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Abstract. In a previous paper [Pavlov, A characterization of topologically completely
positive entropy for shifts of finite type. Ergod. Th. & Dynam. Sys. 34 (2014), 2054–
2065], the author gave a characterization for when a Zd -shift of finite type has no non-
trivial subshift factors with zero entropy, a property which we here call zero-dimensional
topologically completely positive entropy. In this work, we study the difference between
this notion and the more classical topologically completely positive entropy of Blanchard.
We show that there are one-dimensional subshifts and two-dimensional shifts of finite
type which have zero-dimensional topologically completely positive entropy but not
topologically completely positive entropy. In addition, we show that strengthening the
hypotheses of the main result of Pavlov [A characterization of topologically completely
positive entropy for shifts of finite type. Ergod. Th. & Dynam. Sys. 34 (2014), 2054–2065]
yields a sufficient condition for a Zd -shift of finite type to have topologically completely
positive entropy.

1. Introduction
This work is motivated by an unfortunate misuse of the term ‘topologically completely
positive entropy’ (hereafter called TCPE) in some works written or co-written by the
author (see [4, 9]). Blanchard [1] originally defined TCPE to mean that a topological
dynamical system has no non-trivial (i.e., containing more than one point) factors with
zero entropy. However, in [4] and [9], the proofs furnished were for Zd subshifts and only
proved that all non-trivial subshift factors have positive entropy. It is quite simple to show
that any system has a non-trivial subshift factor with zero entropy if and only if it has a
non-trivial zero-dimensional factor with zero entropy (see Theorem 3.1), and so we say
that a system has zero-dimensional TCPE (or ZTCPE) if all non-trivial zero-dimensional
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factors have positive entropy. It is obvious that TCPE implies ZTCPE, and just as obvious
that the converse is false in general: any topological dynamical system on a connected
space trivially has ZTCPE since it has no non-trivial zero-dimensional factors.

However, it is natural to wonder whether or not the two notions coincide if (X, T ) is
itself assumed to be zero-dimensional, a subshift, or even a shift of finite type (SFT). This
is not the case; we will construct several examples of systems in these classes with ZTCPE
but not TCPE. We prove the following results in the one-dimensional case.

THEOREM 1.1. There exists a Z-subshift which has ZTCPE but not TCPE.

THEOREM 1.2. Any Z-SFT with ZTCPE also has TCPE.

In the two-dimensional case, the picture is even more interesting. The following
theorem was proved by the author in [9]; it erroneously purported to give conditions
equivalent to TCPE for multidimensional SFTs (and had an unfortunate typo which
replaced ‘SFT’ with ‘subshift’), but we have given the corrected version below.

THEOREM 1.3. [9, Theorem 1.1] A Zd -SFT has ZTCPE if and only if it has the following
two properties: every w ∈ L(X) has positive measure for some µ ∈M(X) and, for every
S ⊂ Zd and w, w′ ∈ L S(X), there exist patterns w = w1, w2, . . . , wn = w

′ so that, for
1≤ i < n, there exist homoclinic points x, x ′ ∈ X with x(S)= wi and x ′(S)= wi+1.

The second property in Theorem 1.3 was called ‘chain exchangeability’ of w and w′

in [9]. Note that even if all pairs of patterns with the same shape are chain exchangeable,
it is theoretically possible that the number n of required ‘exchanges’ could increase with
the size of the patterns. In fact, this is related to TCPE as well, as shown by the following
theorem.

THEOREM 1.4. If a Zd -SFT satisfies the hypotheses of Theorem 1.3 with a uniform bound
on the required n over all patterns w, w′, then X has TCPE.

Theorem 1.4 implies that the previously mentioned results of [4] and [9], in fact, do
yield TCPE for the subshifts in question (see Corollaries 3.3 and 3.4), since all of those
proofs included such a uniform bound on n. The remaining question of whether ZTCPE,
in fact, implies TCPE for Zd -SFTs is answered negatively by the following.

THEOREM 1.5. There exists a Z2-SFT X which has ZTCPE but not TCPE.

We note that, by necessity, the X from Theorem 1.5 has the property that all pairs of
patterns are chain exchangeable, but that larger and larger patterns may require more and
more exchanges. We do not know whether this property is sufficient as well as necessary,
i.e., whether the converse of Theorem 1.4 holds as well.

Question 1.6. Does every Zd SFT with TCPE satisfy the hypotheses of Theorem 1.3 with
a uniform bound on n over all w, w′?
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2. Definitions
We begin with some definitions from topological/symbolic dynamics.

Definition 2.1. A Zd topological dynamical system (X, Tv) is given by a compact metric
space X and a Zd action {Tv}v∈Zd by homeomorphisms on X . In the special case d = 1, it
is standard to refer to the system as (X, T ) rather than (X, Tn); the single homeomorphism
T generates the entire action in this case, anyway.

Definition 2.2. For any finite set A (called an alphabet), the Zd -shift action on AZd
,

denoted by {σt }t∈Zd , is defined by (σt x)(s)= x(s + t) for s, t ∈ Zd .

We always endow AZd
with the product discrete topology, with respect to which it is

obviously compact metric.

Definition 2.3. A Zd -subshift is a closed subset of AZd
which is invariant under the Zd -

shift action. When the dimension is clear from context, we often just use the term subshift.

Any Zd -subshift inherits a topology from AZd
, and is compact. Each σt is a

homeomorphism on any Zd -subshift, and so any Zd -subshift, when paired with the Zd -
shift action, is a topological dynamical system. Where it will not cause confusion, we
suppress the action σv and just refer to a subshift by the space X .

Definition 2.4. A pattern over A is a member of AS for some finite S ⊂ Zd , which is said
to have shape S. When d = 1 and S is an interval of integers, we use the term word rather
than pattern.

For any set F of patterns over A, one can define the set X (F) := {x ∈ AZd
: x(S) /∈

F ∀ finite S ⊂ Zd
}. It is well known that any X (F) is a Zd -subshift, and all Zd -subshifts

are representable in this way. All subshifts are assumed to be non-empty in this paper.
For any patterns v ∈ AS and w ∈ AT with S ∩ T =∅, define vw to be the pattern in

AS∪T defined by (vw)(S)= v and (vw)(T )= w.

Definition 2.5. A Zd -shift of finite type (SFT) is a Zd -subshift equal to X (F) for some
finite F . The type of X is defined to be the minimum integer t so that F can be chosen
with all patterns on shapes which are subsets of [1, t]d .

Throughout this paper, for a < b ∈ Z, [a, b] will be used to denote {a, . . . , b}, except
for the special case [0, 1], which will have its usual meaning as an interval of real numbers.

Definition 2.6. The language of a Zd -subshift X , denoted by L(X), is the set of all patterns
which appear in points of X . For any finite S ⊂ Zd , L S(X) := L(X) ∩ AS , the set of
patterns in the language of X with shape S.

The following definitions are from [9] and relate to the conditions given there
characterizing ZTCPE.

Definition 2.7. For any Zd -subshift X and any finite S ⊆ Zd , patterns w, w′ ∈ L S(X)
are exchangeable in X if there exist homoclinic points x, x ′ ∈ X such that x(S)= w and
x ′(S)= w′.
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It should be reasonably clear that if X is an Zd -SFT with type t , then w, w′ are
exchangeable if and only if there exist N and δ ∈ L [−N ,N ]d\[−N+t,N−t]d (X) such that the
shapes of w, w′ lie in [−N + t, N − t]d and δw, δw′ ∈ L(X).

Definition 2.8. For any Zd -subshift X and any finite S ⊆ Zd , patterns w, w′ ∈ L S(X) are
chain exchangeable in X if there exists n and patterns (wi )

n
i=1 in L S(X) such thatw1 = w,

wn = w
′, and wi and wi+1 are exchangeable in X for i ∈ [1, n).

Alternately, the chain exchangeability relation is just the transitive closure of the
exchangeability relation.

Definition 2.9. The topological entropy of a Zd topological dynamical system (X, Tv) is
given by

h(X, Tv) := sup
U

lim
n→∞

1
nd N

( ∨
v∈[1,n]d

TvU
)
,

where U ranges over open covers of X and N (U) is the minimal size of a subcollection of
U which covers X .

We will not need any advanced properties of topological entropy in this paper. (For a
detailed treatment of topological entropy, see [10].) We do, however, note the following
sufficient condition for positive topological entropy. If K and K ′ are disjoint non-empty
closed sets in X , and if there exists a subset S of Zd with positive density so that, for
any y ∈ {0, 1}S , there exists x ∈ X with Ts x ∈ K when y(s)= 0 and Ts x ∈ K ′ when
y(s)= 1, then it follows that h(X, Tv) > 0; in particular, for U = {K c, K ′c}, the limit
in the definition is at least log 2 times the density of S. For brevity, we refer to this
property by saying that (X, Tv) contains points which ‘independently visit K and K ′ in
any predetermined way along a set of iterates of positive density.’

Definition 2.10. A (topological) factor map is any continuous shift-commuting map φ
from a Zd topological dynamical system (X, Tv) to a Zd topological dynamical system
(Y, Sv). Given such a factor map φ, the system (φ(X), Sv) is called a factor of (X, Tv).

It is well known that topological entropy does not increase under factor maps; again,
see [10] for a proof.

Definition 2.11. A Zd topological dynamical system (X, Tv) has topologically completely
positive entropy (or TCPE) if, for every surjective factor map from (X, Tv) to a Zd

topological dynamical system (Y, Sv), either h(Y, Sv) > 0 or |Y | = 1.

Definition 2.12. A Zd topological dynamical system (X, Tv) has zero-dimensional
topologically completely positive entropy (or ZTCPE) if, for every surjective factor map
from (X, Tv) to a Zd zero-dimensional topological dynamical system (Y, Sv), either
h(Y, Sv) > 0 or |Y | = 1.

Our final set of definitions relates to so-called balanced sequences. For any word w on
{0, 1}, we use #(w, 1) to denote the number of 1 symbols in w.
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Definition 2.13. A sequence x ∈ {0, 1}Z is k-balanced if every two subwords of x of the
same length have numbers of 1 symbols within k: i.e., if, for every n, i, j , |#(w([i, i +
n − 1]), 1)− #(w([ j, j + n − 1]), 1)| ≤ k. We use simply the term balanced to mean
1-balanced.

The following lemma and corollary are standard; see, for instance, [7, Ch. 2] for proofs
in the 1-balanced case which trivially extend to arbitrary k.

LEMMA 2.14. For every k-balanced sequence x, there is a uniform frequency of 1s: i.e.,
there exists α ∈ [0, 1] so that, for every ε > 0, there exists N such that for n > N, every
n-letter subword of x has proportion of 1 symbols between α − ε and α + ε.

COROLLARY 2.15. For every k-balanced sequence x with frequency α, every n ∈ N and
every i ∈ Z, |nα − #(x([i, i + n − 1]), 1)| ≤ k.

