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Abstract
Short-selling constraints are common in financial markets, while physical assets such as housing often
lack markets for short-selling altogether. As a result, investment decisions are often restricted by such
constraints. This paper studies asset prices in behavioral heterogeneous-belief models with short-selling
constraints and arbitrarily many belief types. We provide conditions on beliefs such that short-selling
constraints bind for different types, along with analytic expressions for price and demands that allow us to
construct fast solution algorithms relevant for a wide range of models. An application studies how an alter-
native uptick rule, as in the United States, affects price dynamics and wealth distribution in a market with
many belief types in evolutionary competition. In a numerical example, we highlight a scenario in which a
modified version of the alternative uptick rule, triggered by smaller percentage falls in price, reduces both
asset mispricing and wealth inequality relative to the current regulation. As extensions, we show how our
method applies to multiple asset markets with short-selling constraints, additional heterogeneities, and
price setting by a market maker.

Keywords: Asset pricing; heterogeneous beliefs; short-selling constraints; computational algorithm; evolutionary
competition

1. Introduction
The practice of short-selling is common in financial markets but is also widely regulated. When
investors go short, they borrow and immediately sell a financial asset before repurchasing and
returning the asset to the lender, closing their position. Whereas a long position can be thought
of as a bet that asset prices will increase, short-selling allows investors to bet on a fall in asset
prices. It has been argued that such bettingmay increase volatility in financial markets. A common
policy response among regulators has been to restrict short-selling; for example, during the 2008–
2009 financial crisis many countries introduced short-selling bans following sharp declines in asset
prices. Similar short-selling bans were reinstated in some European economies during the 2011–
2012 sovereign debt crisis and the Covid-19 outbreak (see Siciliano and Ventoruzzo (2020)). It
is therefore important that researchers be able to solve asset pricing models with short-selling
constraints in an efficient manner.

In this paper, we show how to efficiently solve dynamic behavioral asset pricing models with
short-selling constraints and arbitrarily many heterogeneous beliefs.1 We are thinking here of dis-
crete time, heterogeneous-belief asset pricingmodels such as Brock andHommes (1998), LeBaron
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et al. (1999), and Westerhoff (2004); for instance, the population shares of different types may be
endogenously determined by evolutionary competition. We also allow price beliefs to potentially
depend on the current asset price (in a linear fashion), which is a generalization relative to some
models in the literature. For the case of such dynamic models, we provide expressions for the
market-clearing price and demands and show how these results can be used to construct fast solu-
tion algorithms, such that researchers may efficiently solve models with thousands of different
agents or belief types. Our algorithm is supported by analytical results that do not seem to have
been documented previously.

Our analysis is built around the behavioral heterogeneous-beliefs asset pricing model (see
Brock and Hommes (1998)). We allow arbitrarily many belief types whose population shares
may be exogenous or determined endogenously by evolutionary competition. The model with
evolutionary competition has been studied in the many-types case by Brock et al. (2005), who
allow short-selling by investors. We show that when investors face short-selling constraints, the
market-clearing price and demands depend on belief dispersion across types. We also provide a
fast solution algorithm that exploits these analytical results.

The difficulty in the many-types case stems from the demand functions being piecewise-linear,
such that the market-clearing price depends on how many types are short-selling constrained.
For a market with a large number of investor types, it is computationally intensive to solve for a
price and demands. To overcome this problem, we exploit the fact that types who are short-selling
constrained in a given period must be more pessimistic than those who are unconstrained, such
that ordering types in terms of optimism reduces computational burden and solution time. As
a result, it becomes feasible to simulate models with thousands of belief types for many periods
while retaining solution accuracy.

We provide analytical results for a benchmark asset pricing model, followed by a policy appli-
cation which studies an alternative uptick rule, as currently in place in the United States, in a
model with a large number of belief types in evolutionary competition. The alternative uptick
rule is a “circuit breaker” that bans short-selling if prices fall 10% or more in the previous trad-
ing period; surprisingly, there do not appear to be any previous assessments of this rule in the
heterogeneous-beliefs literature. Our results indicate that an alternative uptick rule may attenuate
(or prevent) falls in price, but we also find that such rules can hinder price discovery, increase
price volatility and lead to explosive price paths. An alternative uptick rule can also have substan-
tive distributional implications. In a numerical example, we find that a modified rule, triggered
by price falls smaller than 10%, may reduce both mispricing and wealth inequality relative to the
current regulation.

Following the policy application, we highlight some extensions of the benchmark model to
which our algorithm can be applied with only minor amendments. Extensions include the case
of multiple asset markets with short-selling constraints, heterogeneity in attention to the current
price, heterogeneity in perceived return risk (or risk preferences), and themarket-maker approach
to price determination.

The closest papers in the literature are Anufriev and Tuinstra (2013) and Dercole and Radi
(2020). Anufriev and Tuinstra (2013) add trading costs for short-selling into a two-type asset
pricing model and find that this leads to additional (non-fundamental) steady states as beliefs are
updated more aggressively; in a similar vein, but with the addition of a leverage constraint, see
in’t Veld (2016). By comparison, Dercole and Radi (2020) study the original “uptick rule” in the
United States from 1938–2007, which banned short-selling at lower prices, and find that there is
no clear-cut impact on price volatility. There is also a wider literature on non-smooth asset pricing
models (see e.g. Tramontana et al. (2010)); short-selling constraints are a specific application that
gives rise to such models.

The above papers all consider a small number of investor types and solve for prices and
demands in specific cases. The present paper contributes to the literature by (i) solving for price
and demands when there are arbitrarily many belief types with general price predictors who can be
in evolutionary competition and (ii) providing efficient solution algorithms. Relative to Anufriev
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Macroeconomic Dynamics 1717

and Tuinstra (2013), we consider a full short-selling ban, which amounts to the special case of
an infinite short-selling cost in their setting. Unlike their paper, however, we provide analytic
solutions for price and demands in this case by giving conditions that determine the sets of short-
selling constrained and unconstrained types in any given period. We make our results accessible
by providing both analytic and numerical examples.

Our paper is part of a growing literature studying heterogeneous beliefs, asset prices, and the
effectiveness of regulatory policies in financial markets (Westerhoff (2016)). In financial market
models, it is known that differences in beliefs combined with short-selling constraints can lead to
price bubbles (see e.g. Scheinkman and Xiong (2003)), but such regulations could also aid market
stability as noted above. There has also been interest in the impact of short-selling restrictions in
markets for physical investment assets like housing (see Shiller (2015), Fabozzi et al. (2020)) that
are subject to boom and bust and may be cast in our framework.

Section 2 presents a baseline model, followed by analytical results in Section 3. Section 4
presents our policy application. Section 5 presents three extensions, and Section 6 concludes.

2. Model
Consider a finite set of myopic, risk-averse investor typesH= {h1, . . . , hH}. At each date t ∈N+,
each type h ∈H chooses a portfolio of a risky asset zt,h and a riskless bond with return r̃ > 0 to
maximize a mean-variance utility function over future wealth with risk aversion parameter a> 0.
The risky asset has current price pt , future price pt+1, and pays stochastic dividends dt+1, which are
exogenous. Investors form subjective expectations of the future price and future dividends of the
risky asset as described below. The underlying model follows Brock and Hommes (1998), except
that the risky asset is in positive net supply Z > 0 and short-selling is ruled out by constraints of
the form zt,h ≥ 0 for all t and h.

2.1 Asset demand
We denote the subjective expectation of type h at date t by Ẽt,h[.] and the subjective variance by
Ṽt,h[.]. The portfolio choice of type h ∈H at date t solves the problem:2

max
zt,h

Ẽt,h[wt+1,h]− a
2
Ṽt,h[wt+1,h] s.t. zt,h ≥ 0 (1)

where wt+1,h = (pt+1 + dt+1)zt,h + (1+ r̃)
(
wt,h − ptzt,h

)
is future wealth, wt,h − ptzt,h is holdings

of the risk-free asset, and Ṽt,h[wt+1,h]= σ 2z2t,h, with σ 2 > 0 and weight a/2> 0.
Given short-selling constraints, the date t demand of each investor type is:

zt,h =

⎧⎪⎨
⎪⎩

Ẽt,h[pt+1]+Ẽt,h[dt+1]−(1+r̃)pt
aσ 2 if pt ≤ Ẽt,h[pt+1]+Ẽt,h[dt+1]

1+r̃

0 if pt >
Ẽt,h[pt+1]+Ẽt,h[dt+1]

1+r̃ .
(2)

If the price pt is small enough, then type h’s short-selling constraint is slack and their demand
for the risky asset decreases with the price; this is the standard demand function that arises in
Brock and Hommes (1998), where short-selling constraints are absent. However, if the current
price is high enough to make the expected excess return of type h negative, then the short-selling
constraint will bind on type h and their position in the risky asset is zero.

Dividends follow an IID process dt = d + εt , where d > 0 and εt is zero-mean with fixed vari-
ance. We assume all investor types know the dividend process, such that Ẽt,h

[
dt+1

] = d for all
t and h; there is no loss of generality as our solution method nests a generic specification of
Ẽt,h

[
dt+1

]
at no extra cost.3 From equation (2), we see that the short-selling constraint is more

likely to bind on type h the more pessimistic their price expectation Ẽt,h
[
pt+1

]
.
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2.2 Price beliefs
We consider generic price beliefs which are boundedly rational and can depend linearly on the
current price pt via a common coefficient (we relax the latter assumption later on).

Assumption 1. All price beliefs are of the form:

Ẽt,h
[
pt+1

] = cpt + f̃t,h (3)

where c ∈ [0, 1+ r̃) and f̃t,h ∈R is a generic forecast that cannot depend on current price pt.

