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We examine the effect of prescribed wall-driven oscillations of a flexible tube of
arbitrary cross-section, through which a flow is driven by prescribing either a steady
flux at the downstream end or a steady pressure difference between the ends. A
large-Womersley-number large-Strouhal-number regime is considered, in which the
oscillations of the wall are small in amplitude, but sufficiently rapid to ensure viscous
effects are confined to a thin boundary layer. We derive asymptotic expressions for
the flow fields and evaluate the energy budget. A general result for the conditions
under which there is zero net energy transfer from the flow to the wall is provided.
This is presented as a critical inverse Strouhal number (a dimensionless measure of
the background flow rate) which is expressed only in terms of the tube geometry, the
fluid properties and the profile of the prescribed wall oscillations. Our results identify
an essential component of a fundamental mechanism for self-excited oscillations in
three-dimensional collapsible tube flows, and enable us to assess how geometric and
flow properties affect the stability of the system.

1. Introduction
Flow-induced oscillations of fluid-conveying elastic vessels arise in many engineering

and biomechanical systems. Examples include pipe flutter, wheezing during forced
expiration from the pulmonary airways and the development of Korotkoff sounds
during blood pressure measurement by sphygmomanometry (Heil & Jensen 2003;
Grotberg & Jensen 2004).

Experimental studies of flow in collapsible tubes are typically performed with the
Starling resistor shown in figure 1. A finite-length elastic tube is mounted on two rigid
tubes and flow is driven through the system either by imposing the flow rate (using
a volumetric pump) or by applying a fixed pressure drop between the far-upstream
and far-downstream ends of the two rigid tubes. The collapsible segment is contained
inside a pressure chamber which allows the external pressure acting on the elastic
tube to be controlled independently of the fluid pressure. If the transmural (internal
minus external) pressure becomes sufficiently negative, the elastic tube buckles
non-axisymmetrically. Once buckled, the tube is very flexible and, as a result, small
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pup

pext

pdn

Elastic tube
Rigid tube

Pressure chamber

Figure 1. The typical experimental set-up, known as a ‘Starling resistor’, which comprises
an elastic tube clamped between rigid supports, surrounded by an outer pressure chamber.
Flow is driven through the tube from left to right by an applied pressure difference pup − pdn

between the two ends. Alternatively, a volumetric pump may be used to set a specific flux at
one end or the other. The pressure pext in the surrounding chamber can be adjusted to control
the degree of collapse of the elastic tube.

changes in transmural pressure can induce large changes in the tube shape, resulting in
strong fluid–structure interaction. Experiments show that the elastic tube segment has
a propensity to develop large-amplitude self-excited oscillations of great complexity
when the flow rate is increased beyond a certain value (Bertram 2003).

The mechanisms responsible for the development of these self-excited oscillations
are still not fully understood. Early theoretical analyses of flow in collapsible
tubes (reviewed, for example, in Heil & Jensen 2003) were based on spatially one-
dimensional models. These invariably required numerous ad hoc assumptions to model
the complicated three-dimensional wall mechanics, the viscous losses, the effect of flow
separation, etc. within the framework of the cross-sectionally averaged equations. As
a first step towards a more rational theoretical approach to the problem, Jensen &
Heil (2003) analysed the development of self-excited oscillations in a two-dimensional
channel in which part of one of the rigid walls is replaced by a tensioned membrane.
This set-up is attractive because it can, at least in principle, be realized experimentally
but avoids many of the complexities of the full three-dimensional system. Luo &
Pedley (1996) had previously simulated nonlinear self-excited oscillations in this
system using a finite-element method, although a rational theoretical analysis of these
oscillations was (and still is) lacking.

Jensen & Heil (2003) analysed this system in a parameter regime in which the
wall stiffness (or pre-stress) is sufficiently large that the wall performs high-frequency
oscillations. In this regime the oscillatory fluid flow induced by the wall motion
has a two-region structure: an inviscid core flow region, surrounded by thin Stokes
layers near the channel walls. Conservation of volume implies that, during phases
when the wall moves inward, some of the fluid in the collapsible section must be
displaced into the upstream and downstream rigid channels. The oscillatory wall
motion therefore generates axial sloshing flows that increase (decrease) the volume
flux in the downstream rigid section while decreasing (increasing) the volume flux
in the upstream rigid section when the wall moves inward (outward). Jensen & Heil
(2003) showed that the interaction between the wall-driven oscillatory axial sloshing
flow and the mean flow through the tube allows the wall to extract energy from the
flow if the magnitude of the sloshing flows in the upstream rigid channel exceeds
sufficiently that in the downstream section. Theoretical predictions for the flow rate at
which self-excited oscillations develop were found to be in excellent agreement with
direct numerical simulations (based on the solution of the unsteady two-dimensional
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Navier–Stokes equations, fully coupled to a beam-theory model of the elastic channel
wall). Furthermore, the flow features predicted by the small-amplitude analysis were
found to provide an excellent description of the system’s behaviour during the large-
amplitude limit-cycle oscillations that developed subsequently.