For convenience, we refer to the uniform frequency of 1s in a k-balanced sequence as
its slope. The following is immediate.

COROLLARY 2.16. For any balanced sequence x with slope α and n ∈ N, if nα /∈ Z, then,
for every i ∈ Z, #(x([i, i + n − 1]), 1) is either bnαc or dnαe.

Here are two examples of simple algorithmically generated balanced sequences; see [7,
Ch. 2] for a proof that they are, in fact, balanced with slope α.

Definition 2.17. For any α ∈ [0, 1], the lower characteristic sequence xα is defined by
xα(n)= b(n + 1)αc − bnαc for all n ∈ Z. The upper characteristic sequence xα is defined
by xα(n)= d(n + 1)αe − dnαe for all n ∈ Z.

The lower and upper characteristic sequences are not shifts of each other for irrational
α, but for rational α we note that they are. If we write α = i/j in lowest terms, then there
exists k ∈ N so that kα = m + 1/j for an integer m. Then

σ k(xα(n))= xα(k + n)= d(k + n + 1)αe − d(k + n)αe

=m +
(⌈
(n + 1)α +

1
j

⌉)
− m −

(⌈
nα +

1
j

⌉)
= b(n + 1)αc − bnαc = xα(n).

(We used here the easily checked fact that, for any rational x with denominator j ,
dx + 1/je = 1+ bxc.)

Characteristic sequences also have useful convergence properties.

LEMMA 2.18. If αn approaches a limit α from above, then the lower characteristic
sequences xαn converge to the lower characteristic sequence xα . Similarly, if αn

approaches α from below, then the upper characteristic sequences xαn converge to the
upper characteristic sequence xα .

Proof. This follows immediately from the continuity of the floor function from the right
and the continuity of the ceiling function from the left. �
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For irrational α, the structure of balanced sequences is well known; the set of such
balanced sequences is just the so-called Sturmian subshift with rotation number α. We
omit a full treatment of Sturmian sequences here and instead refer the reader to [7, Ch. 2]
for a detailed analysis. We will say that Sturmian sequences are defined similarly to upper
and lower characteristic sequences, with the change that one is also allowed to add any
constant to the terms inside floor or ceiling functions (e.g., x defined by x(n)= dπ + (n +
1)αe − dπ + nαe is Sturmian).

For rational α, the structure of balanced sequences is more complicated. All balanced
sequences with rational slope are eventually periodic [7, Proposition 2.1.11]. The periodic
balanced sequences are easy to describe; the following is essentially [7, Lemma 2.1.15],
combined with the above observation that upper and lower characteristic sequences are
shifts of each other for rational α.

LEMMA 2.19. Every balanced sequence with rational slope α which is periodic is a shift
of xα .

The eventually periodic but not periodic balanced sequences are more complicated; they
are described as ‘skew sequences’ in [8]. Luckily, we do not need a complete description
of such sequences in this work, only one important property. Proposition 2.1.17 in [7]
states that every finite balanced word is a subword of some Sturmian sequence (in fact, the
reverse direction is also true), which clearly implies the following fact.

LEMMA 2.20. Every balanced sequence can be written as the limit of balanced sequences
with irrational slopes, i.e., Sturmian sequences.

3. Proofs
We first establish the claim from the introduction that ‘subshift TCPE’ is in fact the same
as ZTCPE.

THEOREM 3.1. A Zd topological dynamical system has a non-trivial Zd -subshift factor
with zero entropy if and only if it has a non-trivial zero-dimensional factor with zero
entropy.

Proof. The forward direction is trivial, so we prove only the reverse. Suppose that
(X, Tv) is a topological dynamical system with a factor (Y, Sv), where |Y |> 1, Y is
zero-dimensional, and h(Y, Sv)= 0. Then, since |Y |> 1 and Y is zero-dimensional,
there exists a non-trivial partition of Y into clopen sets A and B. Then, define the map
φ : Y → {0, 1}Z

d
as follows: (φ(y))(v)= χB(Sv(y)), i.e., (φ(y))(v)= 0 if Sv(y) ∈ A and

(φ(y))(v)= 1 if Sv(y) ∈ B. Since A and B are closed, φ is a surjective factor map from
(Y, Sv) to the subshift (φ(Y ), σv). Moreover, if a ∈ A and b ∈ B, then (φ(a))(0)= 0 and
(φ(b))(0)= 1, meaning that |φ(Y )|> 1. Therefore, (φ(Y ), σv) is a non-trivial subshift
factor of (X, Tv), and it has zero entropy since it is a factor of the zero entropy system
(Y, Sv). �

Theorem 1.2 is a corollary of well known results, but, for completeness, we supply the
simple proof here.
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Proof of Theorem 1.2. We assume basic knowledge of the structure of Z-SFTs; for more
information, see [6].

Consider a Z-SFT X , which, without loss of generality, we may assume to be nearest
neighbor. If X is not mixing, then it is either reducible or periodic. If X is reducible,
then the factor map which carries each letter to its irreducible component has (zero-
dimensional) image which is a non-trivial (there are at least two irreducible components)
SFT given by a directed graph whose only cycles are self-loops, and which therefore has
zero entropy. If X is irreducible and periodic, then the factor map which carries each letter
to its period class has an image which is a non-trivial (and zero-dimensional) finite union
of periodic orbits, and is thereby of zero entropy. We have shown that any Z-SFT with
ZTCPE is mixing.

Then it is well known that a Z-SFT is mixing if and only if it has the specification
property of Bowen. (A full description of the specification property is beyond the scope of
this work, but for subshifts it is basically a stronger ‘uniform’ version of the topological
mixing property. For more details on specification, see [3].) This implies TCPE since
specification is preserved under factors, and every non-trivial dynamical system with
specification has positive entropy. �

Proof of Theorem 1.4. We assume some familiarity with the proof of Theorem 1.3
from [9], and so only summarize the required changes. Suppose that X is a Zd -SFT of
type t with the properties that every w ∈ L(X) has positive measure for some µ ∈M(X)
and that there exists N so that, for all S ⊆ Zd and w, w′ ∈ L S(X), there exist w =
w1, w2, . . . , wN = w

′ so that, for every i ∈ [1, N ), there are homoclinic points in [wi ]

and [wi+1]. Now consider any surjective factor map φ : (X, σv)→ (Y, Sv) with |Y |> 1.
Since |Y |> 1, there exist y, y′ ∈ Y with dY (y, y′)= α > 0. By uniform continuity of
φ, there exists δ > 0 so that dX (x, x ′) < δ H⇒ dY (y, y′) < α/N . Choose n so that the
cylinder set of any w ∈ L [−n,n]d (X) has diameter less than δ.

Choose x ∈ φ−1(y) and x ′ ∈ φ−1(y′), and define w = x([−n, n]d) and w′ =

x ′([−n, n]d). Then, by assumption, there existw = w1, w2, . . . , wN = w
′ with the above

described properties. Note that each φ([wi ]) has diameter less than α/N , y ∈ φ([w1]),
y′ ∈ φ([wN ]), and d(y, y′)= α. This implies that there exists i for which φ([wi ]) and
φ([wi+1]) are disjoint closed subsets of Y . From here, the proof proceeds essentially as
in [9]; we again will only briefly summarize. Firstly, since there exist homoclinic points in
[wi ] and [wi+1], there exists a boundary pattern δ of thickness t which can be filled with
either wi or wi+1 at the center. By assumption, there exists µ ∈M(X) with µ([δ]) > 0
and therefore a point x ∈ X with a positive frequency of occurrences of δ. Then, since X
is an SFT with type t , each occurrence of δ in x can be independently filled with either wi

or wi+1 at the center. The φ-images of this family of points then visit the disjoint closed
sets φ([wi ]) and φ([wi+1]) under Sv in any predesignated way along a set of v ∈ Zd of
positive density, which is enough to imply positive entropy of (Y, Sv). �

In particular, several existing proofs in the literature which purported to prove TCPE
while, in truth, only verifying ZTCPE can be shown to actually yield TCPE via
Theorem 1.4.
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COROLLARY 3.2. The topologically mixing Z2-SFT defined in [5, §6.3] has TCPE.

Proof. It was shown in [4] that any two patterns in the example in question are
exchangeable, i.e., that the hypotheses of Theorem 1.3 are satisfied with n = 2. Therefore,
Theorem 1.4 implies TCPE. �

COROLLARY 3.3. Every non-trivial block gluing Zd -SFT has TCPE.

Proof. Theorem 1.5 from [9] shows that any two patterns in a block gluing Zd -SFT are
exchangeable, i.e., that the hypotheses of Theorem 1.3 are satisfied with n = 2. Therefore,
Theorem 1.4 implies TCPE. �

COROLLARY 3.4. The Z2-SFT from [9, Examples 1.2 and 1.3] has TCPE.

Proof. It is shown in [9] that the example in question satisfies the hypotheses of
Theorem 1.3 with n = 3. Therefore, Theorem 1.4 implies TCPE. �

Our main tool for constructing the examples of Theorems 1.1 and 1.5 is the following
‘black box’ which, given an input subshift X with some very basic transitivity properties,
yields a subshift with TCPE. Although the technique should work in any dimension, for
brevity, we here restrict ourselves to d ≤ 2.

THEOREM 3.5. For d ≤ 2 and any alphabet A, there exists an alphabet B and a map f
taking any orbit of a point in AZd

to a union of orbits of points in BZd
with the following

properties.
(1) O(x) 6= O(x ′)H⇒ f (O(x)) ∩ f (O(x ′))=∅.
(2) For any Zd -subshift (respectively, SFT) X, f (X) is a Zd -subshift (respectively, SFT).
(3) If X is a Zd -subshift with the two properties that:

(3a) every w ∈ L(X) has positive measure for some µ ∈M(X); and
(3b) there exists N so that for every w, w′ ∈ L [−n,n]d (X), there exist patterns

w = w1, w2, . . . , wN = w
′ in L [−n,n]d (X) so that for all i ∈ [1, N ), wi and

wi+1 coexist in some point of X,
then f (X) has TCPE.

Proof. Before beginning the proof, we note that, by the pointwise ergodic theorem, (3a)
is clearly equivalent to the statement that, for every w, X contains a point with a positive
frequency of occurrences of w. Where it is useful, we prove/use this equivalent version
without further comment.

We first deal with d = 1, which is a significantly easier proof and shows the ideas
required for the more difficult d = 2 case. Consider any alphabet A, take a symbol 0 /∈ A
and, to any orbit O(x), define f (O(x)) to be the set of all points in (A ∪ 0)Z of the form
. . . a−10n−1a00n0a10n1 . . . , where . . . a−1a0a1 . . . ∈ O(x) and each ni is 2, 3, or 4.

