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Similar to how Hopf–Lax–Oleinik-type formula yield variational solutions for Hamilton–Jacobi
equations on Euclidean space, optimal mass transportations can sometimes provide variational
formulations for solutions of certain mean-field games. We investigate here the particular case of
transports that maximize and minimize the following ‘ballistic’ cost functional on phase space TM ,
which propagates Brenier’s transport along a Lagrangian L,

bT (v, x) := inf

{
〈v, γ (0)〉 +

∫ T

0
L(t, γ (t), γ̇ (t)) dt; γ ∈C1([0, T], M); γ (T)= x

}
,

where M =Rd , and T > 0. We also consider the stochastic counterpart:

Bs
T (μ, ν) := inf

{
E

[
〈V , X0〉 +

∫ T

0
L(t, X , β(t, X )) dt

]
; X ∈A, V ∼μ, XT ∼ ν

}
,

where A is the set of stochastic processes satisfying dX = βX (t, X ) dt+ dWt, for some drift βX (t, X ),
and where Wt is σ (Xs : 0≤ s≤ t)-Brownian motion. Both cases lead to Lax–Oleinik-type formulas on
Wasserstein space that relate optimal ballistic transports to those associated with dynamic fixed-end
transports studied by Bernard–Buffoni and Fathi–Figalli in the deterministic case, and by Mikami–
Thieullen in the stochastic setting. While inf-convolution easily covers cost minimizing transports,
this is not the case for total cost maximizing transports, which actually are sup-inf problems.
However, in the case where the Lagrangian L is jointly convex on phase space, Bolza-type dual-
ities – well known in the deterministic case but novel in the stochastic case – transform sup-inf
problems to sup–sup settings. We also write Eulerian formulations and point to links with the theory
of mean-field games.

Key words: Deterministic and stochastic mass transportation, Hamilton-Jacobi equation, stochastic
Bolza duality, mean field games.
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1 Introduction and main results

Given a cost functional c( y, x) on some product measure space X0 × X1, and two probability
measures μ on X0 and ν on X1, we consider the problem of optimizing the total cost of transport
plans and its corresponding dual principle as formulated by Kantorovich
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Dynamic and stochastic propagation of the Brenier optimal mass transport 1265

inf

{∫
X0×X1

c( y, x)) d�;� ∈K(μ, ν)

}
= sup

{∫
X1

ϕ1(x) dν(x)−
∫

X0

ϕ0( y) dμ( y); ϕ1, ϕ0 ∈K(c)

}
,

where K(μ, ν) is the set of transport plans between μ and ν, which is the set of probability
measures � on X0 × X1 whose marginal on X0 (resp. on X1) is μ (resp., ν). On the other hand,
K(c) is the set of functions ϕ1 ∈ L1(X1, ν) and ϕ0 ∈ L1(X0,μ) such that ϕ1(x)− ϕ0( y) � c( y, x)
for all ( y, x) ∈ X0 × X1. The pairs of functions in K(c) can be assumed to satisfy

ϕ1(x)= inf
y∈X0

c( y, x)+ ϕ0( y) and ϕ0( y)= sup
x∈X1

ϕ1(x)− c( y, x). (1.1)

They will be called admissible Kantorovich potentials, and for reasons that will become clear
later, we shall say that ϕ0 (resp., ϕ1) is an initial (resp., final) Kantorovich potential.

The original Monge problem dealt with the cost c( y, x)= |x− y| [2, 12, 19, 20, 25, 26] and
was constrained to those probabilities in K(μ, ν) that are supported by graphs of measurable
maps from X0 to X1 pushing μ onto ν. Brenier [8] considered the important quadratic case
c(x, y)= |x− y|2. This was followed by a large number of results addressing costs of the form
f (x− y), where f is either a convex or a concave function [14]. With a purpose of connecting
mass transport with Mather theory, Bernard and Buffoni [7] considered dynamic cost functions
on a given compact manifold M , that deal with fixed end-points problems of the following type:

CT (ν0, νT ) := inf

{∫
M×M

cT ( y, x) d�;� ∈K(ν0, νT )

}
, (1.2)

where

cT ( y, x) := inf

{∫ T

0
L(t, γ (t), γ̇ (t)) dt; γ ∈C1([0, T], M); γ (0)= y, γ (T)= x

}
, (1.3)

[0, T] being a fixed time interval, ν0, νT two probability measures on M , and L : [0, T]× TM→
R∪ {+∞} is a given Lagrangian that is convex in the velocity variable of the tangent bundle TM .
Fathi and Figalli [13] eventually dealt with the case, where M is a non-compact Finsler manifold.
Note that standard cost functionals of the form f (|x− y|), where f is convex, are particular cases
of the dynamic formulation, since they correspond to Lagrangians of the form L(t, x, p) = f ( p).

We shall assume throughout that M =M∗ =Rd , while preserving – for pedagogical reasons –
the notational distinction between the state space and its dual. In this paper, we shall consider the
ballistic cost function, which is defined on phase space M∗ ×M by

bT (v, x) := inf

{
〈v, γ (0)〉 +

∫ T

0
L(t, γ (t), γ̇ (t)) dt; γ ∈C1([0, T], M); γ (T)= x

}
, (1.4)

where M is a Banach space and M∗ is its dual. The associated transport problems will be

BT (μ0, νT ) := inf

{∫
M∗×M

bT (v, x) d�; � ∈K(μ0, νT )

}
, (1.5)

where μ0 (resp., νT ) is a given probability measure on M∗ (resp., M), and

BT (μ0, νT ) := sup

{∫
M∗×M

bT (v, x) d�; � ∈K(μ0, νT )

}
. (1.6)
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Note that when T = 0, we have b0(x, v)= 〈v, x〉, which is exactly the case considered by Brenier
[8], that is,

W (μ0, ν0) := inf

{∫
M∗×M

〈v, x〉 d�; � ∈K(μ0, ν0)

}
, (1.7)

and

W (μ0, ν0) := sup

{∫
M∗×M

〈v, x〉 d�; � ∈K(μ0, ν0)

}
, (1.8)

making (1.6) a suitable dynamic version of the Wasserstein distance.
We shall also consider stochastic versions of the above problems. The cost of transport is then

defined between two random variables Y and Z on a fixed complete probability space (�, F , P)
as follows:

cs
T (Y , Z)= inf

{
E

[∫ T

0
L(t, X , β(t, X )) dt

]
; X ∈A, X0 = Y , XT = Z a.s

}
, (1.9)

as well as the ballistic cost of using a random input V valued in M∗ to get to the random state Z
is then

bs
T (V , Z)= inf

{
E

[
〈V , X0〉 +

∫ T

0
L(t, X , β(t, X )) dt

]
; X ∈A, XT = Z a.s

}
, (1.10)

where A is the set of stochastic processes verifying the stochastic differential equation

dX = βX (t, X ) dt+ dWt,

for some drift βX (t, X ), where Wt is σ (Xs : 0≤ s≤ t)-Brownian motion. We obtain the corre-
sponding mass transports (from the random variable transports) by letting the random variables
vary over all those that have given initial/final probability distributions. Thus, the stochastic
version of the dynamic transport (1.2) is

Cs
T (ν0, νT ) := inf

{
cs

T (Y , Z); Y ∼ ν0, Z ∼ νT

}
(1.11)

= inf

{
E

[∫ T

0
L(t, X , βX (t, X )) dt

]
; X ∈A, X0 ∼ ν0, XT ∼ νT

}
, (1.12)

which was considered by Mikami and Thieullen [18], while the stochastic versions of the ballistic
transports are

Bs
T (μ0, νT ) := inf

{
bs

T (V , Z); V ∼μ0, Z ∼ νT

}
(1.13)

= inf

{
E

[
〈V , X0〉 +

∫ T

0
L(t, X , β(t, X )) dt

]
; X ∈A, V ∼μ0, XT ∼ νT

}
, (1.14)

B
s
T (μ0, νT ) := sup

{
bs

T (V , Z); V ∼μ0, Z ∼ νT

}
(1.15)

= sup
V∼μ0,Z∼νT

inf
X∈A,XT=Z

{
E

[
〈V , X0〉 +

∫ T

0
L(t, X , β(t, X )) dt

]}
, (1.16)

which we shall consider in the sequel.
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In Section 2, we shall prove the following interpolation formula on Wasserstein space
associated with the deterministic minimization problem:

BT (μ0, νT )= inf{W (μ0, ν)+CT (ν, νT ); ν ∈P(M)}. (1.17)

The above formula can be seen as extensions of those by Hopf–Lax on state space to Wasserstein
space. Indeed, for any (initial) function f , the associated value function can be written as follows:

ϕf (t, x)= inf { f ( y)+ ct( y, x); y ∈M} . (1.18)

In the case where the Lagrangian L(t, x, p)= L0( p) is only a convex function of the momentum
p, then ct( y, x)= tL0( 1

t |x− y|) and (1.18) is nothing but the Hopf–Lax formula used to generate
solutions for corresponding Hamilton–Jacobi equations (see 1.20). If f is the linear functional
f (x)= 〈v, x〉, then bt(v, x) is itself a solution to the Hamilton–Jacobi equation, since

bt(v, x)= inf{〈v, y〉 + ct( y, x); y ∈M}. (1.19)

In other words, (1.17) can now be seen as extensions of (1.19) to the space of probability
measures, where the Wasserstein distance fills the role of the scalar product.

For the duality, we consider the forward Hamilton–Jacobi equations:{
∂tϕ +H(t, x,∇xϕ) = 0 on [0, T]×M ,

ϕ(0, x) = f (x),
(1.20)

and backward Hamilton–Jacobi equations:{
∂tϕ +H(t, x,∇xϕ) = 0 on [0, T]×M ,

ϕ(T , x) = f (x),
(1.21)

where the Hamiltonian on [0, T]×M ×M∗ is defined by H(t, x, q)= supp∈M {〈p, q〉 − L(t, x, p)}.
Unless specified otherwise, we shall consider ‘variational solutions’ for (1.20) and (1.21), which
are formally given by the following formulae:


t
f ,+ (x) :=
f ,+(t, x)= inf

{
f (γ (0))+

∫ t

0
L(s, γ (s), γ̇ (s)) ds; γ ∈C1([0, T], M); γ (t)= x

}
,

(1.22)


t
f ,− (x) :=
f ,−(t, x)= sup

{
f (γ (T))−

∫ T

t
L(s, γ (s), γ̇ (s)) ds; γ ∈C1([0, T], M); γ (t)= x

}
.

(1.23)

Additional conditions on the Lagrangian are needed in order to guarantee that
f ,+ and
f ,− are at
least viscosity solutions (see the thesis [17]). We could have chosen to have a blanket assumption
that L is a C2 Tonelli Lagrangian. However, the case where L is jointly convex in position and
momentum – a setting we also consider here – requires lesser regularity since convex analysis
provides suitable notions of differentiability (see Rockafellar et al. [22, 23]).

We shall then prove the following duality formulae:

BT (μ0, νT ) = sup

{∫
M

f∗ ,+(T , x) dνT (x)+

∫
M∗

f (v) dμ0(v); f concave in Lip(M∗)
}

(1.24)

= sup

{∫
M

g(x) dνT (x)+
∫

M∗
(
0

g,−)∗(v) dμ0(v); g in Lip(M)

}
, (1.25)
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where h∗ is the concave Legendre transform of h, that is,

h∗(v)= inf{〈v, y〉 − h( y); y ∈M}.
We shall also sometimes use the convex Legendre transform h∗ defined as follows:

h∗(v)= sup{〈v, y〉 − h( y); y ∈M}.
As to the question of attainment, we use a result by Fathi–Figalli [13] to show that if L is
a Tonelli Lagrangian, and if μ0 is absolutely continuous with respect to Lebesgue measure,
then there exists a probability measure �0 on M∗ ×M , and a concave function k : M→R

such that BT (μ0, νT )= ∫
M∗ bT (v, x)d�0, and �0 is supported on the possibly set-valued map

v→ π∗ϕH
T (∇k∗(v), v), with π∗ : M ×M∗ →M being the canonical projection, and (x, v)→

ϕH
t (x, v) is the corresponding Hamiltonian flow.
In Section 3, we prove an analogous Hopf–Lax formula on Wasserstein space associated with

the stochastic minimization problem:

Bs
T (μ0, νT )= inf{W (μ0, ν)+Cs

T (ν, νT ); ν ∈P(M)}. (1.26)

As to the duality, there are two features that distinguish the deterministic case from the stochastic
case. For one, there is no Monge–Kantorovich duality for the latter since it does not correspond
to a cost minimizing transport problem. Moreover, stochastic processes are not reversible as
deterministic paths and so we can only prove the following duality formula:

Bs
T (μ0, νT )= sup

{∫
M

g(x) dνT (x)+
∫

M∗
(�0

g,−)∗(v) dμ0(v); g in Lip(M)

}
, (1.27)

where this time �g,− is the solution to the backward Hamilton–Jacobi–Bellman equation (1.28).{
∂tψ + 1

2�ψ +H(x,∇xψ) = 0 on [0, T]×M ,
ψ(T , x) = g(x),

(1.28)

whose formal variational solutions are given by the following formula:

�g,−(t, x)= sup
X∈A

{
E

[
g(X (T))−

∫ T

t
L(s, X (s), βX (s, X )) ds

∣∣∣∣X (t)= x

]}
. (1.29)

In order to deal with the maximization problems BT (μ0, νT ) and B
s
T (μ0, νT ), we need to use

Bolza-type duality to convert the sup-inf problem to a concave maximization problem. For that
purpose, we shall assume that for each time t ∈ [0, T], the Lagrangian L(t, ·.·) is jointly convex
in both variables. In Section 4, we then consider the dual Lagrangian L̃ defined on M∗ ×M∗ by

L̃(t, v, q) := L∗(t, q, v)= sup{〈v, y〉 + 〈p, q〉 − L(t, y, p); ( y, p) ∈M ×M},
the corresponding fixed-end cost on M∗ ×M∗,

c̃T (u, v) := inf

{∫ T

0
L̃(t, γ (t), γ̇ (t)) dt; γ ∈C1([0, T], M∗); γ (0)= u, γ (T)= v

}
, (1.30)

and its associated transport

C̃T (μ0,μT ) := inf

{∫
M∗×M∗

c̃T (x, y) d�; � ∈K(μ0,μT )

}
. (1.31)
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We then recall the standard deterministic Bolza duality of Rockafellar [22], and the newly
established stochastic Bolza duality of Boroushaki–Ghoussoub [9].

