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In this paper we investigate the relationship between money growth uncertainty and the
level of economic activity in the United States. We pay explicit attention to the Divisia
monetary aggregates. In doing so, we use the new vintage of the data [called MSI
(monetary services indices) by the St. Louis Fed], together with the simple sum monetary
aggregates, over the period from 1967:1 to 2011:3. In the context of a bivariate VARMA,
GARCH-in-mean, asymmetric BEKK model, we show that increased Divisia money
growth volatility (irrespective of the level of aggregation and the method of calculation) is
associated with a lower average growth rate of real economic activity. However, there are
no effects of simple-sum money growth volatility on real economic activity, except with
the Sum M1 and perhaps Sum M2M aggregates. We conclude that monetary policies that
focus on the Divisia monetary aggregates and target their growth rates will contribute to
higher overall economic growth.
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1. INTRODUCTION

The mainstream approach to monetary policy is based on the new Keynesian
model and is expressed in terms of short-term nominal interest rates, such as the
federal funds rate in the United States. However, in the aftermath of the subprime
financial crisis and the Great Recession, the federal funds rate has hardly moved
at all, whereas Federal Reserve monetary policy has been the most volatile and
extreme in its entire history. This has discredited the federal funds rate as an
indicator of policy and led the Fed to look elsewhere. In particular, the Fed and
many central banks throughout the world have departed from the traditional interes
rate–targeting approach to monetary policy and are now focusing on their balance
sheets instead, using quantitative measures of monetary policy, such as credit
easing and quantitative easing.
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In this regard, recent empirical research regarding the relationship between the
money supply and real economic activity has focused on monetary aggregation
issues, motivated by Barnett’s (1980) seminal paper, and the role of uncertainty or
variability of money growth—see, for example, Serletis and Shahmoradi (2006)
and Serletis and Rahman (2009). In particular, Serletis and Shahmoradi (2006)
test Friedman’s (1983, 1984) hypothesis that the variability of money growth
helps predict velocity, using recent advances in the macroeconometrics literature.
They find that the volatility of unanticipated money growth has a more systematic
causal relation to the velocity of money than other measures of volatility and
provide evidence in support of Friedman’s hypothesis. More recently, Serletis and
Rahman (2009) extend Serletis and Shahmoradi (2006) by investigating the effects
of money growth uncertainty on real economic activity, in the context of a struc-
tural vector autoregression (VAR) that is modified to accommodate multivariate
GARCH-in-mean errors. They find evidence that money growth uncertainty has
significant negative effects on output growth.

In this paper, we extend Serletis and Shahmoradi (2006) and Serletis and
Rahman (2009) and use a more general bivariate VARMA (vector autoregres-
sive moving average), GARCH-in-mean, asymmetric BEKK model, as detailed
in Engle and Kroner (1995), Grier et al. (2004), and Shields et al. (2005). The
VARMA framework allows us to capture features of the data-generating process
in a more parsimonious way, without adding a large number of parameters (or
lagged variables). We investigate the relationship between money growth volatil-
ity and output growth in the United States, using monthly data for simple-sum
and Divisia monetary aggregates at five levels of aggregation—M1, M2, M2M,
MZM, and All. Our sample period, extending from 1967:1 to 2011:3, includes
the increased volatility in money supply in the aftermath of the subprime financial
crisis and the global recession and also uses the new vintage of the Divisia data
(called MSI by the St. Louis Fed), documented in detail in Anderson and Jones
(in press).

We show that the conditional variance–covariance process underlying output
and money growth exhibits significant nondiagonality and asymmetry and present
evidence that Divisia money growth volatility has significant negative effects
on economic activity. In particular, we show that increased uncertainty about the
growth rate of Divisia money (irrespective of the level of aggregation) is associated
with a lower average growth rate of real economic activity in the United States.
However, there are no effects of simple-sum money growth volatility on real
economic activity, except with the Sum M2 monetary aggregate. We conclude
that monetary policies that focus on Divisia monetary aggregates and target their
growth rates will contribute to higher overall economic growth.

The paper is organized as follows. Section 2 presents the data and Section 3 pro-
vides a brief description of the bivariate VARMA, GARCH-in-mean, asymmetric
BEKK model. Section 4 assesses the appropriateness of the econometric method-
ology by various information criteria and presents and discusses the empirical
results. The final section concludes.
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2. THE DATA

We use monthly U.S. data from the Federal Reserve Bank of St. Louis Web
site, over the period from 1967:1 to 2011:3, on two variables—money (M)
and the industrial production index (Y ). We also make comparisons between
simple-sum and Divisia methods of monetary aggregation at each of five levels of
aggregation—M1, M2, M2M, MZM, and the broadest available aggregation level,
called All. The monetary data are the new vintage of the data, documented in detail
in Anderson and Jones (in press). At the time we completed this research, Barnett’s
new Divisia M4 data were not yet available to the public. As Director of the Center
for Financial Stability (CFS) in New York City, Barnett will soon be providing
those data monthly (see www.centerforfinancialstability.org/amfm.php). In future
research, we will explore the performance of the new CFS Divisia monetary
aggregates.

A battery of unit root and stationarity tests are conducted in the logarithms of
Y and M as well the annualized logarithmic first differences of real output and
money, the latter denoted respectively by yt and mt . In particular, we use the
augmented Dickey–Fuller (ADF) test [see Dickey and Fuller (1981)] and, given
that unit root tests have low power against relevant trend stationary alternatives,
we also use Kwiatkowski et al. (1992) tests, known as KPSS tests, for level and
trend stationarity. We find that the null hypothesis of a unit root cannot be rejected
and that the null hypotheses of level and trend stationarity are rejected for the
logarithms of the industrial production index and each of the ten money measures.
However, the ADF tests reject the null of a unit root in the logarithmic first
differences of real output and each of the monetary aggregates, and the KPSS η̂μ

and η̂τ t-statistics that test the null hypotheses of level and trend stationarity are
small relative to their 5% critical values of 0.463 and 0.146 (respectively), given in
Kwiatkowski et al. (1992). We thus conclude that the logarithmic first differences
of real output and money, yt and mt , respectively, are stationary.

