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The relationship between nonlinear equilibrium solutions of the full Navier–Stokes
equations and the high-Reynolds-number asymptotic vortex–wave interaction (VWI)
theory developed for general shear flows by Hall & Smith (J. Fluid Mech., vol. 227,
1991, pp. 641–666) is investigated. Using plane Couette flow as a prototype shear
flow, we show that all solutions having O(1) wavenumbers converge to VWI states
with increasing Reynolds number. The converged results here uncover an upper branch
of VWI solutions missing from the calculations of Hall & Sherwin (J. Fluid Mech.,
vol. 661, 2010, pp. 178–205). For small values of the streamwise wavenumber, the
converged lower-branch solutions take on the long-wavelength state of Deguchi, Hall
& Walton (J. Fluid Mech., vol. 721, 2013, pp. 58–85) while the upper-branch solutions
are found to be quite distinct, with new states associated with instabilities of jet-like
structures playing the dominant role. Between these long-wavelength states, a complex
‘snaking’ behaviour of solution branches is observed. The snaking behaviour leads to
complex ‘entangled’ states involving the long-wavelength states and the VWI states.
The entangled states exhibit different-scale fluid motions typical of those found in
shear flows.
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1. Introduction
This paper concerns the manner in which nonlinear equilibrium solutions associated

with shear flows at finite Reynolds number deform in the high-Reynolds-number limit.
Such solutions have been investigated in plane Couette flow by a number of authors,
dating back to Nagata (1990) and more recently including Waleffe (2003), Wang,
Gibson & Waleffe (2007), Gibson, Halcrow & Cvitanovic (2009) and Schneider,
Gibson & Burke (2010), for example. These solutions are sometimes referred to as
‘exact coherent structures’ and were classified as lower- or upper-branch solutions
by following them back to the saddle–node bifurcation describing their birth. The
lower-branch solutions were subsequently found to play the role of edge states
separating laminar and turbulent attractors (see Itano & Toh 2001; Skufca, Yorke &
Eckhardt 2006), whilst upper-branch solutions produce bifurcation cascades of new
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100 K. Deguchi and P. Hall

solutions which eventually lead to the formation of chaotic sets (Kreilos & Eckhardt
2012).

At about the same time as Nagata (1990) produced the first equilibrium states for
plane Couette flow, Hall & Smith (1989, 1990, 1991) independently laid down a
formal asymptotic fully nonlinear framework for what was described as vortex–wave
interaction theory (VWI). The framework given is a quite general approach and
can be applied to both inviscid (Rayleigh) and viscous (Tollmien–Schlichting)
waves interacting with streamwise vortices. Motivated by the numerical results of
Wang et al. (2007), Hall & Sherwin (2010, hereafter referred to as HS) applied
the Hall & Smith (1991) formulation to plane Couette flow and showed that the
high-Reynolds-number fates of the lower-branch nonlinear equilibrium solutions
were simply vortex–Rayleigh wave interaction states which could be predicted with
remarkable accuracy by numerical solution of the VWI equations. The work of HS
was subsequently extended to a range of spanwise wavenumbers by Blackburn, Hall
& Sherwin (2013), and it was shown that as the spanwise wavenumber β increases,
the VWI states deform into canonical states localized away from any boundaries
and satisfying the Kolmogorov 5/3 law. However, as was the case in HS, only a
single lower-branch state was found for a given streamwise wavenumber α in a range
(0, αc(β)), and the question of whether there is an upper-branch asymptotic state
beyond the turning point α = αc was left unanswered.

At long streamwise wavelengths of size comparable to the Reynolds number, the
VWI theory fails and the states become long-wavelength asymptotic structures as
described by Deguchi, Hall & Walton (2013). Henceforth, we refer to that paper as
DHW, where it was found that as α decreased the solutions could not be continued
indefinitely, because spatial localization in the streamwise direction occurred, with the
flow having the tendency to develop an O(1) streamwise length scale excluded from
the long-wavelength theory.