We use these results in Section 5 to establish the following results for BT (μ0, νT ):

BT (μ0, νT )= sup{W (νT ,μ)− C̃T (μ0,μ); μ ∈P(M∗)}, (1.32)

and

BT (μ0, νT )= inf

{∫
M

g(x) dνT (x)+
∫

M∗

̃0

g∗,−(v) dμ0(v); g convex on M

}
, (1.33)

where g∗ is the convex Legendre transform of g, i.e. g∗(x)= sup{〈v, x〉 − g(v); v ∈M∗}, and

̃k,− is a solution of the following dual backward Hamilton–Jacobi equation:{

∂tϕ −H(t,∇vϕ, v) = 0 on [0, T]×M∗,
ϕ(T , v) = k(v),

(1.34)

whose variational solution is given by


̃k,−(t, v)= sup

{
k(γ (T))−

∫ t

0
L̃(s, γ (s), γ̇ (s)) ds; γ ∈C1([0, T], M∗); γ (0)= v

}
. (1.35)

In Section 6, we deal with the stochastic counterpart B
s
T (μ0, νT ) and prove the following:

B
s
T (μ0, νT ) := sup

{
E

[
〈X , V (T)〉 −

∫ T

0
L̄(t, V , β(t, V )) dt

]
; V ∈A, V0 ∼μ0, X ∼ νT

}
, (1.36)

where L̄(x, p)= L∗(−p,−x), and therefore

B
s
T (μ0, νT )= sup

{
W (νT ,μ)− C̄s

T (μ0,μ); μ ∈P(M∗)
}
, (1.37)

as well as the following duality formula:

B
s
T (μ0,μT )= inf

{∫
M∗

g(x) dνT +
∫

M
�̄0

g∗,−(v) dμ0; g convex in C∞db (M∗)
}

, (1.38)

where �̄ t
k,− solves the Hamilton–Jacobi–Bellman equation{

∂tψ + 1
2�ψ −H(∇vψ , v) = 0 on [0, T]×M∗,

ψ(T , v) = k(v),
(1.39)

where H(x, v) :=H(−x,−v), whose formal variational solutions are given by the formula:

�̄ t
k,−(v)= �̄k,−(t, v)= sup

X∈A

{
E

[
k(X (T))−

∫ T

t
L̄(s, X (s), βX (s, X )) ds

∣∣∣∣X (t)= v
]}

. (1.40)

Finally, a few words about our notation: We shall denote by ∂g the subdifferential of a convex
function g, and by ∂̃h :=−∂(−h) the superdifferential of a concave function h.

The set of probability measures on a Banach space X will be denoted P(X ), while the subset
of those with finite first moment will be denoted

P1(X ) := {ν ∈P(X );
∫

X
|x| dν(x)<∞}.

https://doi.org/10.1017/S0956792519000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000032


1270 A. Barton and N. Ghoussoub

P1(X ) is clearly a subset of the Banach space of all finite measures with finite first moment,
denoted similarly M1(X ) := {ν;

∫
X 1+ |x| dν(x)<∞}, which is dual to the Banach space

Lip(X ) of all bounded uniformly Lipschitz functions on X . For the stochastic part, we shall
also need to work with the space C∞db(X ) := Lip(X )∩C∞(X ).

Several of the above results appeared in the posted but non-published manuscripts [16], which
dealt with the deterministic case and [5], which addressed the stochastic case. We eventually
elected to combine them in a single publication so as to illustrate the obvious similarities, but
also the subtle differences between the two cases.

We are grateful to the anonymous referee for a careful reading of a first version of this paper,
which led to several corrections and improvements.

2 Minimizing the ballistic cost: Deterministic case

In this section, we deal with the standard transportation problem associated with the cost bT (v, x).
We shall assume that the Lagrangian L satisfies the following:

(A0) The Lagrangian (t, x, v) �→ L(t, x, v) is continuous, bounded below, and for all (t, x) ∈
[0, T]×M , the function v �→ L(t, x, v) is convex and δ-coercive in the sense that there
is a δ > 1 such that

lim|v|→∞
L(t, x, v)

|v|δ =+∞. (2.1)

Theorem 1 Assume that L satisfies (A0) and let μ0 (resp. νT ) be a probability measure on M∗

(resp., M) with finite first moment. Then, the following interpolation formula holds:

BT (μ0, νT )= inf
{
W (μ0, ν)+CT (ν, νT ); ν ∈P1(M)

}
. (2.2)

The infimum is attained at some probability measure ν0 on M.

Proof To prove the formula, it suffices to note that

inf
{
W (μ0, ν)+CT (ν, νT ); ν ∈P1(M)

}
= inf
ν∈P1(M)

{∫
M∗×M

〈v, x〉 d�W (v, x)+
∫

M×M
cT (x, y) d�C(x, y);�W ∈K(μ0, ν),�C ∈K(ν, νT )

}

= inf
�∈P1(M∗×M×M)

{∫
M∗×M×M

〈v, x〉 + cT (x, y) d�(v, x, y);�1 =μ0,�3 = νT }
}

≥ BT (μ0, νT ).

For the reverse inequality, use your favourite selection theorem to find a measurable function
yε : M∗ ×M→M that satisfies 〈v, yε(v, x)〉 + c( yε(v, x), x)− ε<bT (v, x). Fixing� ∈K(μ0, νT )
and letting �ε := (Id× Id× yε)#� ∈P(M∗ ×M ×M):

B(μ0, νT )=
∫

M∗×M
bT (v, x) d�(v, x)≥

∫
M∗×M×M

〈v, y〉 + cT ( y, x) d�ε(v, x, y)− ε.

To show that the minimizer is achieved, we need to prove that CT satisfies a coercivity condition
on the space P1(M) of probabilities on M with finite first moments. For that purpose, we show
that for any fixed νT ∈P1(M) and any positive constant N > 0, the set of measures ν ∈P1(M)
satisfying
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CT (ν, νT )≤N

∫
M
|x| dν(x) (2.3)

is tight. Indeed, from (A0), there exists a constant K such that cT (x, y)>N
∣∣ x−y

T

∣∣δ −K. We
concern ourselves with the cylinder set B := B(0, R)c ×M . Let ν ∈ Tε,R := {ν; ν(B(0, R)c)> ε}.
We shall assume, without loss of generality, that L and hence cT is non-negative; hence, for any
optimal transport plan � ∈K(ν, νT )

CT (ν, νT )≥N

Tδ

∫
B
||x| − |y||δ d�(x, y)−K. (2.4)

We manipulate this into an optimal transport problem on the half-line by applying the following
transformations to �, leaving the cost on the right of (2.4) unchanged. We first restrict � to B
while adding a dirac measure at (0, 0) to compensate for mass lost during the restriction. We then
push-forward � onto R+ ×R+ using the absolute value function. This results in the probability
measure �̄ := (|·| × |·|)#(�|B)+ ν(B(0, R))δ0,0, and transforms

∫
B
||x| − |y||δ d�(x, y)≥

∫
R+×R+

|x− y|δ d�̄(x, y). (2.5)

We can obtain a lower estimate for this by minimizing over transportation measures sharing
�̄’s marginals (i.e. in K(�̄1, �̄2)). This is a well-known optimal transport problem, whose
optimal plan given by the monotone Hoeffding–Frechet mapping x �→G�̄1

(G−1
�̄2

(x)), where
Gν(t) := inf{z ∈R : t≥ ν({x≤ z})} is the quantile function associated with the measure ν [6].
Thus, the optimal plan maps each quantile in one measure to the corresponding quantile in the
other. Substituting this into the integral and applying Jensen’s inequality (J):∫

R+×R+
|x− y|δ d�̄(x, y)≥

∫
R+×R+

|x− y|δ d
((

G�̄1
×G�̄2

)
#
λ[0,1]

)
(x, y)

(J)≥
(∫

B(0, R)c
|x| dν(x)−m(νT )

)δ
,

(2.6)

where m(νT ) := ∫ |x| dνT and R>m(νT )/ε. We thus want to find R such that

N

((∫
B(0, R)c

|x| dν(x)−m(νT )

)δ
−K

)
?
>N

(∫
B(0, R)c

|x| dν(x)+ R(1− ε)

)
≥N

∫
|x| dν(x).

Letting Iν(R) := ∫
B(0, R)c |x| dν(x) (≥ Rε for ν ∈ Tε,R), we find the condition

(
Iν(R)1− 1

δ −m(νT )Iν(R)−
1
δ

)δ − K

Iν(R)

?
> 1+ R(1− ε)

Iν(R)
.

Observing that the left side is an increasing function of Iν(R), while the right side is a decreasing
function of Iν(R), we may apply the mentioned bound on Iν(R) to obtain the following sufficient
condition, satisfied for sufficiently large R:

(
(Rε)1− 1

δ −m(νT )(Rε)−
1
δ

)δ − K

Rε

?
>

1

ε
.
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To show the minimizer is achieved, fix any ν0 in P1(M), and note that by coercivity the set of
probability measures ν such that

W (μ0, ν)+CT (ν, νT )≤m(μ0)
∫

M
|x| dν +CT (ν, νT ) � m(μ0)

∫
M
|x| dν +CT (ν0, νT )

is tight. The fact that ν→W (μ0, ν)+CT (ν, νT ) is weak∗-lower semi-continuous on P1(M)
follows from the duality formula that each one of these transports satisfy since both the Brenier
cost and cT are lower semi-continuous (Theorem 1.3 in [25]).

Remark 1 Note that (2.6) indicates that when ν1 ∈P1(M) and ν0 ∈P(M) \P1(M), then
C(ν0, ν1)=C(ν1, ν0)=∞.

Theorem 2 Assume that the Lagrangian L is C2 and satisfies (A0), and let μ0 (resp. νT ) be a
probability measure on M∗ (resp., M) with finite first moment.

1. If μ0 has compact support, then we have the following duality formula:

BT (μ0, νT )= sup

{∫
M

g(x) dνT (x)+
∫

M∗
(
0

g,−)∗(v) dμ0(v); g in Lip(M)

}
. (2.7)

2. If νT has compact support, then we have

BT (μ0, νT )= sup

{∫
M

T

f∗,+(x) dνT (x)+
∫

M∗
f (v) dμ0(v); f concave in Lip(M∗)

}
. (2.8)

To obtain this result, we shall need the following identifications of Legendre transforms in the
Banach space M1(Rn) of measures ν on Rn with

∫
Rn (1+ |x|) dν <∞ in duality with the space

of Lipschitz functions Lip(Rn).

Lemma 1 Under the hypothesis of Theorem 2, we have the following:
(a) For μ0 ∈P(Rn) with compact support, define Wμ0

: M1(Rn)→R∪ {∞} to be

Wμ0
(ν) :=

{
W (μ0, ν) ν ∈P1(Rn)

+∞ otherwise.

Then, the convex Legendre transform of Wμ0
is given for f ∈ Lip(Rn) by W ∗μ0

( f )=− ∫
Rn f∗ dμ0.