Assumption 1 allows a wide range of boundedly rational beliefs. The coefficient c allows linear
dependence of price expectations on the current price; for example, investors may extrapolate
one-for-one on top of the current price like the extrapolators in Barberis et al. (2018) or they may
use the information of the current price with some weight (see, for instance, LeBaron et al. (1999),
Westerhoff (2004)). We assume c≥ 0 to allow the case of no dependence on the current price (i.e.
c= 0), and we assume c< 1+ r̃ to ensure that individual demands are decreasing in the current
price pt ; for reference, see (4) below. Time-varying or heterogeneous values of c are discussed as an
extension in Section 5.2.

The generic forecast f̃t,h (which can differ across types and over time) permits a potentially
non-linear response to past prices, such as non-linear trend-following rules. In addition, f̃t,h may
contain type-specific “fixed effects,” be subject to random disturbances, or be influenced by social
networks as in Yang (2009) or Panchenko et al. (2013). Assumption 1 in Brock and Hommes
(1998) is nested by (3) when c= 0 and f̃t,h = Et

[
p∗
t+1

] + gh(xt−1, . . . , xt−Lh), where gh :RLh →R

is a function that can differ across types, Lh is the lag of type h, and xt := pt − p∗
t is the price

deviation from the fundamental price p∗
t .

For convenience, let ft,h := f̃t,h + Ẽt,h
[
dt+1

] − aσ 2Z and r := r̃ − c. Given Ẽt,h
[
dt+1

] = d, we
have ft,h = f̃t,h + d − aσ 2Z and the demands in (2) can be written as

zt,h =
⎧⎨
⎩

ft,h−(1+r)pt+aσ 2Z
aσ 2 if pt ≤ ft,h+aσ 2Z

1+r

0 if pt >
ft,h+aσ 2Z

1+r .
(4)

Writing demands in terms of ft,h is convenient because the latter does not depend on the cur-
rent price pt and allows us to add the term aσ 2Z in the numerator of the demand function (see top
line of (4)), which simplifies the algebra of the price solution; see Proposition 1. Writing demands
this way is also consistent with a “deviation from fundamentals” representation; see Brock and
Hommes (1998) and several other papers in the related literature.4

2.3 Population shares
We allow the population shares nt,h of investor types to be endogenous and time-varying, but we
rule out any dependence on the current price pt (see Assumption 2).

Assumption 2. We consider population shares of the form nt,h = n̂h(nt−1, ut−1) where n̂h is a real
function such that

∑
h∈H nt,h = 1, nt,h ∈ (0, 1) ∀t, h, where nt−1 (ut−1) is the vector of past popula-

tion shares (resp. past fitness levels). In particular, we rule out dependence of nt,h on the current asset
price pt (though not dependence on lagged prices pt−1, pt−2 etc.).

Assumption 2 is quite general. For instance, population shares may be endogenously deter-
mined by evolutionary competition as in Brock and Hommes (1998). Following Brock and
Hommes (1997), a popular approach is a discrete-choice logistic model nt+1,h = exp(βUt,h)∑

h∈H exp(βUt,h)
,

where the intensity of choice β ∈ [0,∞) determines how fast agents switch to better-performing
predictors. Various fitness measures Ut,h are used in the literature, including realized profits net
of a predictor cost (Brock and Hommes (1998)) and forecast accuracy (e.g. Ap Gwilym (2010)),
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Macroeconomic Dynamics 1719

which may potentially be included in a risk-adjusted measure of profits (De Grauwe and Grimaldi
(2006)). While Assumption 2 rules out the “extreme” population shares of 0 or 1, it is straightfor-
ward (though analytically cumbersome) to relax this assumption, and we show how this can be
done in Section 5 of the Supplementary Appendix.5

The presence of past fitness levels ut−1 in the function n̂h allows evolutionary competition
mechanisms such as the logit specification above, while the inclusion of past population shares
nt−1 allows for asynchronous updating (see e.g. Hommes (2013), Ch. 5). It would not impose
any extra burden to allow the function n̂h to be time-varying or to include additional endogenous
variables in the vector ut−1; however, as emphasized in Assumption 2, we rule out dependence of
population shares on the current price pt (or any future values).

The special case of fixed population shares nt,h = 1/H is relevant for agent-based or social net-
work models where types are individuals, while exogenous time-varying population shares may
be used to study herding in beliefs, as in the models of Kirman (1991, 1993).

3. Solving the model
The asset market clears when

∑
h∈H nt,hzt,h = Z subject to (4) and Assumptions 1 and 2. Given

positive outside supply Z > 0, there exists a unique market-clearing price pt (see Anufriev and
Tuinstra (2013), Proposition 2.1). We now characterize the price and demands.

3.1 Benchmark results

Proposition 1. Let pt be the market-clearing price at date t ∈N+, let nt,h = n̂h(nt−1, ut−1) be the
population share of type h at date t, and let Bt ⊆H (St := H \ Bt) be the set of unconstrained types
(constrained types) at date t. Then, the following holds:

(i) If
∑

h∈H nt,h
(
ft,h −minh∈H{ft,h}

) ≤ aσ 2Z, then no type is short-selling constrained at date
t
(B∗

t =H, S∗
t = ∅)

and the market-clearing price is

pt =
∑

h∈H nt,hft,h
1+ r

:= p∗
t (5)

with demands zt,h = (
aσ 2)−1 (

ft,h + aσ 2Z − (1+ r)pt
) ≥ 0 ∀h ∈H.

(ii) If
∑

h∈H nt,h
(
ft,h −minh∈H{ft,h}

)
> aσ 2Z, at least one type is short-selling constrained and

∃ unique non-empty sets B∗
t ⊂H, S∗

t such that
∑

h∈B∗
t
nt,h

(
ft,h −minh∈B∗

t
{ft,h}

)
≤ aσ 2Z <∑

h∈B∗
t
nt,h

(
ft,h −maxh∈S∗

t
{ft,h}

)
, and the price and demands are given by

pt =
∑

h∈B∗
t
nt,hft,h − (1− ∑

h∈B∗
t
nt,h)aσ 2Z

(1+ r)
∑

h∈B∗
t
nt,h

> p∗
t (6)

and zt,h = (
aσ 2)−1(ft,h + aσ 2Z − (1+ r)pt

) ≥ 0 ∀h ∈ B∗
t , zt,h = 0 ∀h ∈ S∗

t .

Proof. See the Appendix.

Proposition 1 gives the market-clearing price and demands for an arbitrarily large set of belief
types whose population shares may be endogenously determined. Since the results apply at any
date t ∈N+, we can find a solution recursively for t = 1, 2, . . ., starting from period 1. If no types
are short-selling constrained, the asset price depends on all beliefs as in (5); however, when short-
selling constraints bind, only the beliefs of the unconstrained types matter for price determination;
see (6). Intuitively, the market price depends on the demands (hence beliefs) of “buyers” who
participate in the market by taking a long position.
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An important difference relative to Proposition 2.1 in Anufriev and Tuinstra (2013) (which
shows the existence of a unique market-clearing price) is that Proposition 1 gives conditions that
determine the sets of constrained and unconstrained types (see parts (i) and (ii)), such that we have
an explicit solution for the price for an arbitrary number of belief types.6 As noted in Section 1,
the short-selling ban considered here amounts to the special case of an infinite short-selling tax in
Anufriev and Tuinstra (2013). However, since a full ban on short-selling is a benchmark case, it is
useful to have an explicit solution. These analytical results allow us to build a fast computational
algorithm as discussed below.

Part (i) of Proposition 1 gives a simple condition on beliefs that checks whether short-selling
constraints are slack for all types. If so, the price is given by p∗

t in (5), which is the standard solu-
tion absent short-selling constraints; see for example Brock and Hommes (1998). Short-selling
constraints will bind on at least one type if belief dispersion relative to the most pessimistic type,∑

h∈H nt,h(ft,h −minh∈H{ft,h}), is large enough; see Proposition 1 Part (ii). In this case, at least
one type—and at mostH − 1 types—will be short-selling constrained at themarket-clearing price.
Intuitively, those types with relatively low valuations of the asset (low ft,h) will want to short sell if
the price is “biased” upwards relative to their valuation by more optimistic types with non-trivial
population shares, and hence, at the market-clearing price, the “pessimists” will be short-selling
constrained. In this case, the sets of unconstrained and short-selling constrained types B∗

t , S∗
t are

determined by “cutoff ” conditions that depend on the extent of belief dispersion within the group
(see directly above (6)).

Finally, note that when one or more types are short-selling constrained, the market-clearing
price pt is higher than the (hypothetical) price p∗

t if short-selling constraints were absent—that is
short-selling constraints raise the asset price, as argued by Miller (1977).

We now give an application of these results using a simple two-type example.

Example 1. Consider two types h1, h2 with generic beliefs ft,h1 , ft,h2 that satisfy Assumption 1 and
have the form ft,h = f̃t,h + d − aσ 2Z, as in (4), for h= h1, h2. The population shares are given by

a discrete-choice logistic model: nt,h = exp
(
βUt−1,h

)
∑

h∈{h1,h2} exp
(
βUt−1,h

) , where β ∈ [0,∞) is the intensity of

choice, Ut,h = Rtzt−1,h is the profit of type h at date t, Rt = pt + dt − (1+ r̃)pt−1 is the realized
return, and zt−1,h is the demand of type h at date t − 1; see (4).

By Proposition 1, if
∑

h∈{h1,h2} nt,h(ft,h −min{ft,h1 , ft,h2})≤ aσ 2Z neither type is short-selling
constrained, and pt = ∑

h∈{h1,h2} nt,hft,h/(1+ r) by (5), where r = r̃ − c. If the above condition is
not met, then either ft,h1 − ft,h2 > aσ 2Z/nt,h1 (if h1 is more optimistic) or ft,h2 − ft,h1 > aσ 2Z/nt,h2
(if h2 is more optimistic). In the former case, B∗

t = {h1}, S∗
t = {h2}, and by (6) the market-clearing

price is pt =
[
(1+ r)nt,h1

]−1(nt,h1 ft,h1 − (1− nt,h1 )aσ 2Z
)
, with demands zt,h1 = Z/nt,h1 , zt,h2 = 0.