To see the behavior of the different monetary aggregates, Figures 1–5 provide
graphical representations of the (logged) simple-sum and Divisia money mea-
sures for the United States (using the monthly data over the period from 1967:1
to 2011:3) at each of the five levels of monetary aggregation, M1, M2, M2M,
MZM, and All. See Anderson and Jones (in press) for more details regarding the
data.

3. THE MODEL

We use a version of a VARMA, GARCH-in-mean model in the growth rates of
real output and money, yt and mt , respectively, as follows:

zt = a +
p∑

i=1

�izt−1 + �
√

ht +
q∑

l=1

�let−l + et (1)
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FIGURE 1. Sum and Divisia M1 monetary aggregates.
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FIGURE 2. Sum and Divisia M2 monetary aggregates.
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FIGURE 3. Sum and Divisia M2M monetary aggregates.
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FIGURE 4. Sum and Divisia MZM monetary aggregates.
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FIGURE 5. Sum and Divisia All monetary aggregates.
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et | �t−1 ∼ (0, H t ) , H t =
⎡
⎣ hyy,t hym,t

hmy,t hmm,t

⎤
⎦ ,

where �t−1 denotes the available information set in period t − 1, 0 is the null
vector, and

zt =
⎡
⎣ yt

mt

⎤
⎦ ; et =

⎡
⎣ ey,t

em,t

⎤
⎦ ; ht =

⎡
⎣ hyy,t

hmm,t

⎤
⎦ ;

�i =
⎡
⎣γ

(i)
11 γ

(i)
12

γ
(i)
21 γ

(i)
22

⎤
⎦ ; � =

⎡
⎣ψ11 ψ12

ψ21 ψ22

⎤
⎦ ; �l =

⎡
⎣ θ

(l)
11 θ

(l)
12

θ
(l)
21 θ

(l)
22

⎤
⎦ .

Multivariate GARCH models require that we specify volatilities of yt and mt ,
measured by conditional variances. Although several different specifications have
been proposed in the literature, here we use an asymmetric version of the BEKK
model, introduced by Grier et al. (2004), as follows:

H t = C ′C +
f∑

j=1

B′
jH t−jBj +

g∑
k=1

A′
ket−ke

′
t−kAk + D′ut−1u

′
t−1D, (2)

where C, Bj , Ak , and D are n × n matrices (for all values of j and k), with C
being a triangular matrix to ensure positive definiteness of H .

This specification allows past volatilities, H t−j , as well as lagged values of ee′

and uu′, to show up in estimating current volatilities of output and money, where
ut = (uy,t , um,t )

′ captures potential asymmetric responses. In particular, if the
central bank follows an expansionary monetary policy, we take that to be good
news. We therefore capture good news about money supply by a positive money
supply residual, by defining um,t = max{em,t , 0}. We also capture bad news about
output by defining uy,t = min{ey,t , 0}.

There are n+n2 (p + q + 1)+n(n+1)/2+n2(f +g+1) parameters in (1) and
(2), and in order to deal with estimation problems in the large parameter space, we
assume that f = g = 1 in equation (2), consistent with recent empirical evidence
regarding the superiority of GARCH(1,1) models. See, for example, Hansen and
Lunde (2005).

4. EMPIRICAL EVIDENCE

We select the optimal values of p, q, and r in equation (1) in such a way that
there is no serial correlation or ARCH effects in the standardized residuals of the
model. In doing so, we choose p = q = 2 in equation (1) and f = g = 1 in

https://doi.org/10.1017/S1365100512000247 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100512000247


THE CASE FOR DIVISIA MONEY TARGETING 1647

TABLE 1. The bivariate VARMA, GARCH-in-mean, asymmetric BEKK model
with SUM M1 and the IP index: Equations (1) and (2) with p = q = 2 and
f = g = 1

A. Conditional mean equation

a =

⎡
⎢⎢⎢⎣

3.559
(0.000)

6.145
(0.000)

⎤
⎥⎥⎥⎦; Γ1 =

⎡
⎢⎢⎢⎣

−2.642 1.063
(0.000) (0.000)

−7.627 3.055
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Γ2 =

⎡
⎢⎢⎢⎣

2.590 −0.767
(0.000) (0.000)

5.804 −1.558
(0.000) (0.000)

⎤
⎥⎥⎥⎦;

Θ1 =

⎡
⎢⎢⎢⎣

2.821 −0.967
(0.000) (0.000)

7.664 −2.710
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Θ2 =

⎡
⎢⎢⎢⎣

−2.043 0.650
(0.000) (0.000)

−4.588 1.296
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Ψ1 =

⎡
⎢⎢⎢⎣

−0.044 −0.238
(0.109) (0.001)

−0.044 −0.444
(0.508) (0.001)

⎤
⎥⎥⎥⎦.

Residual diagnostics

Mean Variance Q(4) Q2(4) Q(12) Q2(12)

zyt −0.039 1.007 12.846 (0.012) 0.763 (0.943) 22.705 (0.030) 10.252 (0.593)

zmt 0.041 1.000 9.229 (0.055) 1.662 (0.797) 22.715 (0.030) 17.273 (0.139)

B. Conditional variance–covariance structure

C =

⎡
⎢⎢⎢⎣

4.394 1.022
(0.000) (0.035)

1.443
(0.005)

⎤
⎥⎥⎥⎦; B =

⎡
⎢⎢⎢⎣

0.609 −0.119
(0.000) (0.014)

−0.143 0.697
(0.002) (0.000)

⎤
⎥⎥⎥⎦;

A =

⎡
⎢⎢⎢⎣

−0.174 −0.050
(0.008) (0.224)

0.040 0.550
(0.550) (0.000)

⎤
⎥⎥⎥⎦; D =

⎡
⎢⎢⎢⎣

0.810 −0.054
(0.000) (0.421)

0.480 0.569
(0.000) (0.001)

⎤
⎥⎥⎥⎦.