(b) For ν0 ∈P(Rn), define the function Cν0 : M1(Rn)→R∪ {∞} to be

Cν0 (ν) :=
{

CT (ν0, ν) ν ∈P1(Rn)

+∞ otherwise.
(2.9)

Then, the convex Legendre transform of Cν0 is given for f ∈ Lip(Rn) by C∗ν0
( f )=∫

Rn ϕf ,− (0, x) dν0(x), where ϕf ,− is the solution to the backward HJ-equation (1.21) with final
condition ϕf ,− (T , x)= f (x).

Proof Both statements follow from Kantorovich duality. Indeed, both functions are convex
and weak∗-lower semi-continuous on M1(Rn). Since μ0 has compact support, Brenier’s duality
yields

https://doi.org/10.1017/S0956792519000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000032


Dynamic and stochastic propagation of the Brenier optimal mass transport 1273

Wμ0
(ν)= sup

g∈Lip(M)

{∫
M

g dν +
∫

M∗
g∗ dμ0

}
.

We then have

W ∗μ0
( f )= sup

ν∈M1(M)
inf

g∈Lip(M)

{∫
M

f dν −
∫

M
g dν −

∫
M∗

g∗ dμ0

}
. (2.10)

Note that the functional g �→− ∫
M∗ g∗ dμ= ∫

M∗ (−g)∗ dμ̂(v) (where dμ̂(v) := dμ(−v)) is con-
vex and lower semicontinuous, and we may therefore apply a variant of Von Neuman minimax
theorem ( [1] Theorem 2.4.1) as the expression is linear in ν and convex in g. We obtain

W ∗μ0
( f )= inf

g∈Lip(M)
sup

ν∈M1(M)

{∫
M

f dν −
∫

M
g dν −

∫
M∗

g∗ dμ0

}
. (2.11)

The infimum must occur at g= f since otherwise the sup in ν is +∞, resulting in statement a).
The same proof applies to Cν0 , since in view of the duality formula of Bernard and Buffoni [7,

Proposition 21] or [24] for the case of Rn:

Cν0 (ν)= sup
g∈Lip(M)

{∫
M

g dν −
∫

M

0

g,− dν0

}
. (2.12)

Note that this holds for all ν ∈M1(M), since if g solves the Hamilton–Jacobi equation, then so
does g+ c for arbitrarily large c. We may again apply the minimax theorem as the expression is
linear in ν and convex in g.

Proof of Theorem 2: We first note that Kantorovich duality yields that ν �→ B(μ0, ν) is weak∗-
lower semi-continuous on P1(M) for all μ0 ∈P1(M∗) and that (μ0, νT ) �→ B(μ0, νT ) is jointly
convex. Let now Bμ0

(ν) := BT (μ0, ν) if ν ∈P1(M) and +∞ otherwise. It follows that

Bμ0
(ν)= B∗∗μ0

(ν) := sup

{∫
Rn

f dν − B∗μ0
( f ); f ∈ Lip(Rn)

}
. (2.13)

Now use the Hopf–Lax formula established above to write

B∗μ0
( f ) := sup

{∫
M

f dν − Bμ0
(ν); ν ∈P1(M)

}

= sup

{∫
M

f dν −W (μ0, ν ′)−CT (ν ′, ν); ν, ν ′ ∈P1(M)

}

= sup

{∫
M

T

f ,− dν ′ −W (μ0, ν ′); ν ′ ∈P1(M)

}

=−
∫

M
(
T

f ,− )∗ dμ0.

(2.14)

This completes the proof of the first duality formula.
The second follows in the same way by simply varying the initial measure as opposed to the

final measure in BT (μ, ν). The concavity of f follows from the expression of the corresponding
Kantorovich potentials given in (1.1), and the linearity of bT in v.
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We now consider the problem of attainment for BT (μ, ν). For that purpose, we shall consider
Tonelli Lagrangians studied in the compact case by Bernard–Buffoni [7], and by Fathi–Figalli
[13] in the case of a Finsler manifold.

Definition 2 We shall say that L is a Tonelli Lagrangian on M ×M , if it is C2 and satisfies (A0)
with the additional requirement that the function v→ L(x, v) is strictly convex on M .

We also recall the following [4, Definition 5.5.1, page 129]:

Definition 3 Say that f : M→R has an approximate differential at x ∈M if there exists a
function h : M→R differentiable at x such that the set { f = h} has density 1 at x with respect to
the Lebesgue measure. In this case, the approximate value of f at x is defined as f̃ (x)= h(x), and
the approximate differential of f at x is defined as d̃x f = dxh. It is not difficult to show that this
definition makes sense. In fact, both h(x), and dxh do not depend on the choice of h, provided x
is a density point of the set { f = h}.

If L is a Tonelli Lagrangian, the Hamiltonian H : M ×M∗ →R is then C2, and the Hamiltonian
vector field XH (x, v)= ( ∂H

∂v
(x, v),− ∂H

∂x (x, v)) on M ×M∗ is then C1, and the associated system of
ODEs given by ⎧⎪⎨

⎪⎩
ẋ= ∂H

∂v
(x, v)

v̇ =−∂H

∂x
(x, v),

(2.15)

defines a (partial) C1 flow ϕH
t (see [13]). The connection between L-minimizers γ : [a, b]→M

and solutions of (2.15) is as follows. If we write x(t)= γ (t) and v(t)= ∂L
∂p (γ (t), γ̇ (t)), then

x(t)= γ (t) and v(t) are C1 with ẋ(t)= γ̇ (t), and the Euler–Lagrange equation yields v̇(t)=
∂L
∂x (γ (t), γ̇ (t)), from which follows that t �→ (x(t), v(t)) satisfies (2.15).

There is also a (partial) C1 flow ϕL
t on M ×M∗ such that every unit speed curve of an

L-minimizer is a part of an orbit of ϕL
t . This flow is called the Euler–Lagrange flow and is

defined by ϕL
t =L−1 ◦ ϕH

t ◦L, where L : M ×M→M ×M∗ is the global Legendre transform
(x, p) �→ (x, ∂L

∂p (x, p)). Note that L is a homeomorphism on its image whenever L is a Tonelli
Lagrangian.

Theorem 3 In addition to (A0), assume that L is a Tonelli Lagrangian and that μ0 is absolutely
continuous with respect to Lebesgue measure. Then there exists a concave function k : M→R

such that

BT (μ0, νT )=
∫

M∗
bT (v, ST ◦ ∇k∗(v))dμ0(v), (2.16)

where ST ( y)= π∗ϕH
T ( y,∇k( y)), π∗ : M ×M∗ →M being the canonical projection, and ϕH

t the
Hamiltonian flow associated with L. In other words, an optimal map for BT (μ0, νT ) is given by
v→ π∗ϕH

T (∇k∗(v), v).
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Proof Start again by the interpolation inequality, BT (μ0, νT )=CT (ν0, νT )+W (μ0, ν0) for some
probability measure ν0. By the above and Kantorovich duality, there exists a concave function
k : M→R and another function h : M→R such that (∇k∗)#μ0 = ν0,

W (μ0, ν0)=
∫

M
〈∇k∗(v), v〉dμ0(v),

and

CT (ν0, νT )=
∫

M
h(x) dνT (x)−

∫
M

k( y) dν0( y).

Now use a result of Fathi–Figalli [13] to write CT (ν0, νT )= ∫
M cT ( y, ST ( y))dν0( y), where

ST ( y)= π∗ϕH
T ( y, d̃yk). Note that

BT (μ0, νT ) �
∫

M∗ bT (v, ST ◦ ∇k∗(v))dμ0(v), (2.17)

since (∇k∗)#μ0 = ν0 and (ST )#ν0 = νT , and therefore (Id× ST ◦ ∇k∗)#μ0 belongs to K(μ0, νT ).
On the other hand, since bT (v, x) � cT (∇k∗(v), x)+ 〈∇k∗(v), v〉 for every v ∈M∗, we have

BT (μ0, νT ) �
∫

M∗
bT (v, ST ◦ ∇k∗(v))dμ0(v)

�
∫

M∗
{cT (∇k∗(v), ST ◦ ∇k∗(v))+ 〈∇k∗(v), v〉} dμ0(v)

=
∫

M
cT ( y, ST ( y))dν0( y)+

∫
M∗
〈∇k∗(v), v〉 dμ0(v)

= CT (ν0, νT )+W (μ0, ν0)

= BT (μ0, νT ).

It follows that

BT (μ0, νT )=
∫

M∗
bT (v, ST ◦ ∇k∗(v))dμ0(v)=

∫
M∗

bT (v, π∗ϕH
T (∇k∗(v), d̃∇k∗(v)kdμ0(v).

Since k is concave, we have that d̃xk =∇k(x); hence, d̃∇k∗(v)k =∇k ◦ ∇k∗(v)= v, which yields
our claim that BT (μ0, νT )= ∫

M∗ bT (v, π∗ϕH
T (∇k∗(v), v))dμ0(v).

3 Minimizing the ballistic cost: Stochastic case

We now turn to the stochastic version of the minimizing cost. The methods of proof are generally
similar to those for the deterministic cost; however, there are two complications: the first is that
stochastic mass transport does not fit in the framework of cost minimizing transports; hence,
the Kantorovich duality is not readily available. The second is that stochastic processes are not
reversible and therefore there is only one direction to the transport; hence, only one duality
formula. In order to deal with the first complication, we rely on the results of Mikami–Thieullen
[18] and therefore use the same assumptions that they imposed on the Lagrangian, namely

(A1) L(t, x, v) is continuous, convex in v, and uniformly bounded below by a proper convex
function L(v) that is 2-coercive in the sense that lim|v|→∞ L(v)

|v|2 > 0.
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(A2) (t, x) �→ log(1+ L(t, x, u)) is uniformly continuous, in that

�L(ε1, ε2) := sup
u∈M∗

{
1+ L(t, x, u)

1+ L(s, y, u)
− 1; |t− s|< ε1, |x− y|< ε2

}
ε1,ε2→0−→ 0.

(A3) The following are boundedness conditions:
(i) supt,x L(t, x, 0)<∞.

(ii) |∇xL(t, x, v)| /(1+ L(t, x, v)) is bounded.
(iii) sup {|∇vL(t, x, u)| : |u| ≤ R}<∞ for all R.

We will use the notation X = (X0, βX , σX ) to refer to an Itô process X (t) of the form:

X (t)= X0 +
∫ t

0
βX (s) ds+

∫ t

0
σX (s) dWs. (3.1)

We will use the notation AνT
ν0

to refer to the set of stochastic processes X = (X0, βX , Id) with
X (0)∼ ν0 and X (T)∼ νT . Notably, (A1) implies that E [L(t, X (t), βX )]=∞ whenever βX (t) �∈
L2(�T ; M).

Our main result for this section is the stochastic counterpart to Theorem 2:

Theorem 4 If L satisfies the assumptions (A1), (A2), and (A3), then we have the following:

1. For any given probabilities μ0 ∈P(M∗) and νT ∈P(M), we have:

Bs
T (μ0, νT )= inf

{
W (μ0, ν)+Cs

T (ν, νT ); ν ∈P1(M)
}
. (3.2)

Furthermore, this infimum is attained whenever μ0 ∈P1(M∗) and νT ∈P1(M).
2. If νT ∈P1(M) and μ0 ∈P1(M∗) are such that B(μ0, νT )<∞, and if μ0 ∈P1(M∗) has

compact support, then

Bs
T (μ0, νT )= sup

{∫
M

f (x) dνT (x)+
∫

M∗
(�0

f ,−)∗(v) dμ0(v); f ∈C∞db

}
, (3.3)

where �f ,− is the solution to the Hamilton–Jacobi–Bellman equation:

∂ψ

∂t
+ 1

2
�ψ(t, x)+H(t, x,∇ψ)= 0, ψ(T , x)=f (x). (HJB)

Proof (1) First, expand W (μ0, ν) and CT (ν, νT ) in the interpolation formula to obtain:

inf
{
W (μ0, ν)+Cs

T (ν, νT ); ν ∈P1(M)
}

= inf

{
E

[
〈V , X0〉 +

∫ T

0
L(t, X (t), βX (t)) dt

]
; V ∼μ0, X0 ∼ ν, X (t) ∈AνT

ν ; ν ∈P1(M)

}
� B(μ0, νT ).

To obtain the reverse inequality, let νn be a sequence of measures approximating the infimum in
(3.2). Then for each νn, there exists a stochastic process Zn ∈AνT

νn
such that

E

[∫ T

0
L(t, Zn(t), βZn (Zn, t)) dt

]
<Cs

T (νn, νT )+ 1
n . (3.4)
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Similarly, let dγ n
x (v)⊗ dνn(x)= dγn(v, x) be the disintegration of a measure γn such that∫

〈v, x〉 dγn(v, x)<W (μ0, νn)+ 1
n ,

and define Un : M ×�→M∗ to be a random variable such that Un[x]∼ γ n
x for νn-a.a. x.