Jensen & Heil (2003) provided an explanation of the instability mechanism in
terms of the fluid’s energy balance, given by (2.12) below. Briefly, the energy fluxes
into and out of the system are the kinetic energy flux through the tube ends, the
work done by pressure and viscous forces at the tube ends and at the wall, and
the losses due to dissipation. Any net energy flux into the system necessarily alters
the total (kinetic) energy content of the system. If an instability is to grow, the
total energy of the system needs to increase, on average, over time, so the net time-
averaged flux into the system must be positive. By virtue of a non-zero time-mean
square, any oscillatory flow at the upstream end increases the kinetic energy influx,
and any oscillatory flow at the downstream end increases the kinetic energy outflux.
If the amplitude of the oscillatory flow is greater at the upstream end, then there
will be a net increase in kinetic energy flux. If this increase is greater than the
additional dissipative (or other) losses, then there is energy available to drive an
instability.

When assessing the applicability of this instability mechanism to three-dimensional
flows in collapsible tubes, Heil & Waters (2006) showed that, while the mechanism
is, in principle, independent of the spatial dimension, the sloshing flows generated by
small-amplitude non-axisymmetric oscillations of circular cylindrical tubes are much
weaker than those generated in the corresponding two-dimensional system. In a two-
dimensional channel, a transverse wall deflection of amplitude Δ generates an O(Δ)
sloshing flow. However, the preferred mode of buckling for a cylindrical tube typically
has an azimuthal wavenumber of 2 and very nearly preserves circumferential length.
A small-amplitude non-axisymmetric buckling deformation of this form preserves
cross-sectional area at leading order, and hence deformations of O(Δ) only generate
axial sloshing flows of size O(Δ2). The net influx of kinetic energy due to these
sloshing flows is therefore much smaller in three dimensions than in two dimensions.
Heil & Waters (2006) showed that the flows generated by high-frequency, oscillatory,
non-axisymmetric wall deflections of a circular cylindrical tube of moderate length
are, in fact, dominated by the transverse flows within the tube’s cross-sections. In
the regime they studied, the interaction with the mean flow is too weak to extract
sufficient energy from it.

The magnitude of the sloshing flows can, however, be increased either by making
the tube sufficiently long (O(Δ) non-axisymmetric wall deflections inducing O(Δ2)
area changes applied over an axial length of O(1/Δ) generate O(Δ) sloshing flows),
or if the tube wall performs oscillations about a sufficiently non-axisymmetric
mean configuration. The latter possibility was explored by Heil & Waters (2008),
who analysed the energy budget of flows through rapidly oscillating tubes whose
wall motion was prescribed. They demonstrated that, if the tube wall performs
oscillations about a non-axisymmetrically buckled mean configuration, the wall begins
to extract energy from the viscous mean flow when the flow rate exceeds a certain
threshold. Heil & Waters (2008) conjectured that, in a problem with full fluid–
structure interaction, this flow rate corresponds to the threshold beyond which the
amplitude of the wall oscillations would grow. Numerical simulations were employed
to determine the dependence of the critical flow rate (expressed as a critical inverse
Strouhal number) on the Womersley number of the flow, and a scaling argument was
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presented to explain the observed simple functional relationship between these two
quantities.

The asymptotic analysis of Heil & Waters (2008) was restricted to tubes whose initial
configuration was a small deformation of a circular cylinder. In this paper, we extend
the work of Heil & Waters to tubes of arbitrary initial shape, with the proviso that the
cross-sections vary only slowly axially. We consider a particular asymptotic regime,
corresponding to long-wavelength small-amplitude high-frequency oscillations. This
regime corresponds to a region of parameter space where the instability first identified
by Jensen & Heil (2003) should occur.