In the latter case, B∗
t = {h2}, S∗

t = {h1}, so pt =
[
(1+ r)nt,h2

]−1(nt,h2 ft,h2 − (
1− nt,h2

)
aσ 2Z

)
and

zt,h1 = 0, zt,h2 = Z/nt,h2 .
Suppose that beliefs follow the two-type Brock and Hommes (1998) model, where c= 0 such that

r = r̃. Type h1 is a fundamentalist with Ẽt,h1
[
pt+1

] = p, where p= (d − aσ 2Z)/r is the fundamen-
tal price, and h2 is a 1-lag chartist: Ẽt,h2

[
pt+1

] = p+ g(pt−1 − p), where g > 0. Note that these
beliefs imply that ft,h1 = (1+ r)p and ft,h2 = (1+ r)p+ g(pt−1 − p); see (4). Assuming pt−1 > p, the
chartist is more optimistic at date t, and hence by Proposition 1:

pt =

⎧⎪⎪⎨
⎪⎪⎩
p+ nt,h2g(pt−1 − p)

1+ r
if g(pt−1 − p)≤ aσ 2Z/nt,h2

p+ nt,h2g(pt−1 − p)− (
1− nt,h2

)
aσ 2Z

nt,h2 (1+ r)
if g(pt−1 − p)> aσ 2Z/nt,h2

(7)

which replicates a known result in the literature.7
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The above example is particularly simple: if belief dispersion is large enough that some type is
constrained, then ranking the two types by optimism ft,h immediately determines the set of short-
selling constrained types (S∗

t ) and the set of unconstrained types (B∗
t ). In a general setting with

many types, however, there are many candidates for the sets B∗
t , S∗

t , and this number increases
exponentially as the number of typesH is increased. In fact, including the case where short-selling
constraints are slack for all types, there are 2H − 1 candidates for B∗

t , S∗
t .8 As a result, the task of

finding the price is computationally intensive when there are a large number of types H, as seems
plausible in many real-world asset markets.

To overcome this problem, we now present a version of Proposition 1 that reduces the num-
ber of candidates that need to be checked and is useful for computational purposes. Similar to
Anufriev and Tuinstra (2013), we use the fact that types who are short-selling constrained in a
given period t must be more pessimistic than those who were unconstrained; see (4). As a result,
ranking types in terms of optimism can speed up discovery of the set of short-selling constrained
types S∗

t . We have already seen a relevant case in Example 1: knowing that the chartist type was
more optimistic than the fundamental type allowed us to narrow down to 2 cases for the price
rather than 3 (= 22 − 1) if beliefs were left unordered. We now show how this principle can be
applied in a general setting with many belief types.

Consider the function h̃t :H→ H̃t , where H̃t := {1, . . . , H̃t} is an adjusted set of types with
the property that the most optimistic type(s) in H get label H̃t , the next most optimistic type(s)
gets label H̃t − 1, and so on, down to the least optimistic type(s) in H with label 1. Types with
equal optimism get the same label, so H̃t ≤H, which implies that |H̃t| ≤ |H|. In the case of ties
in terms of optimism, the period t population share of the “group” is the sum of the population
shares of the individual types. We first present a corollary based on the adjusted set of types H̃t ,
before presenting an efficient solution algorithm.

Corollary 1. Let H̃t = {1, . . . , H̃t} be the set defined above, such that beliefs are ordered as
Ẽt,1[pt+1]< Ẽt,2[pt+1]< . . . < Ẽt,H̃t

[pt+1], or equivalently ft,1 < ft,2 < . . . < ft,H̃t
. Let dispt,k :=∑H̃t

h=k+1 nt,h(ft,h − ft,k), where k ∈ {1, . . . , H̃t − 1}. Then, we have the following:

pt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑H̃t
h=1 nt,hft,h
1+r := p∗

t if dispt,1 ≤ aσ 2Z∑H̃t
h=2 nt,hft,h−nt,1aσ 2Z
(1−nt,1)(1+r) := p(1)t if dispt,2 ≤ aσ 2Z < dispt,1∑H̃t

h=3 nt,hft,h−(nt,1+nt,2)aσ 2Z
(1−nt,1−nt,2)(1+r) := p(2)t if dispt,3 ≤ aσ 2Z < dispt,2

...
...

nt,H̃t ft,H̃t−
(∑H̃t−1

h=1 nt,h
)
aσ 2Z(

1−∑H̃t−1
h=1 nt,h

)
(1+r)

:= p
(
H̃t−1

)
t if dispt,H̃t−1 > aσ 2Z

(8)

where p(k
∗)

t is the price if types 1, . . . , k∗ are short-selling constrained, p∗
t is the corresponding price

if short-selling constraints were absent
(
which satisfies p∗

t < p(k)t , ∀k≤ k∗), and
p(k−1)
t < p(k)t < p(k

∗)
t , for all k< k∗, p(0)t := p∗

t . (9)

Proof. It follows from Proposition 1. See the Appendix.

Corollary 1 streamlines the task of finding the market-clearing price. In Proposition 1, where
beliefs are unordered, there are 2H − 1 cases to check, as compared to H̃t ≤H when belief types
are ordered as in Corollary 1. Clearly, this amounts to a substantial reduction in computational
burden in models with a large number of types H. For example, with only 15 distinct beliefs
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(types) at date t, there are 215 − 1= 32, 767 candidates for the sets B∗
t , S∗

t when types are not
ordered by optimism. However, if we order types from least to most optimistic and construct the
set H̃t = {1, , . . . , 15}, then there are only 15 candidates for the sets and the market-clearing price,
corresponding to Corollary 1 when H̃t = 15. Ranking types in terms of optimism has previously
been suggested by Anufriev and Tuinstra (2013); the main difference with our algorithm is that
having analytical results as in Corollary 1 facilitates fast computation of solutions withmany types;
see Table 1 in Section 4.2.1.

The final part of Corollary 1 is important. It tells us that the market price when one or more
short-selling constraints are binding is higher than the (hypothetical) price p∗

t if short-selling
constraint are absent and that p∗

t < p(1)t and p(1)t < p(2)t < . . . < p(k
∗−1)

t < p(k
∗)

t , that is the price is
smaller the fewer short-selling constraints are assumed to be binding. These properties are useful
because we can use the unconstrained solution p∗

t to obtain a lower bound k for the actual number
of types k∗ who are short-selling constrained, by counting the number of negative (unconstrained)
demands at price p∗

t . This gives our algorithm a good start. In a similar way, counting the number
of negative (unconstrained) demands at prices p(k)t , for k< k∗, will give an improved estimate of
k∗ when it lies above the lower bound k.

We now present a computational algorithm which efficiently finds the number of short-selling
constrained types k∗ and hence the market-clearing price and demands.

3.2 Computational algorithm
Our computational algorithm is simple and exploits the analytical results in Corollary 1. Themain
steps are as follows:

1. Construct the set H̃t by ordering beliefs as ft,1 < ft,2 < . . . < ft,H̃t
and find the associated

population shares nt,h of types h= 1, . . . , H̃t .

2. Compute dispt,1 = ∑H̃t
h=2 nt,h(ft,h − ft,1). If dispt,1 ≤ aσ 2Z, accept pt = p∗

t as the date t price,
compute demands and move to period t + 1. Otherwise, move to Step 3.

3. Set pguesst = p∗
t and find the largest k such that zguesst,k = ft,k+aσ 2Z−(1+r)pguesst

aσ 2 < 0, and denote
this value k. Starting from k= k, check if dispt,k+1 ≤ aσ 2Z < dispt,k; if not, try k= kprev + 1
until a k∗ is found such that dispt,k∗+1 ≤ aσ 2Z < dispt,k∗ .

4. Accept k∗ as the number of short-selling constrained types, such that the price is pt =
p(k

∗)
t :=

∑H̃t
h=k∗+1 nt,hft,h−

[∑k∗
h=1 nt,h

]
aσ 2Z

(1+r)
∑H̃t

h=k∗+1 nt,h
, compute demands and move to period t + 1.

The above algorithm is efficient for two reasons. First, if the condition in Step 2 is met, no
computation time is wasted checking cases where one or more types have binding short-selling
constraints. Second, if the condition in Step 2 is not met, using the unconstrained solution p∗

t as a
guess immediately gives a lower bound k on the number of short-selling constrained types k∗. Note
that k is a lower bound for k∗ since p(k)t > p∗

t for all k≤ k∗ (see Corollary 1); that is, binding short-
selling constraints raise price relative to the counterfactual scenario of no constraints. Therefore,
if types 1, . . . , k would like to short-sell at price p∗

t , they must also be short-selling constrained at
price p(k

∗)
t > p∗

t (see (4)), implying that k∗ ≥ k.
In practice, the speed of the computational algorithm can be improved with an iterative proce-

dure. Specifically, rather than increasing k in steps of 1 as in Step 3 (whenever k is not a solution),
the algorithm will “jump” closer to the true number of constrained types k∗ if we repeatedly
replace pguesst with an updated price p(k)t based on the current guess k in Step 3 and generate an
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Macroeconomic Dynamics 1723

updated value of k, say k′, that equals the number of negative (unconstrained) demands at this
price. In other words, we exploit the property that p(1)t < . . . < p(k

∗−1)
t < p(k

∗)
t (Corollary 1) to

find k∗ faster. For a large number of types such as several thousand or more, there is a consid-
erable speed-up with 5-10 iterations of this procedure.9 Computation speed is thus an important
advantage of our algorithm that uses the results in Corollary 1.

3.3 Conditional short-selling constraints
Let us briefly consider conditional short-selling constraints ahead of our policy application which
studies such a rule. Let g(pt−1, . . . , pt−K) be the “trigger” for the short-selling constraint, with
K being the longest lag in the price that is considered. If g(pt−1, . . . , pt−K)≤ 0, short-selling is
banned at date t; if g(pt−1, . . . , pt−K)> 0, the short-selling constraint is lifted; for example the US
alternative uptick rule has gAUR(pt−1, pt−2)= pt−1 − (1− κ)pt−2, where κ = 0.1, such that short
selling is banned if the price falls 10% or more in the previous trading period.