Thus, (Un[Zn(0)], Zn(0))∼ γn and we have constructed a random variable that approximates the
interpolation as follows:

E

[
〈U[Zn(0)], Zn(0)〉 +

∫ T

0
L(t, Zn(t), βZn(t)) dt

]
≤ inf

{
W (μ0, ν)+Cs

T (ν, νT ); ν ∈P1(M)
}+ 3

n
.

(3.5)
To show that the infimum in ν is attained in the set P1(M), we need again to prove the following
coercivity property.

Claim: For any fixed νT ∈P1(M), N ∈R, the set of measures ν ∈P1(M) satisfying Cs
T (ν, νT )≤

N
∫ |x| dν(x) is tight.
We will assume ν ∈ Tε, R := {ν ∈P1(M) : ν(B(0, R)c)> ε} for what follows. We leave R to be

defined later, but note that if we define the set �R := {|X (0)|> R}, then our assumption on ν
yields P(�R)> ε. Note that L and hence L is bounded below by (A1), allowing us to assume –
without loss of generality – the non-negativity of L and hence of L. This allows us to focus on
the set �R, since

E

[∫ T

0
L(t, X (t), βX (X , t)) dt

]
≥E

[
1�R

∫ T

0
L(t, X (t), βX (X , t)) dt

]
.

By (A1), there is C> 0 such that for all |u|>U , L(u)
|u|2 >C. Recall that L : M∗ →R is a convex

lower bound on L(t, x, v). This imposes a lower bound on the expected action of Y , which can be
refined through Jensen’s inequality (J):

E

[∫ T

0
1�R L(t, X , βX (t, X )) dt

]
≥E

[∫ T

0
1�R L(|βX (t, X )|) dt

]
(J)≥E [L(|V |)T]

(A1)
> CTE

[
1|V |>U |V |2

]≥CT
(
E

[|V |2]−U2
)
,

(3.6)

where the F0-measurable random variable V := 1�R (E [X (T)|F0]− X (0))/T is the time-average
drift (Ft being the natural filtration). Omitting the constant term, this may be manipulated into a
familiar form by applying reverse triangle and Jensen’s inequality:

CTE

[
1�R

∣∣∣∣E [X (T)|F0]− X (0)

T

∣∣∣∣
2
]
≥C

T
E

[
1�R ||X (0)| − |E [X (T)|F0]||2]

(J)≥C

T

∣∣E [
1�R |X (0)|]−E

[
1�R |X (T)|]∣∣2.

(3.7)

Note that we assume Rε ≥m(νT ) :=E [|X (T)|]in order to have a lower bound on E
[
1�R |X (0)|]

to get the last line. This leaves us with the same formulation as in (2.6) of the deterministic
coercivity result, the remainder of the proof is identical, and the claim is proved.
To show that a minimizing sequence νn is sequentially compact in the weak topology, we use the
fact that the set of measures ν such that C(ν, νT )<N

∫ |y| dν( y)+ B(μ0, νT )+ 1 is tight. If we
let N := ∫ |x| dμ0(x), then the collection of measures such that
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Bs
T (μ0, νT )+ 1>C(ν, νT )+W (μ0, ν)

>C(ν, νT )−
∫
|x| |y| dμ0(x) dν( y)

(F)=C(ν, νT )−N

∫
|y| dν( y)

is tight, where (F) is an application of Fubini’s theorem. Thus, by Prokhorov’s theorem the
minimizing sequence of interpolating measures necessarily weakly converges to a minimizing
measure.

Now the same reasoning as in Section 2 yields that CT (ν0, ν1)=CT (ν1, ν0)=∞ for
ν1 ∈P1(M) and ν0 ∈P(M) \P1(M). This implies that it suffices to take the infimum in (3.2)
over P1(M).

Also note that the attainment of a minimizing interpolating measure ν0 is sufficient to show the
existence of a minimizing (V , X ) for Bs

T (ν0, νT ) whenever the latter is finite. This is a consequence
of the existence of minimizers for both W (μ0, ν0) and Cs

T (ν0, νT ) [18, Proposition 2.1].
(2) To prove the duality formula, we will proceed as in the deterministic case and use the

Legendre dual of the optimal cost functional ν→Cs
T (ν0, ν), which was derived by Mikami and

Thieullen [18]. Indeed, they show that if the Lagrangian satisfies (A1)–(A3), then

Cs
T (ν0, νT )= sup

{∫
M

f dνT −
∫

M
�0

f ,− dν0; f ∈ C∞b
}

, (3.8)

where �f ,− is the unique solution to the Hamilton–Jacobi–Bellman equation (1.28) that is
given by

�f ,−(t, x)= sup
X∈A

{
E

[
f (X (T))−

∫ T

t
L(s, X (s), βX (s, X )) ds

∣∣∣∣X (t)= x

]}
. (3.9)

Moreover, there exists an optimal process X with drift βX (t, X )= argminv{v · ∇�f ,−(t, x)+
L(t, x, v)}.

Furthermore, (μ, ν) �→Cs
T (μ, ν) is convex and lower semi-continuous under the weak∗-

topology. It follows that ν �→ Bs
T (μ0, ν) is weak∗-lower semi-continuous on P1(M) for all

μ0 ∈P1(M∗), and that (μ0, νT ) �→ Bs
T (μ0, νT ) is jointly convex. Note that integrating �0

f ,+ over
dν0 yields the Legendre transform of ν �→CT (ν0, ν) for f ∈ Lip(M).

For μ0 ∈P1(M∗), define the function Bμ0
: M1(M)→R∪ {∞} to be

Bμ0
(ν) :=

{
BT (μ0, ν) ν ∈P1(M)

∞ otherwise.

Since Bμ0
is convex and weak∗-lower semi-continuous, we have

Bμ0
(ν)= B∗∗μ0

(ν)= sup
f ∈Lip(M)

{∫
f dν − B∗μ0

( f )

}
. (3.10)

We break this into two steps. First we show that when f ∈C∞db := Lip(M)∩C∞ the dual is
appropriate:

B∗μ0
( f ) := sup

νT∈P1(M)

{∫
f dνT − BT (μ0, νT )

}
(
3.2

)
= sup

νT∈P1(M)
ν∈P1(M)

{∫
f dνT −CT (ν, νT )−W (μ0, ν)

}
(3.11)
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3.9

)
= sup

ν∈P1(M)

{∫
�0

f ,− (x) dν(x)−W (μ0, ν)

}

=W ∗μ0
(�0

f ,− )=−
∫

(�0
f ,−)∗ dμ0.

Thus, plugging this into our dual formula (3.10) and restricting our supremum to C∞db gives

Bμ0
(ν)= B∗∗μ0

(ν)≥ sup
f ∈C∞db

{∫
f dν +

∫
(�0

f ,−)∗ dμ0

}
.

To show the reverse inequality, we will adapt the mollification argument used in [18, Proof of
Theorem 2.1]. We assume our mollifier ηε(x) is such that η1(x) is a smooth function on [−1, 1]d

that satisfies
∫
η1(x) dx= 1 and

∫
xη1(x) dx= 0, then define ηε(x)= ε−dη1(x/ε). We shall use

ε-subscript to indicate convolution of a measure with ηε . Note that for Lipschitz f , fε := f ∗
ηε is smooth with bounded derivatives. We can derive a bound on B∗μ∗ηε ( f ) by removing the
supremum in (3.11) and fixing a process X ∈AνT :

E

[
fε(X (T))−

∫ T

0
L(s, X (s), βX (s, X )) ds− 〈X (0), V 〉

]
(A2)≤ E

[
f (X (T)+Hε)−

∫ T

0

L(s, X (s)+Hε , βX (s, X ))−�L(0, ε)

1+�L(0, ε)
ds

− 〈X (0)+Hε , V +Hε〉 + |Hε |2
]

≤ D∗ε ( f (1+�L(0, ε)))

1+�L(0, ε)
+ T

�L(0, ε)

1+�L(0, ε)
+ dε2,

where Dε(ν) := inf{(1+�L(0, ε))W (με , ν0)+C(ν0, ν); ν0}, and Hε ∼ ηε is independent of
(X (·), V ) so that X (T)+Hε ∼ ηε ∗ νT . The third line arises by taking (X (·)+Hε) to be the max-
imizing process given V +Hε ∼με , resulting in the convex dual of Dε(ν). Note that ε �→Dε(ν)
is lower semi-continuous as the infimum of a jointly lower semi-continuous function (the same
reason ν �→ Bμ(ν) is), and converges to Bμ0

(ν) as ε→ 0.
Taking the supremum over X ∈Aμ0 of the left side above, we can retrieve a bound on B∗μ0

( fε).
This bound allows us to say∫

fε dν − B∗μ( fε)≥
∫

f dνε − D∗ε
(

f (1+�L(0, ε))
)

1+�L(0, ε)
− T

�L(0, ε)

1+�L(0, ε)
− dε2.

Taking the supremum over f ∈ Lip(M), we get the reverse inequality:

sup
f ∈C∞db

{∫
f dνT − B∗μ( f )

}
≥ Dε(νε)

1+�L(0, ε)
− T

�L(0, ε)

1+�L(0, ε)
− dε2

ε↘0≥ B(μ0, νT ),

In the following corollary, we will discuss results pertaining to solutions ψ t
n(x) :=ψn(t, x) of

the Hamilton–Jacobi–Bellman equation for final conditions ψT
n (x). In some sense, ∇ψ is more

fundamental than ψ , since our dual is invariant under ψ �→ψ + c. Thus, when discussing the
convergence of a sequence of ψ , we refer to the convergence of their gradients. Notably, we can-
not conclude that the optimal gradient is bounded or smooth; hence, it may not be achieved within
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the set C∞db . In the subsequent corollary, we denote PX the measure on M × [0, T] associated with
the process X .

Corollary 4 Suppose that the assumptions on Theorem 4(2) are satisfied and that μ0 is abso-
lutely continuous with respect to Lebesgue measure. Then (V , X (t)) minimizes B(μ0, νT ) if and
only if it is a solution to the stochastic differential equation:

dX =∇pH(t, X ,∇ψ(t, X )) dt+ dWt (3.12)

V =∇ψ̄(X (0)), (3.13)

where ∇ψn(t, x)→∇ψ(t, x) PX -a.s. and ∇ψn(0, x)→∇ψ̄(x) ν0-a.s. for some sequence ψn(t, x)
that solves (HJB) in such a way that ψT

n :=ψn(T , ·) and (ψ0
n )∗ := [ψn(0, ·)]∗ are maximizing

sequences for the dual problem (3.3). Furthermore, ψ̄ is concave.

Proof First note that there exists such an optimal pair (V , X ), in view of Theorem 4(1).
Moreover, the pair is optimal iff there exists a sequence of solutionsψn to HJB that is maximizing
in (3.3) such that

E

[∫ T

0
L(t, X , βX (t, X )) dt+ 〈X (0), V 〉

]
= lim

n→∞E
[
ψT

n (X (T))+ (ψ0
n )∗(V )

]
, (3.14)

which we can write as follows:

lim
n→∞E

⎡
⎢⎣ψT

n (X (T))−ψ0
n (X (0))︸ ︷︷ ︸

(a)

+ψ0
n (X (0))− (ψ0

n )∗∗(X (0))︸ ︷︷ ︸
(b)

+ (ψ0
n )∗∗(X (0))+ (ψ0

n )∗(V )︸ ︷︷ ︸
(c)

⎤
⎥⎦,

(3.15)

where f∗∗ is the concave hull of f . Applying Itô’s formula to the first two terms, with the
knowledge that they satisfy (HJB), we get

E
[
ψT

n (X (T))−ψ0
n (X (0))

]=E

[∫ T

0
〈βX ,∇ψ t

n(X (t))〉 −H(t, X ,∇ψ t
n(X (t))) dt

]
.

However, by the definition of the Hamiltonian, we have 〈v, b〉 −H(t, x, v)≤ L(t, x, b), which
means that (3.15) yield the following three inequalities:

〈βX ,∇ψ t
n(X (t))〉 −H(t, X ,∇ψ t

n(X (t)))≤L(t, X , βX (t, X )) (a)

ψ0
n (X (0))− (ψ0

n )∗∗(X (0))≤0 (b)

(ψ0
n )∗∗(X (0))+ (ψ0

n )∗(V )≤〈V , X (0)〉. (c)

In other words, (3.15) breaks the problem into a stochastic and a Wasserstein transport problem
(in the flavour of Theorem 4), along with a correction term to account for ψ0

n not being nec-
essarily concave. Adding (3.14) to the mix, allows us to obtain L1 convergence in the (a,b,c)
inequalities, hence a.s. convergence of a subsequence ψnk .