Here we resolve all the issues surrounding the fate of equilibrium solutions of
plane Couette flow in the high-Reynolds-number limit. In the next section we
will write down the equations of motion and the briefest of descriptions of our
numerical procedure. The VWI theory and the long-wavelength theory are formally
valid as the Reynolds number goes to infinity, and the challenge is to see how the
finite-but-large-R calculations conform with those asymptotic predictions. Section 3
concerns the development of the equilibrium solutions towards the VWI asymptotic
structure, and in § 4 we show how the VWI structure fails at small α. Finally, in § 5,
we draw some conclusions.

2. Formulation of the problem

We are concerned with solutions of the Navier–Stokes equations in a channel with
rigid walls moving in opposite directions at equal speeds. Couette flow is a solution
to this problem, but here we seek more general steady solutions periodic in the x
and z directions with respect to Cartesian coordinates with wavenumbers α and β,
respectively. We take the steady Navier–Stokes and continuity equations written in the
form

(u · ∇)u=−∇p+ R−1∇2u, ∇ · u= 0. (2.1a,b)

Here R is the Reynolds number (based on the half-height of the channel and the wall
speed) and we have taken Cartesian coordinates x, y, z with the x axis pointing in the
direction of motion of the walls and y and z measuring dimensionless distance in the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

23
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.234


High-Reynolds-number equilibria 101

normal and spanwise directions, respectively. The velocity field u satisfies the no-slip
conditions

u= (±1, 0, 0) at y=±1. (2.2)

The numerical approach used here has been developed over a number of years by
Nagata and his colleagues. In the present case, the implementation of the code is
close to that described in DHW. The method utilizes a Galerkin spectral approach
with Chebyshev polynomials used in the normal direction and Fourier series in the
other two directions. Newton iteration was used to find equilibrium solutions with the
initial guess provided by a ‘nearby’ already-computed solution, beginning with the
well-known solutions due to Nagata (1990). The iteration is terminated when the norm
of the residual normalized by the norm of the linear part of the equations becomes
smaller than 10−10. The number of modes used in each direction to achieve graphical
accuracy was of course constantly monitored, and the level of approximation needed
for different configurations will be given. Our computations typically ensure three-digit
accuracy for the wall drag correction. In order to follow the solution branches at small
streamwise wavenumbers, α . 0.2, 90 streamwise modes were needed. On the other
hand, for moderate wavenumbers at high Reynolds number where the solutions have
a sharp structure in the y–z plane, the maximum number of basis functions used in
the y and z directions were 120 and 40, respectively.

3. The approach to VWI states at increasing Reynolds numbers
The high-R theory of Hall & Smith (1991) shows that the stationary VWI solution

of (2.1) takes the form

u= [U, R−1V, R−1W](y, z)+ R−7/6ũ(x, y, z)+ · · · , (3.1a)
p= R−2P(y, z)+ R−7/6p̃(x, y, z)+ · · · , (3.1b)

where U is the streak flow, [V, W] is a two-dimensional roll flow, ũ is a three-
dimensional wave and P and p̃ are the corresponding pressure fields. The roll, streak
and wave are taken to be periodic in x∈ [0, 2π/α] and z∈ [0, 2π/β]. The key feature
of VWI is the decoupling of the vortex system

(V∂y +W∂z)U = (∂2
yy + ∂2

zz)U, (3.2)

(V∂y +W∂z)V =−∂yP+ (∂2
yy + ∂2

zz)V, (3.3)

(V∂y +W∂z)W =−∂zP+ (∂2
yy + ∂2

zz)W, (3.4)
∂yV + ∂zW = 0 (3.5)

and the wave system, which can be reduced to the pressure form of Rayleigh’s
equation,

∇ ·

(
∇p̃
U2

)
= 0, (3.6)

with vanishing normal derivative of p̃ at the boundaries.
The equation for the wave becomes singular at y= f (z) where U(f (z), z)= 0 and is

smoothed out by a thin viscous critical layer of thickness O(R−1/3). Within the critical
layer, the wave’s Reynolds stresses drive the roll flow so that (3.3)–(3.5) must be
solved subject to stress jumps across the critical layer. The amplitude of the wave,
O(R−7/6), is fixed by the condition that the jump in the roll stress across the critical
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layer is comparable with the roll stress elsewhere in the flow. The reader is referred
to HS for the stress jumps; here we simply note that they are functions of the wave
pressure p̃ evaluated on the critical layer. Another important feature of (3.6) is that
the wave satisfies a linear equation and so only one streamwise Fourier mode plays
a role in the VWI.