Hypothesis testing

Diagonal VARMA H0 : γ
(i)
12 = γ

(i)
21 = θ

(l)
12 = θ

(l)
21 = 0, for i, l = 1, 2 0.000

No GARCH H0 : αij = βij = δij = 0, for all i, j 0.000
No GARCH-M H0 : ψij = 0, for all i, j 0.000
No asymmetry H0 : δij = 0, for i, j = 1, 2 0.000
Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 0.000

Note: Sample period, monthly data: 1967:1–2011:3. Numbers in parentheses are tail areas of tests.

equation (2). The inclusion of ht in equation (1) allows us to investigate the effect
of money growth volatility on output growth.

In Tables 1–10 we report maximum likelihood estimates of the parameters (with
p-values in parentheses) and diagnostic test statistics, based on the standardized
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TABLE 2. The bivariate VARMA, GARCH-in-mean, asymmetric BEKK model
with divisia M1 and the IP index: Equations (1) and (2) with p = q = 2 and
f = g = 1

A. Conditional mean equation

a =

⎡
⎢⎢⎢⎣

4.895
(0.000)

1.493
(0.198)

⎤
⎥⎥⎥⎦; Γ1 =

⎡
⎢⎢⎢⎣

0.202 −0.473
(0.257) (0.016)

−0.828 0.981
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Γ2 =

⎡
⎢⎢⎢⎣

0.090 0.791
(0.530) (0.000)

0.567 0.072
(0.000) (0.748)

⎤
⎥⎥⎥⎦;

Θ1 =

⎡
⎢⎢⎢⎣

−0.027 0.620
(0.895) (0.002)

0.895 −0.665
(0.000) (0.001)

⎤
⎥⎥⎥⎦; Θ2 =

⎡
⎢⎢⎢⎣

0.055 −0.566
(0.628) (0.000)

−0.501 −0.097
(0.000) (0.579)

⎤
⎥⎥⎥⎦; Ψ1 =

⎡
⎢⎢⎢⎣

−0.247 −0.583
(0.012) (0.000)

0.015 −0.234
(0.853) (0.051)

⎤
⎥⎥⎥⎦.

Residual diagnostics

Mean Variance Q(4) Q2(4) Q(12) Q2(12)

zyt −0.030 0.997 7.201 (0.125) 0.819 (0.935) 18.444 (0.102) 6.498 (0.818)

zmt −0.018 0.998 15.328 (0.004) 1.295 (0.862) 45.365 (0.000) 7.729 (0.805)

B. Conditional variance–covariance structure

C =

⎡
⎢⎢⎢⎣

4.314 1.721
(0.000) (0.000)

1.684
(0.000)

⎤
⎥⎥⎥⎦; B =

⎡
⎢⎢⎢⎣

−0.686 0.190
(0.000) (0.000)

−0.113 0.540
(0.170) (0.000)

⎤
⎥⎥⎥⎦;

A =

⎡
⎢⎢⎢⎣

−0.132 0.013
(0.074) (0.789)

−0.044 0.470
(0.584) (0.000)

⎤
⎥⎥⎥⎦; D =

⎡
⎢⎢⎢⎣

0.684 −0.006
(0.000) (0.905)

−0.019 0.707
(0.888) (0.000)

⎤
⎥⎥⎥⎦.

Hypothesis testing

Diagonal VARMA H0 : γ
(i)
12 = γ

(i)
21 = θ

(l)
12 = θ

(l)
21 = 0, for i, l = 1, 2 0.000

No GARCH H0 : αij = βij = δij = 0, for all i, j 0.000
No GARCH-M H0 : ψij = 0, for all i, j 0.000
No asymmetry H0 : δij = 0, for i, j = 1, 2 0.000
Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 0.000

Note: Sample period, monthly data: 1967:1–2011:3. Numbers in parentheses are tail areas of tests.

residuals
ẑj t = ejt√

ĥjt

, for j = y,m.

As shown in the tables, the Ljung–Box (1979) Q-statistic for testing serial cor-
relation cannot (in general) reject the null of no autocorrelation (at conventional
significance levels) for the values and the squared values of the standardized
residuals (although the margins of rejection are lower in some cases), suggesting
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TABLE 3. The bivariate VARMA, GARCH-in-mean, asymmetric BEKK model
with SUM M2 and the IP index: Equations (1) and (2) with p = q = 2 and
f = g = 1

A. Conditional mean equation

a =

⎡
⎢⎢⎢⎣

−1.172
(0.117)

0.288
(0.502)

⎤
⎥⎥⎥⎦; Γ1 =

⎡
⎢⎢⎢⎣

−0.214 −0.489
(0.173) (0.000)

1.030 1.587
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Γ2 =

⎡
⎢⎢⎢⎣

0.917 0.523
(0.000) (0.000)

−0.824 −0.661
(0.000) (0.000)

⎤
⎥⎥⎥⎦;

Θ1 =

⎡
⎢⎢⎢⎣

0.425 0.501
(0.009) (0.000)

−1.015 −1.001
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Θ2 =

⎡
⎢⎢⎢⎣

−0.697 −0.194
(0.000) (0.000)

0.567 0.046
(0.000) (0.446)

⎤
⎥⎥⎥⎦; Ψ1 =

⎡
⎢⎢⎢⎣

0.280 −0.129
(0.021) (0.492)

−0.087 0.110
(0.244) (0.283)

⎤
⎥⎥⎥⎦.