Let 1t := 1{g(pt−1,...,pt−K )≤0} be an indicator variable equal to 1 if the short-selling constraint is
present at date t (i.e. if g(pt−1, . . . , pt−K)≤ 0) and equal to 0 otherwise. With this formulation,
investors may take negative positions in periods where the indicator variable is zero (short-selling
constraints absent) but are restricted to non-negative positions in periods where the indicator
variable is 1 (short-selling ban); for further details, see Section 1.2 of the Supplementary Appendix.
The demand of type h ∈H is thus given by

zt,h =

⎧⎪⎨
⎪⎩

Ẽt,h[pt+1]+d−(1+r̃)pt
aσ 2 if pt ≤ Ẽt,h[pt+1]+d

1+r̃ or 1t = 0

0 if pt >
Ẽt,h[pt+1]+d

1+r̃ and 1t = 1.
(10)

The only difference in the demand schedules relative to (2) is the compound “if-or” and “if-and”
statements that include the value of the indicator variable. As a result, it is straightforward to
amend Proposition 1 and Corollary 1, as explained in the following remark.

Remark 1. In the above model with a conditional short-selling constraint, the market-clearing price
and demands follow Proposition 1, except that in part (i) the “if. . .” statement is replaced by “if . . .
or 1t = 0,” and in part (ii) the “if. . .” statement is replaced by “if . . . and 1t = 1.” A proposition and
proof are provided in Section 3.1 of the Supplementary Appendix.

4. Application: Alternative uptick rule
We now consider an application with an alternative uptick rule, as currently in place in the United
States. Under the rule, short-selling is banned next period following price falls of 10% or more.
This contrasts with the original uptick rule in place from 1938 to 2007, which banned short-selling
of shares following any fall in price (regardless of the magnitude). We work with a version of the
Brock and Hommes (1998) model with a large number of types and an alternative uptick rule; this
case does not seem to have been studied in the literature.

Since the alternative uptick rule bans short-selling following price falls of 10% or more, but
not otherwise, it is a conditional short-selling constraint; see Section 3.3. Accordingly, the indi-
cator variable has the form 1t := 1{pt−1−(1−κ)pt−2≤0} for κ = 0.1, and the solution is described by
Remark 1. Demands of types h ∈H are thus given by a version of (10):

zt,h =

⎧⎪⎪⎨
⎪⎪⎩

Ẽt,h[pt+1]+d−(1+r̃)pt
aσ 2 if pt ≤ Ẽt,h[pt+1]+d

1+r̃ or 1{pt−1−(1−κ)pt−2≤0} = 0

0 if pt >
Ẽt,h[pt+1]+d

1+r̃ and 1{pt−1−(1−κ)pt−2≤0} = 1
(11)

where we have assumed IID dividends dt = d + εt with Ẽt,h[dt+1]= d ∀t, h.
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1724 M. Hatcher

Equation (11) shows that short-selling is banned in period t only if pt−1 ≤ (1− κ)pt−2.
Following Brock and Hommes (1998), we consider linear predictors of the form:

Ẽt,h
[
pt+1

] = p+ bh + gh(pt−1 − p), bh ∈R, gh ≥ 0. (12)
Equation (13) is a standard specification in the literature. The intercept term consists of the fun-
damental price p plus “bias” bh in the price forecast of type h, whereas gh is trend-following
parameter of type h. Type h is a pure fundamentalist investor if bh = gh = 0, while larger values of
gh or |bh| imply, respectively, stronger trend-following and stronger forecast bias.

The fundamental price p is the unique fundamental solution under common rational expec-
tations; see Brock and Hommes (1998). Given that the risky asset is in positive net supply Z > 0,
the fundamental price is p= (d − aσ 2Z)/r, where r := r̃ is the interest rate on the riskless asset.
Writing the predictor (12) in price deviations xt := pt − p gives:

Êt,h [xt+1]= bh + ghxt−1, where Êt,h [xt+1] := Ẽt,h
[
pt+1

] − p. (13)
Given the indicator 1t = 1{xt−1+κp≤(1−κ)xt−2}, the demands in (11) can be written as:

zt,h =

⎧⎪⎪⎨
⎪⎪⎩

Êt,h[xt+1]−(1+r)xt+aσ 2Z
aσ 2 if xt ≤ Êt,h[xt+1]+aσ 2Z

1+r ∨ 1{xt−1+κp≤(1−κ)xt−2} = 0

0 if xt >
Êt,h[xt+1]+aσ 2Z

1+r ∧ 1{xt−1+κp≤(1−κ)xt−2} = 1.
(14)

Fitness Ut,h is a linear function of past profits net of predictor costs Ch ≥ 0. Profits at date
t are given by scaling demand zt−1,h by the realized excess return Rt := pt + dt − (1+ r)pt−1 =
xt − (1+ r)xt−1 + aσ 2Z + εt , where εt is the IID dividend shock, and we abstract from memory
of past performance. For all t ≥ 1 fitness and population shares are given by

Ut,h = Rtzt−1,h − Ch, nt+1,h = exp(βUt,h)∑
h∈H exp(βUt,h)

, where β ∈ [0,∞). (15)

The fitness levels Ut,h determine the population shares nt+1,h of each type via a discrete-choice
logistic model with intensity of choice β . The intensity of choice determines how fast agents
switch to better-performing predictors. In the special case, β = 0 no switching occurs; increas-
ing β implies more switching to relatively profitable predictors. Following Brock and Hommes
(1997, 1998), this evolutionary competitionmechanism has been widely studied.

We use the same parameters as in Section 3.1 of Anufriev and Tuinstra (2013): Z = 0.1, aσ 2 =
1, r = 0.1, and we set d = 0.6, giving a fundamental price p= d−aσ 2Z

r = 5. In their model there
are two types: a fundamentalist type with Êt,f [xt+1]= 0 and cost C = 1, and a chartist type with
Êt,c [xt+1]= gxt−1, where g = 1.2, and cost 0. We consider a large number of types H = 1, 000,
with predictors described by (13), population shares nt,h given by (15), and predictor costs Ch
depending on the “closeness” of beliefs to a pure fundamentalist.

4.1 Benchmark exercise
We first perform a sanity check by giving 500 types a pure fundamental predictor (at cost C = 1)
and the remaining 500 types the same chartist predictor g = 1.2 at zero cost. In this case, there
are two “groups” in the population whose aggregate population shares are determined endoge-
nously based on past fitness. As a result, we should replicate the numerical bifurcation diagram
in Anufriev and Tuinstra (2013, Figure 5) for the case of a two-type model with dt = d and no
short-selling constraint; see Fig. 1 below.

For sufficiently low values of the intensity of choice β , the fundamental steady state x= 0 is
the unique price attractor. Intuitively, we are in the case (1+ r)< g < 2(1+ r) and positive out-
side supply in Fig. 1, for which (Anufriev and Tuinstra (2013, Proposition 3.1)) shows that the
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Macroeconomic Dynamics 1725

Figure 1. Bifurcation diagram in the absence of short-selling constraints. For eachβ, we plot 300 points following a transitory
of 3000 periods from given initial values x0 ∈ (−4, 0).

fundamental steady state is globally stable for sufficiently small values of the intensity of choice β .
Once a critical value of β is exceeded, there exist two non-fundamental steady states in addition
to the fundamental steady state, which is locally stable. As β is increased further, however, the
fundamental steady state becomes unstable, while the non-fundamental steady states are locally
stable if β is not too large.

Given negative initial price, only the non-fundamental steady state with x< 0 is an attractor for
the price dynamics at intermediate values of β ; this amounts to the lower “fork” seen for β between
(approx.) 2.4 and 3.8 in Fig. 1. Increasing β further causes the non-fundamental steady states to
lose their stability through a Neimark-Sacker bifurcation, leading to an invariant closed curve and
(quasi-)periodic dynamics. The results in Fig. 1 are consistent with those in Anufriev and Tuinstra
(2013) for the same parameter values. Note that while we obtained the above diagram using
H= 1000 types rather than two, we effectively have a two-type model since the groups consist
of homogeneous investor types.

4.2 Simulated time series: Four scenarios
We now introduce heterogeneity proper by having many different types. We consider four differ-
ent scenarios where the initial price x0 is held fixed and only the intensity of choice β or the degree
of heterogeneity (in gh, bh and Ch) are changed.10 We first present simulated price series in four
scenarios (without any noise) and then provide some results on computation speed and accuracy
with stochastic dividends. We then consider some distributional implications of an alternative
uptick rule by simulating the wealth distribution.

4.2.1 Four price simulations
The simulated price series in the four scenarios (S1–S4) are presented in Fig. 2. All four time series
are started from the same initial price x0 = 3, and we assume deterministic dividends dt = d = 0.6
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1726 M. Hatcher

Figure 2. Simulated price series in four scenarios from an initial value x0 = 3.

for all t in order to focus on the underlying dynamics. The four scenarios correspond to hetero-
geneity among the 500 fundamental types (with gh = 0) due to bias bh which is linearly spaced
on the interval [−0.2, 0.2] and predictor costs Ch = 1− |bh| for such types (S1); the same setting
as S1 except that heterogeneity is increased such that bh ∈ [−0.4, 0.4] (S2); the same setting as S1
except that the intensity of choice is increased from β = 3 to β = 4.5 (S3); and the same setting as
S3 except that chartists are also heterogeneous with gh drawn from a uniform distribution on the
interval (1, 1.4).

The price paths in the above scenarios are quite different, even though the additional hetero-
geneities are small (see Fig. 2). In Scenario 1 (top left), we see that if short-selling constraints are
absent, the price quickly falls and then slowly converges on a non-fundamental steady state x< 0
(black line). Under an alternative uptick rule, by comparison, the initial drop in price is halted
because the short-selling constraint binds; the price then oscillates around this higher value before
converging on a non-fundamental steady state with x> 0. Thus, the alternative uptick rule gives
quite a different long-run outcome. In Scenario 2, only bias differences among fundamentalists are
increased, but this ensures that price converges on the same non-fundamental steady state in both
cases (Fig. 2, top right). Thus, in contrast to Scenario 1, long-run price implications of the alterna-
tive uptick rule are absent in this case. This difference in results seems to be related to differences
in performance across types when price is initially falling in the two scenarios; intuitively, greater
heterogeneity implies more belief dispersion, but also larger differences in performance and hence
population shares.