As in Heil & Waters (2008), we consider prescribed periodic wall motions, rather
than the full fluid–structure interaction (FSI) problem. In the FSI problem, the
stability of the system can be judged by the increase (or decrease) of the total kinetic
and elastic energy of the fluid and the tube wall over time. If an instability grows,
then the energy budget of the fluid must show a gradual increase in kinetic energy
content, and also (on average) a net flux of energy to the tube wall in order to increase
the latter’s kinetic and elastic energy. In the forced problem there is no notion of
kinetic and elastic energy in the wall, and the kinetic energy of the fluid is necessarily
constant when averaged over a period of the fixed-amplitude oscillations. Instead we
consider the energy transfer to and from the forcing mechanism, i.e. the work done
by the fluid on the wall. If this work is positive when integrated over a period, then
the system is able to extract energy from the mean flow to sustain the oscillations
and has a surplus of energy that could potentially drive a growing instability were
the forcing removed. If this work is negative, then the forcing is putting energy into
the system to sustain the oscillations. We conjecture that in such cases the oscillations
would decay were the forcing to be removed.

The response to forced oscillations is also relevant to the study of non-peristaltic
valveless pumps, where an oscillatory forcing of an elastic section of a tube is
used to induce a mean flow along the tube (Liebau 1954). Such pumps do not
rely on volume changes to directly pump the fluid, but instead generate a pressure
gradient from the interaction of waves generated by the forcing. This mechanism
may be present in the foetal circulatory system and also has industrial and
biotechnological applications. Recent experimental and theoretical work has been
reported by Hickerson, Rinderknecht & Gharib (2005), Hickerson & Gharib (2006),
Bringley et al. (2008) and Avrahami & Gharib (2008).

The present study also overlaps with a large body of work on the stability of flow
through tubes and channels subject to external perturbations, such as transverse or
normal wall oscillation (e.g. Floryan, Szumbarski & Wu 2002; Jovanovic 2008), a
body force (Jovanovic & Bamieh 2005), wall blowing or suction (Gao & Lu 2006),
or wall disturbances of prescribed shape (e.g. Szumbarski & Floryan 2006). Such
stability calculations generally involve the solution of forced linear systems, for which
the response is assessed via analysis of the excitation (or suppression) of intrinsic local
modes. Such modes might display transient or exponential growth and, in extended
systems, exhibit absolute or convective instability. Thus, in a two-dimensional channel,
Tollmien–Schlichting (vorticity) waves are the dominant response to a localized
oscillating wall indentation of the appropriate frequency (Pedley & Stephanoff 1985;
Ralph & Pedley 1988). Alternatively in a three-dimensional channel, a stationary wall
perturbation can generate streamwise vortices (Floryan 2003). We do not address
such local receptivity questions here, however. Instead, we focus on the global
inhomogeneous solution of the forced linear problem, constructing an asymptotic
solution in a parameter regime that does not capture any unstable hydrodynamic
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modes. Extending our description of the forced solution into the weakly nonlinear
regime, and taking full account of boundary conditions at either end of the tube, we
investigate whether the forcing does net work on the system, or acts as an energy
sink. As explained above, this is an important precursor to understanding the global
instability of experimental systems such as the Starling Resistor.

In what follows, we derive an asymptotic solution for the fluid flow and pressure
fields in response to the imposed oscillations, and also determine the criticality
condition for zero time-averaged energy transfer to the wall (see (9.5)). The latter
is presented as a critical inverse Strouhal number (a dimensionless measure of the
background flow rate) given in terms of the other problem parameters and variables.
The expression is a relatively simple combination of the fluid properties and a set of
integrals involving the geometry of the tube and the prescribed oscillations.

This paper is organized as follows. In § 2 we give a mathematical description of
the problem to be solved, along with the scalings and parameter regime of interest.
In § 3 we consider the solution structure and decompose the pressure and velocity
into (temporal) frequency components. In § § 4–7 we present a general solution to the
problem as a power series expansion in a pair of small parameters ε (encapsulating the
size of the Strouhal number, Womersley number and aspect ratio) and δ (encapsulating
the amplitude of the oscillations). The energy budget is examined in detail in § 8. The
main result of the paper, equation (9.5), is presented and interpreted in § 9. Discussion
and concluding remarks are presented in § 10. In Part 2 of this work (Whittaker et al.
2010) we present a comparison of the theoretical results derived here with numerical
simulations.

2. Set-up and governing equations
2.1. Problem description

As shown in figure 2, we consider a tube of length L and typical diameter 2a, where
a � L. The tube is filled with fluid of density ρ and dynamic viscosity μ. The cross-
sectional shape and area may vary along the length of the tube, but we assume that
such variations occur over the length scale L, so the gradients are at most O(L−1).
The precise definition of a is left open, since sensible choices will depend on the
problem at hand. Possibilities include the radius of an equivalent circular cylinder
with the same volume or surface area as the undeformed tube, or the radius of an
equivalent circle that matches the perimeter or area at one end of the tube.

