this implies

z � x, i.e., x is the unique maximal lower bound for Mx and the notation x =
∧
Mx is justified.

It remains to show that the representation x =
∧
Mx is the unique minimal representation of

x as a meet of meet-irreducibles. Let i ∈ C(x) and consider a set M of meet-irreducibles with
yi �∈M. It is enough to show that x �=

∧
M. If M contains a y with x �< y, then x �=

∧
M is

obvious. Consider the set Si(x) from the proof of Lemma 2.8; every element y �= yi in this set is
contained in an (x, yi)-path p that contains no i-coloured edge. Lemma 2.1 implies that there
is an i-coloured edge leaving y and, together with the edge leaving y on p, this implies that y
is not meet-irreducible. Hence M ∩ Si(x) = ∅. All y > x with y �∈ Si(x) satisfy y � xi. Given
our assumptions on M, this implies that xi with γ(xi) = γ(x) + ei is a lower bound on M, i.e.,
x �=

∧
M.

From what we have shown so far we obtain the following criterion for ULD lattices.

Theorem 2.10. If D is a finite, acyclic digraph with a unique source 0 and there is a
U-colouring of the arcs of D, then the transitive closure of D is an upper locally distributive
lattice.

To complete the proof of Theorem 1.1 it remains to show that every ULD has a representation
as a U-poset, i.e., we have to present a U-colouring of its cover graph.

Theorem 2.11. The cover graph of every finite ULD lattice admits a U-colouring.

Consider the mapping M that takes an element x of P to the set Mx of all meet-irreducible
elements that are at least as large as x. The definition of meet-irreducible implies that x =

∧
Mx

for all x, i.e., the set Mx uniquely characterizes x. Moreover, x � y if and only if Mx ⊇My .
On the basis of the mappings M and M we will define a U-colouring of the cover relations of

P . As colours we use the meet-irreducible elements of P .
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Lemma 2.12. Let P be a ULD lattice. A comparability x < y is a cover if and only if |Mx \
My| = 1.

Proof. An element z with x < z < y satisfies My � Mz � Mx, hence |Mx \My| � 2.
Let x < y and suppose that |Mx \My| � 2. Since

∧
Mx <

∧
My , there has to be some m ∈

Mx \My . Let z =
∧

(Mx − m); we claim that x < y < z. From Mx − m ⊂Mx it follows that
z � x, and since m ∈Mx and m �∈Mz , Definition 1 implies that z < x. Since (Mx − m) ⊇My ,
we have z � y. Let m′ be an element with m �= m′ ∈Mx \My . It follows that m′ ∈Mz and
m′ �∈My. Therefore z �= y, and we have shown that x < z < y, i.e., the pair x, y is not in a cover
relation.

To a cover relation x ≺ y we assign the unique meet-irreducible in Mx \My as its colour.
Note that this meet-irreducible is a member of Mx. To verify that this is a U-colouring we have
to check the two properties U1 and U2.

Claim 1. The colouring satisfies U1.

Proof. Let x ≺ y1 and x ≺ y2 be two cover relations. Since x is the meet of y1 and y2, we have
the representation x =

∧
(My1

∪My2
) of x as a meet of irreducibles; hence Mx ⊆My1

∪My2
.

If both covers had the same colour m, then m ∈Mx, but m �∈My1
∪My2

, a contradiction.

Claim 2. The colouring satisfies U2.

Proof. Let x ≺ y1 and x ≺ y2 be two cover relations such that x ≺ y1 has colour m1 and x ≺ y2

has colour m2, i.e., Myi = Mx − mi. Consider z =
∧

(Mx − m1 − m2). Since z is representable
as a meet of elements from Myi we know that z � yi for i = 1, 2. Since y1 and y2 both cover x
it follows that z �= y1, y2, hence z > yi for i = 1, 2. From Mx − m1 − m2 ⊆Mz ⊂Myi = Mx −
mi it follows that |Myi \Mz | = 1. Lemma 2.12 implies that z covers each yi, and the labels of
these covers are as required.

In many applications of the characterization of ULDs the lattice in question is actually dis-
tributive. Such a situation is the topic of the next section. To make the paper self-contained we
prove the following folklore result.