Note that the convergence in (b,c) means that ψ0
n converges ν0-a.s. to a concave function ψ

such that x �→ ∇ψ is the optimal transport plan for W (ν0,μ0) [8].
To obtain the optimal control for the stochastic process, one needs the uniqueness of the

point p achieving equality in (a). This is a consequence of the strict convexity and coercivity
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of b �→ L(t, x, b) for all t, x. The differentiability of L further ensures this value is achieved by
p=∇vL(t, x, b). Hence, (a) holds iff

∇ψ t
n(Xt)−→∇vL(t, Xt, βX (t, X )) PX -a.s.

Since ψ t
n are deterministic functions, this demonstrates that Xt is a Markov process with drift βX

determined by the inverse transform: βX (t, X )=∇pH(t, X ,∇ψ(t, X )), i.e. (3.12)

Remark 2 It is not possible to conclude from the above work that ψ̄(x)=ψ(0, x) without a
regularity result on t �→ψ(t, x) for the optimal ψ , since ψ̄ is defined on a PX -null set.

4 Deterministic and stochastic Bolza duality

For the rest of the paper, we shall assume that the Lagrangian L is independent of time, but
that it is convex, proper and lower semi-continuous in both variables. We then consider the dual
Lagrangian L̃ defined on M∗ ×M∗ by

L̃(v, q) := L∗(q, v)= sup{〈v, y〉 + 〈p, q〉 − L( y, p); ( y, p) ∈M ×M},
the corresponding fixed-end costs on M∗ ×M∗,

c̃T (u, v) := inf

{∫ T

0
L̃(γ (t), γ̇ (t)) dt; γ ∈C1([0, T], M∗); γ (0)= u, γ (T)= v

}
, (4.1)

and its associated optimal transport

C̃T (μ0,μT ) := inf

{∫
M∗×M∗

c̃T (x, y) d�; � ∈K(μ0,μT )

}
. (4.2)

More specifically, we shall assume the following conditions on L, which are weaker than (A1),
(A2), (A3) but for the crucial condition that L is convex in both variables.

(B1) L : M ×M→R∪ {+∞} is convex, proper, and lower semi-continuous in both vari-
ables.

(B2) The set F(x) := {p; L(x, p)<∞} is non-empty for all x ∈M , and for some � > 0, we have
dist(0, F(x)) � �(1+ |x|) for all x ∈M .

(B3) For all (x, p) ∈M ×M , we have L(x, p) � θ (max{0, |p| − α|x|})− β|x|, where α, β are
constants, and θ is a coercive, proper, and non-decreasing function on [0,∞).

These conditions on the Lagrangian make sure that the Hamiltonian H is finite, concave in x, and
convex in q, hence locally Lipschitz. Moreover, we have

ψ(x)− (γ |x| + δ)|q|� H(x, q) � ϕ(q)+ (α|q| + β)|x| for all x, q in M ×M∗, (4.3)

where α, β, γ , δ are constants, ϕ is finite and convex, and ψ is finite and concave (see [23]).
We note that under these conditions, the cost (x, y)→ cT (x, y) is convex proper and lower

semi-continuous on M ×M . But the cost bT is nicer in many ways. For one, it is everywhere
finite and locally Lipschitz continuous on [0,∞)×M ×M∗. However, the main addition in the
case of joint convexity for L is the following so-called Bolza duality that we briefly describe in
the deterministic case since it had been studied in-depth in various articles by T. Rockafellar [21]
and co-authors [22, 23]. The stochastic counterpart is more recent and has been established by
Boroushaki and Ghoussoub [9].
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We consider the path space A2
M :=A2

M [0, T]= {u : [0, T]→M ; u̇ ∈ L2
M } equipped with the

norm

‖u‖A2
M
=

(
‖u(0)‖2

M +
∫ T

0
‖u̇‖2dt

)1
2

.

Let L be a convex Lagrangian on M ×M as above, � be a proper convex lower semi-continuous
function on M ×M and consider the minimization problems,

(P) inf
{∫ T

0 L(γ (s), γ̇ (s)) ds+ �(γ (0), γ (T)); γ ∈C1([0, T], M)
}

, (4.4)

and

(P̃) inf
{∫ T

0 L̃(γ (s), γ̇ (s)) ds+ �∗(γ (0),−γ (T)); γ ∈C1([0, T], M)
}

. (4.5)

Theorem 5 Assume L satisfies (B1), (B2), and (B3), and that � is proper, lsc and convex.

1. If there exists ξ such that �(·, ξ ) is finite, or there exists ξ ′ such that �(ξ ′, ·) is finite, then

inf(P)=− inf(P̃).

This value is not +∞, and if it is also not −∞, then there is an optimal arc v(t) ∈A2

M

for (P̃).
2. A similar statement holds if we replace � by �̃ in the above hypothesis and (P̃) by (P) in

the conclusion.
3. If both conditions are satisfied, then both (P̃) and (P) are attained, respectively, by optimal

arcs v(t), x(t) in A2

M .

In this case, these arcs satisfy (v̇(t), v(t)) ∈ ∂L(x(t), ẋ(t)) for a.e. t, which can also be written in a
dual form (ẋ(t), x(t)) ∈ ∂L̃(v(t), v̇(t)) for a.e. t, or in a Hamiltonian form as

ẋ(t) ∈ ∂vH(x(t), v(t)), (4.6)

−v̇(t) ∈ ∂̃xH(x(t), v(t)), (4.7)

coupled with the boundary conditions

(v(0),−v(T)) ∈ ∂�(x(0), x(T)). (4.8)

See for example [21]. The above duality has several consequences.

Proposition 5 The value function 
g,+(t, x)= inf{g( y)+ ct( y, x); y ∈M}, which is the varia-
tional solution of the Hamilton–Jacobi equation (1.20) starting at g, can be expressed in terms
of the b and c̃ costs as follows:

1. If g is convex and lower semi-continuous, then 
g,+(t, x)= sup{bt(v, x)− g∗(v); v ∈M∗}
is convex lower semi-continuous for every t ∈ [0,+∞).

2. The convex Legendre transform of 
g,+ is given by the formula


̃g∗,+(t, w)= inf{g∗(v)+ c̃t(v, w); v ∈M∗}.
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3. For each t, the graph of the subgradient ∂
g,+(t, ·), i.e. �g(t)= {(x, v); v ∈ ∂
g,+(t, x)}
is a globally Lipschitz manifold of dimension n in M ×M∗, which depends continuously
on t.

4. If a Hamiltonian trajectory (x(t), v(t)) over [0, T] starts with v(0) ∈ ∂g(x(0)), then v(t) ∈
∂
g,+(t, x(t)) for all t ∈ [0, T]. Moreover, this happens if and only if x(t) is optimal in
the minimization problem that defines 
g,+(t, x) and v(t) is optimal in the minimization
problem that defines 
̃g∗,+(t, w).

Remark 3 The above shows that in the case when L is jointly convex, the corresponding forward
Hamilton–Jacobi equation has convex solutions whenever the initial state is convex, while the
corresponding backward Hamilton–Jacobi equation has concave solutions if the final state is
concave. Unfortunately, we shall see that in the mass transport problems we are considering,
one mostly propagates concave (resp., convex) functions forward (resp., backward), hence losing
their concavity (resp., convexity).

This said, the cost functionals cT , c̃T , bT are all value functions 
g starting or ending with
affine function g. Indeed, bt(v, x)=
g,+(t, x), when gv( y)= 〈v, y〉. In this case, g∗v(u)= 0 if u=
v and +∞ if u �= v, which yields that the Legendre dual of x→
g,+(t, x)= bt(v, x) is w→
c̃t(v, w). One can also deduce the following.

Proposition 6 Under assumptions (B1), (B2), (B3) on the Lagrangian L, the costs c and b have
the following properties:

1. For each t � 0, (x, y)→ ct(x, y) is convex proper and lower semi-continuous on M ×M.
2. For each t � 0, v→ bt(v, x) is concave on M∗, while x→ bt(v, x) is convex on M.

Moreover, b is locally Lipschitz continuous on [0,∞)×M ×M∗.
3. The costs b, c and c̃ are dual to each other in the following sense:

– For any (v, x) ∈M∗ ×M, we have bt(v, x)= inf{〈v, y〉 + ct( y, x); y ∈M}.
– For any ( y, x) ∈M ×M, we have ct( y, x)= sup{bt(v, x)− 〈v, y〉; v ∈M∗}.
– For any (v, x) ∈M∗ ×M, we have bt(v, x)= sup{〈w, x〉 − c̃t(v, w); w ∈M∗}.

4. The following properties are equivalent:
a. (−v, w) ∈ ∂y,xcT ( y, x);
b. w ∈ ∂xbT (v, x) and y ∈ ∂̃vbT (v, x).
c. There is a Hamiltonian trajectory (γ (t), η(t)) over [0, T] starting at ( y, v) and ending

at (x, w).

This leads us to the following standard condition in optimal transport theory.

Definition 7 A cost function c satisfies the twist condition if for each y ∈M , we have x= x′

whenever the differentials ∂yc( y, x) and ∂yc( y, x′) exist and are equal.

In view of the above proposition, cT satisfies the twist condition if there is at most one
Hamiltonian trajectory starting at a given initial state (v, y), while the cost bT satisfies the twist
condition if for any given states (v, w), there is at most one Hamiltonian trajectory starting at v
and ending at w.
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4.1 The stochastic Bolza duality and its applications

We now deal with the stochastic case. By denoting Ws one-dimensional Brownian motion, we
define the Itô space Ip

M consisting of all M-valued processes of the following form:

Ip
M =

{
X :�T→M ; X (t)= X0 +

∫ t

0
βX (s)ds+

∫ t

0
σX (s)dWs,

for X0 ∈ L2(�, F0, P; M), βX ∈ Lp(�T ; M), σX ∈ L2(�T ; M)

}
, (4.9)

where βX and σX are both progressively measurable and �T :=�× [0, T]. The cases of p=
1, 2,∞ will be of interest to us. We equip I2

M with the norm

‖X‖2
I2

M
=E

(
‖X (0)‖2

M +
∫ T

0
‖βX (t)‖2

M dt+
∫ T

0
‖σX (t)‖2

M dt

)
,

so that it becomes a Hilbert space. The dual space (I2
M )∗ can also be identified with L2(�; M)×

L2(�T ; M)× L2(�T ; M). In other words, each q ∈ (I2
M )∗ can be represented by the triplet

q= (q0, q1(t), Q(t)) ∈ L2(�; M)× L2(�T ; M)× L2(�T ; M),

in such a way that the duality can be written as follows:

〈X , q〉I2
M×(I2

M )∗ =E

{
〈q0, X (0)〉M +

∫ T

0
〈q1(t), βX (t)〉M dt+ 1

2

∫ T

0
〈Q(t), σX (t)〉M dt

}
. (4.10)

Similarly, the dual of I1
M can be identified with I∞M .

We shall use the following result recently established in [9].

Theorem 6 (Boroushaki–Ghoussoub) Let (�, F , Ft, P) be a complete probability space
with normal filtration, and let L(·, ·) and N be two (possibly �T dependent) jointly convex
Lagrangians on M ×M. Assume � is a (possibly � dependent) convex lsc function on M ×M.
Consider the Lagrangian on I2

M × (I2
M )∗ defined by

L(X , p)=E

{∫ T

0
L(X (t)− p1(t),−βX (t)) dt+ �(X (0)− p0, X (T))

+ 1

2

∫ T

0
N(σX (t)− P(t),−σX (t)) dt

}
, (4.11)

where p= (p0, p1(t), P(t)) ∈ L2(�; M)× L2(�T ; M)× L2(�T ; M). Its Legendre dual is then
given for each q := (0, q1, Q) by

L∗(q, Y )=E

{
�∗(−Y (0), Y (T))+

∫ T

0
L∗(−βY (t), Y (t)− q1(t)) dt

+ 1

2

∫ T

0
N∗(−σY (t), σY (t)−Q(t)) dt

}
.

Note that standard duality theory implies that in general

inf
X∈Ip

M

{L(X , 0)} ≥ sup
Y∈Ip

M

{−L∗(0, Y )}. (4.12)
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In our case, we shall restrict ourselves to processes of fixed diffusion. This facilitates the proving
of a stochastic analogue to Bolza duality for p= 1.

Proposition 8 Assume (�, L, N) satisfy the assumptions of Theorem 6 and the lagrangian
L̃ : (t, x, v) �→ L∗(t, v, x) satisfies (A2). If, furthermore, there exist (a.s.-)unique Y0 ∈ L2(�) such
that �∗(Y0, ·)<∞ and (a.s.-)unique σY ∈ L2(�T ) such that N∗(·, σY )<∞, then there is no
duality gap, that is,

inf
X∈I1

M

{L(X , 0)} = sup
Y∈I1

M

{−L∗(0, Y )}. (4.13)

Remark 4 Note that, unlike the deterministic case, there is no backwards condition that works if
there is an YT ∈ L2(�) such that �∗(·, YT )<∞, this is because stochastic processes, in general,
are irreversible.