Portions of the tube adjacent to each end may be considered rigid and so unable
to move, as in the typical experimental set-up (see figure 1). However, since we
are considering prescribed deformations only, this arrangement needs no special
treatment. It is simpler to consider the general case in which the whole tube can
undergo deformations, and then set the deformations to be zero in any desired
sections. The only restrictions we need to impose are that surface remains sufficiently
smooth (including at joints between any rigid and flexible sections), and that the ends
of the tube remain fixed with a fixed gradient (which is automatically satisfied if there
are rigid end sections). The tube wall undergoes prescribed oscillations of frequency
ω and typical amplitude aΔ about what we shall term the steady configuration.
The oscillations are assumed to be of small amplitude (Δ � 1) but sufficiently high
frequency for the induced oscillatory axial velocities to be significant. The oscillations
must be harmonic with a single frequency ω, but the phase of the wall displacement
may vary with spatial position, thus allowing a variety of axial and azimuthal mode
shapes to be considered.
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L

z
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n̂
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p = pup

Figure 2. (a) A sketch of the flexible tube showing the coordinates, dimensions and notation
for the various surfaces and volumes. The centreline lies along x = y = 0, with z being the
axial coordinate. The mean flow is from left to right, with a pressure boundary condition at
the upstream end, and either a flux boundary condition or a second pressure condition at the
downstream end. (b) A close-up of the upper surface of the tube depicting the triad of unit

vectors (n̂, t̂, b̂) aligned with the surface W0 in the steady configuration and the displacement
vector r ′ = r − r0.

A mean flow is driven along the length of the tube in response to either a prescribed
volume flux at one end or a prescribed pressure drop between the two ends. We denote
by Q the steady volume flux of the background flow that would occur with the same
boundary conditions in the absence of any oscillations. If a flux boundary condition
is used, Q is simply the prescribed flux. In the case where we prescribe the pressure
drop, Q must be computed by solving a steady flow problem.

Finally, we assume that the flow remains laminar at all times and that the viscous
boundary layers remain attached to the tube walls. These assumptions are reasonable
provided that the Reynolds number

Re =
ρQ

πμa
(2.1)

for the background flow is not too large, that the cross-section does not diverge too
rapidly in the direction of the flow along the tube and that Δ remains small.

2.2. Tube geometry and coordinates

As shown in figure 2, we use z as the axial coordinate, with Cartesian coordinates
x and y occupying the transverse planes. The unit axial vector is ẑ, and we denote
transverse components of vectors (i.e. perpendicular to ẑ) by the symbol ‘⊥’.

The tube wall W is parameterized by a pair of material surface coordinates (Y, Z).
We take Z = z, and choose Y to be orthogonal to Z in the steady configuration. The
position of the wall at point (Y, Z) is given by r0(Y, Z) in the steady configuration.
The time-dependent deformations are then described by a vector function r ′(Y, Z, t),
so that the wall element (Y, Z) is located at

r = r0(Y, Z) + r ′(Y, Z, t) (2.2)

at time t . The conditions in § 2.1 on the motion at the tube ends imply that

r ′ = 0 and n̂ · ∂ r ′

∂Z
= 0 at Z = 0, L, (2.3a,b)

where n̂ is the normal to the tube wall.
We denote the space enclosed by the tube at time t by V (t) ⊂ �3, and the cross-

section by A (z, t) ⊂ �2. The area of the cross-section A (z, t) is given by A(z, t),
and its boundary at the tube wall by C (z, t). A subscript ‘0’ is used to denote the
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corresponding regions in the steady configuration. The boundary ∂V of the flow
domain comprises the tube ends A (0, t) =A0(0) and A (L, t) =A0(L), together with
the flexible wall W (t).

For each point (Y, Z), we introduce a right-handed orthogonal triad of unit vectors

(n̂, t̂, b̂) aligned with the steady configuration W0 of the tube wall. The vector n̂ is the

outward-pointing normal, while t̂ and b̂ correspond to the coordinates Y and Z as
shown in figure 2. From the definition of Y and Z above, we have t̂ · ẑ = 0, so t̂ lies
in the cross-sectional plane.