Theorem 2.13. If a finite, acyclic and connected digraph D admits a U- and an L-colouring,
then D is the cover graph of a distributive lattice PD. Moreover, the colourings yield an explicit
cover-preserving embedding PD ↪→ Nk, where k is the number of colours.

Proof. Corollary 2.4 and its dual imply that D is the cover graph of a poset PD with 0 and 1.
Hence, by Proposition 2.7, PD is a lattice.

Let cU and cL be a U- and an L-colouring of D. Consider the colouring c = cU × cL. The
claim is that c is both a U- and an L-colouring of D. The rule U1 and its dual L1 are immediately
inherited from the corresponding rules for cU and cL. Whenever there is a diamond x ≺ y1,
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Figure 4.

x ≺ y2, y1 ≺ z, y2 ≺ z, the colours of a pair of (x, yi) and (yj , z) in cU and cL coincide. This
implies rules U2 and L2 for c.

Consider the order embedding γ : PD → Nk that is based on the colouring c. By Lemma 2.6, γ
is compatible with joins; the dual implies that γ is compatible with meets. Therefore γ is a lattice
embedding, i.e., P is a sublattice of the distributive lattice Nk, and hence P is itself distributive.

Remark 2. Let D be a digraph with a U-colouring. We need acyclicity, connectedness, finite-
ness and the unique source to conclude that D corresponds to a finite ULD lattice. We feel that
among these conditions the unique source has a somewhat artificial flavour. Abstaining on this
condition it can be shown (along the lines of our proof) that the corresponding poset P is a
join-semilattice with the property that, for all x ∈ P , there is a unique minimal set Mx of meet-
irreducibles such that x is a maximal lower bound for Mx. Figure 4 shows a small example, in
this case Ms = Mt = {u, v}.

3. The lattice of Δ-bonds

Recall the setting from the Introduction. The data are a directed multigraph D = (V ,A) with
upper and lower integral edge capacities cu, cl : A→ Z and a number ΔC for each cycle C of D.
We are interested in the set BΔ(D, cl , cu) of Δ-bonds for these data, i.e., the set of maps x : A→ Z

such that:

(D1) cl(a) � x(a) � cu(a) for all a ∈ A (capacity constraints),
(D2) ΔC =

∑
a∈C+ x(a)−

∑
a∈C− x(a) = δ(C, x) for all C (circular flow conditions).

Throughout the discussion we shall assume that the data (D, cl , cu,Δ) are such that the set of
corresponding Δ-bonds is non-empty. Moreover, we want to simplify matters by concentrating
on connected graphs and getting rid of rigid edges: these are edges a ∈ A with x(a) = y(a) for
all pairs x, y of Δ-bonds.

Let a be a rigid edge of D and let D/a be obtained from D by contracting edge a. Since
we allow multiple edges and loops, the cycles in D/a and in D are in bijection. Let C/a be
the cycle in D/a corresponding to C in D. Define Δ′C/a

= ΔC if a �∈ C and Δ′C/a
= ΔC − x(a)

if a ∈ C+ and Δ′C/a
= ΔC + x(a) if a ∈ C−. These settings yield the bijection that proves the

following.
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Lemma 3.1. BΔ(D, cl , cu) ∼= BΔ′(D/a, cl , cu).

Given data (D1, c1
l , c

1
u,Δ

1) and (D2, c2
l , c

2
u,Δ

2), there is an obvious extension to a union structure
(D, cl , cu,Δ) where D is the union of graphs and the cl , cu,Δ are concatenations of vectors. Since
Δ-bonds factor into a Δ1- and a Δ2-bond, we have the following result.

Lemma 3.2. BΔ(D, cl , cu) ∼= BΔ1(D1, c1
l , c

1
u)× BΔ2(D2, c2

l , c
2
u).

The data (D, cl , cu,Δ) are reduced if D is connected and there is no rigid edge. Henceforth we
will assume that any given set of data is reduced.

With a partition (U,U) of the vertices V of D, we consider the cut S = S[U] ⊂ A. The
forward edges S+ of S are those a ∈ A directed from U to U; backward edges S− of S are
directed from U to U.