This three-pointed interaction occurs in a wide range of internal or external flows,
and therefore we believe the results in this paper are generally applicable to any shear
flow. The same coupling was later identified by Waleffe (1997) through analysing
numerical results of equilibrium solutions at finite Reynolds number and became
accepted as the underlying physical mechanism underpinning what came to be
known as the ‘self-sustained process’. HS showed that the mechanism described
by Waleffe, where the production of the wave is explained by the linear instability
of the streak rather than (3.6), was a finite-Reynolds-number interpretation of the
high-Reynolds-number VWI approach.

The equilibrium solution we investigate corresponds to β = 2 and is the lower-
branch solution investigated by Wang et al. (2007) and HS. The wall drag ∆, averaged
in the x and z directions and normalized by its laminar value, is chosen as a measure
of the solutions. We follow solutions in the α–∆ plane at Reynolds numbers beyond
the critical one where they begin as a saddle–node bifurcation. The solutions initially
form a closed oval shape; see, for example, the curve for R=200 shown in figure 1(a).
The results shown in the same plot for R = 400 and 500 confirm that the lower
branches are quickly converging to the state found by HS. At R= 500 we observe the
beginning of a complex ‘snaking’ behaviour of the solution branch at smaller values of
α. Note that though the curve appears quite sharp at some points, it is in fact smooth
and therefore represents the same solution family. We first discuss the asymptotic
convergence of the solution with respect to R away from the long-wavelength states
whose complicated structure will be discussed in the next section.

The nature of the behaviour at higher Reynolds numbers is shown in figure 1(b) for
R= 1000, 10 000 and 16 000. The continuation of the solution branch further into the
snaking region existing at small α was abandoned because the requirement of high
resolution proved too computationally expensive; the typical truncation level in the
x, y and z directions used to compute the snaking branch for R = 500 was 90, 40
and 16, respectively. It is clear that the lower-branch results have converged to the
HS state. Surprisingly, we see in figure 1(c) that by increasing R up to 40 000, the
computations also converge to an upper branch not found by HS (note that the results
in the figure are the more accurate solutions of the HS problem found by Isoni 2014).
This upper limiting curve connects with the lower-branch HS solutions. The results of
figure 1(a,b) also show that at small α there is no convergence to the VWI state and
that the complicated solution branches which develop there begin at smaller α as R
increases. Notice here that figure 1(c) shows an accurate prediction of the limiting
curve for α of O(1) and R up to 40 000; higher values of R are needed to further
extend the VWI curve at smaller wavenumbers.

In order to confirm the convergence toward the VWI states, we define En as the
average energy of the nth streamwise Fourier mode in a periodic box. Then, for VWI
states, E1 � En for n = 2, 3, . . . because only the fundamental streamwise Fourier
mode is involved at leading order. The energy ratio E2/E1 is O(R−1) in VWI theory,
a result which follows by noticing that at higher order we find that the amplitude of
the second-harmonic wave in the critical layer scales as R−4/3. Figure 2 shows E2/E1
for the results of figure 1(a,b). We see that as the Reynolds number increases, E2/E1
becomes small except for small values of α; this is consistent with the solutions being
VWI states.
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FIGURE 1. Bifurcation diagram of solutions against the wavenumber α using the wall
drag ∆ as a measure. (a) The red dashed, green dot–dashed and blue solid curves are
for R= 200, 400 and 500, respectively. (b) The dotted magenta curve, double-dot–dashed
cyan curve and open circles are for R = 1000, 10 000 and 16 000, respectively. (c) The
asymptotically converged result confirmed for R up to 40 000 (solid line) and the
corresponding HS values (crosses) as recently computed by Isoni (2014); the turning point
is indicated by an arrow.