It is easily checked that f (O(x)) is shift-invariant, i.e., a union of orbits. Clearly, if
some point . . . a−10n−1a00n0a10n1 . . . is in f (O(x)) ∩ f (O(x ′)), then . . . a−1a0a1 . . .

∈ O(x) ∩ O(x ′), which verifies (1).
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If X is a Z-subshift defined by a set F of forbidden words, then the reader may check
that f (X) is a Z-subshift defined by the forbidden list

F ′ = {00000} ∪ {ab : a, b ∈ A} ∪ {a0b : a, b ∈ A}

∪ {a10n1a20n2 . . . 0nk−1ak : ni ∈ {2, 3, 4}, a1a2 . . . ak ∈ F}.

If X is an SFT, then F can be chosen to be finite, in which case F ′ is also finite, showing
that f (X) is an SFT and verifying (2).

It remains only to show (3). We begin with some notation. For any point y ∈ f (X),
there exists x for which y ∈ f (x) and, by (1), x is uniquely determined up to shifts.
We say for any such x that y extends x . Similarly, for any finite word w ∈ L( f (X)),
the non-zero letters of w (in the same order) form a word v ∈ L(X), and we say that
w extends v. Suppose that X satisfies (3a) and (3b) and consider any surjective factor
map φ : ( f (X), σ )→ (Y, S) with |Y |> 1. By considering the words in L(X) ‘inducing’
arbitrary words w, w′ ∈ L( f (X)), it is easily checked that (3a) and (3b) hold for f (X) as
well.

Since N does not depend on the words chosen in (3b), we can proceed as in the proof of
Theorem 1.4 to find words wi , wi+1 ∈ L( f (X)) of the same length L for which φ([wi ])

and φ([wi+1]) are disjoint closed sets andwi andwi+1 coexist in some word u ∈ L( f (X)).
We can assume, without loss of generality, that u begins and ends with non-zero letters by
extending it slightly on the left and right, and we define v ∈ L(X) which induces u. We
fix single occurrences of wi and wi+1 within u, assume without loss of generality that wi

appears to the left of wi+1 and denote by k the horizontal distance between them.
Since v ∈ L(X), we may choose p, s ∈ Lk(X) so that pvs ∈ L(X). Then we define the

words
u′ = p(1)03 p(2)03 . . . 03 p(k)03u03s(1)03s(2)03 . . . 03s(k) and

u′′ = p(1)02 p(2)02 . . . 02 p(k)02u04s(1)04s(2)04 . . . 04s(k).

Since both u′ and u′′ extend pvs ∈ L(X), u′ and u′′ are both in L( f (X)). They also
have the same length. In addition, since u′′ is created by reducing the first k gaps of 0s in
u′ by one and increasing the last k gaps of 0s in u′ by one, the occurrence of wi+1 in the
central u of u′ occurs at a location k units further to the left within u′′. In other words,
there exists j so that u′([ j, j + L − 1])= wi and u′′([ j, j + L − 1])= wi+1.

Since u′ ∈ L( f (X)), by (3a) there exists y ∈ f (X) containing a positive frequency
of occurrences of u′. The rules defining f (X) should make it clear that any subset of
these occurrences of u′ can be replaced by u′′ to yield a collection of points of f (X).
Then, as before, the image under φ of this collection yields a collection of points of Y
which independently visit the disjoint closed sets φ([wi ]) and φ([wi+1]) under S in any
predesignated way along a set of iterates of positive density, proving that h(Y, S) > 0 and
completing the proof of (3).

Now, we must describe f and prove (1)–(3) for d = 2 as well. Many portions of the
argument are quite similar, and so we will only comment extensively on the portions which
require significantly more details. First, we describe auxiliary Z2 shifts of finite type X H

and XV which will help with the definition of f . The alphabet for X H is {0, H}, and the
SFT rules are as follows.
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FIGURE 1. Part of a point of X H .

• Each column consists of H symbols separated by gaps of 0 symbols with lengths 2,
3, or 4.

• Given any H symbol, exactly two of its neighbors (in cardinal directions) are H
symbols.

• If two H symbols are diagonally adjacent, they must have exactly one H symbol as
a common neighbor.

• Three H symbols may not comprise a vertical line segment.
• If three H symbols comprise a diagonal line segment, then the central of the three

must have H symbols to its left and right. (For instance,
H
H H H

H
is legal, but

H H
H H

H
is not.)

The reader may check these rules make X H a Z2-SFT of type 5. Points of X H consist
of biinfinite meandering ribbons of H symbols, which either move up one unit, down one
unit, or stay at the same height for each unit moved to the right or left, and which may
not ‘meander’ twice consecutively in the same direction. Informally, this means that any
horizontal ribbon has ‘slope’ with absolute value less than or equal to 1/2. Every point of
X H contains infinitely many such ribbons, and any pair of closest ribbons may not touch
diagonally and are always separated by a vertical gap of 0 symbols of length either 2, 3, or
4 (see Figure 1).

We also define the Z2-SFT XV with alphabet {0, V } with vertical rather than horizontal
ribbons, where legal points are just legal points of X H , rotated by ninety degrees, with H
symbols replaced by V symbols. In particular, vertical ribbons have ‘slope’ with absolute
value at least 2. We will require the following fact about X H .

CLAIM A1. Every pattern w ∈ L(X H ) appears in a point x ∈ X H homoclinic to the point
x0 ∈ X H consisting of flat horizontal ribbons, equispaced by three units, one of which
passes through the origin.

Proof. Our proof is quite similar to a proof given in [9] for a slightly different system, and
so for brevity we do not include every technical detail here. It clearly suffices to only treat
w ∈ L [−n,n]d (X H ) for some n. We proceed in three steps.
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FIGURE 2. The steps of embedding w in a point x ∈ X H homoclinic to x0.

Step 1: Complete each horizontal ribbon segment in w to create w′ in which each
horizontal ribbon segment touches the infinite vertical lines given by the left and right
edges of w.

Step 2: Allow the ribbons in w′ to meander on the left and right until they are equispaced
with distance 3, each ribbon has the same height at the left and right edge, and those heights
are the same as those of ribbons in x0, i.e., multiples of four.

Step 3: Place additional ribbons above, one at a time, with left and right edges equispaced
with distance 3, each of which ‘unravels’ the leftmost meandering in the ribbon below,
until arriving at a completely horizontal ribbon; then continue with infinitely many more
completely horizontal ribbons equispaced with distance 3. Perform a similar procedure
below. (See Figure 2 for an illustration.)

The resulting point x ∈ X H is clearly homoclinic with x0 and contains w, which
completes the proof. �

Every point of X H must contain infinitely many ribbons; in a point of X H , we index
these by Z, beginning with the zeroth as the first encountered when beginning from the
origin and moving straight up, and then proceeding with the positively-indexed ribbons
above it and negatively indexed ribbons below it. Similarly, the vertical ribbons of a point
of XV are indexed by starting with the zeroth ribbon as the first encountered by beginning
from the origin and moving to the right, with positively-indexed ribbons to the right and
negatively indexed ribbons to the left. By the earlier noted restrictions on slopes, any
horizontal ribbon and any vertical ribbon must intersect at either a single site or a pair
or triple of adjacent (including diagonals) sites (see Figure 3), and so, for any pair of
points x ∈ X H and y ∈ XV , we can assign an injection fx,y from Z2 to itself by defining
fx,y(i, j) to be the lexicographically least site within the intersection of the i th horizontal
ribbon and j th vertical ribbon.
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FIGURE 3. A point of f (X) and the pattern in L(X) given by the letters of A at (lexicographically minimal sites
within) its ribbon intersections; × and ◦ here represent H and V , respectively.

We are now ready to define f . For any alphabet A and orbit O(x) in AZ2
, choose a

symbol 0 /∈ A and define f (x) to be the collection of all points z on the alphabet B =
{(0, 0, 0), (0, V, 0), (H, 0, 0)} ∪ ({(H, V )} × (A t {0})) with the following properties.
• The first coordinate of z is a point x of X H .
• The second coordinate of z is a point y of XV .
• Letters of A may only appear in the third coordinate at the lexicographically least

sites within intersections of ribbons from x and y. If we define t ∈ AZ2
by taking

t (i, j) to be the letter of A in the third layer at z( fx,y(i, j)), then t ∈ O(x).
We claim now that this f has the desired properties. It is easily checked that f (x) is

shift-invariant, i.e., a union of orbits. Clearly, if f (O(x)) and f (O(x ′)) share a point z,
then t defined as in the third bullet point above must be in O(x) ∩ O(x ′), verifying (1).

An explicit description of a forbidden list inducing f (X) for a Z2-subshift X would
be needlessly long and complicated; instead, we just informally describe the restrictions.
Firstly, a finite forbidden list can be used to force the first and second coordinates of
any point in f (X) to be in X H and XV , respectively. Secondly, since intersections of
ribbons are finite sets of adjacent or diagonally adjacent sites which cannot be adjacent or
diagonally adjacent to each other, a finite forbidden list can force letters of A to occur on
the third coordinate precisely at lexicographically minimal sites within ribbon crossings.
Finally, one must only choose a forbidden list F which induces X and forbid all finite
patterns whose first and second coordinates form legal patterns in X H and XV , but whose
third coordinate contains a pattern from F on the lexicographically least sites within
intersections of ribbons from the first two. Then f (X) is a subshift, and again it should be

https://doi.org/10.1017/etds.2016.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2016.120


1906 R. Pavlov

clear that if X is an SFT, then F can be chosen to be finite, yielding a finite forbidden list
for f (X), implying that f (X) is an SFT and completing the proof of (2).

It remains to prove (3). Choose any X satisfying (3a) and (3b), and again we begin
with notation: any point y ∈ f (X) extends x ∈ X if y ∈ f (x) and, by (1), x is uniquely
determined up to shifts. For finite patterns, the geometry of the ribbons makes a similar
definition trickier. For any w ∈ L S( f (X)), choose y ∈ f (X) with w = y(S), define a, b
to be the first and second coordinates of y, define T = f −1

a,b (S) and define v ∈ LT (X) by
taking v(i, j) to be the third coordinate of y( fa,b(i, j))= w( fa,b(i, j)); we say that w
extends v. We begin with the following auxiliary claim.

CLAIM A2. f (X) satisfies (3a) and (3b).