Residual diagnostics

Mean Variance Q(4) Q2(4) Q(12) Q2(12)

zyt −0.008 1.017 3.851 (0.426) 2.006 (0.734) 15.480 (0.215) 8.326 (0.759)

zmt −0.023 0.994 7.398 (0.116) 4.154 (0.385) 29.444 (0.003) 9.084 (0.695)

B. Conditional variance–covariance structure

C =

⎡
⎢⎢⎢⎣

4.065 0.814
(0.000) (0.001)

0.799
(0.005)

⎤
⎥⎥⎥⎦; B =

⎡
⎢⎢⎢⎣

−0.699 0.046
(0.000) (0.180)

0.319 −0.760
(0.001) (0.000)

⎤
⎥⎥⎥⎦;

A =

⎡
⎢⎢⎢⎣

−0.069 −0.039
(0.168) (0.052)

0.094 −0.407
(0.236) (0.000)

⎤
⎥⎥⎥⎦; D =

⎡
⎢⎢⎢⎣

0.629 −0.048
(0.000) (0.148)

−0.193 −0.614
(0.342) (0.001)

⎤
⎥⎥⎥⎦.

Hypothesis testing

Diagonal VARMA H0 : γ
(i)
12 = γ

(i)
21 = θ

(l)
12 = θ

(l)
21 = 0, for i, l = 1, 2 0.000

No GARCH H0 : αij = βij = δij = 0, for all i, j 0.000
No GARCH-M H0 : ψij = 0, for all i, j 0.001
No asymmetry H0 : δij = 0, for i, j = 1, 2 0.000
Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 0.001

Note: Sample period, monthly data: 1967:1–2011:3. Numbers in parentheses are tail areas of tests.

that there is no significant evidence of conditional heteroskedasticity. In addition,
the failure of the data to reject the null hypotheses of E(z) = 0 and E(z2) = 1 im-
plicitly indicates that (based on the standardized residuals) the bivariate VARMA,
GARCH-in-mean, asymmetric BEKK model does not bear significant misspeci-
fication error — see, for example, Kroner and Ng (1998).

The effect of the conditional volatility in the money growth rate is given by ψ̂12

in panel A of Tables 1–10. Clearly, the null hypothesis, H0 : ψ12 = 0, is strongly
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TABLE 4. The bivariate VARMA, GARCH-in-mean, asymmetric BEKK model
with divisia M2 and the IP index: Equations (1) and (2) with p = q = 2 and
f = g = 1

A. Conditional mean equation

a =

⎡
⎢⎢⎢⎣

7.096
(0.000)

8.037
(0.000)

⎤
⎥⎥⎥⎦; Γ1 =

⎡
⎢⎢⎢⎣

1.366 −1.783
(0.000) (0.000)

0.300 −0.069
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Γ2 =

⎡
⎢⎢⎢⎣

−0.401 1.476
(0.000) (0.000)

−0.266 0.673
(0.000) (0.000)

⎤
⎥⎥⎥⎦;

Θ1 =

⎡
⎢⎢⎢⎣

−1.172 2.027
(0.000) (0.000)

0.362 0.659
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Θ2 =

⎡
⎢⎢⎢⎣

−0.203 −0.845
(0.000) (0.000)

0.175 −0.423
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Ψ1 =

⎡
⎢⎢⎢⎣

0.543 −2.619
(0.000) (0.000)

0.326 −2.353
(0.000) (0.000)

⎤
⎥⎥⎥⎦.

Residual diagnostics

Mean Variance Q(4) Q2(4) Q(12) Q2(12)

zyt −0.034 0.996 14.200 (0.006) 2.202 (0.731) 30.337(0.002) 7.488 (0.823)

zmt 0.015 0.972 9.778 (0.044) 2.611 (0.624) 33.130 (0.000) 8.333 (0.758)

B. Conditional variance–covariance structure

C =

⎡
⎢⎢⎢⎣

4.038 0.291
(0.000) (0.128)

3.001
(0.000)

⎤
⎥⎥⎥⎦; B =

⎡
⎢⎢⎢⎣

−0.643 −0.011
(0.000) (0.604)

0.288 −0.258
(0.000) (0.000)

⎤
⎥⎥⎥⎦;

A =

⎡
⎢⎢⎢⎣

0.086 −0.021
(0.189) (0.324)

0.229 0.281
(0.025) (0.000)

⎤
⎥⎥⎥⎦; D =

⎡
⎢⎢⎢⎣

−0.818 0.275
(0.000) (0.000)

−0.624 0.558
(0.000) (0.000)

⎤
⎥⎥⎥⎦.

Hypothesis testing

Diagonal VARMA H0 : γ
(i)
12 = γ

(i)
21 = θ

(l)
12 = θ

(l)
21 = 0, for i, l = 1, 2 0.000

No GARCH H0 : αij = βij = δij = 0, for all i, j 0.000
No GARCH-M H0 : ψij = 0, for all i, j 0.000
No asymmetry H0 : δij = 0, for i, j = 1, 2 0.000
Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 0.000

Note: Sample period, monthly data: 1967:1–2011:3. Numbers in parentheses are tail areas of tests.

rejected at the 1% level with all the Divisia aggregates, Divisia M1, Divisia M2,
Divisia M2M, Divisia MZM, and Divisia All. Also, the point estimates on the
coefficient, ψ̂12, indicate that the conditional volatility of Divisia money measures
has negative effects on the growth rate of output. However, the same hypothesis,
H0 : ψ12 = 0, is rejected only with the Sum M1 and Sum M2M aggregates, with
the margin of rejection being lower in the case of the latter. There are no effects
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TABLE 5. The bivariate VARMA, GARCH-in-mean, asymmetric BEKK model
with SUM M2M and the IP index: Equations (1) and (2) with p = q = 2 and
f = g = 1

A. Conditional mean equation

a =

⎡
⎢⎢⎢⎣

20.587
(0.000)

4.220
(0.000)

⎤
⎥⎥⎥⎦; Γ1 =

⎡
⎢⎢⎢⎣

0.502 −7.171
(0.133) (0.000)