It is instructive to look at the flow regimes in order to understand more about the
changes in the nature of the interaction along the curves of figure 1(a,b). Figure 3
shows the streak, roll and wave for selected points along the upper and lower branches
for R= 16 000. In each panel, the upper plot shows the streak velocity (contours) and
roll velocity (arrows) while the lower plot shows contours of the magnitude of the
wave Reynolds stress F = (F2

y + F2
z )

1/2, where Fy and Fz are the Reynolds stresses
acting on the y and z components of the roll, respectively. For finite R, the Reynolds
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FIGURE 2. Variation of the ratio between the first- and second-harmonic energy functions,
E2/E1, along the solution branch. The definition of the curves is the same as in figure 1,
i.e. the blue solid curve, dotted magenta curve, double-dot–dashed cyan curve and open
circles are for R= 500, 1000, 10 000 and 16 000, respectively.

stresses Fy and Fz can be computed as the residuals of the roll equations (3.3) and
(3.4), respectively. In the VWI theory, F becomes localized in the critical layer and
drives the stress jumps in the roll components.

Figure 3(d–f ) show the corresponding results on the lower branch. We first note that
the equilibrium solutions along the lower branch are consistent with VWI theory in
that the waves are concentrated in the thin critical layer around y= f (z) (white curves
in the lower plots of the panels), where their Reynolds stresses drive the rolls. Note
that in the plot for the longest-wavelength α=0.05, the critical layer is now thickening
as the DHW regime is approached; see the next section for more discussion of this
point.

After the turning point where α = αc ≈ 1.37, the solutions develop along an upper
branch as shown in figure 3(a–c). In the visualization at the point closest to the
turning point, i.e. at α= 1.2, we see that the solution is clearly of VWI type but with
the critical layer now becoming inflected. When α = 0.8, we observe that the wave
is no longer concentrated in just the critical layer. The concentration of the wave
in the critical layer continues in the upper part of the critical layer, but now there
is a region away from the inflected parts of the layer where the wave has localized
vertically. At the lowest value of α = 0.4, this process has continued, with the wave
no longer being concentrated anywhere along the critical layer; however, there is an
intense region again concentrated away from the critical layer. To check the fate of
the upper-branch solutions at high R, we have examined how the flow structure for
α= 0.8 changes as the Reynolds number increases; the results are shown in figure 4.
Since the forcing away from the critical layer diminishes, we see that for fixed α the
flow returns to being a VWI state as the Reynolds number increases.

The convergence to the VWI state is also confirmed in figure 5(a,b) for α = 0.8
where typical measures of the roll, streak and wave amplitudes were given. Moreover,
the figure suggests that there is also a snaking region on the upper branch. We
abandoned the computation of the snaking branch because of resolution issues. The
results indicate that after the snaking region, the VWI scaling is retrieved for both
upper and lower branches. We therefore interpret the results in figure 3 at the highest
value of α = 1.2 as a VWI state and the result at the next-highest value of α = 0.8
as a VWI state contaminated by some high-R asymptotic state associated with a kind
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(a)

(d )

y

Min Maxz

(b) (c)

(e) ( f )

FIGURE 3. The vortex field and wave forcing of the solutions in the y–z plane for R=
16 000: (a,b,c) upper branch for α= 0.4, 0.8 and 1.2, respectively; (d,e,f ) lower branch for
α= 0.05, 0.8 and 1.2, respectively. In each panel, the upper plot depicts U (colour scale)
and [V,W] (arrows), while the lower plot shows the wave forcing F, with the critical-layer
position indicated by a white curve. Note that the unit length of arrows is different for
the upper and lower branches.