In Scenario 3, the intensity of choice β is set at 4.5 rather than at 3, and this is the only difference
relative to Scenario 1. In this case, there are permanent price oscillations in both cases (bottom
left); however, the short-run price dynamics under an alternative uptick rule are quite different,
with an initial price spike after the short-selling constraint first binds, since the short-selling con-
straint binds on many types simultaneously. Lastly, in Scenario 4, (bottom right) heterogeneity
in chartists is added on top of Scenario 3. In this case, the reversal in price under an alternative
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Macroeconomic Dynamics 1727

Table 1. Computation times and accuracy in Scenario 3: T = 500 periods

No. of types Regime Time (s) Bind freq. max (Errort)

No short-sell constraints 0.02 – 2.4e-14
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

H = 1000 Alt. uptick rule: κ = 0.1 0.03 1/500 3.2e-14
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

Orig. uptick rule: κ = 0 0.05 34/500 4.8e-14
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

No short-sell constraints 0.17 – 2.3e-13
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

H= 10, 000 Alt. uptick: κ = 0.1 0.18 1/500 6.3e-13
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

Orig. uptick: κ = 0 0.25 43/500 3.0e-13
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

No short-sell constraints 0.82 – 1.2e-12
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

H= 50, 000 Alt. uptick: κ = 0.1 0.84 1/500 2.3e-12
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

Orig. uptick: κ = 0 0.94 36/500 1.8e-12

Notes: max(Errort) :=max{Error1, . . . , ErrorT}, where we define the date t simulation error as Errort =∣∣∣∣ ∑
h∈H nt,hzt,h − Z

∣∣∣∣. Demands zt,h depend on the computed market-clearing price.

uptick rule is reinforced by trend-following into a permanent price “bubble” where the asset price
diverges to +∞. By comparison, when short-selling constraints are absent the price converges on
a non-fundamental steady state x< 0, and hence the explosive price dynamics can be attributed
to the short-selling regulation.

Computation speed and accuracy. Table 1 reports simulation times for Scenario 3 when the sim-
ulation length is 500 periods and the number of types is increased from H = 1000 to H = 10, 000
and H = 50, 000. Dividend shocks dt = d + εt are stochastic, and we consider the cases κ = 0.1
and κ = 0 (original uptick rule) because short-selling constraints bind more frequently in the lat-
ter case. We also include a measure of accuracy based on the distance between demand and supply
at the computed price, that is Errort :=

∣∣ ∑
h∈H nt,hzt,h − Z

∣∣; in particular, we report the largest
absolute deviation recorded across all 500 periods.11

The results in Table 1 show that the solution algorithm is fast and accurate. The final column
confirms that excess demand is essentially zero in all simulations, and the accuracy here is similar
to when short-selling constraints are absent (top rows), in which case the standard analytical solu-
tion xt = (1+ r)−1 ∑

h∈H nt,hÊt,h [xt+1] is used to compute the price and the simulation error.
Simulation times are below one second in all cases, increase with the number of types H, and are
higher under the original uptick rule (where κ = 0), since this causes the short-selling constraint
to bind in a much larger number of periods, as shown in the fourth column.12 Even when short-
selling constraints bind more frequently, computation times do not increase much and accuracy
of the solution is preserved.

4.2.2 Distributional implications
We now consider some distributional effects of an alternative uptick rule. Recall that wealth of
type h evolves aswt+1,h = (pt+1 + dt+1)zt,h + (1+ r)

(
wt,h − ptzt,h

)
, such that an alternative uptick

rule will affect wealth distribution through its impact on price and demands zt,h. Note that if
the short-selling constraint binds on type h at date t, then zt,h = 0 and hence wealth evolves as
wt+1,h = (1+ r)wt,h. By being out of the market in period t, type h foregoes potential returns
but also avoids potential losses. Thus, the implications of an alternative uptick rule for wealth
distribution will depend on the distribution of returns and losses.

We stick with the same four scenarios as in Fig. 2 but we now focus on a measure of
wealth inequality across investor types. In particular, we plot the Gini coefficient of the wealth

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1365100523000639
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 15 Mar 2025 at 12:03:10, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1365100523000639
https://www.cambridge.org/core
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Figure 3. Simulated Gini coefficient of wealth in Scenarios 1 to 4.

distribution across types at each date t of our simulations. We assume all investor types have
equal initial wealth, which we set at 50. The results are shown in Fig. 3.

An alternative uptick rule has mixed effects on wealth inequality. In Scenario 1 (Fig. 3, top left),
the Gini coefficient initially increases and then settles, but there is a smaller increase in inequality
with an alternative uptick rule since price does not fall sharply for several periods (Fig. 2, top left),
which benefits more fundamental types. Such redistribution is smaller and more gradual under
the alternative uptick rule because the fall in asset prices is smaller and, since price stabilizes,
inequality remains lower in the long run. We see similar results in Scenario 2 (top right) where
price also falls less under the alternative uptick rule.

In Scenario 3, wealth inequality is initially muted under an alternative uptick rule because price
rises rather than falls (Fig. 2, bottom left). However, this initial period is followed by a severe drop
in price, such that more fundamental types outperform more chartist types, and wealth inequal-
ity increases before stabilizing (see Fig. 3, bottom left). As a result, wealth inequality across types
is initially lower under an alternative uptick rule but ends up higher in the long run. Finally, in
Scenario 4 (Fig. 3, bottom right), wealth inequality across types is initially lower under an alterna-
tive uptick rule, as the initial period of falling prices is ended as in Scenario 1 (Fig. 2, bottom right).
However, since price then explodes, strong chartist typesmake large profits and fundamental types
losses, such that wealth inequality across types increases dramatically, with a Gini coefficient of
around 0.8 by period 30.13

To better understand the wealth dynamics in Scenario 4, Fig. 4 plots the wealth distribution
across types in periods t = 3, t = 6 and t = 24 under both unrestricted short-selling (top panel) and
an alternative uptick rule (bottom panel). We see that wealth inequalities appear rather quickly
under unrestricted short-selling, but not under an alternative uptick rule, where the initial fall in
price is halted. However, as time increases, the price bubble under the alternative uptick rule soon
leads to much greater inequality than if short-selling constraints are absent, and by period 24 an
extremely large number of types have wealth levels that are a small fraction of the highest wealth
type. These results are consistent with the rapid and sustained increase in the Gini coefficient
observed in Fig. 3.
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Figure 4. Simulated wealth distribution across types in Scenario 4.

4.3 Policy exercise: Varying κ

Having studied price dynamics andwealth distribution, we now ask whether “fine-tuning” the pol-
icy parameter κ in the alternative uptick rule could lead to a better mix between wealth inequality
and mispricing from a policy perspective. Recall that κ ≥ 0 represents the minimum percentage
fall in price in period t − 1 that will trigger a ban on short-selling in period t; and κ = 0.1 under
the current US short-selling regulation.

We consider an ad hoc loss function which says policymakers dislike mispricing (deviations
from the fundamental price) and wealth inequality measured by the Gini coefficient:

Lκ =
T∑
t=1

|xt| + λ

T∑
t=1

Ginit (16)

where λ > 0 is the relative weight on wealth inequality.
The loss function (16) treats positive and negative price deviations equally, and we assume

policymakers care about the sum of mispricings and the sum of Gini coefficients over a horizon of
T periods. The loss is denoted Lκ because it depends on the parameter κ in the alternative uptick
rule. Recall that κ = 0.1 corresponds to the current alternative uptick rule in the United States,
while κ = 0 corresponds to the original uptick rule that was followed until 2007. We restrict our
analysis to values that satisfy κ ∈ [0, 0.1], that is the original uptick rule, the alternative uptick rule,
and intermediate options in between these two cases.

In Fig. 5, we plot mispricing, wealth inequality, and the loss function Lκ for 50 different values
of κ equally spaced in the interval [0,0.1]. We focus on Scenario 4, in which both heteroge-
neous fundamentalists and chartists are present, and we set β = 3.5 and T = 40. Mispricing and
inequality (as in (16)) are normalized by dividing by their values when short-selling constraints
are absent in all periods; hence the y-axis values tell us whether for a given κ value the rule low-
ers mispricing and inequality. Note that if mispricing (inequality) is smaller than 1, then for λ is
sufficiently small (large) the loss in (16) will be lower with an uptick rule than under unfettered
short-selling. Glancing at Fig. 5, we see that the short-selling rule reduces inequality but raises
mispricing relative to unrestricted short-selling.

As κ is increased (so that larger drops in price are needed to trigger a short-selling ban), the
impact on mispricing and inequality is quite different (left and middle panel). Increasing κ from
0 (original uptick rule) to a small positive value lowers both mispricing and wealth inequality;
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Figure 5. Mispricing, wealth inequality, and the loss Lκ in Scenario 4when β = 3.5. Mispricing and inequality are ratios to the
values when short-selling is unrestricted; we normalizemax(Loss) to 1. The parameter κ takes on 50 values linearly spaced
on [0, 0.1]. The plot of the loss is shown in the final panel for two different λ values, λ = 1 and λ = 10, 0000.