The unit vectors are linked to the in-plane coordinates by

∂ r0

∂Y
= H s

Y (Y, Z) t̂,
∂ r0

∂Z
= H s

Z(Y, Z) b̂, (2.4a,b)

where H s
Y and H s

Z are the appropriate scale factors on the surface. These scale factors
can be used to express a surface element dS in terms of the product dY dZ of the
surface coordinates, thus

dS = H s
Y H s

Z dY dZ. (2.5)

We also define four curvatures: KY , KZ , ΓY and ΓZ . These describe how (in the
steady configuration) lines on the surface with constant Y or Z bend along their
length. They are defined in terms of derivatives of the unit vectors, thus

∂ t̂
∂Y

= −KY n̂ − ΓY b̂,
∂ b̂
∂Z

= −KZ n̂ − ΓZ t̂. (2.6a,b)

As a consequence, we also have

∂ n̂
∂Y

= KY t̂,
∂ n̂
∂Z

= KZ b̂,
∂ b̂
∂Y

= ΓY t̂,
∂ t̂
∂Z

= ΓZ b̂. (2.7a–d )

These curvatures will be important when it comes to considering a boundary-layer
coordinate system and the corresponding equations in § 3.2 and Appendix A.

2.3. Governing equations and boundary conditions

To describe the fluid flow, we use the Navier–Stokes equations for a homogeneous
incompressible Newtonian fluid. For a total velocity u ≡ u⊥ + w ẑ and pressure p, we
have that

∇ · u = 0, (2.8a)

ρ

(
∂ u
∂t

+ (u · ∇) u
)

= −∇p + μ∇2u. (2.8b)

The boundary conditions are as follows. We have no-slip on the (moving) tube walls,
i.e.

u =
∂ r ′

∂t
on W . (2.9)

A flux condition may be applied at one of the tube ends. By definition, this flux is Q,
so we have ∫∫

A

w dA = Q at z = 0 or z = L. (2.10)

Alternatively, we may apply a pressure condition at one or both ends, namely

p = pup at z = 0 or p = pdn at z = L. (2.11a,b)
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(Formally, these boundary conditions result in an underspecified problem. In the
numerical simulations described in Part 2 of this work (Whittaker et al. 2010), we
apply a specific flow profile for the flux condition and specify parallel flow in addition
to the pressure conditions. However, for the long-wavelength asymptotics considered
here, the conditions stated above are sufficient.)

Under the mechanism outlined in the introduction, the instability we are examining
here cannot occur with a flux condition at the upstream end. This is because there
would be no time-averaged kinetic energy influx from the oscillatory flow at the
upstream end and the corresponding contribution from the downstream end is always
negative. (However, see § 10 for a discussion of other instabilities that may be present.)
We therefore consider just two cases: a pressure condition at the upstream end, with
either a pressure or a flux condition at the downstream end.

An energy equation may be derived from (2.8) by contracting the momentum
equation with u and integrating over V (t). We obtain

d

dt

∫∫∫
V

1

2
ρ|u|2 dV = −

∫∫
∂V

1

2
ρ|u|2(u − vb) · N̂ dS

+

∫∫
∂V

u · (−pI + 2μe) · N̂ dS −
∫∫∫

V

2μ e : e dV, (2.12)

where [e]ij = (∇iuj +∇jui)/2 is the rate-of-strain tensor, I is the identity tensor, vb is the

velocity of the boundary ∂V of V (vb = 0 at the fixed tube ends), and N̂ is the (time-
dependent) outward normal at the boundary. Physically, (2.12) states that the rate
of change in kinetic energy in V is equal to the flux of kinetic energy across the
boundary, plus the rate of working of the boundary against the fluid pressure and
viscous forces, minus the energy lost through viscous dissipation.

2.4. Non-dimensionalization

We non-dimensionalize the variables in the problem as follows, with breve accents used
to denote the non-dimensional versions. We scale lengths with the tube dimensions,
writing:

x = ax̆, y = ay̆, z = Lz̆, Y = aY̆ , Z = LZ̆. (2.13a–e)

We also introduce a dimensionless position vector

r̆ = x̆ x̂ + y̆ ŷ +
L

a
z̆ ẑ, (2.14)

a dimensionless wall displacement

r̆ ′ =
1

a
r ′, (2.15)

and a dimensionless gradient operator

∇̆ ≡ ∇̆⊥ + ẑ
a

L

∂

∂z̆
≡

(
x̂

∂

∂x̆
+ ŷ

∂

∂y̆

)
+ ẑ

a

L

∂

∂z̆
. (2.16)

Time and frequencies are non-dimensionalized using a time scale T corresponding
to the oscillation period:

t = T t̆, ω = T −1ω̆. (2.17a,b)