For x : A→ Z and a subset U ⊂ V , we define y = pushU(x) such that y(a) = x(a) + 1 for
all a ∈ S+[U], y(a) = x(a)− 1 for all a ∈ S−[U], and y(a) = x(a) for all a �∈ S[U]. We say that
y = pushU(x) is obtained by pushing U in x.

Fix an arbitrary vertex v0 in D as the forbidden vertex. For x, y ∈ BΔ(D, cl , cu) define x � y if
y can be reached from x via a sequence of pushes at sets Ui, such that v0 �∈ Ui for all i and all
intermediate states in the sequence are in BΔ(D, cl , cu) .

Below, in Corollary 3.6, we show that the relation ‘�’ makes BΔ(D, cl , cu) into a partial order
PΔ(D, cl , cu).

The main result of this section is Theorem 1.2, which can now be stated more precisely.

Theorem 3.3. The order PΔ(D, cl , cu) on Δ-bonds is a distributive lattice.

It would have been be more precise to write PΔ(D, cl , cu, v0) in the theorem because the actual
lattice depends on the choice of the forbidden vertex. Different forbidden vertices yield different
lattices on the same ground set. The result of Lemma 3.2 carries over to the lattices, i.e., if D1

and D2 are connected, then PΔ(D, cl , cu, {v1, v2}) ∼= PΔ1(D1, c1
l , c

1
u, v1)× PΔ2(D2, c2

l , c
2
u, v2).

The next lemma describes the condition for a legal push, i.e., a push that transforms a Δ-bond
into a Δ-bond.

Lemma 3.4. If x is in BΔ(D, cl , cu) and S = S[U] is a cut such that x(a) < cu(a) for all a ∈ S+

and x(a) > cl(a) for all a ∈ S−, then y = pushU(x) is also in BΔ(D, cl , cu).

Proof. The assumption on cu(a) and cl(a) implies that y = pushU(x) respects the capacity
constraints. From the orthogonality of the cycle space and the bond space of D, it follows that
δ(C, x) = δ(C, y) for all cycles C, i.e., y satisfies the circular flow conditions.

Lemma 3.5. If x � y, then y can be obtained from x by a sequence of vertex pushes, i.e., at
cuts S[v] with v �= v0.
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Proof. It is enough to show that a single push of a set U can be replaced by a sequence of
vertex pushes. Let y = pushU(x). We show that there is a vertex w ∈ U such that x′ = pushw(x)

is a Δ-bond and y = pushU\w(x′). This implies the result via induction on the size of U.
Choose any w ∈ U. If pushing w is legal, i.e., x(a) < cu(a) for all a ∈ S[w]+ and x(a) > cl(a)

for all a ∈ S[w]−, then let x′ = pushw(x). Note that pushing U \ w in x′ is legal. Indeed, for
a ∈ S[U \ w] ∩ S[U] we have x′(a) = x(a) and all a ∈ S[U \ w] \ S[U] are incident to w. If
such an a is in S[U \ w]+, then it is in S[w]− and x′(a) = x(a)− 1 � cu(a)− 1, and hence
x′(a) < cu(a). The case for a ∈ S[U \ w]− is symmetric.

It remains to show that there is a w ∈ U such that pushing w is legal. Choose any w1 ∈ U. If
S[w1] is not legal, then there is an incident edge a1 ∈ S[w1]

+ with x(a1) = cu(a1) or a1 ∈ S[w1]
−

with x(a1) = cl(a1). Let w2 be the second vertex of a1 and note that w2 ∈ U. If pushing w2 is not
legal, then there is an incident edge a2 obstructing the push, and so on. This yields a sequence
w1, a1, w2, a2, . . . . Either the sequence ends in a vertex wj , which is legal for pushing, or it closes
into a cycle. Assume that there is a cycle C such that x(a) = cu(a) for all a ∈ C+ and x(a) = cl(a)

for all a ∈ C−. The condition implies ΔC = δ(C, x) =
∑

a∈C+ cu(a)−
∑

a∈C− cl(a). It follows
that every Δ-bond y has y(a) = x(a) for all a ∈ C, i.e., the edges in C are rigid. However, the
data (D, cu, cl ,Δ) are assumed to be reduced, i.e., there are no rigid edges. Hence, there must be
a w ∈ U that is legal for pushing.