Figure 6. Optimal κ in Scenario 4 for various β and λ. The relative weight on inequality is set at either λ = 1 (left panel) or
λ = 10, 000 (right panel). Results are based on 50 values of κ linearly spaced on the interval [0, 0.1] and 13 values of β linearly
spaced on [3, 4].

however, increasing κ further leads to a tradeoff : mispricing increases while inequality goes on
falling; then, at the highest values of κ , inequality is increased whereas mispricing is minimized.
Because inequality is minimized at intermediate values of κ (close to 0.06) while mispricing is
minimized at the highest values of κ (including κ = 0.1), the loss is sensitive to the value of λ,
the relative weight on wealth inequality.14 In particular, for relatively low values such as λ = 1 the
loss is minimized by the alternative uptick rule (κ = 0.1), whereas for sufficiently high weight λ

on inequality the loss is minimized at intermediate κ (≈ 0.06) because inequality is also (Fig. 5,
middle and right panel). As a first pass, the results in Fig. 5 suggest policymakers might improve
on the current alternative uptick rule by choosing a value of κ which is positive but smaller
than 10%.

We now consider robustness. We start by computing the optimal (i.e. loss-minimizing) value
of κ , among our 50 values linearly spaced on the interval [0, 0.1], for two different values of λ

when the intensity of choice β is increased; see Fig. 6. Here we follow the rule that if the loss-
minimizing value of κ is unique, we report that value; otherwise, we report as optimal the highest
(lowest) value of κ in the set of loss-minimizing values when κ = 0.1 is (is not) included in the
set. This rule means that κ = 0.1 is reported as optimal whenever we find the current alternative
uptick rule cannot be improved upon.

From Fig. 6, we see that the optimal value of κ is sensitive even to small changes in β once the
intensity of choice is large enough. The conclusion that intermediate values of κ can minimize
the loss (16) is robust: κ ∈ (0, 0.1) is optimal in around one-half of the cases in each panel. For
a relatively low weight on inequality (left panel), the optimal κ is either 0 (original uptick rule),
0.1 (alternative uptick rule), or slightly above 0. By comparison, with a large relative weight on
inequality the original uptick rule is never optimal, and intermediate κ close to 2% and 6% is
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Figure 7. Plots of mispricing versus inequality: various β. Each panel plots the relationship between mispricing and wealth
inequality for a given β as the policy parameter κ is varied. Mispricing and inequality are ratios to the values when short-
selling is unrestricted. The parameter κ takes on 50 values linearly spaced on the interval [0, 0.1].

optimal in some cases (right panel). In short, a high weight on inequality seems to justify moving
away from the polar cases of the original and the alternative uptick rules, such that a short-selling
ban is triggered by price falls somewhat smaller than 10%.

To illustrate how κ influences the mix between mispricing and wealth inequality, we now
present plots of this relationship as κ is varied. We do this for three different values of the inten-
sity of choice β to highlight some different cases; see Fig. 7. In the first case (left panel) where
β = 1.55, the original uptick rule is clearly dominated since setting κ > 0 lowers both mispric-
ing and inequality. Once κ > 0 we see a clear tradeoff : increasing κ lowers mispricing but raises
inequality, such that the optimal value of κ will get smaller as λ is increased. In the second case
(β = 2.90, middle panel), there is no clear relationship between mispricing and inequality. The
original uptick rule (κ = 0) minimizes mispricing in this case, but inequality is reduced by setting
κ > 0. Setting κ close to zero (0.006) raises inequality slightly but reduces mispricing by around
one-fifth compared to higher values of κ (0.008–0.1), so would be optimal for policymakers who
prefer to balance mispricing and inequality. Finally, in the right panel of Fig. 7 we see a case where
intermediate values of κ (0.002–0.0265) are optimal irrespective of the value of λ because such a
policyminimizes mispricing and inequality, such that both the original uptick rule and the alterna-
tive uptick rule are dominated. While this is just a single numerical example, it shows that policies
which lie between the original uptick rule (κ = 0) and the current alternative uptick rule (κ = 0.1)
may improve price discovery and reduce wealth inequality across types.

In summary, our results suggest it might be possible to improve on the current alternative
uptick rule by having short-selling bans triggered by smaller falls in price. While we should be
cautious about drawing general conclusions from a small number of policy experiments, these
results clearly raise questions about whether current regulation could be improved.

5. Extensions
Having studied a benchmark model and a policy application, we now consider some extensions
to the model. Any minor extensions or generalizations, such as individual investors in a social
network; physical investment assets like housing or time-varying expected dividends; and short-
selling up to a limit, are discussed in Section 2 of the Supplementary Appendix.

5.1 Multiple assets subject to short-selling constraints
We first consider multiple risky assets in positive net supply and subject to unconditional short-
selling constraints. Let zmt,h be the date t demand of type h for asset m ∈ {1, . . . ,M}, whereM ≥ 2.
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Following Westerhoff (2004), type h’s demand for asset m depends not only on the expected
excess return on assetm but also on the relative attractiveness of that asset. In particular, a fraction
wm
t ∈ (0, 1) of each investor type participates in a given market m, with this fraction determined

by comparison with all other markets (see below). Differently fromWesterhoff, we add uncondi-
tional short-selling constraints, such that zmt,h ≥ 0 for all m. Each asset market has IID dividends
dmt = dm + εmt , and we assume Ẽt,h[dmt+1]= dm > 0 ∀m.

Analogous to (2), the demand of type h ∈H in marketm ∈ {1, . . . ,M} is

zmt,h =

⎧⎪⎪⎨
⎪⎪⎩
wm
t

(
Ẽt,h

[
pmt+1

]+dm−(1+r̃)pmt
aσ 2

m

)
if pmt ≤ Ẽt,h

[
pmt+1

]+dm

1+r̃

0 if pmt >
Ẽt,h

[
pmt+1

]+dm

1+r̃

(17)

where pmt is price in marketm and σ 2
m is the subjective return variance (assumed constant).

The demand function (17) has the same form as in the benchmark case (see (2)), except for the
scaling by the share wm

t that participates in the market. As in Westerhoff (2004), we assume the
participation shares wm

t depend on relative attractiveness of each market, Am
t :

wm
t+1 = exp(βAm

t )∑M
m=1 exp

(
βAm

t
) , Am

t = f
([
pmt − pm

])
(18)

where f :R→R is a function with f (0)= 0 and β ∈ [0,∞) is the intensity of choice.
Equation (18) shows that the participation shares wm

t are determined by evolutionary compe-
tition, with attractiveness, Am

t , of market m depending on the deviation of the market price from
the fundamental price pm.15 Given equations (17)–(18), the fundamental price in market m is
pm = dm−aσ 2

mMZm
r̃ , where Zm > 0 is the fixed supply of assetm per investor.16

Belief types in each marketm follow a market-specific version of Assumption 1 (see (3)):

Ẽt,h
[
pmt+1

] = cmpmt + f̃ mt,h, cm ∈ [0, 1+ r̃) (19)

where f̃ mt,h is a generic price forecast of type h in marketm that does not depend on pmt .
Let f mt,h := f̃ mt,h + dm − aσ 2

mZm/wm
t and rm := r̃ − cm (see (3)–(4)). Then, by (17),

zmt,h =

⎧⎪⎪⎨
⎪⎪⎩
wm
t

(
f mt,h+aσ 2

mZm/wm
t −(1+rm)pmt

aσ 2
m

)
if pmt ≤ f mt,h+aσ 2

mZm/wm
t

1+rm

0 if pmt >
f mt,h+aσ 2

mZm/wm
t

1+rm .
(20)

We assume the population shares in each market m are determined by Assumption 2. Market-
clearing in each market is thus given by∑

h∈H
nmt,hz̃

m
t,h = Zm/wm

t , where z̃mt,h := zmt,h/w
m
t . (21)

With the change in variables in (21), the market-clearing condition has the same form as in the
benchmark model, except for a scaling of supply by 1/wm

t . Hence, we have the following.

Remark 2. In the above model with M risky assets subject to short-selling constraints, the expres-
sions for the market-clearing prices pmt and demands zmt,h in each market m ∈ {1, . . . ,M} are given
by Proposition 1, except that pt , ft,h, r, Z must be replaced by pmt , f mt,h, r

m, Zm/wm
t , and the demands

zt,h are replaced by market-specific demands zmt,h in (20). A reworked version of Proposition 1 is
provided in Section 3.2 of the Supplementary Appendix.
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5.2 Additional heterogeneity
We now consider additional heterogeneity relative to the baseline model through price beliefs
with different weights on the current price and different perceptions of return risk. We confine
technical details to the Supplementary Appendix and provide an illustrative example.

5.2.1 Heterogeneous responses to current price
Assumption 1 allows a common response of beliefs to price via the term cpt in (3), where c ∈
[0, 1+ r̃). We now allow heterogeneity across types.17 In this case, price beliefs are

Ẽt,h
[
pt+1

] = chpt + f̃t,h (22)

where ch ∈ [0, 1+ r̃). Defining ft,h := f̃t,h + d − aσ 2Z and rh := r̃ − ch, demands are now

zt,h =

⎧⎪⎪⎨
⎪⎪⎩

ft,h+aσ 2Z−(1+rh)pt
aσ 2 if pt ≤ ft,h+aσ 2Z

1+rh

0 if pt >
ft,h+aσ 2Z

1+rh

(23)

where the only difference relative to (4) is that r is now type-specific.
Equations (22)–(23) show that optimism is no longer determined solely by ft,h; however, we can

distinguish least andmost optimistic types by looking at the term ft,h+aσ 2Z
1+rh , since a given type hwill

short-sell only if this term is sufficiently small. For example, a type with large ft,h—say a chartist
type in a bull market—need not value the asset more highly than a fundamental type who ignores
the trend completely, if the latter puts much more weight on the current price when forming their
forecast of the future price; see (22).