(a) (b)

z

y

z

FIGURE 4. Convergence of the upper-branch solution to the VWI structure for α = 0.8.
The wave forcing F is pictured for (a) R= 30 000 and (b) R= 40 000.
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FIGURE 5. High-Reynolds-number scalings of the numerical solutions for α=0.8. (a) The
solid curve corresponds to log(∆) and is determined by the scaling of the streak; the
dashed curve represents log(Eroll), where Eroll is the energy density associated with the
roll components. (b) The solid and dashed curves are the energy densities associated with
the first and second wave components, log(E1) and log(E2), respectively; the VWI scaling
∆ ∼ O(1), Eroll ∼ O(R−2), E1 ∼ O(R−2) and E2 ∼ O(R−3) is indicated by the thin dotted
lines.

of long-wavelength structure. The nature of that long-wavelength structure, as seen in
the plot for α = 0.4, will be also discussed in the next section. However, we believe
that at this value of α, calculations at higher R would show the solution becoming a
VWI state. With our present computational power, resolution issues prevent us from
confirming that belief. The truncation levels in the x, y and z directions used for the
upper-branch solutions for α = 0.8 and R= 40 000 were 7, 120 and 50, respectively.

4. The long-wavelength breakdown of the VWI states

At a small streamwise wavenumber of O(R−1), VWI formally fails and the flow
associated with the lower-branch solutions of HS is then given by the DHW long-
wavelength asymptotic state

u= [û, R−1v̂, R−1ŵ](X, y, z)+ · · · , p= R−2p̂(X, y, z)+ · · · , (4.1a,b)

with X = R−1x ∈ [0, 2π/(αR)] and the velocity and pressure field satisfying

(û · ∇)û=−(0, ∂y, ∂z)
Tp̂+ (∂2

yy + ∂2
zz)û, ∇ · û= 0. (4.2a,b)
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FIGURE 6. (Colour online) Variation of the wall drag ∆ with the scaled wavenumber αR.
The definition of the curves is the same as in figure 1.

The wave is now no longer decoupled from the roll–streak flow, and therefore the
streamwise dependence is no longer confined to the fundamental streamwise mode. In
order to check this assertion at small α, it is instructive to look at the energy of the
wave part of the solution in figure 1(c). We recall that VWI states are typified by the
wave energy being exclusively concentrated in the fundamental mode. On the lower
part of the curves we observe that when the long-wavelength regime is established,
the energy cascades into higher streamwise harmonics, as DHW showed, and indeed
the solutions yield a localized appearance in the streamwise direction, associated with
energy spectra where the energy is distributed away from the fundamental mode.

In figure 6 we replot the results of figure 1(a,b) in terms of the long-wave parameter
αR. We see that the large-R lower-branch solutions initially connect with the HS curve
at αR� 1 and then follow the DHW long-wavelength results, i.e. α ∼ R−1 for some
intervals. The curve turns sharply upward around αR≈110 and then enters the snaking
region. All of the limiting structures exist well above the energy stability criteria
αR ≈ 49.272 obtained in DHW. When the wavenumber formally becomes O(R−1),
the critical layer thickens out and fills the whole channel. The results of figure 3(d)
for α = 0.05 signal the emergence of the lower-branch long-wavelength asymptotic
structure where the critical-layer singularity in VWI is lost.

A similar energy transfer also occurs on the upper part of the curve in figure 2
but at slightly higher values of α than for the lower part. In contrast to the DHW
long-wavelength states, this upper-branch long-wavelength structure appears not to
approach α ∼ R−1 at small α and now has a wave field vertically concentrated in
the y–z plane, as seen in figure 3(a). The boundaries between cells now appear
to be straddled by jets from one side of the channel to the other. This jet-like
behaviour then causes the streak to be essentially stagnant away from the jets and
in thin boundary layers where the up/downwelling jets connect at y = ±1. Thus the
roll–streak flow appears to have boundary layers along the top and bottom walls
connected by jets between cells. Figure 7(a) shows that the rolls away from the jets
and the boundary layers have constant vorticity, suggesting the presence of an inviscid
vortex core for the roll component. The waves are excited at the roll cell boundary,
as shown in figure 7(b), probably to account for the roll vorticity jump induced by
the Reynolds stresses. The λ2 criterion shown in figure 7(c) indicates that there are
strong vortex structures associated with the vertical jets, where once again the roll
drives the streak flow. We speculate that there is an asymptotic structure driven by
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(a)