−0.087 0.343
(0.083) (0.007)

⎤
⎥⎥⎥⎦; Γ2 =

⎡
⎢⎢⎢⎣

−0.505 5.486
(0.193) (0.000)

−0.064 0.313
(0.003) (0.000)

⎤
⎥⎥⎥⎦;

Θ1 =

⎡
⎢⎢⎢⎣

−0.376 7.329
(0.305) (0.000)

0.077 0.366
(0.139) (0.009)

⎤
⎥⎥⎥⎦; Θ2 =

⎡
⎢⎢⎢⎣

0.562 −0.428
(0.154) (0.200)

0.054 −0.041
(0.011) (0.124)

⎤
⎥⎥⎥⎦; Ψ1 =

⎡
⎢⎢⎢⎣

−0.572 −0.669
(0.062) (0.014)

−0.154 −0.107
(0.000) (0.048)

⎤
⎥⎥⎥⎦.

Residual diagnostics

Mean Variance Q(4) Q2(4) Q(12) Q2(12)

zyt 0.022 1.005 4.757 (0.313) 1.235 (0.872) 11.457 (0.490) 8.977 (0.704)

zmt −0.005 0.988 1.638 (0.801) 9.072 (0.059) 32.136 (0.001) 12.832 (0.381)

B. Conditional variance–covariance structure

C =

⎡
⎢⎢⎢⎣

5.314 0.111
(0.000) (0.676)

1.417
(0.101)

⎤
⎥⎥⎥⎦; B =

⎡
⎢⎢⎢⎣

0.463 0.132
(0.002) (0.102)

−0.211 0.776
(0.003) (0.000)

⎤
⎥⎥⎥⎦;

A =

⎡
⎢⎢⎢⎣

−0.018 −0.070
(0.906) (0.351)

0.073 0.455
(0.543) (0.000)

⎤
⎥⎥⎥⎦; D =

⎡
⎢⎢⎢⎣

−0.805 0.241
(0.000) (0.003)

−0.072 0.541
(0.527) (0.010)

⎤
⎥⎥⎥⎦.

Hypothesis testing

Diagonal VARMA H0 : γ
(i)
12 = γ

(i)
21 = θ

(l)
12 = θ

(l)
21 = 0, for i, l = 1, 2 0.000

No GARCH H0 : αij = βij = δij = 0, for all i, j 0.000
No GARCH-M H0 : ψij = 0, for all i, j 0.000
No asymmetry H0 : δij = 0, for i, j = 1, 2 0.000
Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 0.006

Note: Sample period, monthly data: 1967:1–2011:3. Numbers in parentheses are tail areas of tests.

of conditional volatility of money growth on real economic activity with the Sum
M2, Sum MZM, and Sum All aggregates.

Turning to panels B of Tables 1–10, the diagonality restriction, γ
(i)
12 = γ

(i)
21 = 0

for i = 1, 2, is rejected, meaning that the data provide strong evidence of the
existence of dynamic interactions between yt and mt . The null hypothesis of
homoskedastic disturbances requires the A, B, and D matrices to be jointly
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TABLE 6. The bivariate VARMA, GARCH-in-mean, asymmetric BEKK model
with divisia M2M and the IP index: Equations (1) and (2) with p = q = 2 and
f = g = 1

A. Conditional mean equation

a =

⎡
⎢⎢⎢⎣

17.314
(0.000)

9.066
(0.000)

⎤
⎥⎥⎥⎦; Γ1 =

⎡
⎢⎢⎢⎣

2.818 −7.803
(0.000) (0.000)

0.699 −2.144
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Γ2 =

⎡
⎢⎢⎢⎣

−2.278 6.212
(0.000) (0.000)

−0.899 2.318
(0.000) (0.000)

⎤
⎥⎥⎥⎦;

Θ1 =

⎡
⎢⎢⎢⎣

−2.689 7.951
(0.000) (0.000)

−0.718 2.706
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Θ2 =

⎡
⎢⎢⎢⎣

1.933 −2.225
(0.000) (0.000)

0.765 −0.824
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Ψ1 =

⎡
⎢⎢⎢⎣

−0.123 −1.676
(0.000) (0.000)

−0.104 −0.841
(0.000) (0.000)

⎤
⎥⎥⎥⎦.

Residual diagnostics

Mean Variance Q(4) Q2(4) Q(12) Q2(12)

zyt −0.031 0.992 7.383 (0.116) 0.877 (0.927) 17.220 (0.141) 7.677 (0.809)

zmt 0.037 0.989 3.910 (0.418) 4.793 (0.309) 31.794 (0.001) 8.274 (0.763)

B. Conditional variance–covariance structure

C =

⎡
⎢⎢⎢⎣

4.561 0.319
(0.000) (0.251)

−0.117
(0.162)

⎤
⎥⎥⎥⎦; B =

⎡
⎢⎢⎢⎣

0.597 0.080
(0.000) (0.021)

−0.157 0.896
(0.003) (0.000)

⎤
⎥⎥⎥⎦;

A =

⎡
⎢⎢⎢⎣

−0.123 −0.010
(0.035) (0.742)

0.088 0.393
(0.245) (0.000)

⎤
⎥⎥⎥⎦; D =

⎡
⎢⎢⎢⎣

−0.805 0.229
(0.000) (0.000)

−0.411 0.218
(0.017) (0.113)

⎤
⎥⎥⎥⎦.