Proof. Choose any v ∈ L S( f (X)), which extends v′ ∈ LT (X). Since X satisfies (3a),
there is a point x ∈ X with positive frequency of occurrences of v′; say, x(i + T )= v′

for all i ∈ I a subset of Z2 with positive density. Define v′′ ∈ L S(X H ) and v′′′ ∈ L S(XV )

to be the restrictions of v to its first and second coordinates, respectively. By Claim A1
above, v′′ appears within a point x ′′ ∈ X H homoclinic to the point x0 of equispaced flat
horizontal ribbons, and v′′′ appears within a point of x ′′′ ∈ XV homoclinic to the point
y0 of equispaced flat vertical ribbons. Then the pair (v′′, v′′′) appears within a point of
X H × XV homoclinic to the doubly periodic point (x0, y0) of equispaced horizontal and
vertical ribbons. Finally, since X H × XV is an SFT, this means that (v′′, v′′′) appears
within some periodic point (y1, y2) ∈ X H × XV , which then contains (v′′, v′′′) at a set of
sites forming a coset G of Z2 of finite index. Denote by H the set f −1

y1,y2
(G), which is

also a finite index coset of Z2. Since I has positive density, there exists t ∈ Z2 so that
H ∩ (t + I ) also has positive density. Construct a point z ∈ f (X) by ‘superimposing’ σt x
in the third coordinate at (lexicographically minimal sites within) intersections of ribbons
in (y1, y2). Then v appears with positive frequency in z, which proves (3a) for f (X).

Now, consider any two patterns v 6= w ∈ L [−n,n]2( f (X)). As above, they extend
v′ ∈ LT (X) and w′ ∈ LT ′(X). respectively. We may extend v′ and w′ to patterns
t ′, u′ ∈ L [−n,n]2(X) which induce t, u ∈ L( f (X)) containing v, w. respectively. Then, by
assumption, there exist t ′ = w′1, w

′

2, . . . , w
′

N = u′, all in L [−n,n]2(X), so that, for every i ,
w′i and w′i+1 coexist in a point of X . We may, in fact, assume that both occur infinitely
many times in the same point of X since, by (3a), any pattern containing both occurs with
positive frequency in some point of X . In particular, w′i and w′i+1 appear with arbitrarily
large separation in some point of X . Choose any patterns t = w1, w2, . . . , wN = u, all in
L( f (X)), where each wi extends w′i . Each wi then has shape containing [−n, n]2 since
the letters of w′i are ‘stretched out’ to be placed within intersections of ribbons. For each
i , define w′′i to be the pattern given by the first two coordinates of wi . By Claim A1, for
i ∈ [1, N ), for any large enough v ∈ (4Z)2, we may place w′′i and w′′i+1, separated by v, in
some point of X H × XV homoclinic to the doubly periodic point (x0, y0).

We can then create a point of X containing w′i and w′i+1 with large enough separation
that they may be superimposed over w′′i and w′′i+1 in such a point of X H × XV as to yield
a point of f (X) containing wi and wi+1. Although the patterns w′i do not have the proper
shape [−n, n]2, each has shape containing [−n, n]2, and we can pass to subpatterns with
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that shape (yielding v from w1 and w from wN , in particular) which still have the desired
properties. We have then shown that f (X) satisfies (3b). �

Now, consider any surjective factor map φ : ( f (X), σv)→ (Y, Sv)with |Y |> 1. Again,
as was done in the proof of Theorem 1.4, we can find patterns wi , wi+1 ∈ L [−n,n]2( f (X))
for which φ([wi ]) and φ([wi+1]) are disjoint closed sets and wi and wi+1 coexist in some
pattern u ∈ L( f (X)).

We fix single occurrences of wi and wi+1 within u, denote by t the vector pointing
from wi to wi+1 in u, and denote by k the `1-norm |t1| + |t2| of t . Our goal is now to
extend u to a larger pair of patterns in L( f (X)) which contain occurrences of wi and
wi+1, respectively, at the same location. We begin by defining a pair u1 and u′1 which
contain occurrences of wi and wi+1, respectively, separated by a vector t1 with `1-norm
smaller than k.

First, by Claim A1, we can extend u to an entire point y1 ∈ f (X) whose first two
coordinates (i.e., ‘ribbon structure’) are homoclinic to x0 × y0, the point with equispaced
horizontal and vertical ribbons. The (lexicographically minimal sites within) ribbon
crossings of y1 are filled as in some point x ∈ X extending u.

Then we perturb y1 to create a new point y′1 in a way controlled by t . If the first
coordinate of t is non-zero, then we choose two vertical ribbons in y1 identical to
corresponding ribbons in y0, one to the left of u and one to the right, such that between
them lie all vertical ribbons in y1 which are not identical to corresponding ribbons in
y0. These ribbons, and all vertical ribbons between them, are forced to meander a single
unit somewhere in the equispaced part of y1 homoclinic to x0 × y0. This has the effect
of moving the occurrence of u within y1 either left or right depending on whether the
first coordinate of t is positive or negative, respectively. The resulting point, which we
call y′1, is still in f (X) since we changed no horizontal ribbons, did not change the A
letters at crossing points of ribbons and the horizontal separation between vertical ribbons
could only have been changed from 3 to 2 or 4, both legal in f (X). If it was the second
coordinate of v that was non-zero, then we force horizontal ribbons to meander to move the
occurrence of u within y1, either down or up depending on whether the second coordinate
of v is positive or negative, respectively (see Figure 4).

Since we only changed finitely many ribbons of y1 at finitely many locations to create
y′1, y1 and y′1 are homoclinic. Clearly u is still a subpattern of both y1 and y′1, and so we
may restrict y1 and y′1 to some finite box to create patterns u1 and u′1 which are equal on
their boundaries of thickness 5. By the movement of the copy of u within u1 to create u′1,
there exists a vector t1 with `1 norm less than k and a location i1 so that u1(i1 + S)= wi

and u′1(i1 + t1 + S)= wi+1.
We now simply repeat this procedure a finite number of times until arriving at uk and

u′k in L( f (X)) which agree on their boundaries of thickness t and for which there exists
ik with uk(ik + S)= wi and u′k(ik + S)= wi+1. Then, since uk ∈ L( f (X)), by (3a) there
is a point y ∈ f (X) containing a positive frequency of occurrences of uk . Since uk and u′k
carry the same letters of A at (lexicographically minimal sites within) ribbon intersections
and have the same boundaries of thickness 5 (the type of X H × XV ), the rules of f (X)
should make it clear that any subset of these occurrences of un in y can be replaced by
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FIGURE 4. Changing y1 to y′1 when the first coordinate of t is negative; again, × and ◦ represent H and V ,
respectively.

u′n to yield a collection of points of f (X). Then, as before, the image under φ of this
collection yields a collection of points of Y which independently visit the disjoint closed
sets φ([wi ]) and φ([wi+1]) under Sv in any predetermined way along a set of positive
density, proving that h(Y, Sv) > 0 and completing the proof of (3). �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. For every α ∈ [0, 1], denote by Bα the Z-subshift consisting of all
balanced sequences on {0, 1} with slope α. (Recall that [0, 1] denotes the usual interval of
real numbers, not the set {0, 1}.) Then define

B =
⊔

α∈[0,1]

Bα,

the Z-subshift consisting of all balanced sequences on {0, 1}. (This subshift is called the
grand Sturmian subshift in [2].) Then, by (2) of Theorem 3.5, f (B) is a Z-subshift and,
by (1) of Theorem 3.5, it can be written as

f (B)=
⊔

α∈[0,1]

f (Bα).

CLAIM B1. ( f (B), σ ) does not have TCPE.

Proof. We will show that there is a surjective factor map from ( f (B), σ ) to the non-trivial
zero entropy system ([0, 1], id). The map π is defined as follows. For every c ∈ f (B),
π(c) is defined to be the unique α so that c ∈ f (Bα), i.e., the slope of any point b ∈ B
inducing c. Since each f (Bα) is shift-invariant, clearly, π(σ(c))= π(c)= id(π(c)) for
every c ∈ f (B). Also, π is clearly surjective. It remains only to show that π is continuous.

Consider any sequence (cn) ∈ f (B) for which cn→ c. Define αn = π(cn) and α =
π(c), so that cn ∈ f (Bαn ) and c ∈ f (Bα). It remains to prove that αn→ α. Since cn ∈

f (Bαn ), there exists bn ∈ Bαn inducing cn and, similarly, there exists b ∈ Bα inducing c.
Clearly, since cn→ c, it must be the case that bn→ b as well.

By Corollary 2.15, the slope of any balanced sequence containing the word b([1, k])
is trapped between (#(b([1, k]), 1)− 1)/k and (#(b([1, k]), 1)+ 1)/k. Since, for every
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k, bn([1, k]) eventually agrees with b([1, k]), αn→ α, which completes the proof that B
does not have TCPE. �

CLAIM B2. ( f (B), σ ) has ZTCPE.

Proof. Consider any surjective factor map ψ : ( f (B), σ )→ (Y, S), where h(Y, S)= 0
and Y is a zero-dimensional topological space. We must show that |Y | = 1. We first
note that all Sturmian shifts are minimal (see [7, Ch. 2]) and so satisfy (3a) and (3b)
in Theorem 3.5. Therefore, for every irrational α, f (Bα) has TCPE by Theorem 3.5. For
every α, sinceψ( f (Bα))⊂ Y , clearly, (ψ( f (Bα)), S) has zero entropy as well. Therefore,
for every α /∈Q, ψ( f (Bα)) consists of a single point; call it g(α).

Now we consider the more complicated case of rational α. We first define Bα,0 ⊂ Bα
to be the orbit O(xα) of the lower characteristic sequence for α defined in §2. Then Bα,0
is a single periodic orbit and so satisfies (3a) and (3b) in Theorem 3.5. Therefore f (Bα,0)
has TCPE and, as above, ψ( f (Bα,0)) consists of a single point, which we again denote by
g(α).

We have now defined g on all of [0, 1], and we claim that it is continuous. First,
by Lemma 2.18, for any sequence αn ∈ [0, 1] converging to a limit α from above, the
corresponding lower characteristic sequences xαn ∈ Bαn converge to xα ∈ Bα,0. Then we
can define yαn ∈ f (Bαn ) extending xαn and yα ∈ f (Bα) extending xα so that yαn → yα;
just give them all the same pattern of 0 and non-0 symbols (say, by making all gaps
of 0s have length 3). Continuity of ψ then means that ψ(yαn )= g(αn) approaches
ψ(yα)= g(α), proving that g is continuous from the right. A similar argument using upper
characteristic sequences proves that g is also continuous from the left, and is therefore
continuous.

Now choose any α ∈Q and cα ∈ f (Bα). Then cα extends some bα ∈ Bα and, by
Lemma 2.20, bα is the limit of a sequence bαn ∈ Bαn for some sequence of irrational αn

converging to α. Then we can define cαn ∈ f (Bαn ) so that cαn → cα by using the same
structure of 0 and non-0 symbols as cα for all cαn . Then, by continuity, ψ(cαn )= g(αn)

converges to ψ(cα), which implies that ψ(cα)= g(α) by continuity of g. We have then
shown that ψ collapses every f (Bα) to a single point g(α) for a continuous function g
on [0, 1]. Then g([0, 1])= Y must be connected (as the continuous image of a connected
set), and the only connected subsets of Y are singletons. We have therefore shown that g is
constant, and so |Y | = 1. Since ψ was arbitrary, this shows that ( f (B), σ ) has ZTCPE. �

We have shown that ( f (B), σ ) has ZTCPE but not TCPE, which completes the proof
of Theorem 1.1. �

We are finally ready to present the proof of Theorem 1.5. It is quite similar to that of
Theorem 1.1, but requires a somewhat technical description of a Z2-SFT which will play
the role of B from the former proof.