Proof We proceed by a variational method outlined by Rockafellar [21]. First, we define

ϕ(q) := inf
Y∈I1

M

{L∗(q, Y )}. (4.14)

As the infimum of a jointly convex function, ϕ itself is convex. The benefit of this definition
is that

ϕ∗(X )= sup{〈X , q〉 −L∗(q, v); (q, v) ∈ I∞M × I1
M } =L∗∗(X , 0)=L(X , 0). (4.15)

Hence, X minimizes L if and only if

X ∈ ∂ϕ(0) ⇐⇒ ϕ(0)+ ϕ∗(X )= 0 ⇐⇒ L(X , 0)=− inf
Y∈I1

M

{L∗(0, Y )}. (4.16)

In other words, there is no duality gap if and only if ∂ϕ(0) is non-empty. Note that this holds if
there is an open (relative to {q; ϕ(q)<∞}) neighbourhood N of the origin in I∞M = (I1

M )∗ such
that L∗(q, Y )<∞ for q ∈N .

By our assumptions, we may fix Y0, σY to be the unique elements such that �∗(Y0, ·)<∞ and
N∗(·, σY )<∞ (guaranteeing subdifferentiability in these variables), and let Y = (Y0, βY , σY ) be
such that L∗(0, Y )<∞. Thus, for a perturbation V ∈ I∞M , V0 = σV = 0 is constrained and we
only concern ourselves with βV ∈ L∞(�T ). When our perturbation satisfies ‖βV‖∞ < ε, note that
(A2) gives for all (t, u) ∈ [0, T]×M∗,

L̃(Yt − βV , u)<
(
1+�L̃(0, ε)

)
L̃(Yt, u)+�L̃(0, ε), (4.17)

and if we let V = (0, βV , 0)

ϕ(V )= inf
Y∈I1

M

L∗(V , Y )

≤E�∗(−Y0, YT )+E

∫ T

0
L̃(Yt − βV (t),−βY (t)) dt+ 1

2
E

∫ T

0
N∗(−σY (t), σY (t)) dt

≤E�∗(−Y0, YT )+ (1+�L̃(0, ε))E
∫ T

0
L̃(Yt,−βY (t)) dt+ T�L̃(0, ε)

+ 1

2
E

∫ T

0
N∗(−σY (t), σY (t)) dt,

(4.18)
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which is finite for ‖βV‖∞ < ε sufficiently small by (A2). Hence, ϕ is finite and continuous in a
open set of the origin (all relative to its domain), and duality is achieved over Y ∈ I1

M .

Note that if L̃ satisfies (A1) then this optimum is achieved over Y ∈ I2
M . This is because

L∗(0, Y )=∞ for βY ∈ L1(�T ) \ L2(�T ). Indeed, in this case we have E
∫ T

0 L̃(Yt,−βY )≥
E
∫ T

0 L(βY ) dt≥CE
∫ T

0 |βY |2 − B dt=∞ (where C, B> 0 are fixed constants).

5 Maximizing the ballistic cost: Deterministic case

With Bolza duality in mind, we can now turn to the maximizing ballistic cost.

Theorem 7 Assume that L satisfies hypothesis (B1), (B2), and (B3), and let νT be a probabil-
ity measure with compact support on M, which is also absolutely continuous with respect to
Lebesgue measure. Then,

1. The following interpolation formula holds:

BT (μ0, νT )= sup{W (νT ,μ)− C̃T (μ0,μ); μ ∈P(M∗)}. (5.1)

The supremum is attained at some probability measure μT on M∗, and the final
Kantorovich potential for C̃T (μ0,μT ) is convex.

2. We also have the following duality formulae:

BT (μ0, νT )= inf

{∫
M

h(x) dνT (x)+
∫

M∗

̃0

h∗,−(v) dμ0(v); h convex in Lip(M)

}
. (5.2)

and

BT (μ0, νT )= inf

{∫
M

(
̃T
g,+)∗(x) dνT (x)+

∫
M∗

g(v) dμ0(v); g in Lip(M∗)
}

. (5.3)

3. There exists a convex function h : M∗ →R such that

BT (μ0, νT )=
∫

M∗
bT (v,∇h ◦ S̃Tv)dμ0(v), (5.4)

where S̃T (v)= π∗ϕH̃
T (v, d̃vh0), and ϕH̃

t being the Hamiltonian flow associated with L̃ (i.e.
H̃(v, x)=−H(x, v), and h0 = 
̃0

h,− is the solution h(0, v) of the backward Hamilton–Jacobi
equation (1.34) with h(T , v)= h(v). In other words, an optimal map for BT (μ0, νT ) is given
by the map x→∇h(π∗ϕH̃

T (v, d̃vh0)).
4. We also have

BT (μ0, νT )=
∫

M∗
bT (S∗T ◦ ∇h∗(x), x)dνT (x), (5.5)

where S∗T (v)= π∗ϕH∗
T (v,∇h) and ϕH∗

t the flow associated with the Hamiltonian H∗(v, x)=
−H(−x, v), whose Lagrangian is L∗(v, q)= L∗(−q, v).
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Proof To show (5.1) and (5.2), first note that for any probability measure μ on M∗, we have

BT (μ0, νT ) � W (νT ,μ)− C̃T (μ0,μ). (5.6)

Indeed, since νT is assumed to be absolutely continuous with respect to Lebesgue measure,
Brenier’s theorem yields a convex function h that is differentiable νT -almost everywhere on
M such that (∇h)#νT =μ, and W (νT ,μ)= ∫

M 〈x,∇h(x)〉 dνT (x). Let �0 be an optimal transport
plan for C̃T (μ0,μ), that is, �0 ∈K(μ0,μ) such that C̃T (μ0,μ)= ∫

M∗×M∗ c̃T (v, w) d�0(v, w).

Let �̃0 := S#�0, where S(v, w)= (v,∇h∗(w)), which is a transport plan in K(μ0, νT ). Since
bT (v, y) � 〈∇h(x), y〉 − c̃T (v,∇h(x)) for every ( y, x, v) ∈M ×M ×M∗, we have

BT (μ0, νT ) �
∫

M∗×M
bT (v, x) d�̃0(v, x)

�
∫

M∗×M
{〈∇h(x), x〉 − c̃T (v,∇h(x))}d�̃0(v, x)

=
∫

M
〈x,∇h(x)〉 dνT (x)−

∫
M∗×M∗

c̃T (v, w)}d�0(v, w)

= W (νT ,μ)− C̃T (μ0,μ).

To prove the reverse inequality, we use standard Monge–Kantorovich theory to write

BT (μ0, νT ) = sup

{∫
M∗×M

bT (v, x) d�(v, x); � ∈K(μ0, νT )

}

= inf

{∫
M

h(x) dνT (x)−
∫

M∗
g(v) dμ0(v); h(x)− g(v) � bT (v, x)

}
,

where the infimum is taken over all admissible Kantorovich pairs (g, h) of functions, that is, those
satisfying the relations

g(v)= inf
x∈M

h(x)− bT (v, x) and h(x)= sup
v∈M∗

bT (v, x))+ g(v).

Note that h is convex. Since the cost function bT is continuous, the supremum BT (μ0, νT ) is
attained at some probability measure�0 ∈K(μ0, νT ). Moreover, the infimum in the dual problem
is attained at some pair (g, h) of admissible Kantorovich functions. It follows that�0 is supported
on the set

O := {(v, x) ∈M∗ ×M ; bT (v, x)= h(x)− g(v)}.
We now exploit the convexity of h, and use the fact that for each (v, x) ∈O, the function y→
h( y)− g(v)− bT (v, y) attains its minimum at x, which means that ∇h(x) ∈ ∂xbT (v, x). But since
c̃T is the Legendre transform of bT with respect to the x-variable, we then have

bT (v, x)+ c̃T (v,∇h(x))= 〈x,∇h(x)〉 on O. (5.7)

Integrating with �0, we get since �0 ∈K(μ0, νT ),∫
M∗×M

bT (v, x) d�0 +
∫

M∗×M
c̃T (v,∇h(x))d�0 =

∫
M
〈x,∇h(x)〉 dνT . (5.8)
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Letting μT =∇h#νT , we obtain that

BT (μ0, νT )+
∫

M∗×M
c̃T (v,∇h(x))d�0 =W (νT ,μT ), (5.9)

where W (νT ,μT )= sup
{∫

M×M∗〈x, v〉 d�; � ∈K(νT ,μT )
}
. Note that we have used here that

h is convex to deduce that W (νT ,μT )= ∫
M 〈x,∇h(x) dμT by the uniqueness in Brenier’s

decomposition. We now prove that∫
M∗×M

c̃T (v,∇h(x))d�0 = C̃T (μ0,μT ). (5.10)

Indeed, we have
∫

M∗×M c̃T (v,∇h(x))d�0 � C̃T (μ0,μT ) since the measure �= S#�0, where
S(v, x)= (v,∇h(x)) has marginals μ0 and μT , respectively. On the other hand, (5.9) yields∫

M∗×M
c̃T (v,∇h(x))d�0 =

∫
M
〈x,∇h(x)〉 dνT (x)−

∫
M∗×M

bT (v, x) d�0

=
∫

M
h∗(∇h(x))dνT (x)+

∫
M

h(x) dνT (x)

+
∫

M∗
g(v) dμ0(v)−

∫
M

h(x) dνT (x)

=
∫

M∗
h∗(w)dμT (w)+

∫
M∗

g(v) dμ0(v).

Moreover, since h(x)− g(v) � b(v, x), we have h∗(w)+ g(v) � c̃T (v, w). Indeed, since for any
(v, w) ∈M∗ ×M∗, we have c̃(t, v, w)= sup{〈w, x〉 − bt(v, x); x ∈M}, it follows that for any
y ∈M ,

c̃T (v, w) � 〈w, y〉 − bT (v, y) � 〈w, y〉 + g(v)− h( y),

hence h∗(w)+ g(v) � c̃T (v, w), which means that the couple (−g, h∗) is an admissible
Kantorovich pair for the cost c̃T . Hence, we have

C̃T (μ0,μT ) �
∫

M∗×M
c̃T (v,∇h(x))d�0

=
∫

M
h∗(w)dμT (w)+

∫
M∗

g(v) dμ0(v)

� sup

{∫
M∗
ϕT (w) dμT (w)−

∫
M∗
ϕ0(v) dμ0(v); ϕT (w)− ϕ0(v) � c̃T (v, w)

}
= C̃T (μ0,μT ).

It follows that BT (μ0, νT )=W (νT ,μT )− C̃T (μ0,μT ). In other words, the supremum in (5.6) is
attained by the measure μT . Note that the final optimal Kantorovich potential for C̃T (μ0,μT ) is
h∗, and hence is convex.

The first duality formula (5.3) follows since we have established that if (g, h) are an optimal
pair of Kantorovich functions for BT (μ0, νT ), then (g, h∗) are an optimal pair of Kantorovich
functions for C̃T (μ0,μT ). In other words, the initial Kantorovich function for BT (μ0, νT ) is
g= 
̃h∗,−(0, ·). This proves formula (5.2).
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To show (5.3), we can – now that the interpolation (5.1) is established – proceed as in Section
2, by identifying the Legendre transform of the functionals ν→W (ν, νT ) and μ→ C̃T (μ,μT ).

To prove Part (3), use first the interpolation inequality to write

BT (μ0, νT )=W (νT ,μT )− C̃T (μ0,μT ),

for some probability measure μT . The proof also shows that there exists a convex func-
tion h : M∗ →R and another function k : M∗ →R such that (∇h)#μT = νT , W (νT ,μT )=∫

M 〈∇h(v), v〉dμT (v), and C̃T (μ0,μT )= ∫
M∗ h(u) dμT (u)− ∫

M∗ k(v) dμ0(v). Now use the theo-
rem of Fathi–Figalli to write

C̃T (μ0,μT )=
∫

M∗
cT (v, S̃Tv)dμ0(v), (5.11)

where S̃T (v)= π∗ϕH̃
T (v, d̃vk). Note that

BT (μ0, νT ) �
∫

M∗ bT (v,∇h ◦ S̃T (v))dμ0(v), (5.12)

since (S̃T )#μ0 =μT and ∇h#μT = νT , and therefore (Id×∇h ◦ S̃T )#μ0 belongs to K(μ0, νT ).
On the other hand, since bT (u, x) � 〈∇h(v), x〉 − c̃T (u,∇h(v)) for every v ∈M∗, we have

BT (μ0, νT ) �
∫

M∗
bT (v,∇h ◦ S̃T (v))dμ0(v)

�
∫

M∗

{
〈∇h ◦ S̃T (v), S̃T (v)〉 − c̃T (v, S̃T (v))

}
dμ0(v)

=
∫

M∗
〈∇h(v), v〉dμT (v)−

∫
M∗

c̃T (v, S̃T (v)) dμ0(v)

= W (νT ,μT )− C̃T (μ0,μT )

= BT (μ0, νT ).