(c)

(b)

zz

y

y
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FIGURE 7. (Colour online) Flow visualization of the upper-branch solution for (R, α, β)=
(16 000, 0.4, 2). (a) The roll vorticity (∂zV − ∂yW). (b) The streamwise averaged energy
associated with the wave component. (c) The 30 % minimum isosurface of λ2; see Jeong
& Hussain (1995) for the definition of this value. The truncation levels in the x, y and z
directions used for the solution were 15, 70 and 30, respectively.

a wave instability of the combined roll–streak flow in the thin vertical regions where
the jets are concentrated. The numerical results suggest α∼ R−a with some 0< a< 1
for the new asymptotic structure. However, numerical estimation of the power a is
difficult since the asymptotic convergence to the new structure is apparently not yet
achieved in our calculations.

Finally, we concentrate on the excursions of the solutions from the DHW asymptotic
long-wavelength states in order to shed light on the nature of the snaking behaviour
of our solutions. The solid line shown in figure 8(a) is a close-up of the snaking
branch for R = 500 presented in figure 1(a). It is found that at some point on the
branch the energy En is concentrated at some n 6= 1. The filled circles labelled ‘b’
and ‘c’ are examples of such points for n = 3 and 5, respectively. Panels (b) and
(c) of figure 8 show the flow structure for these points (left plots) and nearby VWI
states duplicated three and five times in the streamwise direction (right plots); the
corresponding solution branches are indicated in figure 8(a) by dashed and dotted
lines. The contours of streamwise velocity at the midplane y= 0 reveal that the flow
regime takes on slightly modulated subharmonic VWI-like structures at these points.
In other words, the long-wavelength states are contaminated by VWI states beyond
the DHW state and the long-wavelength upper-branch as-yet-unknown asymptotic
state. At the points on the bifurcation curve where En is not concentrated in the
n = 1 component, the flow field is ‘synchronized’ to subharmonic pure VWI states.
Note that only odd numbers of n are allowed due to the shift–refection symmetry
[u, v, w](x, y, z) = [u, v, −w](x + π/α, y, −z) of the solution preserved along the
overall solution branch.

The entanglement between the VWI and pure long-wavelength DHW asymptotic
states will be enhanced as R increases, since the corresponding solution branches
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FIGURE 8. (Colour online) (a) Close-up of the snaking solution branch for R =
500 (solid curve), plotted together with the same solution branches for the three- and
five-times duplicated streamwise subharmonic cases (dashed and dotted curves), to show
synchronization of long-wavelength states to VWI states; the filled circles labelled ‘b’,
‘c’ and ‘d’ correspond to the visualizations in panels (b), (c) and (d). (b,c) Streamwise
velocity at the midplane y= 0, where the left plot in each panel shows the flow regime
at the solid branch for α = 0.35 and α = 0.17, respectively, and the right plot shows
the corresponding three- and five-times subharmonic solutions in the same computation
domain. (d) Visualization of solution outside of the synchronization at α= 0.205; the red
and blue surfaces are isosurfaces of positive and negative 70 % maximum vorticity, and
the transparent grey surface represents the zero-streamwise-velocity surface.

then intersect each other more often. Equating the turning point of the limiting
n-times subharmonic VWI branch at α = αcn ≈ 1.37n and the blow-up point in
figure 6, we estimate that R ≈ 80n for the onset of the nth entanglement between
them. This prediction is consistent with what we have observed up to the n = 5
modulated state for R = 500. Notice that this tentative explanation of the origin
of the entangled region associated with lower-branch VWI states does not directly
apply to the upper-branch small-wavenumber states, since as yet we do not know the
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FIGURE 9. (Colour online) Streamwise vorticity of the solution labelled ‘d’ in figure 8(a);
here (R, α) = (500, 0.205). (a) Variation of the in-plane maximum of the streamwise
vorticity ω= ∂zv− ∂yw in the y–z cross-section. (b,c) Contours of the streamwise vorticity
in the y–z plane at the fixed streamwise positions ‘b’ and ‘c’ in (a); the streamwise
velocity u is zero at the white curves.

corresponding asymptotic form. Here we just note that our calculations suggest that
the upper-branch long-wavelength states are also contaminated by VWI states.