Proof of Theorem 1.5. We begin with the description of a Z2-SFT X in which all rows of
points in X have a property similar to being balanced. The alphabet is A = {0, 1}3, and
the rules are as follows.
• The first coordinate is constant in the vertical direction: i.e., for any x ∈ X and

(i, j) ∈ Z2, (x(i, j))(1)= (x(i, j + 1))(1).
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• The second coordinate is constant along the line with slope 1: i.e., for any x ∈ X and
(i, j) ∈ Z2, (x(i, j))(2)= (x(i + 1, j + 1))(2).

• The third coordinate is a running total of the differences between the first two
coordinates: i.e., for any x ∈ X and (i, j) ∈ Z2, (x(i, j))(3)= (x(i − 1, j))(3)+
(x(i, j))(2)− (x(i, j))(1).

It should be clear that X is an SFT. For any x ∈ X , define a(x), b(x) ∈ {0, 1}Z

by (a(x))(n)= (x(n, 0))(1) and (b(x))(n)= (x(n, 0))(2). Note that a(x) and b(x)
completely determine the first and second coordinates of x due to the constancy of the
first and second coordinates in their respective directions. Also note that given the first
and second coordinates in a row of a point of x , the third coordinate along that row is
determined up to an additive constant. For any row of a point of x in which the first and
second coordinates along a row are not equal sequences, the third coordinate contains a
0 and 1 and therefore is completely forced by the first two coordinates (since no constant
can be added to keep the third coordinate using only 0 and 1). This means that a(x)
and b(x) uniquely determine x as long as a(x) and b(x) are not shifts of each other. If
a(x)= σ n(b(x)) for some n, then the nth row of x has first and second coordinates both
equal to a(x), meaning that the third coordinate may either be all 0 or all 1 along that
row. Similar facts are true even for finite patterns; in any rectangular pattern, the first and
second coordinates along a row force the third unless the first and second coordinates are
equal words along that row, in which case it is locally allowed for the third coordinate
to either be all 0 or all 1. We note that this does not necessarily mean that both choices
are globally admissible; it may be the case that a rectangular pattern with equal first and
second coordinates along a row can only be extended in such a way that the first and second
coordinates along that row are eventually unequal, forcing the entire row.

Since a(x) and b(x) determine x up to some possible constant third coordinates of rows,
we wish to understand the structure of which pairs a(x), b(x) may appear for x ∈ X , for
which we need a definition.

Definition 3.6. Two sequences a, b ∈ {0, 1}Z are jointly balanced if for every n and every
pair of subwords w, w′ of a, b of length n, the numbers of 1s in w and w′ differ by at most
1: i.e., |#(w, 1)− #(w′, 1)| ≤ 1.

CLAIM C1. There exists x ∈ X with a(x)= a and b(x)= b if and only if a and b are
jointly balanced.

Proof. H⇒: Consider any x ∈ X and arbitrary n-letter subwords w = (a(x))([i, i + n −
1]) of a(x) and w′ = (b(x))([ j, j + n − 1]) of b(x). The (i − j)th row of x contains a(x)
and σ i− j b(x) as its first two coordinates and, by the third rule defining X ,

(x(i + n − 1, i − j))(3)− (x(i − 1, i − j))(3)

=

i+n−1∑
k=i

(x(k, i − j))(2)− (x(k, i − j))(1)

=

i+n−1∑
k=i

(x(k, i − j))(2)−
i+n−1∑

k=i

(x(k, i − j))(1)
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=

j+n−1∑
`= j

(b(x))(`)−
i+n−1∑

k=i

(a(x))(k)

= #(w′, 1)− #(w, 1).

Since (x(i + n − 1, i − j))(3) and (x(i − 1, i − j))(3) are either 0 or 1, their
difference is −1, 0 or 1, and so a(x) and b(x) are jointly balanced.

⇐H: Suppose that a and b are jointly balanced. Then define x ∈ ({0, 1}2 ×
{−1, 0, 1})Z

2
as follows. The first two coordinates are given by (x(i, j))(1)= a(i) and

(x(i, j))(2)= b( j − i) for every (i, j) ∈ Z2. The third coordinate is defined piecewise.
Firstly, (x(0, j))(3)= 0 for all j ∈ Z. Secondly, for i > 0, (x(i, j))(3)= #(b([1−
j, i − j]), 1)− #(a([1, i]), 1). Finally, for i < 0, (x(i, j))(3)=−#(b([i − j,− j]), 1)+
#(a([i, 0]), 1). By joint balancedness, the third coordinate clearly takes only the values
−1, 0 and 1. The reader may check that x satisfies the rules (the three from the bulleted
list given at the beginning of the proof) defining X ; but it may not be a point of X since
its third coordinate may take the value −1. However, it is not possible for the third
coordinate of any row of x to contain 1 and −1; if (x(i, j))(3)= 1, (x(i ′, j))(3)=−1
and i > i ′, then (x(i, j))(3)− (x(i ′, j))(3)= #(b([i ′ − j, i − j]), 1)− #(a([i ′, i]), 1)=
2, which contradicts joint balancedness of a and b. (The case i < i ′ is trivially similar.)
Therefore, for any j at which the j th row of x contains −1, that row can only contain −1
and 0, and so we simply add 1 to the third coordinate of that entire row. This new point,
call it x ′ ∈ ({0, 1}3)Z

2
, is a point of X with a(x ′)= a and b(x ′)= b, which completes the

proof. �

We will now classify the jointly balanced pairs (a, b).

CLAIM C2. All jointly balanced pairs (a, b) fall into at least one of the following four
categories.
(1) α /∈Q and a and b are 1-balanced sequences with slope α.
(2) α ∈Q and a and b are 1-balanced sequences with slope α.
(3) α ∈Q, a is 2-balanced and jointly balanced with xα , and b ∈ O(xα).
(4) α ∈Q, b is 2-balanced and jointly balanced with xα , and a ∈ O(xα).

Proof. Firstly, if (a, b) are jointly balanced, then clearly both a and b are 2-balanced; any
two n-letter subwords of a have number of 1s within 1 of some n-letter subword of b, and
so their numbers of 1s may differ by at most 2. This implies, by Lemma 2.14, that a and b
both have some uniform frequency of 1s (or slope), which must be the same since a, b are
jointly balanced.

Next, suppose that a is 2-balanced but not 1-balanced. Then there exist n and two n-
letter subwords v, v′ of a with #(v, 1) and #(v′, 1) differing by 2, say, that they are k and
k + 2, respectively. But then, since a and b are jointly balanced, every n-letter subword
of b must have exactly k + 1 1s. This implies that b is periodic with period n (this is not
necessarily the least period of b though). We claim that b must be 1-balanced as well.

Assume, for a contradiction, that a, b are both 2-balanced but not 1-balanced. Then
there are m, n (which we take to be minimal), two n-letter subwords v, v′ of a with
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|#(v, 1)− #(v′, 1)| = 2 and two m-letter subwords w, w′ of b with |#(w, 1)− #(w′, 1)|
= 2. Without loss of generality, assume that n ≤ m. As above, every n-letter subword of b
has the same number of 1s, and so we can remove the first n letters ofw, w′ to yield shorter
words with the same property. However, this contradicts minimality of m. Therefore, our
assumption was wrong, and if a is 2-balanced but not 1-balanced, then b is 1-balanced.
Then, by Lemma 2.19, since b is periodic, it must be in the orbit O(xα) of the lower
characteristic sequence xα .

We conclude several things from this: if (a, b) is jointly balanced and a is not
1-balanced, then a is 2-balanced, b is periodic, both have the same rational slope α and
b ∈ O(xα). Similarly, if b is not 1-balanced, then b is 2-balanced, a is periodic, both have
the same rational slope α and a ∈ O(xα). These correspond to categories (3) and (4).

This means that if a and b have irrational slope α, then they must both be
1-balanced; this corresponds to category (1). The only remaining case is that a and b have
rational slope α and both are 1-balanced; this corresponds to category (2) and completes
the proof. �

We briefly note that, by Corollary 2.16, any two 1-balanced sequences with irrational
slope α are jointly balanced, and so all (a, b) in category (1) are jointly balanced. By
description, all (a, b) in categories (3) and (4) are clearly jointly balanced, but (a, b)
in category (2) need not be jointly balanced; for instance, a = . . . 0101001010 . . . and
b = . . . 1010110101 . . . are both 1-balanced sequences with slope α = 1/2, but a contains
00 and b contains 11, and so a and b are not jointly balanced.

For any α ∈ [0, 1], we write Xα = {x ∈ X : a(x), b(x) have slope α}; clearly, X =⊔
Xα and so, by (1) of Theorem 3.5, f (X)=

⊔
f (Xα). By (2) of Theorem 3.5, f (X) is

a Z2-SFT. We will show that f (X) has ZTCPE but not TCPE, for which we need to prove
several properties about the subshifts f (Xα).

CLAIM C3. For every α /∈Q, f (Xα) has TCPE.

Proof. Choose any α /∈Q. We will show that Xα satisfies (3a) and (3b) from Theorem 3.5,
which will imply that f (Xα) has TCPE. Choose any pattern w ∈ L [−n,n]2(Xα), and define
x ∈ Xα for which x([−n, n]2)= w. Then a(x) and b(x) are balanced sequences with
irrational slope α, and are therefore Sturmian with slope α. We break the proof into two
cases.