Hypothesis testing

Diagonal VARMA H0 : γ
(i)
12 = γ

(i)
21 = θ

(l)
12 = θ

(l)
21 = 0, for i, l = 1, 2 0.000

No GARCH H0 : αij = βij = δij = 0, for all i, j 0.000
No GARCH-M H0 : ψij = 0, for all i, j 0.000
No asymmetry H0 : δij = 0, for i, j = 1, 2 0.000
Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 0.002

Note: Sample period, monthly data: 1967:1–2011:3. Numbers in parentheses are tail areas of tests.

insignificant (that is, αij = βij = δij = 0 for all i, j) and is rejected at the 1%
level or better, suggesting that there is significant conditional heteroskedasticity
in the data. The null hypothesis of symmetric conditional variance–covariances,
which requires all elements of the D matrix to be jointly insignificant (that is,
δij = 0 for all i, j ), is rejected at the 1% level or better, implying the existence
of some asymmetries in the data, which the model is capable of capturing. Also,
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TABLE 7. The bivariate VARMA, GARCH-in-mean, asymmetric BEKK model
with SUM MZM and the IP index: Equations (1) and (2) with p = q = 2 and
f = g = 1

A. Conditional mean equation

a =

⎡
⎢⎢⎢⎣

−1.229
(0.607)

2.717
(0.000)

⎤
⎥⎥⎥⎦; Γ1 =

⎡
⎢⎢⎢⎣

0.543 −0.249
(0.195) (0.652)

0.480 1.158
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Γ2 =

⎡
⎢⎢⎢⎣

0.306 0.254
(0.220) (0.580)

−0.467 −0.210
(0.000) (0.494)

⎤
⎥⎥⎥⎦;

Θ1 =

⎡
⎢⎢⎢⎣

−0.333 0.267
(0.400) (0.643)

−0.532 −0.417
(0.000) (0.240)

⎤
⎥⎥⎥⎦; Θ2 =

⎡
⎢⎢⎢⎣

−0.286 −0.104
(0.103) (0.209)

0.296 −0.258
(0.001) (0.207)

⎤
⎥⎥⎥⎦; Ψ1 =

⎡
⎢⎢⎢⎣

0.323 −0.154
(0.147) (0.744)

−0.299 −0.037
(0.001) (0.564)

⎤
⎥⎥⎥⎦.

Residual diagnostics

Mean Variance Q(4) Q2(4) Q(12) Q2(12)

zyt −0.016 1.018 5.153 (0.271) 1.101 (0.893) 12.883 (0.377) 8.695 (0.728)

zmt −0.005 0.991 2.288 (0.682) 3.173 (0.529) 23.349 (0.024) 7.116 (0.849)

B. Conditional variance–covariance structure

C =

⎡
⎢⎢⎢⎣

4.625 0.906
(0.000) (0.486)

1.517
(0.456)

⎤
⎥⎥⎥⎦; B =

⎡
⎢⎢⎢⎣

−0.603 0.050
(0.000) (0.803)

0.198 −0.754
(0.349) (0.053)

⎤
⎥⎥⎥⎦;

A =

⎡
⎢⎢⎢⎣

−0.027 −0.062
(0.564) (0.527)

0.168 0.572
(0.031) (0.000)

⎤
⎥⎥⎥⎦; D =

⎡
⎢⎢⎢⎣

0.743 −0.049
(0.000) (0.672)

0.344 0.256
(0.079) (0.623)

⎤
⎥⎥⎥⎦.

Hypothesis testing

Diagonal VARMA H0 : γ
(i)
12 = γ

(i)
21 = θ

(l)
12 = θ

(l)
21 = 0, for i, l = 1, 2 0.000

No GARCH H0 : αij = βij = δij = 0, for all i, j 0.000
No GARCH-M H0 : ψij = 0, for all i, j 0.000
No asymmetry H0 : δij = 0, for i, j = 1, 2 0.000
Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 0.000

Note: Sample period, monthly data: 1967:1–2011:3. Numbers in parentheses are tail areas of tests.

the null hypothesis of a diagonal covariance process requires the off-diagonal
elements of the A, B, and D matrices to be jointly insignificant (that is,
α12 = α21 = β12 = β21 = δ12 = δ21 = 0) and is rejected. Thus the yt–
mt process is strongly conditionally heteroskedastic, with innovations to money
growth significantly influencing the conditional variance of output growth in an
asymmetric way.
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TABLE 8. The bivariate VARMA, GARCH-in-mean, asymmetric BEKK model
with divisia MZM and the IP index: Equations (1) and (2) with p = q = 2 and
f = g = 1

A. Conditional mean equation

a =

⎡
⎢⎢⎢⎣

10.741
(0.000)

14.767
(0.000)

⎤
⎥⎥⎥⎦; Γ1 =

⎡
⎢⎢⎢⎣

2.949 −2.671
(0.000) (0.000)

1.799 −1.734
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Γ2 =

⎡
⎢⎢⎢⎣

−2.119 2.043
(0.000) (0.000)

−1.967 1.876
(0.000) (0.000)

⎤
⎥⎥⎥⎦;

Θ1 =

⎡
⎢⎢⎢⎣

−2.794 2.769
(0.000) (0.000)

−1.879 2.373
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Θ2 =

⎡
⎢⎢⎢⎣

1.577 −0.615
(0.000) (0.000)

1.475 −0.545
(0.000) (0.004)

⎤
⎥⎥⎥⎦; Ψ1 =

⎡
⎢⎢⎢⎣

0.482 −2.427
(0.000) (0.000)

0.578 −3.238
(0.000) (0.000)

⎤
⎥⎥⎥⎦.

Residual diagnostics

Mean Variance Q(4) Q2(4) Q(12) Q2(12)

zyt −0.028 0.994 10.226 (0.036) 1.047 (0.902) 25.881 (0.011) 5.684 (0.931)

zmt 0.028 0.965 3.290 (0.510) 0.944(0.918) 29.348 (0.003) 4.398 (0.975)

B. Conditional variance–covariance structure

C =

⎡
⎢⎢⎢⎣

4.356 0.052
(0.000) (0.869)

0.714
(0.381)

⎤
⎥⎥⎥⎦; B =

⎡
⎢⎢⎢⎣

0.647 0.100
(0.000) (0.008)

−0.030 0.890
(0.684) (0.000)

⎤
⎥⎥⎥⎦;

A =

⎡
⎢⎢⎢⎣

−0.207 0.007
(0.009) (0.752)

−0.075 0.300
(0.399) (0.000)

⎤
⎥⎥⎥⎦; D =

⎡
⎢⎢⎢⎣

0.745 −0.304
(0.000) (0.000)

0.228 −0.233
(0.085) (0.000)

⎤
⎥⎥⎥⎦.