We leave T arbitrary, rather than simply making the obvious choice T = 2π/ω, to allow
for easier comparisons with the case of free oscillations where the exact frequency is
not known in advance.
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We non-dimensionalize the axial velocity w with the velocity scale U of the
background flow. For the case of pressure–flux boundary conditions, we define

U =
Q

πa2
. (2.18a)

For the case of pressure–pressure boundary conditions, we choose the scale based on
the viscous resistance, and define

U =
ka2

μL
(pup − pdn), (2.18b)

where k is a dimensionless O(1) conductivity factor that it may be convenient to
introduce in specific geometries. (For example, with a uniform circular cross-section,
choosing k = 1/8 sets U to be the cross-sectional average of the axial Poiseuille flow.)

The slender geometry of the tube dictates different scales for the axial and transverse
velocity components. Motivated by the continuity equation, we write

ŭ ≡ ŭ⊥ +
L

a
w̆ ẑ, where u⊥ =

aU

L
ŭ⊥

, w = U w̆. (2.19a–c)

We scale the pressure on the oscillatory inertial scale, and use pup as the reference
pressure. We therefore write

p − pup =
ρLU

T
p̆. (2.20)

With this non-dimensionalization, (2.8) becomes

∇̆ · ŭ ≡ ∇̆⊥ · ŭ⊥ +
∂ w̆

∂z̆
= 0, (2.21a)

∂ ŭ⊥

∂t̆
+

1

	St
(ŭ · ∇̆)ŭ⊥ = −	2∇̆⊥p̆ +

1

α2

(
∇̆2

⊥ +
1

	2

∂2

∂z̆2

)
ŭ⊥

, (2.21b)

∂ w̆

∂t̆
+

1

	St
(ŭ · ∇̆)w̆ = −∂ p̆

∂z̆
+

1

α2

(
∇̆2

⊥ +
1

	2

∂2

∂z̆2

)
w̆, (2.21c)

where we have introduced the dimensionless groups

St =
a

U T
, α2 =

ρa2

μT
, 	 =

L

a
. (2.22a–c)

The Strouhal number St gives a ratio of the velocity induced by the wall motion to
the velocity of the background flow and also the relative importance of nonlinear
inertia. The Womersley number α2 compares the time scale for viscous diffusion with
that of the prescribed wall motion and appears in the equations as an unsteady
Reynolds number. The aspect ratio 	 relates the length to the width of the tube.

The upstream pressure condition (2.11a) becomes

p̆ = 0 at z̆ = 0, (2.23a)

while for the downstream condition, we employ either (2.10) or (2.11b), leading to
either ∫∫

A (L)

w̆ dA = π or p̆ = − 1

kα2
at z̆ = 1. (2.23b,c)
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The displacement of the boundary is written in terms of the non-dimensional
complex-valued variables (ξ, η, ζ ), all functions of Y̆ and Z̆, as

r̆ ′ = Δ Re[(ξ n̂ + η t̂ + 	−1ζ b̂)eiω̆t̆ ]. (2.24)

The magnitude of (ξ, η, ζ ) determines the amplitude of the oscillations at each point
(Y̆ , Z̆) on the surface, while the argument determines the phase. Different points can
have different amplitudes and phases, allowing a variety of different deformation
modes to be considered. In particular, there is no restriction that the wall motion
must be entirely in phase, nor that it takes an axial mode-1 form (i.e. that it has a
single extremum in displacement amplitude along the length of the tube).

We take each of |ξ |, |η|, |ζ | to be O(1), so that the magnitude of the normal and
transverse displacements is O(aΔ) as assumed. The axial displacements are restricted
to a smaller O(aΔ/	) amplitude, to reflect the typical physical response of an elastic
tube to slowly axially varying forces in the given slender geometry.

In terms of the dimensionless displacements, the conditions (2.3) at the tube ends
require that

ξ = η = ζ =
∂ξ

∂Z̆
= 0 at z̆ = 0 and z̆ = 1. (2.25)

The curvatures of the surface coordinates introduced in (2.6) are non-
dimensionalized as

KY =
1

a
K̆Y , KZ =

a

L2
K̆Z, ΓY =

1

L
Γ̆Y , ΓZ =

a

L2
Γ̆Z, (2.26a–d )

where the scales and geometric factors are chosen so that the non-dimensional
curvatures are expected to be O(1) for general a and L.