If a(x) 6= σ i b(x) for all i ∈ [−n, n], then there exists N > n so that all rows of
w′ := x([−N , N ] × [−n, n]) have unequal first and second coordinates, and therefore the
first two coordinates of w′ force the third. Then we define the words u = (a(x))([−N −
n, N + n]) and v = (b(x))([−N − n, N + n]); by the rules defining X , for y ∈ X , if
the first two coordinates of y([−N − n, N + n] × {0}) are u and v, then the first two
coordinates of y([−N , N ] × [−n, n]) match those of w′ = x([−N , N ] × [−n, n]) and,
since the first and second coordinates of w′ force the third, y([−N , N ] × [−n, n])= w′

and y([−n, n]2)= w. We say that u and v force an occurrence of w in any point of X .
If a(x)= σ i b(x) for some i ∈ [−n, n], then we wish to slightly change one of a(x) and

b(x) to another Sturmian sequence with the same slope α so that they are no longer shifts
of one another, but without changing x([−n, n])2. Since a(x) and b(x) are not periodic,
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for all j 6= i , a(x) 6= σ j b(x). Then we can extend w to w′ := x([−N , N ] × [−n, n]) for
which every row has unequal first and second coordinates, except for the i th row, which
must have equal first and second coordinates since a(x)= σ i b(x). Recall that a(x)=
σ i b(x) is Sturmian, and so can be written as a version of a lower/upper characteristic
sequence with a constant added inside the floor/ceiling function. Choose another Sturmian
sequence a′ with slope α which is not equal to a(x), but with a′([−N − n, N + n])=
a([−N − n, N + n]); this can be accomplished by adding a tiny constant inside the
floor/ceiling function defining a(x). Then define k to be the minimal positive integer
for which (a(x))(k) 6= a′(k) and j to be the maximal such negative integer; note that
j, k /∈ [−N − n, N + n]. Then it cannot be the case that (a(x))( j)= (a(x))(k)= 0; if
so, then a′( j)= a′(k)= 1 and |#((a(x))([ j, k]), 1)− #(a′([ j, k]), 1)| = 2, which would
contradict the fact that any two Sturmian sequences with slope α are jointly balanced.
Similarly, (a(x))( j)= (a(x))(k)= 1 is impossible. Therefore, either (a(x))( j)= 0,
(a(x))(k)= 1, a′( j)= 1 and a′(k)= 0, or all of these values are the opposite. We assume
the former, as the proof of the latter is almost exactly the same. We use Claim C1 to define
x ′ ∈ Xα with a(x ′)= a′ and b(x ′)= b(x). Then, since a′([−N − n, N + n])= a([−N −
n, N + n]), the first two coordinates of x ′([−N , N ] × [−n, n]) and w′ = x([−N , N ] ×
[−n, n]) are equal, and therefore they have the same third coordinates as well, except
possibly in the i th row. In the i th row of x ′, the first and second coordinates are a(x ′)= a′

and σ i b(x ′)= σ i b(x)= a(x), respectively. Then x ′(i, j) has first and second coordinates
a′( j)= 1 and (a(x))( j)= 0, respectively, implying that the third coordinate of x ′(i, j) is
0. Since a′ and a(x) agree on ( j, k), the third coordinate of the i th row of x ′ is 0 on that
entire interval, including [−N , N ]. If the third coordinate of w′ is 0 on the entire i th row,
then we have constructed x ′ with x ′([−N , N ] × [n, n])= w′, and so x ′([−n, n]2)= w.
If the third coordinate of w′ was instead 1 on the i th row, then the reader may check
that if we define x ′ instead by a(x ′)= a(x) and b(x ′)= σ−i a′, then x ′ would have third
coordinate 1 on the i th row and again x ′([−n, n]2)= w. In either case, x ′([−n, n]2)= w
and a(x ′) 6= σ i b(x ′) for all i ∈ [−n, n], and so the argument of the last paragraph yields a
pair of finite words u and v which force an occurrence of w in any point of X .

Now, since Sturmian subshifts satisfy (3a) from Theorem 3.5, there exist points au and
bv which contain occurrences of u and v, respectively, beginning at sets of indices A, B
with positive density in Z (in fact every point has this property). By Claim C1, define x ′′

with a(x ′′)= au and b(x ′′)= bv . Then, for every pair (i, j) with i ∈ A and i + j ∈ B,
x ′′(i, j) begins occurrences of u and v on its first two coordinates, yielding an occurrence
of w. The set of such (i, j) has positive density in Z2 since A, B had positive density in
Z, and so we have proved that Xα satisfies (3a) from the hypotheses of Theorem 3.5.

Now consider any two patterns w, w′ ∈ L [−n,n]2(Xα). As above, we can find words
u, v, u′, v′ on {0, 1}2 so that a location containing u, v on its first two coordinates forces
an occurrence of w, and u′, v′ similarly force w′. Since Sturmian subshifts are minimal,
there exists Sturmian a with slope α containing both u and u′; say, a(i) begins an
occurrence of u and a( j) begins an occurrence of u′. Similarly, there exists Sturmian
b with slope α containing both v and v′; say, b(k) begins an occurrence of v and b(`)
begins an occurrence of v′. Since any pair of Sturmian sequences of the same slope are
jointly balanced, by Claim C1 we may define x ∈ Xα with a(x)= a and b(x)= b. Then
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x(i, i − k) begins occurrences of u and v in the first two coordinates (forcing an occurrence
of w), and x( j, j − `) begins occurrences of u′ and v′ in the first two coordinates (forcing
an occurrence of w′). Therefore, x contains both w and w′, verifying (3b) from the
hypotheses of Theorem 3.5. We then know that f (Xα) has TCPE. �

We now move to the more difficult case of rational α. By Claim C2, we know that Xα
can be written as the union of three subshifts, defined as follows.
• Xα,1 consists of x ∈ Xα for which a(x) and b(x) are both 1-balanced with slope α.
• Xα,2 consists of x ∈ Xα for which a(x) is 2-balanced and jointly balanced with xα ,

and b(x) ∈ O(xα).
• Xα,3 consists of x ∈ Xα for which b(x) is 2-balanced and jointly balanced with xα ,

and a(x) ∈ O(xα).
We also define a useful subshift of Xα,1:

• Xα,0 ⊂ Xα,1 consists of x ∈ Xα for which a(x), b(x) ∈ O(xα).
Every point x ∈ Xα,0 has a strange property: since a(x) and b(x) are in the same periodic
orbit, there are infinitely many rows for which the first and second coordinates are the
same, and so in each of those rows the third coordinate can be chosen to be all 0 or all 1,
each independent of every other such row. This means that many points in Xα,0 are, in fact
not limits of points of Xαn for irrational αn , in contrast to the proof of Theorem 1.1. We
instead use the following fact.

CLAIM C4. For every α ∈Q, f (Xα,0) has TCPE.

Proof. Choose any α ∈Q and any pattern w in L [−n,n]2(Xα,0). For each row, we extend w
on the left and right to make the first and second coordinates different, if possible, arriving
at a new pattern w′ ∈ L [−N ,N ]×[−n,n](Xα0) with the following property. For each row
where the first and second coordinates of w′ match, any point x ∈ Xα,0 with x([−N , N ] ×
[−n, n])= w′ must have equal first and second coordinates in that entire row. Define by
w′′ the pattern given by the first two coordinates ofw′. Choose an arbitrary point x ∈ Xα,0;
w′′ clearly appears with positive frequency (in fact, along a subgroup of finite index of Z2)
in x since the first and second coordinates of x come from the single periodic orbit O(xα).
At each occurrence of w′′ in x , the third coordinate is forced to match that of w′ except,
possibly, in some rows where the first and second coordinates are equal. Recall, though,
that this forces that entire row of x to have equal first and second coordinates, and so
the third coordinates of any such rows in x can be judiciously changed to create a point
x ′ ∈ Xα,0 in which w′ itself (and therefore w as well) appears with positive frequency,
which proves (3a) from Theorem 3.5.

Now choose any v, w ∈ L [−n,n]2(Xα,0). As above, v and w can be extended to
v′, w′ ∈ L [−N ,N ]×[−n,n](Xα,0) such that any rows with equal first and second coordinates
within v′ (or w′) force equal first and second coordinates throughout the corresponding
entire biinfinite row of any point of Xα,0 containing v′ (or w′). Then, if we denote by v′′

andw′′ the patterns given by the first two coordinates of v′ andw′, respectively, and choose
any x ∈ Xα,0, then again v′′ and w′′ appear with positive frequency in x . Therefore, it is
possible to choose occurrences of v′′ and w′′ within x which share no row. Then, as above,
for any rows in which v′′ andw′′ have equal first and second coordinates, the corresponding
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rows of x have equal first and second coordinates. The third coordinate on those rows
can then be changed (if necessary) to create a new point x ′ in which v′ and w′ (and
therefore v and w) both appear, verifying (3b) and implying that f (Xα,0) has TCPE via
Theorem 3.5. �

Now, similarly to the proof of Theorem 1.1, we wish to deal with points of f (Xα,1) \
f (Xα,0) by representing them as limits of points from the simpler irrational case.

CLAIM C5. Every c ∈ f (Xα,1) \ f (Xα,0) can be written as the limit of a sequence cn ∈

f (Xαn ) for some sequence of irrational αn converging to α.

Proof. Choose any c ∈ f (Xα,1) \ f (Xα,0), which extends some x ∈ Xα,1 \ Xα,0. We will
show that x can be written as a limit of xn ∈ Xαn , as claimed; then clearly we can create
cn ∈ f (Xαn ) converging to c by simply copying the ‘ribbon structure’ of c.

Since x ∈ Xα,1 \ Xα,0, at least one of a(x) and b(x) is not periodic (although, in fact,
both must be eventually periodic). We break the proof into two cases depending on whether
or not a(x) and b(x) are shifts of each other.

Case 1. Suppose that a(x) and b(x) are not shifts of each other. Then for every n,
there exists N so that all rows of x([−N , N ] × [−n, n]) have unequal first and second
coordinates, and thereby the third coordinate of x([−N , N ] × [−n, n]) is forced by
the first two coordinates on that pattern. Write un := (a(x))([−N − n, N + n]) and
vn := (b(x))([−N − n, N + n]). Since the first and second coordinates of all rows of
x are balanced sequences, un and vn are balanced words and so, by Lemma 2.20,
there exist Sturmian sequences an and bn for which an([−N − n, N + n])= un and
bn([−N − n, N + n])= vn .

We wish to choose an and bn with the same slope, which requires a more detailed
examination of the proof of [7, Lemma 2.20]. In that proof, it is shown that, in fact,
a balanced word w is a subword of any Sturmian sequence with irrational slope strictly
between

α′(w) :=max
v

(
#(v, 1)− 1
|v|

)
and α′′(w) :=min

v

(
#(v, 1)+ 1
|v|

)
,

where v ranges over all subwords of w. We then need to show that (α′(un), α
′′(un))

∩ (α′(vn), α
′′(vn)) 6=∅. First, note that since un and vn are subwords of balanced

sequences with slope α, by Corollary 2.15 α′(un), α
′(vn)≤ α ≤ α

′′(un), α
′′(vn). The only

case in which we are not finished is if either α′(un)= α = α
′′(vn) or α′(vn)= α = α

′′(un).
For a contradiction, we assume the former; the other case is trivially similar. Since
α′(un)= α, un has a subword s with #(s, 1)= |s|α + 1. If we write α = i/j in lowest
terms, then |s|must be a multiple of j since #(s, 1) is an integer. But then we may partition
s into j-letter subwords, and one of them, call it s′, must have #(s′, 1)≥ i + 1. However,
a similar argument shows that, since α′′(vn)= α, vn contains a j-letter subword t ′ with
#(t ′, 1)≤ i − 1, which violates the fact that un and vn are jointly balanced. Therefore,
(α′(un), α

′′(un)) ∩ (α
′(vn), α

′′(vn)) 6=∅, and so we may choose an and bn to have the
same irrational slope αn .

https://doi.org/10.1017/etds.2016.120 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2016.120


1916 R. Pavlov

Then an and bn are jointly balanced, so, by Claim C1, we may define xn ∈ Xαn

with a(xn)= an and b(xn)= bn . Then xn([−N , N ] × [−n, n]) has first two coordinates
agreeing with those of x([−N , N ] × [−n, n]), and we argued above that their third
coordinates must agree as well, meaning that xn([−N , N ] × [−n, n])= x([−N , N ] ×
[−n, n]). Therefore, x is the limit of the sequence xn ∈ Xαn for a sequence of irrational αn

converging to α.