Given the demand function (23), the sets of unconstrained and short-selling constrained types

B∗
t , S∗

t depend on minh∈B∗
t

{
ft,h+aσ 2Z

1+rh

}
and maxh∈S∗

t

{
ft,h+aσ 2Z

1+rh

}
, rather than minh∈B∗

t
{ft,h} and

maxh∈S∗
t
{ft,h} as in the benchmark case (see Proposition 1, part (ii)). Nevertheless, it is simple

to amend Proposition 1, Corollary 1, and the computational algorithm. We provide these results
in Section 4.1 of the Supplementary Appendix, along with a simple numerical example which
shows that the solution subject to short-selling constraints is fast, accurate, and characterized by
persistent price cycles that would otherwise be absent.18

5.2.2 Heterogeneity in variances
Now consider heterogeneity in subjective risk perceptions (or, equivalently, heterogeneity in the
risk aversion parameter a), with price beliefs given by (3) as in the benchmark model. In this case,
the terms aσ 2 in the demand function (2) become type-specific, that is aσ 2

h , and it is convenient to
define ãh :=

(
aσ 2

h
)−1, ft,h := f̃t,h + d − Z/ãh, and r := r̃ − c as before. The demand of each type

h ∈H is now given by

zt,h =

⎧⎪⎪⎨
⎪⎪⎩
ãh(ft,h + Z/ãh − (1+ r)pt) if pt ≤ ft,h+Z/ãh

1+r

0 if pt >
ft,h+Z/ãh

1+r .
(24)

In this case, types can be ranked in terms of optimism by looking at the predetermined forecast
component f̃t,h as in the baseline model; see (24) and the definition of ft,h above. Nevertheless,
the market-clearing price is affected by heterogeneous variances; intuitively, this is because asset
demand by type h equals their expected excess return scaled by a risk correction, so higher risk
perceptions (or risk aversion) will lower demand ceteris paribus.
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Working through the algebra reveals that the short-selling conditions and market price
now depend on the risk-weighted population shares ãhnt,h, as shown in amended versions of
Proposition 1 and Corollary 1 in Section 4.2 of the Supplementary Appendix (a computational
algorithm and a numerical example with many types are also provided). Since it is difficult to
provide intuition in a general setting, we now give a brief two-type example, with evolutionary
competition between types, that builds directly on Example 1.

5.2.3 A simple example
Let us re-solve Example 1 for the case of heterogeneous variances.

Example 2. Reconsider Example 1 with two types: fundamentalist h1 with Ẽt,h1
[
pt+1

] = p, where
p is the fundamental price, and chartist h2 with Ẽt,h2

[
pt+1

] = p+ g(pt−1 − p), where g > 0.19 The

population shares are given by nt,h = exp
(
βUt−1,h

)
∑

h∈{h1,h2} exp(βUt−1,h)
, where β ∈ [0,∞), Ut,h = Rtzt−1,h, Rt =

pt + dt − (1+ r̃)pt−1, r := r̃, and zt−1,h is the demand at date t − 1. We assume as in Example 1
that pt−1 > p, so the chartist is more optimistic at date t. We also assume types differ in their
subjective variances: σ 2

h1 �= σ 2
h2 such that ãh1 �= ãh2 .

By comparison to equation (7), we now have the following price solution:

pt =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
p+

[ ãh2nt,h2
ãh1nt,h1 + ãh2nt,h2

] g(pt−1 − p)
1+ r

if g(pt−1 − p)≤ [
coeft

]
Z

p+ nt,h2g(pt−1 − p)− [(
1− nt,h2

)
/ãh2

]
Z

nt,h2 (1+ r)
if g(pt−1 − p)>

[
coeft

]
Z

(25)

where coeft := ãh1nt,h1 + ãh2nt,h2
ãh1 ãh2nt,h2

and terms in square brackets differ relative to Example 1.

Equation (25) shows how price differs relative to Example 1; in particular, heterogeneity in
subjective variances means that the risk-weighted population shares of both fundamentalists and
chartists influence the price. Further, relative to Example 1 the “if” conditions under which short-
selling occurs now differ, as the latter conditions are intimately related to market-clearing. In a
similar vein to the above example, a reworked version of Example 1 can easily be formulated for
the case of heterogeneous forecast weights on the current price (Section 5.2.1 above) using the
results in Section 4.1 of the Supplementary Appendix.

5.3 Market-maker plus short-selling constraints
As a final extension, we let price be determined by a market maker in response to demand, rather
than bymarket-clearing; see, for example, Beja and Goldman (1980), Chiarella (1992), Farmer and
Joshi (2002) andWesterhoff (2003). As is standard in the literature, we consider price impact func-
tions which are linear in excess demand. We allow the price set by the market maker to increase
with current and past excess demand as follows:20

pt = pt−1 + μ[λ(Zt − Z)+ (1− λ)(Zt−1 − Z)] (26)
where μ > 0, λ ∈ (0, 1] and Zt := ∑

h∈H nt,hzt,h is aggregate demand per investor at date t, such
that Zt − Z can be interpreted as (average) excess demand per investor type.

When λ ∈ (0, 1), past demand matters for the current price, whereas if λ = 1 only current
demand Zt matters. We stick with the beliefs Ẽt,h

[
pt+1

] = cpt + f̃t,h in Assumption 1 and consider
two different specifications of asset demands. First, for the case of baseline demands, equation
(4) holds as before. In this case, we can easily obtain amended versions of Proposition 1 and
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Corollary 1 since we just need to solve for the price pt using the price equation (26) rather than by
imposingmarket-clearing. These analytical results are similar to the baseline case and are provided
in Section 3.3 of the Supplementary Appendix.

Now consider an alternative demand specification from the market-maker literature. A com-
mon demand specification is ãh(Ẽt,h

[
pt+1

] − pt), where ãh > 0 is a type-specific coefficient; see
for example Westerhoff (2004). With a short-selling constraint zt,h ≥ 0, demands are adjusted to

zt,h =

⎧⎪⎨
⎪⎩
ãh

(
Ẽt,h

[
pt+1

] − pt
)

if pt ≤ Ẽt,h
[
pt+1

]
0 if pt > Ẽt,h

[
pt+1

]
.

(27)

The key difference relative to the baseline specification of demand, (2), is that each type’s asset
demand is scaled by the type-specific coefficient ãh. Note that more pessimistic types—that is those
with lower expectations Ẽt,h

[
pt+1

]
—aremore likely to be short-selling constrained at a given price

pt set by the market maker. The analytical results for this case are lengthy and quite technical,
so we provide these in the Supplementary Appendix; in particular, we give amended versions of
Proposition 1, Corollary 1, and the Computational Algorithm.

6. Conclusion
This paper has studied dynamic behavioral asset pricing models with short-selling constraints and
many investor types with heterogeneous beliefs. Our results provide analytical expressions for
price and demands, along with conditions on beliefs such that short-selling constraints bind on
different types, allowing us to construct computationally efficient solution algorithms. The analy-
sis is built around a Brock and Hommes (1998) model with short-selling constraints and generic
price predictors; we also presented extensions for the cases of multiple risky assets; additional
heterogeneities; and pricing by a market maker.

The utility of these results was shown via examples and a numerical application that stud-
ied an alternative uptick rule, as currently in place in the United States, in a market with a large
number of belief types in evolutionary competition. The results highlight the complicated relation-
ship between the design of short-selling regulations and their implications for asset mispricing
and wealth distribution. In particular, an alternative uptick rule may attenuate (or prevent) falls
in price, but we also found that such rules can hinder price discovery, increase price volatility,
and lead to explosive price paths. An alternative uptick rule can also have substantive distribu-
tional (wealth) implications, and we showed a scenario in which a modified alternative uptick
rule, which bans short-selling following smaller falls in price, reduces both mispricing and wealth
inequality relative to the current regulation.

There are several promising avenues for future research. First, it would be of interest to inves-
tigate whether adding short-selling constraints in models with many belief types improves the
ability of such models to reproduce empirical stylized facts, especially during times of market
turmoil, when such constraints are more likely to be present. In a similar vein, it may be fea-
sible to estimate such models in order to evaluate the relative empirical contribution of adding
short-selling constraints. Second, from a policy perspective, there has been interest in whether
short-selling restrictions lead to mispricing and might cause or exacerbate price bubbles, both in
financial markets and housing markets (Shiller (2015), Fabozzi et al. (2020)). It would be of inter-
est to investigate this further alongside the distributional implications of short-selling restrictions
in models with many investor types or agents.

Finally, from a technical perspective, there are some modeling specifications of interest which
are not covered by the results presented in this paper. For instance, one could confront a large
number of investor types with additional restrictions such as a short-selling tax (rather than full
ban) or leverage constraints (Anufriev and Tuinstra (2013), in’t Veld (2016)); the elimination of

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1365100523000639
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 15 Mar 2025 at 12:03:10, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S1365100523000639
https://doi.org/10.1017/S1365100523000639
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1365100523000639
https://www.cambridge.org/core


1736 M. Hatcher

investors who hit zero or negative wealth; or margin calls that prevent a short position being
maintained in future periods. These approaches might have important implications not just for
the price effects of short-selling restrictions, but also their distributional implications that have
received little attention so far.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/
S1365100523000639

Notes
1 Short-selling constraints appear to have first been studied, in a static model, by Miller (1977).
2 We assume (as is standard) that Ẽt,h[yt]= yt and Ṽt,h[yt]= 0 for any variable yt that is determined at date t; Ẽt,h[xt+1 +
yt+1]= Ẽt,h[xt+1]+ Ẽt,h[yt+1] for any variables x and y; and Ṽt,h[xtyt+1]= x2t Ṽt,h[yt+1].
3 See the definition of ft,h in (4), which potentially allows Ẽt,h

[
dt+1

]
to vary over time and across types.