It follows that BT (μ0, νT )= ∫
M∗ bT (v,∇h ◦ S̃T (v))dμ0(v).

To get Part (4), use the pushforward νT = (∇h ◦ S̃T )#μ0 to write the above in terms of the
measure νT , using the fact that (∇h)−1 =∇h∗ and S̃−1

T = S∗T where S∗T (v)= π∗ϕH∗
t (v, d̃vh) and

ϕ
H∗
t is the Hamiltonian flow associated with the Hamiltonian H∗(v, x) :=−H(−x, v). This gives

us

BT (μ0, νT )=
∫

M∗
bT (S∗T ◦ ∇h∗(x), x)dνT (x)=

∫
M∗

bT (π∗ϕH∗
t (∇h∗(x), d̃vh), x)dνT (x).

Since h is convex, we have that d̃xh=∇h(x), and hence d̃∇h∗(x)h=∇h ◦ ∇h∗(x)= x, which yields
our claim that

BT (μ0, νT )=
∫

M
bT (π∗ϕH̃

T (∇h∗(x), x), x)dνT (x).

Remark 5 While the costs c and c̃T are themselves jointly convex in both variables, one cannot
deduce much in terms of the convexity or concavity of the corresponding Kantorovich potentials.
However, we note that the interpolation (2.2) of BT (μ0, νT ) selects a ν0 such that CT (ν0, νT ) has
a concave initial Kantorovich potential, while the interpolation (5.1) of BT (μ0, νT ) selects a μT

such that C̃T (μ0,μT ) has a convex final Kantorovich potential.
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Furthermore, one wonders whether the formula

ct( y, x)= sup{bt(v, x)− 〈v, y〉; v ∈M∗}, (5.13)

also extends to Wasserstein space. We show it under the condition that the initial Kantorovich
potential of CT (ν0, νT ) is concave, and conjecture that it is also a necessary condition.

Theorem 8 Assume M =Rd and that L satisfies hypothesis (B1), (B2), and (B3). Assume ν0 and
νT are probability measures on M such that ν0 is absolutely continuous with respect to Lebesgue
measure. If the initial Kantorovich potential of CT (ν0, νT ) is concave then the following holds:

CT (ν0, νT )= sup{BT (μ, νT )−W (ν0,μ); μ ∈P(M∗)}, (5.14)

and the supremum is attained.

Proof Again, it is easy to show that

CT (ν0, νT ) � sup{BT (μ, νT )−W (ν0,μ); μ ∈P(M∗)}. (5.15)

To prove equality, we assume that the initial Kantorovich potential g is concave and write

CT (ν0, νT ) = inf

{∫
M×M

cT ( y, x) d�( y, x); � ∈K(ν0, νT )

}

= sup

{∫
M

h(x) dνT (x)−
∫

M
g( y) dν0( y); h(x)− g( y) � cT ( y, x)

}
.

Since the cost function cT is continuous, the infimum CT (ν0, νT ) is attained at some probability
measure �0 ∈K(ν0, νT ). Moreover, the infimum in the dual problem is attained at some pair
(g, h) of admissible Kantorovich functions. It follows that �0 is supported on the set

O := {( y, x) ∈M ×M ; cT ( y, x)= h(x)− g( y)}.
Since g is concave, use the fact that for each ( y, x) ∈O, the function z→ h(x)− g(z)− cT (z, x)
attains its maxmum at y, to deduce that −∇g( y) ∈ ∂ycT ( y, x).

Since g concave and bt(v, x)= inf{〈v, z〉 + ct(z, x); z ∈M}, this means that for ( y, x) ∈O,

cT ( y, x)= bT (∇g( y), x)− 〈∇g( y), y〉. (5.16)

Integrating with �0, we get since �0 ∈K(ν0, νT ),∫
M×M

cT ( y, x) d�0 =
∫

M×M
bT (∇g( y), x) d�0 −

∫
M
〈∇g( y), y〉 dν0. (5.17)

Letting μ0 = (∇g)#ν0, and since g is concave, we obtain that

CT (ν0, νT )=
∫

M×M
bT (∇g( y), x) d�0 −W (ν0,μ0). (5.18)

We now prove that ∫
M×M

bT (∇g( y), x) d�0( y, x)= BT (μ0, νT ). (5.19)
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Indeed, we have
∫

M×M bT (∇g( y), x) d�0 � BT (μ0, νT ), since the measure �= S#�0 where
S( y, x)= (∇g( y), x) has μ0 and νT as marginals. On the other hand, (5.18) yields∫

M×M
bT (∇g( y), x) d�0 =

∫
M×M

cT ( y, x) d�0 +
∫

M
〈y,∇g( y)〉 dν0( y)

=
∫

M
h(x) dνT (x)−

∫
M

g( y) dν0( y)

−
∫

M
(−g)∗(−∇g( y))dν0( y)+

∫
M

g( y) dν0( y)

=
∫

M
h(x) dνT (x)−

∫
M∗

(−g)∗(−v)dμ0(v).

Moreover, since h(x)− g( y) � cT ( y, x), it is easy to see that h(x)− (−g)∗(−v) � bT (v, x), that is
the couple ((−g)∗(−v), h(x)) is an admissible Kantorovich pair for the cost bT . It follows that

BT (μ0, νT ) �
∫

M×M
bT (∇g( y), x) d�0

=
∫

M
h(x) dνT (x)−

∫
M

(−g)∗(−v)dμ0(v)

� sup

{∫
M
ϕT (x) dμT (x)−

∫
M∗
ϕ0(v) dμ0(v); ϕT (x)− ϕ0(v) � bT (v, x)

}
= BT (μ0, νT ),

and CT (ν0, νT )= BT (μ0, νT )−W (ν0,μ0). In other words, the supremum in (5.14) is attained by
the measure μ0.

Corollary 9 Assume M =Rd and that L satisfies hypothesis (B1), (B2), and (B3). Assume ν0 and
νT are probability measures on M such that ν0 is absolutely continuous with respect to Lebesgue
measure, and that the initial Kantorovich potential of CT (ν0, νT ) is concave. If bT satisfies the
twist condition, then there exists a map X T

0 : M∗ →M and a concave function g on M such that

CT (ν0, νT )=
∫

M
cT ( y, X T

0 ◦ ∇g( y))dν0( y). (5.20)

Proof In this case, CT (ν0, νT )= BT (μ0, νT )−W (ν0,μ0), for some probability measure μ0

on M∗. Let g be the concave function on M such that (∇g)#ν0 =μ0 and W (ν0,μ0)=∫
M 〈∇g( y), y〉dν0( y). Since bT satisfies the twist condition, there exists a map X T

0 : M∗ →M such
that (X T

0 )#μ0 = νT and

BT (μ0, νT )=
∫

M∗
bT (v, X T

0 v)dμ0(v). (5.21)

Note that the infimum CT (ν0, νT ) is attained at some probability measure�0 ∈K(ν0, νT ) and that
�0 is supported on a subset O of M ×M such that for ( y, x) ∈O, cT ( y, x)= bT (∇g( y), x)−
〈∇g( y), y〉. Moreover, CT (ν0, νT )= ∫

M×M bT (∇g( y), x) d�0 −W (ν0,μ0), and∫
M×M

bT (∇g( y), x) d�0 = BT (μ0, νT )=
∫

M∗
bT (v, X T

0 v)dμ0(v)

=
∫

M
bT (∇g( y), X T

0 ◦ ∇g( y))dν0( y).
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Since bT satisfies the twist condition, it follows that for any ( y, x) ∈O, we have that
x= X T

0 ◦ ∇g( y) from which follows that CT (ν0, νT )= ∫
M cT ( y, X T

0 ◦ ∇g( y))dν0( y).

Corollary 10 Consider the cost c1( y, x)= c(x− y), where c is a convex function on M and
let ν0, ν1 be probability measures on M such that the initial Kantorovich potential associated
with CT (ν0, νT ) is concave. Then, there exist concave functions ϕ : M→R, ψ : M∗ →R and a
probability measure μ0 on M∗ such that

(∇ψ ◦ ∇ϕ)#ν0 = ν1, (5.22)

and

C1(ν0, ν1)+
∫

M∗
c∗(v) dμ0(v)=

∫
M

c(∇ψ ◦ ∇ϕ( y)− y)dν0( y)

=
∫

M
〈∇ψ∗( y)−∇ϕ( y), y〉 dν0( y). (5.23)

Proof The cost c(x− y) corresponds to c1( y, x), where the Lagrangian is L(x, v)= c(v), that is,

c1( y, x)= inf

{∫ 1

0
c(γ̇ (t)) dt; γ ∈C1([0, 1), M); γ (0)= y, γ (1)= x

}
= c(x− y). (5.24)

It follows from (5.14) that there is a probability measure μ0 on M∗ such that C1(ν0, ν1)=
B1(μ0, ν1)−W (ν0,μ0). But in this case, b1(v, x)= inf{〈v, y〉 + c(x− y); y ∈M} = 〈v, x〉 −
c∗(v), and hence we have

C1(ν0, ν1)= B1(μ0, ν1)−W (ν0,μ0)=W (μ0, ν1)−
∫

M∗
c∗(v) dμ0(v)−W (ν0,μ0). (5.25)

In other words,

C1(ν0, ν1)+K =W 1(μ0, ν1)−W (ν0,μ0), (5.26)

where K is the constant
∫

M∗ c∗(v) dμ0(v).
Apply Brenier’s theorem twice to find concave functions ϕ : M→R and ψ : M∗ →R such

that (∇ϕ)#ν0 =μ0, (∇ψ)#μ0 = ν1 and

W (ν0,μ0)= ∫
M 〈 y,∇ϕ( y)〉 dν0( y) and W (μ0, ν1)= ∫

M∗〈v,∇ψ(v)〉 dμ0(v).

It follows from the preceding corollary that

C1(ν0, ν1)+K =
∫

M
c1( y,∇ψ ◦ ∇ϕ( y))dν0( y)=

∫
M

c(∇ψ ◦ ∇ϕ( y)− y)dν0( y).

Note also that

C1(ν0, ν1)+K =
∫

M
〈v,∇ψ(v) dμ0(v)−

∫
M
〈y,∇ϕ( y) dν0( y)

=
∫

M
〈∇ψ∗( y), y〉 dν0( y)−

∫
M
〈y,∇ϕ( y) dν0( y)

=
∫

M
〈∇ψ∗( y)−∇ϕ( y), y〉 dν0( y).
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6 Maximizing the ballistic cost: Stochastic case

Define the transportation cost between two random variables V on M∗ and X on M by

bs
T (V , Y ) := inf

{
E

[
〈V , X (0)〉 +

∫ T

0
L(Xt, βX (t)) dt

]
; X ∈A, X (T)= Y a.s.

}
, (6.1)

where A indicates Itô processes with Brownian diffusion. The minimizing ballistic cost
considered earlier is then

Bs
T (μ0, νT )= inf

{
bs

T (V , Y ); V ∼μ0, Y ∼ νT

}
, (6.2)

while the maximizing cost is defined as follows:

B
s
T (μ0, νT ) := sup

{
bs

T (V , Y ); V ∼μ0, Y ∼ νT

}
. (6.3)

Theorem 9 Assume L is a Lagrangian on M ×M∗ such that L and its dual L∗ satisfies (A0)–(A3).

1. The following formula then holds:

B
s
T (μ0, νT ) := sup

{
E

[
〈X , V (T)〉 −

∫ T

0
L̄(V , βV (t, V )) dt

]
; V ∈A, V0 ∼μ0, X ∼ νT

}
.

(6.4)
where L̄(x, p) := L∗(−p,−x).

2. The following duality holds:

B
s
T (μ0, νT )= sup

{
W (μ, νT )− C̄s

T (μ0,μ); μ ∈P1(M∗)
}
, (6.5)

where C̄s
T is the action corresponding to the Lagrangian L̄.

3. If μ0 ∈P1(M∗), νT has compact support, and B(μ0, νT )<∞, then

Bs(μ0, νT )= inf

{∫
M

g dνT +
∫

M∗
�̄0

g∗,− dμ0; g ∈C∞db (M) and convex

}
, (6.6)

where �̄g∗,− solves the Hamilton–Jacobi–Bellman equation on M∗

∂ψ

∂t
+ 1

2
�ψ −H(∇vψ , v)= 0 ψ(v, T)= g∗(v). (HJB2)

where H(x, v) :=H(−x,−v) is the Hamiltonian associated with L.