Case 2. Suppose that a(x) and b(x) are shifts of each other, say, a(x)= σ kb(x). Then
both a(x) and b(x) are not periodic (since x /∈ Xα,0), and so, for m 6= k, a(x) 6= σmb(x).
Therefore, for every n > |k|, we can choose N so that all rows of x([−N , N ] × [−n, n])
except the kth have unequal first and second coordinates, and thereby the third coordinate
of x([−n, n] × [−N , N ]) is forced by the first two coordinates on each row except the kth.
Then, again by Lemma 2.20, there exists a Sturmian sequence bn , with irrational slope αn ,
for which bn([−N − n, N + n])= (b(x))([−N − n, N + n]). By Claim C1, we define
xn ∈ Xαn with a(xn)= σ

kbn and b(xn)= bn . Then xn([−N , N ] × [−n, n]) has first two
coordinates agreeing with those of x([−N , N ] × [−n, n]) and, by the above argument,
the third coordinates are forced to agree as well, except possibly on the kth row. However,
the kth row of xn has equal first and second coordinates, and so the third coordinate can be
chosen to be either all 0s or all 1s, whichever matches the third coordinate of the kth row
of x([−N , N ] × [−n, n]). Then xn([−N , N ] × [−n, n])= x([−N , N ] × [−n, n]), and
so again x is the limit of the sequence xn ∈ Xαn for a sequence of irrational αn converging
to α.

Then, the sequence xn induces a sequence cn ∈ f (Xαn )with the same ‘ribbon structure’
as that of c, and clearly cn→ c, which completes the proof. �

Finally we must treat the subshifts Xα,2 and Xα,3. We first treat the special cases α = 0
and α = 1.

CLAIM C6. For α ∈ {0, 1}, Xα,2 ∪ Xα,3 ⊆ Xα,1.

Proof. We treat only α = 0, as α = 1 is trivially similar. Note that xα = 0∞ = . . . 000 . . . ,
and the only sequences jointly balanced with xα are xα itself and the orbit of 0∞10∞ =
. . . 0001000 . . . . All of these sequences are, however, also 1-balanced. Therefore, X0,2 ∪

X0,3 ⊆ X0,1 and, similarly, X1,2 ∪ X1,3 ⊆ X1,1. �

A key technique used in the proof of Theorem 1.1 was to show that any point of Bα
could be written as the limit of a sequence of points from Bαn for some irrational αn→ α.
However, the analogous fact here is not true; the set of 1-balanced sequences is closed,
so no point in Xα,2 ∪ Xα,3 (where one of a(x) or b(x) is not 1-balanced) can be written
as the limit of a sequence from Xαn for irrational αn (for which both a(x) and b(x) are
1-balanced). Instead, we will prove the following claim.

CLAIM C7. For α ∈Q \ {0, 1}, f (Xα,2 ∪ Xα,3) has TCPE.

Proof. We need only show that Xα,2 ∪ Xα,3 satisfies (3a) and (3b) from the hypotheses
of Theorem 3.5. For the first part, consider any w ∈ L [−n,n]2(Xα,2). As in the proof of
Claim C4, we may extend w to w′ ∈ L [−N ,N ]×[−n,n](Xα,2) with the following property.
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For each row ofw′ with equal first and second coordinates, the first and second coordinates
of the entire corresponding row are forced to agree for any x ∈ Xα,2 with x([−N , N ] ×
[−n, n])= w′. Choose such an x ∈ Xα,2. By definition, b(x) ∈ O(xα) and a(x) is
jointly balanced with xα . Define u = (a(x))([−N − n, N + n]) and v = (b(x))([−N −
n, N + n]); by the rules defining X , any x ′ ∈ Xα,2 with (a(x ′))([−N − n, N + n])= u
and (b(x ′))([−N − n, N + n])= v must have first and second coordinates on [−N , N ] ×
[−n, n] matching those of w′. We now wish to show that there exists x ′ ∈ Xα,2 for which
the pair a(x ′), b(x ′) sees the pair u, v with positive frequency. We begin by proving
that we can find a periodic sequence a which is jointly balanced with xα and for which
a(−N − n, N + n)= u. Recall that u is contained in a(x), which is jointly balanced with
xα . Let us write α = i/j in lowest terms; then, by definition, xα is periodic with period j
and every j-letter subword of xα contains exactly i 1s. Let us also fix any m ∈ N so that
mj > |u| + j .

We break the proof into two cases. Firstly, assume that there exists some subword t of
a(x) which contains u, has length mj , and contains exactly mi 1s. Secondly, we claim
that t∞ is jointly balanced with xα . To see this, consider any subword y of t∞; clearly, y
can be written as stk p for some p a prefix of t and s a suffix of t . If |p| + |s| ≤ |t |, then
t can be written as pzs, and then #(y, 1)= #(stk p, 1)= (k + 1)mi − #(z, 1). Then z is a
subword of a(x), and we recall that a(x) is jointly balanced with xα . If |z| is a multiple of
j , then every |z|-letter subword z′ of xα has #(z′, 1)= |z|α. If |z| is not a multiple of j ,
then, by Corollary 2.16, there exist |z|-letter subwords z′, z′′ of xα with #(z′, 1)= b|z|αc
and #(z′′, 1)= d|z|αe. Either way, we see that

∣∣#(z, 1)− |z|α
∣∣≤ 1. Therefore, #(y, 1)

is within 1 of (k + 1)mi − |z|α = ((k + 1)mj − |z|)α = |y|α. If instead |p| + |s|> |t |,
then we can write s = zs′ and t = ps′. Then #(y, 1)= #(stk p, 1)= (k + 1)mi + #(z, 1).
Again

∣∣#(z, 1)− |z|α
∣∣≤ 1, so #(y, 1) is within 1 of (k + 1)mi + |z|α = ((k + 1)mj +

|z|)α = |y|α. Either way, we have shown that every subword of t∞ has number of 1s
within 1 of α times its length, and so a := t∞ is jointly balanced with xα . Also, since
a(−N − n, N + n) was unchanged from a(x), it is equal to u.

The remaining case is that every subword t of a(x) with length mj which contains u
does not have mi 1s. By the fact that a(x) is jointly balanced with xα , the only possibilities
are that such subwords have either mi − 1 or mi + 1 1s. If both numbers occurred, then
there would have to be an intermediate subword with length mj containing u with exactly
mi 1s, which is a contradiction. Therefore, either #(t, 1)= mi − 1 for every mj-letter
subword t of a(x) containing u or #(t, 1)= mi + 1 for all such t ; we treat only the former
case, as the latter is trivially similar. Consider an mj-letter subword t of a(x) which
contains u and ends with a 0 (such a word must exist; α ≤ ( j − 1)/j , and so, since a(x) is
jointly balanced with xα , the j + 1 letters immediately following u in a(x) contain at least
one 0). Then t is jointly balanced with xα , and we claim that if we change the final letter of
t to a 1, yielding a new word t ′, then t ′ is jointly balanced with xα as well. To see this, we
need only show that every subword of t ′ has number of 1s within 1 of α times its length.
Since we changed only the last letter of t , it suffices to show this for suffixes of t ′. For
this purpose, choose any suffix s′ of t ′, and denote by s the suffix of t of the same length.
Take y to be the subword of a(x) ending with t with length mj . Then, by assumption,
#(y, 1)= mi − 1. We write y = zs and, as before, since z is a subword of a(x), which is
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jointly balanced with xα , #(z, 1)≥ |z|α − 1. So #(s, 1)≤ (mi − 1)− (|z|α − 1)= (mj −
|z|)α = |s|α. Then, again using Corollary 2.15, #(s, 1) ∈ [|s|α − 1, |s|α], which implies
that #(s′, 1) ∈ [|s′|α, |s′|α + 1], since it is exactly one greater. But then we have shown
that t ′ is jointly balanced with xα , and it is a word with length mj which contains u and
has exactly mi 1s, and so, by the previous paragraph, a := (t ′)∞ is jointly balanced with
xα and has a(−N − n, N + n)= u.

In both cases, we have found a which is periodic and jointly balanced with xα , with
a(−N − n, N + n)= u. By Claim C1, define x ′ ∈ Xα,2 with a(x ′)= a and b(x ′)= b(x).
Then b(x ′) is periodic and (b(x ′)([−N − n, N + n])= v, meaning that the pair u, v
appears along a(x ′), b(x ′) periodically with period the product of those of a(x ′), b(x ′).
Since b(x ′) is periodic with period j and the first coordinate of x ′ is constant vertically,
every j th row of x ′, in fact, also contains u, v in its first two coordinates with positive
frequency. As explained above, each occurrence of u, v forces a pattern with shape
[−N , N ] × [−n, n] which has the same first two coordinates as w′ and, for all rows where
those coordinates are unequal, the third coordinate is forced and must match that of w′

as well. If any rows have equal first and second coordinates, then, as argued above, the
entire associated biinfinite rows of x ′ must have equal first and second coordinates as well,
and then the third coordinate can be changed (if necessary) in each row to match that of
w′ in the relevant row. This yields a point x ′′ ∈ X which contains a positive frequency
of occurrences of w′, and therefore of w. The proof for patterns in L(Xα,3) is trivially
similar, and so we have shown (3a) from Theorem 3.5 for Xα,2 ∪ Xα,3.