2.5. Scaling

The problem contains several large and small parameters. To exploit this in our
analysis we must first assess their relative sizes. For this purpose we introduce a small
parameter ε that controls the size of these terms and consider the distinguished limit
in which α = O(ε−1), 	 = O(ε−1/2) and St =O(ε−1/2), corresponding to

	St ∼ α ∼ 	2 
 1. (2.27)

Furthermore, we shall assume that Δ � ε, Δ = εδ where δ is another small parameter.
These scalings are motivated as follows.

A large Womersley number α2 in (2.21) means that viscous effects are confined to
thin boundary layers (of thickness O(a/α)) on the walls and that the flow in the core
of the tube is essentially inviscid. This both simplifies the analysis and reduces viscous
dissipation (which increases the energy available for possible transfer from the flow
to the wall). We make the arbitrary choice α ∼ ε−1.

The Strouhal number St gives the relative importance of the nonlinear inertia terms
to the unsteady ones. Its scaling with ε is motivated by the instability mechanism
discussed in the introduction. Near marginal stability, the additional kinetic energy
flux F due to the oscillatory flow at the tube ends will be of the same order of
magnitude as the dissipative losses D from the oscillatory flow in the Stokes layer (see
(2.12)). The wall motion forces a transverse oscillatory velocity of O(aΔ/T ), which
leads to an axial oscillatory velocity of O(LΔ/T ). The kinetic energy flux through the
tube ends scales like the cube of the total axial velocity. Only terms containing even
powers of oscillatory quantities have a non-zero contribution when time averaged.
The additional mean energy flux due to oscillatory velocity is therefore estimated to
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be

F ∼ ρU

(
LΔ

T

)2

a2 = ρa2U 3 · Δ2(	St)2. (2.28)

The viscous dissipation is dominated by the gradient of the axial oscillatory velocity
in the Stokes layer of width aα−1, so we estimate

D ∼ μ

(
LΔ

T

α

a

)2
a2L

α
∼ ρa2U 3 · Δ2 (	St)3

α
. (2.29)

The balance F ∼ D then yields 	St ∼ α ∼ ε−1. It is convenient that this balance results
in 	St 
 1, as this means that the nonlinear terms are absent from the problem at
leading order; see (2.21).

The large aspect ratio 	 is largely a mathematical convenience to allow long-
wavelength approximations to be used in the analysis. We take the smallest scaling
for 	 that allows these simplifications to be used effectively. This turns out to be
	 ∼ ε−1/2.

The scaling for Δ ensures that the oscillation amplitude is much less than the O(a/α)
thickness of the Stokes boundary layer, which in turn enables the linearization of
the boundary conditions. The representation Δ = εδ is found to be convenient in the
analysis that follows.

Finally, we note at this point that the Reynolds number (2.1) for the background
flow is given by

Re =
ρU a

μ
=

α2

St
∼ ε−3/2. (2.30)

The above scalings therefore ensure that we are in a high-Reynolds-number regime.
For the case of pressure–pressure boundary conditions, we also introduce the added

restriction δ2 � ε. As we shall see in § 7, this condition is required to ensure that
an additional axial flow driven by the oscillations is no larger than the original
background mean flow.

To facilitate the application of these scalings we rewrite the three dimensionless
groups introduced in (2.22) in terms of three new parameters R, λ and β , which are
all assumed to be O(1) as ε → 0. We then have

	St =
λ

ε

 1, α2 =

R2

ε2

 1, 	 =

1

(εβ)1/2

 1, Δ = εδ � 1. (2.31a–d )

Use of this notation in the subsequent analysis allows the physical origin of each
term to be seen more clearly (from the combinations of λ, R and β present) and
also makes it easier to see the effect of varying each of the dimensionless groups
independently. (Note that any one of λ, R and β could be set equal to unity without
loss of generality, via a judicious choice of ε.)

2.6. Tube geometry and normals

Since we typically decompose vectors into components parallel and perpendicular to
the ẑ axis, it is convenient to do the same with the surface normal n̂. We write

n̂ =
1

H s
Z

n̂⊥ +
G

	
ẑ, (2.32)

where G = 	(n̂ · ẑ) is an O(1) measure of the (necessarily small) slope of the tube
wall, and n̂⊥ is a unit vector in the plane of the cross-section (and hence satisfies
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(a)

(b)

Figure 3. Sketches of the expected flow structure for an axially uniform elliptical tube with
pressure boundary conditions. (a) The steady component of the axial velocity in a Poiseuille-like
flow. (b) The oscillatory component with fundamental frequency. The oscillations in the axial
velocity are expected to be larger in the rigid section that offers less inertial resistance (by
being shorter, for example) to the oscillatory flow.