In the case of a general set of data (D, cu, cl ,Δ) with rigid edges, we would have to allow the
pushing of U if and only if U is the vertex set of a connected component of rigid edges.

Corollary 3.6. The relation � on BΔ(D, cl , cu) is acyclic, i.e., it is an order relation.

Proof. Otherwise we could linearly combine vertex cuts S[v], with v �= v0, to zero. But these
vertex cuts are a basis of the bond space.

Pushes at vertices correspond to cover relations, i.e., edges of the cover graph, of PΔ(D, cl , cu)

(Lemma 3.5). A colouring of the edges of the cover graph of PΔ = PΔ(D, cl , cu) with colours
from V \ {v0} is naturally given by colouring a cover with the vertex of the corresponding
vertex cut.

Lemma 3.7. The colouring of the edges of the cover graph of PΔ with colours in V \ {v0} is a
U-colouring.

Proof. Let x ∈ BΔ(D, cl , cu) and suppose that pushing v in x is legal, i.e., there is a covering
coloured v leaving x. The other element x′ of the covering pair is completely determined by x

and v. This yields property U1.
For U2 assume that u and v can both be pushed in x. We have to show that they can be pushed

in either order. This clearly holds if the vertex cuts of u and v are disjoint. Suppose (u, v) ∈ A

and note that cl(a) < x(a) < cu. Now, after pushing u we still have cl(a) < x(a); thus we can still
push at v. Conversely, pushing v preserves x(a) < cu, i.e., the push of u remains legal.
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A completely symmetric argument shows that the colouring is also a U-colouring for the
reversed order, i.e., an L-colouring. Theorem 2.13 implies that every connected component of
PΔ is a distributive lattice. To complete the proof of Theorem 1.2 it only remains to show that
PΔ is connected. This is shown in the last lemma of this section.

Lemma 3.8. The order PΔ is connected.

Proof. With Δ-bonds x and y consider z = x− y. Note that z is a 0-bond because δ(C, z) =

δ(C, x)− δ(C, y) = 0 for all cycles C. Since 0-bonds are just bonds, there is a unique expression
of z as a linear combination of vertex cuts S[v] with v �= v0; we write this as z =

∑
v λvS[v].

Based on the coefficients λv, define T = {v ∈ V : λv > 0}. Since x and y are different and could
as well be exchanged, we may assume that T �= ∅.

We claim that pushing T in y is legal, i.e., y′ = pushT (y) is a Δ-bond. First note that v0 �∈ T .
Now let a = (v, w) be an arc with v ∈ T and w ∈ V \ T , i.e., a ∈ S[T ]+; from (x− y)(a) =

λv − λu > 0 we obtain x(a) > y(a), and hence y(a) < cu(a). For a ∈ S[T ]− we obtain x(a) <

y(a), and hence y(a) > cl(a). Lemma 3.4 implies that y′ is a Δ-bond.
Assuming that PΔ has several components we may choose x and y from different components

such that
∑

v λv is minimal, where x− y =
∑

v λvS[v]. Since y′ is obtained from y by pushing
the set T , it is in the same component as y. Note that

x− y′ =
∑

v∈V\T

λvS[v] +
∑

v∈T
(λv − 1)S[v].

Since
∑

v λv − |T | <
∑

v λv , this contradicts the choice of x and y.

4. More applications of the ULD characterization

In the first three parts of this section we deal with special cases of Theorem 3.3. As a result we re-
prove known instances of distributive lattices from graphs. Section 4.4 links Δ-bonds, i.e., special
edge weightings, to potentials, i.e., vertex weightings. In Section 4.5 we discuss the chip-firing
game on directed graphs. A central and previously known result is that the states of this game
carry the structure of a ULD lattice. We obtain this as a direct application of our characterization.

4.1. The lattice of c-orientations (Propp [23])

Given an orientation O of a graph G = (V , E), we regard a cycle of an undirected graph as an
edge sequence, rather than an edge set, i.e., a cycle comes with the direction of its traversal. If C
is a cycle in G, then denote by cO(C) := |C+

O | − |C−O | the circular flow-difference of O around
C, where C+

O is the set of forward arcs of C in O and C−O is the set of backward arcs.
Given a vector c, which assigns to every cycle C of G an integer c(C), we call an orientation

O of G with c(C) = cO(C) a c-orientation.
The main result in Propp’s article [23] is as follows.