Now we must prove (3b). Again, choose any w ∈ L [−n,n]2(Xα,2), extend to w′ ∈
L [−N ,N ]×[−n,n](Xα,2), as above, choose x ∈ Xα,2 containing w′ and define u and v

subwords of a(x) and b(x) with the same properties as in the proof of (3a). Specifically,
the first and second coordinates of x are equal in any row on which w′ has equal first and
second coordinates, b(x) ∈ O(xα), a(x) is jointly balanced with xα and any x ′ ∈ Xα,2 with
(a(x ′))([−N − n, N + n])= u and (b(x ′))([−N − n, N + n])= v has first and second
coordinates on [−N , N ] × [−n, n] matching those of w′. Consider the sequence a(x). It
must contain a subword of length j with exactly i 1s somewhere to the right of u; if not,
then, as above, every such word would have to have exactly i − 1 1s or every such word
would have exactly i + 1 1s, each of which contradicts the fact that a(x) has slope α = i/j .
Similar reasoning shows that a(x) also contains a subword of length j with exactly i 1s
somewhere to the left of u. We then can write the subword of a(x) between these two
j-letter words (inclusive) as ptuvq, where p and q are length j and #(p, 1)= #(q, 1)= i .
Since ptuvq was a subword of a(x), it is jointly balanced with xα . We now claim that
a := p∞tuvq∞ is also jointly balanced with xα . To see this, choose any subword s of
a. We need to show that

∣∣#(s, 1)− |s|α
∣∣≤ 1. We can clearly write s as s = pk zq` for

some k, `≥ 0, where z is a subword of ptuvq . As before, since z is a subword of a(x),
which is jointly balanced with xα ,

∣∣#(z, 1)− |z|α
∣∣≤ 1. Then #(s, 1)= ik + i`+ #(z, 1),

and therefore is within 1 of ik + i`+ |z|α = ( jk + j`+ |z|)α = |s|α. We have then
shown that a = p∞tuvq∞ is jointly balanced with xα . We note that, since a is jointly
balanced with xα , the biinfinite sequences p∞ and q∞ must be as well. We then claim
that these sequences are, in fact, (1-)balanced. For any length m which is not a multiple
of j , Corollary 2.16 implies that every m-letter subword of p∞ or q∞ has either bmαc or
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dmαe 1s. For any m a multiple of j , since p∞ is periodic with period j , every m-letter
subword of p∞ or q∞ has the same number of 1s (namely, mα). Therefore p∞ and q∞

are, in fact, balanced and, by Lemma 2.19, must be in O(xα) themselves.
By Claim C1, define x ′ ∈ Xα,2 with a(x ′)= a and b(x ′)= b(x). Clearly,

(a(x ′))([−N − n, N + n]) is unchanged from a(x) and so equals u, and (b(x ′))([−N −
n, N + n])= v. As argued before, these occurrences of u, v force the first two coordinates
of x ′([−N , N ] × [−n, n]) to match those of w′, and the third coordinate on any rows
of x ′ with equal first and second coordinates can be changed to yield x ′′ containing w′

(and thereby w). Since a(x ′′) and b(x ′′) both terminate with a shift of xα , due to the
periodicity of the first and second coordinates of x ′′, there must be a subpattern of x ′′

of shape [−n, n]2, call it w′′, whose first and second coordinates on every row are just
subwords of xα . Call the set of such patterns Sn . We have then shown that any pattern in
L [−n,n]2(Xα,2) coexists in a point of Xα,2 with a pattern from the set Sn and, similarly, one
can prove that any pattern in L [−n,n]2(Xα,3) coexists in a point of Xα,3 with a pattern from
Sn .

Finally, we claim that any two patterns s, t ∈ Sn coexist in some point of Xα,0 ⊂ Xα,2 ∪
Xα,3. We may, without loss of generality, assume that n > j . Define s′ and t ′ to be the
patterns given by the first two coordinates of s and t , respectively, and use Claim C1 to
define x ∈ Xα,0 with a(x)= b(x)= xα . Then all possible ‘phase shifts’ of the first and
second coordinates appear in infinitely many rows, and so s′ and t ′ appear infinitely many
times in x ; in particular, there are occurrences of them which share no row. Since n > j , in
any rows where the first and second coordinates of those occurrences of s′ or t ′ agree, the
corresponding entire rows of x have equal first and second coordinates. Then, in any such
rows, the third coordinate of x can be changed (if necessary) to yield x ′ ∈ Xα,0 containing
s and t .

We have then proved (3b) from Theorem 3.5 (with N = 3) for Xα,2 ∪ Xα,3; for any
two patterns w, w′ in L [−n,n]2(Xα,2 ∪ Xα,3), each coexists with a pattern from Sn in some
point of Xα,2 ∪ Xα,3, and then the two patterns from Sn coexist in some point of Xα,0 ⊂
Xα,2 ∪ Xα,3. Finally, we apply Theorem 3.5 to see that f (Xα,2 ∪ Xα,3) has TCPE. �

We are now prepared to prove that ( f (X), σv) has ZTCPE but not TCPE.

CLAIM C8. ( f (X), σv) does not have TCPE.

Proof. As in the corresponding proof from Theorem 1.1, we define a surjective factor map
from ( f (X), σv) to the non-trivial zero entropy system ([0, 1], id). The map π is defined
as follows. For every c ∈ f (X), π(c) is defined to be the unique α so that c ∈ f (Xα). The
arguments that π is shift-invariant and surjective are the same as before. It remains only
to show that π is continuous, but this is simple: if cn ∈ f (X) approaches c, then each cn

extends some xn where the sequence xnapproaches a limit x , and then a(xn) approaches
a(x). But then a(xn) and a(x) are 2-balanced sequences, and the proof that the slopes
of a(xn) approach the slope of a(x) is the same as in the one from Theorem 1.1. This
implies that π(cn)→ π(c), and that π is continuous, meaning that ( f (X), σv) does not
have TCPE. �

CLAIM C9. ( f (X), σv) has ZTCPE.
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Proof. Again we proceed by showing that every factor map on ( f (X), σv) with image
having zero entropy factors through π . Consider any surjective factor map ψ :

( f (X), σ )→ (Y, Sv), where h(Y, Sv)= 0 and Y is a zero-dimensional topological space.
We must show that |Y | = 1.

For every α, ψ( f (Xα))⊂ Y , and so, clearly, h(ψ( f (Xα)), Sv)= 0. Therefore, by
Claim C3 above, for α /∈Q, ψ( f (Xα)) is a single point, which we denote by g(α).

Similarly, for any α ∈Q, by Claim C4, ψ( f (Xα,0)) consists of a single point, which we
denote by g(α). For α ∈Q \ {0, 1}, Claim C7 implies that ψ( f (Xα,2) ∪ f (Xα,3)) consists
of a single point. Since f (Xα,0)⊂ f (Xα,2) ∪ f (Xα,3), this point must also be g(α).

We have now defined g on all of [0, 1], and we claim that it is continuous. This is
similar to the corresponding proof from Theorem 1.1, but the third coordinate causes some
technical difficulties. Consider any sequence αn which approaches a limit α from above.
Then, by Claim C1, define xn ∈ Xαn by taking a(xn) and b(xn) to both be the lower
characteristic sequence xαn ; note that if αn ∈Q, then, in addition, xn ∈ Xαn ,0. For any
row where the third coordinate is not forced by the first two (including the 0th row), label
the third coordinate by all 1s if it is a non-negatively indexed row, and by all 0s if it is a
negatively indexed row. From Lemma 2.18, the first two coordinates of xn clearly approach
a limit, and any point x with those first two coordinates would have a(x)= b(x)= xα . It
remains to show that the third coordinates of xn actually converge. To see this, choose
any row, say the kth, and examine what happens to the third coordinates of xn along that
row as n increases. If σ k xα 6= xα , then there is a place in the kth row where the first
and second coordinates are unequal for large enough n, meaning that the third coordinate
is forced by the first two for large n and therefore must approach a limit since the first
two do. If σ k xα = xα , then kα ∈ Z and α ∈Q. Since αn > α, if we denote by in, jn the
negative and positive indices at which xαn and xα first differ, then xαn (in)= xαn ( jn)= 1
and xα(in)= xα( jn)= 0. Choose n large enough that |in|, | jn|> k. If k > 0, then the
first and second coordinates of the kth row of xn agree from in + k + 1 to jn − 1, and at
jn the first coordinate has a 1 and the second has a 0. This forces the third coordinate
at jn − 1 to be a 1 and, since the first and second coordinates agree from in + k + 1 to
jn − 1, the third coordinate is 1 throughout that range. As n→∞, |in|, | jn| →∞, and
so the third coordinate on the kth row approaches all 1s. Similarly, for k < 0, the third
coordinate will approach all 0s. Therefore, xn does, in fact, approach a limit x , where
all non-negatively indexed rows with non-forced third coordinate have that coordinate
labeled with all 1s, and all similar negatively indexed rows have third coordinate all 0s.
This point x is in Xα by definition, and in Xα,0 if α ∈Q. We may create cn ∈ f (Xαn )

extending xn and c ∈ f (Xα) (or f (Xα,0)) extending x for which cn→ c; just use the
same ‘ribbon structure’ for all of the points. Then, by continuity of ψ , ψ(cn)→ ψ(c).
However, ψ(cn)= g(αn) and ψ(c)= g(α), and so we have shown that g(αn)→ g(α) and
therefore that g is continuous from the right. A similar argument using upper characteristic
sequences and third coordinate 0 in the upper half-plane and 1 in the lower half-plane
shows that g is continuous from the left, and is therefore continuous.

The only points of f (X) which have not yet been considered are those in f (Xα,1) \
f (Xα,0). (It may look as if we have ignored f (Xα,2) ∪ f (Xα,3) for α ∈ {0, 1}, but by
Claim C6 such points are already contained in Xα,1.) By Claim C5 above, every point
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y ∈ f (Xα,1) \ f (Xα,0) can be written as a limit from points of f (Xαn ) for some sequence
of irrationals αn→ α. But then ψ(y) is the limit of g(αn) and, by continuity of g, this
implies that ψ(y)= g(α). We have then shown that, for every α, ψ( f (Xα))= g(α).

Since g is continuous on [0, 1], g([0, 1])= Y must be connected (as the continuous
image of a connected set), and the only connected subsets of Y are singletons. We have
therefore shown that g is constant, and so |Y | = 1. Since ψ was arbitrary, (X, σv) has
ZTCPE. �

We have shown that the Z2-SFT ( f (X), σv) has ZTCPE but not TCPE, which completes
the proof of Theorem 1.5. �

We end by briefly remarking on a comment made in the introduction. By Theorems 1.3
and 1.4, for X as in Theorem 1.5, any two patterns in L [−n,n]2( f (X)) must be chain
exchangeable, but the maximum number of required exchanges between two such patterns
must increase as n→∞. This can be seen informally without reference to TCPE
or ZTCPE, as follows. As shown in the proof of Theorem 3.5, two patterns v, w ∈
L [−n,n]2( f (X)) extending v′, w′ ∈ L(X) are exchangeable only if v′ and w′ appear in the
same point of X . Such v′ and w′ are essentially determined by pairs of jointly balanced
words. A balanced word of length n generally determines the slope of a balanced sequence
containing it within a tolerance which approaches 0 as n→∞. So two pairs of jointly
balanced words of length n may appear in the same pair of jointly balanced sequences
only if their frequencies of 1s are close enough. Therefore, if v′, w′ have frequencies of
1s quite far apart, then the number of exchanges required to get from v to w will increase
with n.
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