Hypothesis testing

Diagonal VARMA H0 : γ
(i)
12 = γ

(i)
21 = θ

(l)
12 = θ

(l)
21 = 0, for i, l = 1, 2 0.000

No GARCH H0 : αij = βij = δij = 0, for all i, j 0.000
No GARCH-M H0 : ψij = 0, for all i, j 0.000
No asymmetry H0 : δij = 0, for i, j = 1, 2 0.000
Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 0.000

Note: Sample period, monthly data: 1967:1–2011:3. Numbers in parentheses are tail areas of tests.

We have used what Anderson and Jones (in press) refer to as the “preferred” MSI
series, which is calculated by selecting the benchmark rate of return from a set of
interest rates that does not include the Baa bond rate. To investigate the robustness
of our results we also use the “alternative” MSI series, also available from FRED,
which are constructed by selecting the benchmark rate of return from a set of
interest rates that includes the Baa corporate bond rate. The effect of the conditional
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TABLE 9. The bivariate VARMA, GARCH-in-mean, asymmetric BEKK model
with sum all and the IP index: Equations (1) and (2) with p = q = 2 and
f = g = 1

A. Conditional mean equation

a =

⎡
⎢⎢⎢⎣

0.771
(0.263)

0.029
(0.980)

⎤
⎥⎥⎥⎦; Γ1 =

⎡
⎢⎢⎢⎣

1.014 −0.583
(0.002) (0.005)

0.640 1.778
(0.369) (0.000)

⎤
⎥⎥⎥⎦; Γ2 =

⎡
⎢⎢⎢⎣

−0.288 0.525
(0.170) (0.006)

−0.402 −0.847
(0.447) (0.000)

⎤
⎥⎥⎥⎦;

Θ1 =

⎡
⎢⎢⎢⎣

−0.761 0.448
(0.008) (0.208)

−0.671 −1.154
(0.370) (0.000)

⎤
⎥⎥⎥⎦; Θ2 =

⎡
⎢⎢⎢⎣

0.234 −0.061
(0.128) (0.669)

0.228 0.328
(0.475) (0.164)

⎤
⎥⎥⎥⎦; Ψ1 =

⎡
⎢⎢⎢⎣

0.109 −0.117
(0.007) (0.420)

−0.052 0.063
(0.832) (0.159)

⎤
⎥⎥⎥⎦.

Residual diagnostics

Mean Variance Q(4) Q2(4) Q(12) Q2(12)

zyt
−0.017 9 1.011 5.399 (0.248) 1.14 (0.886) 19.720 (0.072) 7.693 (0.808)

zmt
−0.027 1.004 8.544 (0.073) 1.094 (0.895) 39.855 (0.000) 16.205 (0.182)

B. Conditional variance–covariance structure

C =

⎡
⎢⎢⎢⎣

4.652 0.646
(0.000) (0.102)

1.932
(0.000)

⎤
⎥⎥⎥⎦; B =

⎡
⎢⎢⎢⎣

−0.653 0.084
(0.000) (0.288)

0.045 −0.242
(0.734) (0.019)

⎤
⎥⎥⎥⎦;

A =

⎡
⎢⎢⎢⎣

0.017 0.073
(0.789) (0.019)

−0.119 0.773
(0.247) (0.000)

⎤
⎥⎥⎥⎦; D =

⎡
⎢⎢⎢⎣

0.714 −0.025
(0.000) (0.562)

0.154 −0.658
(0.505) (0.010)

⎤
⎥⎥⎥⎦.

Hypothesis testing

Diagonal VARMA H0 : γ
(i)
12 = γ

(i)
21 = θ

(l)
12 = θ

(l)
21 = 0, for i, l = 1, 2 0.000

No GARCH H0 : αij = βij = δij = 0, for all i, j 0.000
No GARCH-M H0 : ψij = 0, for all i, j 0.021
No asymmetry H0 : δij = 0, for i, j = 1, 2 0.000
Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 0.012

Note: Sample period, monthly data: 1967:1–2011:3. Numbers in parentheses are tail areas of tests.

volatility in the money growth rate, ψ̂12, is −0.244 (0.008) with Divisia-A M1,
−2.810 (0.000) with Divisia-A M2, −0.372 (0.000) with Divisia-A M2M, −0.655
(0.005) with Divisia-A MZM, and −2.002 (0.004) with Divisia-A All, suggesting
that our results are robust to how the MSI data are constructed. Although Barnett
originated the upper-envelope approach to measuring the benchmark rate, as used
in both of the St. Louis Federal Reserve Bank’s MSI series, Barnett more recently
has adopted a more direct measure of the rate of return on capital investment,
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TABLE 10. The bivariate VARMA, GARCH-in-mean, asymmetric BEKK model
with divisia all and the IP index: Equations (1) and (2) with p = q = 2 and
f = g = 1

A. Conditional mean equation

a =

⎡
⎢⎢⎢⎣

−0.443
(0.000)

16.977
(0.000)

⎤
⎥⎥⎥⎦; Γ1 =

⎡
⎢⎢⎢⎣

1.271 0.139
(0.000) (0.000)

17.081 0.072
(0.000) (0.698)

⎤
⎥⎥⎥⎦; Γ2 =

⎡
⎢⎢⎢⎣

−0.381 −0.062
(0.000) (0.000)

−13.232 −2.023
(0.000) (0.000)

⎤
⎥⎥⎥⎦;

Θ1 =

⎡
⎢⎢⎢⎣

−1.056 −0.255
(0.000) (0.000)

−17.080 0.526
(0.000) (0.006)

⎤
⎥⎥⎥⎦; Θ2 =

⎡
⎢⎢⎢⎣

0.270 0.122
(0.000) (0.000)

9.527 4.288
(0.000) (0.000)

⎤
⎥⎥⎥⎦; Ψ1 =

⎡
⎢⎢⎢⎣

−0.004 −0.098
(0.483) (0.000)

0.456 −4.111
(0.004) (0.000)

⎤
⎥⎥⎥⎦.