Theorem 4.1. Let G = (V ,A) be a graph and c ∈ ZC . The set of c-orientations of G carries
the structure of a distributive lattice.
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Proof. Let D = (V ,A) be any orientation of G. Define Δ := 1
2
(cD − c). We interpret x ∈

BΔ(D, 0, 1) as the orientation O(x) of G which arises from D by changing the orientation of
a ∈ A if x(a) = 1. For an arc set A′ ⊆ A, let x(A′) :=

∑
a∈A′ x(a). We calculate

cO(x)(C) = |C+
O(x)| − |C

−
O(x)|

= |C+
D | − x(C+

D ) + x(C−D )− (|C−D | − x(C−D ) + x(C+
D ))

= |C+
D | − |C−D | − 2(x(C+

D )− x(C−D ))

= cD(C)− 2δ(x, C) = cD(C)− 2ΔC

= c.

This shows that c-orientations of G correspond bijectively to Δ-bonds in BΔ(D, 0, 1). By
Theorem 3.3 we obtain a distributive lattice structure on the set of c-orientations of G.

From duality of planar graphs and the above theorem, Propp derives the following two corol-
laries.

• The set of d-factors of a plane bipartite graph can be enhanced by a distributive lattice
structure.

• The set of spanning trees of a plane graph can be enhanced by a distributive lattice structure.

4.2. The lattice of flow in planar graphs (Khuller, Naor and Klein [17])

Consider a planar digraph D = (V ,A), with each arc a having an integer lower and upper bound
on its capacity, denoted c�(a) and cu(a). For a function f : A→ Z, call

ω(v, f) :=
∑

a∈in(v)

f(a)−
∑

a∈out(v)

f(a)

the excess at v. Given a vector Ω ∈ NV , call f a Ω-flow if c�(a) � f(a) � cu(a) for all a and
Ωv = ω(v, f) for all v ∈ V . Let FΩ(D, c�, cu) denote the set of Ω-flows.

Theorem 4.2. If D is a planar digraph then FΩ(D, c�, cu) carries the structure of a distributive
lattice.

Proof. Given a crossing-free plane embedding of D, we look at the planar dual digraph D∗,
which is an orientation of the planar dual G∗ of the underlying undirected graph G of D. Let v be
a vertex of G∗ corresponding to a facial cycle C of the embedding of D. Orient an edge incident
to v as an outgoing arc of v if the dual arc is forward when traversing C in clockwise direction.
Given values on the arcs of D, we simply transfer them to the corresponding arcs of D∗.

Since the excess at a vertex of D dualizes to the circular flow difference around the corres-
ponding facial cycle of D∗, we have a correspondence between FΩ(D, c�, cu) and BΩ(D∗, c�, cu).
This yields the distributive lattice structure on Ω-flows of planar graphs.

In analogy to the case of Δ-bonds we can assume the data (D, c�, cu,Ω) to be reduced. Now
the dual operation to vertex pushes is to augment the flow around facial cycles. A natural can-
didate for the forbidden facial cycle is the unbounded face of the planar embedding. By flow-
augmentation at the remaining facial cycles we can construct the cover graph of a distributive
lattice on FΩ(D, c�, cu).
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Khuller, Naor and Klein [17] in fact only consider the special case of Theorem 4.2 where
Ω = 0; these flows without excess are called circulations. We restate their result as follows.

Theorem 4.3. Let D be a planar digraph with upper and lower arc capacities cl and cu. The
set of circulations of D within cl and cu carries the structure of a distributive lattice.

4.3. The lattice of α-orientations in planar graphs (Felsner [13])

Consider a plane graph G = (V , E). Given a map α : V → N, an orientation X of the edges of G
is called an α-orientation if α records the out-degrees of all vertices, i.e., outdegX(v) = α(v) for
all v ∈ V .

The main result in [13] is as follows.

Theorem 4.4. Given a planar graph and a mapping α : V → N, the set of α-orientations of G
carries the structure of a distributive lattice.