For the snaking branch outside of these ‘synchronized’ regions, the states are related
to the long-wavelength structures locally intertwined with VWI states. Figure 8(d)
shows an example of the visualization at the point ‘d’ in figure 8(a). The streaky
field indicated by the grey isosurface of zero streamwise velocity has local fluctuations
where strong vorticity dominated by the wave component in VWI states arises around
this surface. The streamwise vorticity can indicate whether the state is a VWI one
or a long-wavelength state, since this component is dominated by the strong critical-
layer structure in the former case. Strong streamwise vorticity appears when the states
locally take the VWI form, as shown in figure 9(a). The contours of the streamwise
vorticity in the y–z plane, pictured in figure 9(b,c), indeed show the existence and
non-existence of the critical-layer structure at the VWI and non-VWI positions. If we
consider the localized VWI-like states, each of which emerges on a streamwise scale
of O(1), to be embedded in the smoother structure governed by (4.2), the localized
fluctuations can potentially be separated by up to O(R) distances in the streamwise
direction, and the DHW long-wavelength states connect to the VWI states. A phase-
equation approach can be used to embed the wave part of the VWI states in slowly
varying vortex fields. The wave has a local wavenumber α(X), and the limit state
α→ 0 in figure 1(c) would match the solution to the long-wavelength regime.

5. Conclusion
In view of the above numerical results, we conclude that at an O(1) streamwise

wavenumber the lower- and upper-branch solutions discussed in the self-sustained
process literature all deform into VWI states as R increases. Therefore, the upper-
branch modes have no distinct asymptotic structure as was speculated in HS; that this
part of the VWI curve was not captured by HS may be due to the inadequacy of the
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iteration scheme used in that paper, as opposed to Newton iteration used here. The
VWI equations are fully nonlinear and thus we can expect many other VWI solutions
corresponding to the Navier–Stokes solution families listed in Gibson et al. (2009).

The VWI asymptotic structure breaks down at asymptotically small values of
the streamwise wavenumber α. The limit for the lower branch corresponds to the
long-wavelength states in DHW emerging when α ∼ R−1. In addition, the numerical
results indicate a new long-wavelength structure characterized by vertical jets for the
upper branch. The upper-branch VWI state approaches the new asymptotic states
more slowly than does the lower-branch one as R increases, suggesting that the new
states have wavelength scale between the VWI and DHW states.

Further, we note that a new rich variety of long-wavelength states associated with
snaking behaviour of the solution branch has been found. The snaking happens
when the asymptotic long-wavelength states try to locally mimic the O(1)-wavelength
VWI solutions, thereby providing a theoretical framework of different streamwise
scale coexistence phenomena in shear flows. The entanglement is enhanced as R
increases, so for large R the corresponding flow structure may never take on exactly
the long-wavelength asymptotic states. This theoretical explanation of streamwise
scale separation can be applied to any parallel shear flow; thus, a connection to the
turbulent puff phenomenon repeatedly demonstrated in pipe flow is of interest (Avila
et al. 2013).

We believe that the results discussed in this paper are typical of any given O(1)
spanwise wavenumber, and for small spanwise wavenumber, spanwise localization
occurs as found by, for example, Duguet, Schlatter & Henningson (2009), Schneider
et al. (2010) and DHW. Extension of the present results in this direction would
provide a rich class of localized states, perhaps having relevance to the formation of
turbulent spots frequently observed in shear flows. The mechanism behind the snaking
behaviour of our solution branch would be similar to the homoclinic snaking found
by Schneider et al. (2010), where the snaking is caused by spanwise localization of
disturbance, although the snaking branch is not ordered in our case since the VWI
and long-wavelength states compete. Both snaking phenomena are due to the spatial
scale separation of the flow field locally intertwined with VWI states of O(1) length
scale.
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