4 Given our assumptions, the fundamental price is p∗
t = p := (d − aσ 2Z)/r̃, so ft,h = f̃t,h + r̃p (see (4)). Thus, ft,h − (1+

r)pt = Êt,h [xt+1]− (1+ r)xt , where r = r̃ − c, xt := pt − p, and Êt,h [xt+1] := f̃t,h − (1− c)p. Demands follow (4), with xt
replacing pt and Êt,h [xt+1] replacing ft,h. For an applied example, see Section 4.
5 Allowing nt,h ∈ [0, 1] means the set of types relevant for price determination (i.e. market-clearing) can be time-varying,
which reduces analytical tractability of the results relative to Proposition 1.
6 After their Proposition 2.1, Anufriev and Tuinstra (2013, p. 1529) note that their expressions should not be confused with
an explicit solution: “Note however that xt is still implicitly defined by (10) since the right-hand side also depends upon xt
through the definition of the sets P(xt), Z(xt) and N(xt). Below we will derive the market equilibrium price xt explicitly for
some special cases” (they study a two-type example).
7 In particular, given our assumption that pt−1 > p, equation (7) is consistent with Proposition 2.2 in Anufriev and Tuinstra
(2013) when short-selling is prohibitively costly.
8 The number of candidate sets equals the size of the power set of H with a correction of “minus 1.” The correction arises
because the asset market cannot clear if B∗

t is an empty set (i.e. if no type holds the asset).
9 Note that this procedure will not overshoot k∗ because the guessed price will remain below the market-clearing price. If
k′ = kprev or if k∗ is reached, the iterations are terminated early using a “break” command.
10 All other parameters are the same as in the previous section, so aσ 2 = 1, d = 0.6, r = 0.1 and Z = 0.1.
11 Dividend shocks εt were drawn at date 0 from a truncated-normal distribution with mean zero, standard deviation σd =
0.01 and support [−d, d]. Simulations were run in MATLAB 2020a (Windows version) on a Viglen Genie desktop PC with
Intel(R) Core(TM) i5-4570 CPU 3.20GHz processor and 8GB of RAM.
12 Recall that κ = 0.1 means short-selling constraint is banned in period t only if price fell by 10% or more in the previous
period. For κ = 0, short-selling constraint is banned following any previous fall in price.
13 The “kink” in period 26 arises because we assume that types that hit negative wealth have it reset to zero, and period 26 is
the first period in which this rule is triggered.
14 Note that mispricing, inequality, and the loss can remain unchanged as κ is increased since falls in price may exceed the
threshold set by κ and this can remain true even when κ increases.

15 Westerhoff (2004) sets f
([

pmt − pm
])

= ln
[(

1+ c
[
pmt − pm

]2)−1
]
, where c> 0, such that attractiveness declines with

distance from the fundamental price due to the risk of being caught in a bubble that collapses.
16 If all investors are fundamentalists, then Am

t = f (0)= 0 for all m, such that wm
t = 1/M for all m. Using this result in

conjunction with the demands (17), common rational expectations Et[pmt+1] and market-clearing leads to the equation pmt =
(1+ r̃)−1

[
Et

[
pmt+1

]
+ dm − aσ 2

mMZm
]
, which can be solved forwards to give pm.

17 Allowing time-variation in c is straightforward. Here we take values as fixed and focus on heterogeneity.
18 See Figure 1 and Table 1 in Section 4.1 of the Supplementary Appendix.
19 Recall p= (d − aσ 2Z)/r. This price is derived for all agents fundamentalists with common variance σ 2.
20 Allowing price to be a non-linear function of past excess demand Zt−1 − Z does not pose any difficulty as this variable is
predetermined at date t; however, we use linearity in current excess demand to solve for pt .
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Appendix
Proof of Proposition 1.
A unique market-clearing price exists by Proposition 2.1 in Anufriev and Tuinstra (2013).

Case 1: Short-selling constraint is slack for all h ∈H.
Let us guess that zt,h = (

aσ 2)−1(ft,h + aσ 2Z − (1+ r)pt
) ≥ 0 ∀h ∈H, which implies by

the market-clearing condition
∑

h∈H nt,hzt,h = Z that pt = p∗
t := (1+ r)−1 ∑

h∈H nt,hft,h. The
guess is verified if and only if ft,h + aσ 2Z − (1+ r)p∗

t ≥ 0 ∀h ∈H, which amounts to∑
h∈H nt,hft,h ≤min

h∈H
{ft,h} + aσ 2Z. Given

∑
h∈H nt,h = 1, the above inequality simplifies to

∑
h∈H nt,h

(
ft,h −min

h∈H
{ft,h}

)
≤ aσ 2Z, as stated in Proposition 1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1365100523000639
Downloaded from https://www.cambridge.org/core. Berklee College Of Music, on 15 Mar 2025 at 12:03:10, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1365100523000639
https://www.cambridge.org/core


1738 M. Hatcher

Case 2: Short-selling constraint slack for all h ∈ B∗
t and binds for all h ∈H \ B∗

t .

Let us guess that zt,h = (
aσ 2)−1(ft,h + aσ 2Z − (1+ r)pt

) ≥ 0 ∀h ∈ B∗
t and zt,h = 0 ∀h ∈H \ B∗

t :=
S∗
t , where B∗

t ⊂H is the set of investor types for which the short-selling constraint is slack,
and S∗

t is the set of constrained types. Clearly, the above conditions imply that minh∈B∗
t
{ft,h} >

maxh∈S∗
t
{ft,h}. Under the above guess,

∑
h∈H nt,hzt,h = ∑

h∈B∗
t
nt,hzt,h, and hence, the market-

clearing condition is
∑

h∈B∗
t
nt,hzt,h = Z, which gives pt =

∑
h∈B∗

t
nt,hft,h−

(
1−∑

h∈B∗
t
nt,h

)
aσ 2Z

(1+r)
∑

h∈B∗
t
nt,h

:= pB
∗
t

t .

The guess is verified iff ft,h + aσ 2Z − (1+ r)pB
∗
t

t ≥ 0 ∀h ∈ B∗
t and ft,h + aσ 2Z − (1+ r)pB

∗
t

t < 0
∀h ∈ S∗

t , that is iff
(
ft,h + aσ 2Z

) ∑
h∈B∗

t
nt,h ≥ (<)

∑
h∈B∗

t
nt,hft,h − (

1− ∑
h∈B∗

t
nt,h

)
aσ 2Z ∀h ∈

B∗
t (∀h ∈ S∗

t ), which simplifies to
∑

h∈B∗
t
nt,h(ft,h −minh∈B∗

t
{ft,h})≤ aσ 2Z <

∑
h∈B∗

t
nt,h

(
ft,h −

maxh∈S∗
t
{ft,h}

)
, as stated in Proposition 1.

It remains to show pB
∗
t

t > p∗
t =

∑
h∈H nt,hft,h
1+r , where p∗

t is the price if short-selling constraints

are absent. Note (1+ r)
(
pB

∗
t

t − p∗
t

)
=

(
1− 1∑

h∈B∗
t
nt,h

)
aσ 2Z +

∑
h∈B∗

t
nt,hft,h∑

h∈B∗
t
nt,h

− ∑
h∈H nt,hft,h and∑

h∈B∗
t
nt,h = 1− ∑

h∈S∗
t
nt,h. Since

∑
h∈H nt,hft,h = ∑

h∈B∗
t
nt,hft,h + ∑

h∈S∗
t
nt,hft,h, we obtain:

(1+ r)
(
pB

∗
t

t − p∗
t

)
=

⎛
⎝ ∑

h∈S∗
t

nt,h

⎞
⎠ [∑

h∈B∗
t
nt,hft,h − aσ 2Z∑
h∈B∗

t
nt,h

−
∑

h∈S∗
t
nt,hft,h∑

h∈S∗
t
nt,h

]
> 0

where
∑
h∈S∗

t

nt,h∑
h∈S∗

t
nt,h

ft,h ≤ max
h∈S∗

t
{ft,h}, and

∑
h∈B∗

t

nt,hft,h−aσ 2Z

∑
h∈B∗

t

nt,h
> max

h∈S∗
t
{ft,h} is implied by the condition

∑
h∈B∗

t
nt,h(ft,h −maxh∈S∗

t
{ft,h})> aσ 2Z above.

Proof of Corollary 1.

The first “if” statement follows from Proposition 1 as
∑H̃t

h=2 nt,h(ft,h − ft,1)≤ aσ 2Z is equivalent
to

∑
h∈H nt,h(ft,h −minh∈H{ft,h})≤ aσ 2Z. The other cases follow as there are H̃t − 1 other candi-

dates for B∗
t , S∗

t , that is St = {1}, Bt = {2, . . . , H̃t − 1}; St = {1, 2}, Bt = {3, . . . , H̃t − 1};. . .;St =
{1, . . . , H̃t − 1}, Bt = {H̃t}. For arbitrary sets St = {1, . . . , k}, Bt = {k+ 1, . . . , H̃t}, where k ∈
{1, .., H̃t − 1}, bymarket-clearing pt =

∑
h>k nt,hft,h−

[∑k
h=1 nt,h

]
aσ 2Z

(1−∑k
h=1 nt,h)(1+r)

:= p(k)t and by Proposition 1, the

guess is verified if and only if dispt,k+1 ≤ aσ 2Z < dispt,k. Note that p(k
∗)

t > p∗
t =

∑H̃t
h=1 nt,hft,h
1+r for any

k∗ ∈ {1, . . . , H̃t − 1} follows from the proof of Proposition 1.
It remains to show p(k)t < p(k

∗)
t ∀k< k∗ and p(k)t > p(k−1)

t for such k, where p(0)t := p∗
t . Note that

p(1)t solves
∑

h>1 nt,h
(
ft,h + aσ 2z − (1+ r)p(1)t

) = aσ 2Z and p∗
t solves aσ 2Z = ∑

h>1 nt,h
(
ft,h +

aσ 2z − (1+ r)p∗
t
) + nt,1

(
ft,1 + aσ 2z − (1+ r)p∗

t
)
, where the last term is < 0 since p∗

t is not ver-
ified. So p(1)t > p∗

t . For arbitrary k, p(k)t solves
∑

h>k nt,h
(
ft,h + aσ 2z − (1+ r)p(k)t

) = aσ 2Z and
p(k−1)
t solves aσ 2Z = ∑

h>k nt,h
(
ft,h + aσ 2z − (1+ r)p(k−1)

t
) + nt,k(ft,k + aσ 2z − (1+ r)p(k−1)

t ),
where the last term is < 0 since p(k−1)

t is not verified. So p(k)t > p(k−1)
t ∀k ∈ [2, k∗). Finally, p(k

∗)
t >

p(k)t ∀k< k∗ follows from the above argument with k= k∗.
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