Proof. In analogy to the proof of Theorem 4.1, where c-orientations were interpreted as ele-
ments of BΔ(C, 0, 1), we can view α-orientations as elements of FΩ(D, 0, 1) for some orientation
D of G and Ω depending on α. Application of Theorem 4.2 yields the distributive lattice structure
on the α-orientations.

In the perspective of the present paper, α-orientations appear to be a special case of the
preceding constructions. Nevertheless they are quite general objects. Special instances of
α-orientations on plane graphs yield lattice structures on:

• Eulerian orientations of a plane graph,
• spanning trees and d-factors of a plane graph,
• Schnyder woods of a 3-connected plane graph.

It is natural to ask for the structure of α-orientations of graphs embedded on some surface.
Propp [23] comments that to move between the d-factors in toroidal graphs it is necessary
to operate on non-contractible cycles. The second author’s diploma thesis [18] investigates
α-orientations on surfaces and generalizations of α-orientations.

4.4. Potentials

For a last and fundamental example set Δ = 0. Fix v0 ∈ V and let x(A′) :=
∑

a∈A′ x(a), where
A′ ⊆ A. Now x ∈ B0(D, c�, cu) means that the potential mapping πx(v) := x(p) for a (v0, v)-
path p is well defined, i.e., independent of the choice of p. In particular, for every v0 ∈ V the
set B0(D, c�, cu) is in bijection with the set of feasible vertex-potentials:

Πv0 (D, c�, cu) := {π ∈ NV | π(v0) = 0 and c�(a) � π(w)− π(w) � cu(a) for all a ∈ A}.

Theorem 3.3 yields that Πv0 (D, c�, cu) carries the structure of a distributive lattice. Indeed, this
can be obtained more easily, since Πv0 (D, c�, cu) is a suborder of the distributive lattice NV

where the order is given by dominance and the lattice operations are max and min. The simple
observation that, for π, π′ ∈ Πv0 (D, c�, cu), their componentwise minimum and maximum are
also in Πv0 (D, c�, cu), yields the distributive lattice structure on feasible vertex potentials.
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The proof given in [13], [17] and [23] for the respective lattice structures are all based on
the construction of potentials corresponding to the objects they investigate. In a forthcoming
paper [14] we exploit the potential approach. In this paper we will deal with a class of distributive
polytopes, D-polytopes for short, and we generalize the notion of Δ-bonds to generalized bonds.
These are in a certain sense the most general structure on graphs that form a distributive lattice.

4.5. Chip-firing games

ULDs can be represented as antimatroids with repetition [7] or locally free, permutable, left-
hereditary languages [6]. Theorem 1.1 gives an easy way to obtain such representations. In the
following we apply Theorem 1.1 to the class of chip-firing games. As in [5] we consider chip-
firing games on directed graphs. For the undirected case see [6]. In general the ULDs coming
from chip-firing games are not distributive.

Let D = (V ,A) be a directed graph with a map σ0 : V → N called a chip arrangement. The
number σ0(v) records the number of chips on vertex v in σ0. Given a chip arrangement σ a
vertex v can be fired if it contains more chips than its out-degree, i.e., σ(v) � outdeg(v). Firing v

consists of sending a chip along each of the out-going arcs of v to their respective end-vertices.
The new chip arrangement is called σv. Define a directed graph CFG(D, σ0) on the set of chip
arrangements which can be obtained from σ0 by a firing sequence. The arc (σ, σv) is naturally
coloured with v ∈ V . By definition of CFG(D, σ0), every vertex σ lies on a directed (σ0, σ)-path.
If CFG(D, σ0) is also acyclic the chip-firing game is called finite. We obtain the following well-
known result.

Proposition 4.5. The states of a finite chip-firing game carry the structure of a ULD.

Proof. Since CFG(D, σ0) is acyclic and each vertex lies on a directed (σ0, σ)-path, CFG(D, σ0)

is connected and has a unique sink σ0. It only remains to show that the natural colouring of
CFG(D, σ0) is a U-colouring.

Clearly we have property U1. To prove property U2, let σ ∈ CFG(D, σ0) and v, w ∈ V ready
for firing in σ. Since the firing of v can only increase the number of chips on w, after firing v

vertex w can still be fired. This means that colouring the arcs of CFG(D, σ0) by the vertices that
have been fired leads to a U-colouring. Hence, by Theorem 1.1, the digraph CFG(D, σ0) is the
cover graph of a ULD.