Proof (1) For a fixed pair (V , Y ), we consider the Bolza energy L(V ,Y ) –defined in (4.11)–
associated with L and the two Lagrangians � and M defined as follows:

�(V ,Y )(ω, x0, xT ) :=
{
〈x0, V (ω)〉 xT = Y (ω)

∞ else
N(σ , τ ) :=

{
τ + 1 σ = 1

∞ else.
(6.7)

Note that the minimizing stochastic cost can be written as follows:

Bs(μ0, νT ) := inf
{

inf
{L(V ,Y )(X (t), 0); X ∈ I1

M

}
; V ∼μ0, Y ∼ νT

}
(6.8)

while the maximizing cost is

Bs(μ0, νT )= sup
{

inf
{L(V ,Y )(X (t), 0); X ∈ I1

M

}
; V ∼μ0, Y ∼ νT

}
. (6.9)

https://doi.org/10.1017/S0956792519000032 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792519000032


1294 A. Barton and N. Ghoussoub

Applying Bolza duality turns the infimum to a supremum:

Bs(μ0, νT )= sup
{

sup
{−L∗(V ,Y )(0, X (t)); X ∈ I1

M

}
; V ∼μ0, Y ∼ νT

}
, (6.10)

which results in (6.4).
(2) With equation (6.4) in hand, the proof of the interpolation result can now follow closely the
proof for the minimization problem. As in that proof, showing

B(μ0, νT )≤ sup
{

W (μ, νT )− C̄s
T (μ0,μ);μ ∈P1(M∗)

}
(6.11)

is merely a case of expanding out definitions, while the reverse direction can be shown by con-
structing a sequence random variables distributed according to the optimal transport measures.
(3) We again try to identify the Legendre transforms of the functionals ν �→W (μ, ν) and
μ→ C̄s

T (μ0,μ). We obtain easily that

• If μ ∈P1(M∗) has compact support, then for all f ∈ Lip(M), then

sup
ν∈P1(M)

{∫
M

f dν +W (μ, ν)

}
=

∫
M∗

(−f )∗ dμ.

• If g ∈C∞db (M∗), then

sup
μ∈P1(M∗)

{∫
M∗

g dμ− C̄s
T (μ0,μ)

}
=

∫
M∗
�̄g,− dμ0.

Define Bμ0 : ν �→ BT (μ0, ν), and note that the interpolation formula (6.5) and a result of Mikima–
Thieullen [18] (Lemma 3.2) concerning the convexity of C̄s

T yields that Bμ0 is a concave function.
Furthermore it is weak�-upper semi-continuous on P1(M). Thus, we have

Bμ0 (νT )=−(−Bμ0 )∗∗(νT )= inf
f ∈Lip(M)

{
−

∫
M

f dνT + (−Bμ0 )∗( f )

}
. (6.12)

Investigating the dual, we find

(−Bμ0 )∗( f )= sup
ν∈P1(M)

{∫
M

f dν + Bμ0 (ν)

}

= sup
μ∈P1(M∗)
ν∈P1(M)

{∫
M

f dν +W (μ, ν)− C̄s
T (μ0,μ)

}

= sup
μ∈P1(M∗)

{∫
M∗

(−f )∗ dμ− C̄s
T (μ0,μ)

}
. (6.13)

Note that in the case where (−f )∗ ∈C∞db , this is simply
∫

M∗ �̄(−f )∗,− dμ0, yielding

Bν0 (μT )≤ inf
(−f )∗∈C∞db

{
−

∫
M∗

f dμT +
∫

M∗
�̄(−f )∗,− dμ0

}
.

In either case, we can restrict our f to be concave by noting that if we fix g= (−f )∗, then the set
of corresponding {−f ; (−f )∗ = g} is minimized by the convex function g∗ = (−f )∗∗ ≤−f [11,
Proposition 4.1]. Thus it suffices to consider f convex.
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We now show that it is sufficient to consider this infimum over convex g ∈C∞db by a sim-
ilar mollification argument to that used for B (note that the mollifying preserves convexity).
Maintaining the same assumptions and notation as in our earlier argument, we first note a useful
application of Jensen’s inequality to the legendre dual of a mollified function:

g∗ε (v)= sup
x

{〈v, x〉 −E [g(x+Hε)]
} (J)≤ sup

x
{〈v, x〉 − g(x)} = g∗(v).

Mikami [18, Proof of Theorem 2.1] further shows that

(6.13)=C∗ν0
(gε)≤

C∗ν0∗ηε ((1+�L(0, ε))g)

1+�L(0, ε)
+ T

�L(0, ε)

1+�L(0, ε)
.

Putting these together, we get∫
g∗ε dμT + (−Bν0 )∗(g∗ε ) dν0 ≤

∫
g∗ dμT +

C∗ν0∗ηε ((1+�L(0, ε))g)

1+�L(0, ε)
+ T

�L(0, ε)

1+�L(0, ε)
.

Once we take the infimum over convex g ∈ Lip(M), we get

inf

{∫
g∗ dμT +

(−Bν
)∗

(−g∗); g convex in C∞db

}
≤ −(−B)∗∗ν0∗ηε (μL,ε)

1+�L(0, ε)
+ T

�L(0, ε)

1+�L(0, ε)
,

where dμL,ε(v) := dμT ((1+�L(0, ε)) v). Taking ε↘ 0 dominates the right side by B(μ0, νT )
(where we exploit the upper semi-continuity of B), completing the reverse inequality.

Corollary 11 (Optimal Processes for B) Suppose the assumptions on Theorem 9 are satisfied,
with μ0 absolutely continuous with respect to Lebesgue measure. Then, the pair (V , X ) is opti-
mal for (6.3) if and only if there is an Ito process V (t) that satisfies the backward stochastic
differential equation:

dV = ∇pH(∇ψ(t, V ), V ) dt+ dWt, (6.14)

X = ∇ψ̄(V (T)), (6.15)

where limn→∞ ψn(T , x)→ ψ̄(x) νT -a.s. and limn→∞ ψn(t, x)=ψ(t, x) PV -a.s. for some sequence
ψn(t, x) that solves (HJB2) in such a way that ψ0

n =ψn(0, ·) and ψT
n =ψn(T , ·) are a minimizing

pair for the dual problem.

Proof If (V , X ) is optimal, then Theorem 9 means there exists a sequence of solutions ψn(t, v)
to (HJB2) with convex final condition ψT

n , such that

E

[
〈X , V (T)〉 −

∫ T

0
L̄(V , βV (t, V )) dt

]
= lim

n→∞E

[(
ψT

n

)∗
(X )+ψ0

n (V (0))
]
, (6.16)

which we write as

lim
n→∞E

[(
ψT

n

)∗
(X )+ψT

n (V (T))−ψT
n (V (T))+ψ0

n (V (0))
]
.

Applying Itô’s formula to the last two terms, with the knowledge that ψn satisfies (HJB2), we get

E
[−ψT

n (V (T))+ψ0
n (V (0))

]=E

[∫ T

0
−〈βV ,∇ψ t

n(V (t))〉 −H(∇ψ t
n(V (t)), V (t)) dt

]
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However, by the definition of the Hamiltonian, we have −〈q, x〉 −H(x, v)≥−L̄(v, q), simi-
larly ψ∗(v)+ψ(x)≥ 〈v, x〉. These inequalities allow us to separate the limit in (6.16) into two
requirements:

(a) 〈βV ,∇ψ t
n(V (t))〉 +H(∇ψ t

n(V (t)), V (t)) must converge to L̄(V , βV (t, V )) and
(b) ψT

n (V (T))+ (
ψT

n

)∗
(X ) must converge to 〈X , V (T)〉 in L1 hence a subsequence ψnk exists

such that this convergence is a.e.

The journey from (a) to (6.14) is as in Corollary 4. The only difference from the earlier
corollary is that we know that ψn must converge to a convex function, so (b) implies X =
∇ limn→∞ ψn(V (T)).

7 Final remarks

The interpolation formula can be seen as a Hopf–Lax formula on Wasserstein space. Indeed,
define for a fixed μ0 on M∗ (resp., fixed νT on M), the following function Bμ0 (resp., BνT ) of the
terminal (resp., initial) measure,

Bμ0 (t, ν)= inf
{Uμ0 (�)+Ct(�, ν); � ∈P(M)

}
, (7.1)

and

BνT (t,μ)= inf
{U νT (�)− C̃t(�,μ); � ∈P(M∗)

}
, (7.2)

where

Uμ0 (�)=W (μ0, �) and U νT (�)=W (νT , �).

The following Eulerian formulation illustrates best how Bμ0 (t, ν) and BνT (t,μ) can be repre-
sented as value functionals on Wasserstein space. Indeed, lift the Lagrangian L to the tangent
bundle of Wasserstein space via the formula

L(�, w);= ∫
M L(x, w(x)) d�(x) and L̃(�, w);= ∫

M∗ L̃(x, w(x)) d�(x),

where � is any probability density on M (resp., M∗) and w is a vector field on M (resp., M∗). By
noting that Bμ0 (T , ν)= BT (μ0, ν), one deduces the following.

Corollary 12 Assume L satisfies hypothesis (A0) and (A1), and let μ0 be a probability measure
on M∗ with compact support, then

Bμ0 (T , ν) = inf

{
Uμ0 (�0)+

∫ T

0
L(�t, wt)dt; ∂t�+∇ · (�w)= 0, �T = ν

}
, (7.3)

where the set of pairs (�, w) considered above are such that t→ �t ∈P1(M) (resp., t→wt(x) ∈
Lip(Rn)) are paths of Borel fields.

One can then ask whether these value functionals also satisfy a Hamilton–Jacobi equation on
Wasserstein space such as {

∂tB+H(t, ν,∇νB(t, ν))= 0,

B(0, ν)=W (μ0, ν).
(7.4)
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Here the Hamiltonian is defined as follows:

H(ν, ζ )= sup
{∫
〈ζ , ξ 〉dν −L(ν, ξ ); ξ ∈ T∗ν (P(M))

}
.

We note that Ambrosio–Feng [3] have shown recently that – at least in the case where the
Hamiltonian is the square – value functionals on Wasserstein space yield a unique metric vis-
cosity solution for (7.4). As importantly, Gangbo–Sweich [15] have shown recently that under
certain conditions, value functionals yield solutions to the so-called Master equations of mean
field games [10]. We refer to their paper for the relevant definitions.

Theorem 10 (Gangbo–Swiech) Assume U0 : P(M)→R, and U0 : M ×P(M)→R are func-
tionals such that ∇xU0(x,μ)≡∇μU0(μ)(x) for all x ∈M, μ ∈P(M), and consider the value
functional:

U (t, ν)= inf

{
U0(�0)+

∫ t

0
L(�, w)dt; ∂t�+∇ · (�w)= 0, �T = ν

}
.

Then, there exists U : [0, T]×M ×P(M)→R such that

∇xUt(x, ν)≡∇νUt(ν)(x) for all x ∈M, ν ∈P(M),

and U satisfies the Master equation (7.5).

Applied to the value functional Bμ0 (t, ν) := Bt(μ0, ν), this should then yield the existence, for
any probabilities μ0, νT , of a function β : [0, T]×M ×P(M)→R such that

∇xβ(t, x, ν)≡∇νBμ0 (t, ν)(x) for all x ∈M , ν ∈P(M),

and � ∈ AC2((0, T)×P(M)) such that⎧⎪⎪⎨
⎪⎪⎩
∂tβ +

∫ 〈∇νβ(t, x, ν) · ∇H(x,∇xβ)〉 dν +H(x,∇xβ(t, x, ν))= 0,

∂t�+∇(�∇H(x,∇xβ))= 0,

β(0, ·, ·)= β0, �(T , ·)= νT ,

(7.5)

where β0(x, �)= ϕ�(x), where ϕ� is the convex function such that ∇ϕ� pushes μ0 into �.
We may furthermore derive a Eulerian formulation of the minimizing stochastic problem.

Recall that in Corollary 4 we showed that the optimal process for the minimizing stochastic
cost is Markovian. Hence, its drift may be described by a vector field, allowing an Eulerian
formulation of the process:

Corollary 13 Assume L satisfies the assumptions (A0)–(A3), then

Bμ0 (T , ν) : = Bs
T (μ0, ν)

= inf{Uμ0 (�0)+
∫ T

0
L(t, �t, wt) dt; ∂t�+∇ · (w�)− 1

2
��= 0, �T = ν}. (7.6)

Finally, we mention that one would like to consider value functionals on Wasserstein space that
are more general than those starting with the Wasserstein distance. One can still obtain such
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functionals via mass transport by considering more general ballistic costs of the form

bg(T , v, x) := inf

{
g(v, γ (0))+

∫ T

0
L(γ (t), γ̇ (t)) dt; γ ∈C1([0, T], M)

}
, (7.7)

where g : M∗ ×M→R is a suitable function.
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