Residual diagnostics

Mean Variance Q(4) Q2(4) Q(12) Q2(12)

zyt −0.010 0.998 7.979 (0.092) 1.378 (0.847) 22.476 (0.032) 7.569 (0.817)

zmt 0.026 0.990 1.638 (0.801) 0.711 (0.949) 25.276 (0.025) 5.400 (0.943)

B. Conditional variance–covariance structure

C =

⎡
⎢⎢⎢⎣

4.314 0.132
(0.000) (0.499)

0.001
(0.999)

⎤
⎥⎥⎥⎦; B =

⎡
⎢⎢⎢⎣

−0.700 −0.045
(0.000) (0.000)

0.104 −0.936
(0.265) (0.000)

⎤
⎥⎥⎥⎦;

A =

⎡
⎢⎢⎢⎣

0.008 −0.014
(0.957) (0.611)

0.123 0.242
(0.606) (0.000)

⎤
⎥⎥⎥⎦; D =

⎡
⎢⎢⎢⎣

0.704 −0.171
(0.000) (0.000)

0.179 −0.287
(0.425) (0.008)

⎤
⎥⎥⎥⎦.

Hypothesis testing

Diagonal VARMA H0 : γ
(i)
12 = γ

(i)
21 = θ

(l)
12 = θ

(l)
21 = 0, for i, l = 1, 2 0.000

No GARCH H0 : αij = βij = δij = 0, for all i, j 0.000
No GARCH-M H0 : ψij = 0, for all i, j 0.000
No asymmetry H0 : δij = 0, for i, j = 1, 2 0.000
Diagonal GARCH H0 : α12 = α21 = β12 = β21 = δ12 = δ21 = 0 0.000

Note: Sample period, monthly data: 1967:1–2011:3. Numbers in parentheses are tail areas of tests.

based on the Bank of Israel’s approach. The new benchmark rate measure is used
in the Divisia monetary aggregates to be supplied in the future by the Center
for Financial Stability (CFS). Although the CFS data were not yet available at
the time of completion of this research, we do not anticipate that our results
will be significantly altered by the use of the new benchmark rate. The Divisia
monetary quantity aggregates are highly robust to the choice of benchmark rate.
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The monetary user-cost aggregates are not robust to that choice, but our current
research uses only the quantity aggregates.

5. CONCLUSION

In the context of a general bivariate VARMA, GARCH-in-mean, asymmetric
BEKK model, we investigate the effects of money growth uncertainty on real
economic activity in the United States over the period from 1967:1 to 2011:3,
using the new vintage of the Divisia data, documented in detail in Anderson and
Jones (in press). In doing so, we provide a comparison among simple-sum and
Divisia methods of monetary aggregation at each of five levels of aggregation—
M1, M2, M2M, MZM, and All.

We find that our model embodies a reasonable description of the U.S. data
on output and money growth and we present evidence that increased uncertainty
about the growth rate of the Divisia monetary aggregates is associated with a lower
average growth rate of real economic activity in the United States, consistent with
earlier results by Serletis and Rahman (2009). However, there are no effects
of simple-sum money growth volatility on real economic activity, except with
the Sum M1 and perhaps Sum M2M monetary aggregates. Thus, the money
variability/output relationship is not robust to alternative methods of aggregating
monetary assets and we conclude that monetary policies that focus on the Divisia
monetary aggregates and target the growth rate of these aggregates will contribute
to higher overall economic growth.

This is in contrast to the mainstream approach to monetary policy, which is
based on the new Keynesian model and is expressed in terms of the federal funds
rate in the United States. In the new Keynesian approach to monetary policy,
under the assumption of sticky prices, central banks use a short-term nominal
interest rate as their operating instrument, but the effects of monetary policy on
economic activity stem from how long-term real interest rates respond to the short-
term nominal interest rate. However, the recent collapse of stable relationships in
financial markets and the decoupling of long-term interest rates from short-term
interest rates have significant implications for monetary policy. Moreover, as the
federal funds rate has reached the zero lower bound, the Federal Reserve has lost
its usual ability to signal policy changes via changes in the federal funds rate.
For these reasons, in the aftermath of the subprime financial crisis and the Great
Recession, the Fed and many central banks throughout the world have departed
from the traditional interest-rate targeting approach to monetary policy and are now
focusing on their balance sheets instead, using quantitative measures of monetary
policy, such as quantitative easing.

As the Fed has been searching for new tools to steer the U.S. economy in an
environment with the federal funds rate at the zero lower bound and the level
of excess reserves in the trillions of dollars [see, for example, Barnett (2011,
Ch. 4)], no one is sure how this will unfold. However, keeping the federal funds
rate unusually low for a long period introduces uncertainty about the future path
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of money growth and inflation. This uncertainty can be especially damaging to
the economy, as it amplifies the negative response of the economy to unfavorable
shocks and dampens the positive response to favorable shocks. We argue that
there is a need to target the growth rate of Divisia money, and our results support
the conclusion by Barnett and Chauvet (2011, p. 22), as further documented by
Barnett (2011), that “most of the puzzles and paradoxes that have evolved in
the monetary economics literature were produced by the simple-sum monetary
aggregates, provided officially by most central banks, and are resolved by use of
aggregation-theoretic monetary aggregates.”
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