The ULD-properties imply that in a finite game there is a unique chip arrangement σ∗ where
the game starting in σ0 ends, and that all firing sequences from a given chip arrangement σ to the
maximum σ∗ fire the same multiset of vertices.

Observe that the property which makes a U-poset a ULD, namely the existence of a global
minimum, is rather artificially achieved in the case of chip-firing games. Instead of considering
only the arrangements that can be reached from a starting chip arrangement σ0 by upwards
transformations, we can endow the structure by the inverse operation of firing and call it co-
firing. Co-firing a vertex v means sending one chip along all the arcs (v, w) from w to v. Note that
this requires that every out-neighbour of v owns a chip. We define the complete chip-firing game
CCFG(D, σ0) to be the digraph on all the chip arrangements that can be reached from σ0 by firing
and co-firing vertices. Under the assumption that CFG(D, σ0) is acyclic, the obvious colouring
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Figure 5. A U-poset induced by a complete chip-firing game.

of the edges makes CCFG(D, σ0) a U-poset. This U-poset is not a lattice, but all its principal
upsets (filters) correspond to ULDs obtained from chip-firing games in the original sense; see,
e.g., Figure 5.

It could be worthwhile to investigate the U-posets coming from complete chip-firing games.
As a first step we provide the following proposition related to Remark 2. Note that the property
stated in the proposition does not hold for the U-poset of Figure 4.

Proposition 4.6. If (P ,�) is a U-poset induced by a CCFG, then for every s ∈ P there is a
unique inclusion-minimal set Ms of meet-irreducibles such that

∧
Ms = s.

Proof. By Remark 2 we know that for every s ∈ P there is a unique inclusion-minimal set Ms

of meet-irreducibles such that s ∈
∧
Ms. So suppose there are distinct s, t ∈

∧
Ms, i.e., Ms =

Mt. Partition Ms = U ∪ V and let u =
∧
U and v =

∧
V and w = u ∨ v. The relation between

these elements is as in Figure 4.
For two states i < j in CCFG(D, σ0), let pi,j be a directed (i, j)-path and c(i, j) be the colourset

of pi,j . Recall from Section 2 that c(i, j) is indeed independent of the choice of pi,j . Since
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s = u ∧ v and w = u ∨ v we have c(s, u) = c(v, w) and c(s, v) = c(u, w). Similarly, for t we obtain
c(t, u) = c(v, w) and c(t, v) = c(u, w). This yields c(s, u) = c(t, u) and c(s, v) = c(t, v). But if a
chip-configuration u ∈ CCFG(D, σ0) can be obtained from s and t by firing the same multiset of
vertices, then s = t. This is

∧
Ms = s.

5. Concluding remarks

Our characterization of ULDs originates from a characterization of matrices whose flip-flop poset
generates a distributive lattice in [18]. It turned out that this tool yields handy proofs for the
known distributive lattices from graphs. The extraction of the data that were necessary for the
proof led to Δ-bonds. While preparing the present paper we observed that every Δ-bond lattice is
isomorphic to a 0-bond lattice, and hence the lattice structure can be nicely proved via potentials.
This led us to the notion of a D-polytope, i.e., of a polytope P such that, with points x and
y, max(x, y) and min(x, y) are also in P . We can characterize the bounding hyperplanes of
D-polytopes. This allows us to associate a weighted digraph with every D-polytope such that
the generalized bonds of the weighted digraph form a distributive lattice. This is the topic of the
forthcoming paper [14].

There are two types of problem closely related to this article where we would like to see
progress.

• Lattices of Δ-bonds depend on the choice of a forbidden vertex v0 ∈ V . Choosing another
forbidden vertex v1 yields a different lattice on the same set of objects. Is there an easy
description of the transformation PΔ(v0)→ PΔ(v1)?

• The generation of a random element from a distributive lattice is a nice application for
coupling from the past (cf. Propp and Wilson [25]). The challenge is to find good estimates
for the mixing time: see Propp [24]. What if the lattice is a Δ-bond lattice?
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