|n̂⊥| =1 and n̂⊥ · ẑ = 0). By substituting (2.32) into n̂ · n̂ = 1, we find that

H s
Z = (1 − G2	−2)−1/2 = 1 + O(ε). (2.33)

Since G is a measure of constriction or dilation of the tube cross-section as z

increases, it also appears in the expression relating axial derivatives of quantities to
those of their cross-sectional integrals. For an arbitrary scalar field ψ(r̆), we obtain

d

dz̆

∫∫
A0

ψ dA =

∫∫
A0

∂ψ

∂z̆
dA −

∮
C0

ψ GH s
Y H s

Z dY̆ , (2.34)

by applying the divergence theorem to ψ ẑ over an infinitesimal volume of the tube
between z̆ and z̆ + dz̆. This result will be used later in § 5.

3. Solution structure and rescaling
It is convenient to use several simultaneous decompositions to aid analytic progress.

In particular, we decompose the variables and the equations into three components:
a steady component, the oscillatory component with frequency ω̆ and the remaining
oscillatory components of higher frequency that arise from nonlinear interactions.

Since α 
 1 we expect the solution for the oscillatory motion to display a boundary-
layer structure with inviscid flow away from the boundaries and viscous boundary
layers of thickness α−1 = O(ε) adjacent to the walls. We shall, therefore, consider the
two regions separately and match the velocity and pressure fields between the two.

Finally, for each of the three components in the core and boundary-layer regions,
we shall employ asymptotic expansions in the small parameters ε and δ.

A sketch of the expected form of the flow is shown in figure 3.

3.1. Temporal decomposition and rescaling

The non-dimensionalization described in § 2.4 was important to allow the structure
of the equations to be seen, and motivate the scalings that followed in § 2.5. However,
we can now see that there are two different velocity scales in the problem: that of the
mean flow and that of the induced oscillatory flow. There are also several possible
pressure scales, arising from balances between different terms in the equations. As
a result, it is convenient to use different scales for the different components of each
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variable. We, therefore, refine the previous non-dimensionalization and write the
velocity and pressure as

ŭ = u + λδũ + λεδ2û, (3.1a)

p̆ =
ε

λ
p + λδp̃ + λεδ2p̂. (3.1b)

The transverse and axial velocity components are similarly decomposed as

ŭ⊥ = u⊥ + λδũ⊥ + λεδ2û⊥
, (3.1c)

w̆ = w + λδw̃ + λεδ2ŵ. (3.1d )

Overbars indicate the steady components, tildes the frequency-ω̆ components and
carets the higher-frequency components. The various scales have been chosen so that
the typical magnitude of each dimensionless variable is O(1).

The steady axial velocity retains the previous scaling (based on the background
flow). The steady pressure scale is amended to use the (smaller) nonlinear inertial
scale ε/λ= 1/(	St); see (2.21c). The scale for the frequency-ω̆ velocity is amended by
a factor of δλ ≡ Δ	St to match the velocities induced by the transverse wall motion.
The corresponding pressure scale is adjusted in the same way, since the original
unsteady inertial balance is expected to be dominant.

The scales for the higher-frequency components are chosen by balancing the
unsteady inertia and axial pressure gradients with the nonlinear inertia from the
interaction of the frequency-ω̆ velocity with itself; see (3.4).

We now substitute the expressions (3.1) into (2.21) and decompose the resulting
equations into the same three components. We introduce the notation � · �n to denote
the component with frequency nω̆. The steady components are given by

∇̆⊥ · u⊥ +
∂w

∂z̆
= 0, (3.2a)

(u · ∇̆)u⊥ + (λδ)2�(ũ · ∇̆)ũ⊥�0 + (λεδ2)2�(û · ∇̆)û⊥�0

= − 1

εβ
∇̆⊥p +

λε

R2
∇̆2

⊥ u⊥ +
λβε2

R2

∂2u⊥

∂z̆2
, (3.2b)

(u · ∇̆)w + (λδ)2�(ũ · ∇̆)w̃�0 + (λεδ2)2�(û · ∇̆)ŵ�0 = −∂p

∂z̆
+

λε

R2
∇̆2

⊥ w +
λβε2

R2

∂2w

∂z̆2
. (3.2c)

The frequency-ω̆ components are

∇̆⊥ · ũ⊥ +
∂ w̃

∂z̆
= 0, (3.3a)

∂ ũ⊥

∂t̆
+

ε

λ
{(u · ∇̆)ũ⊥ + (ũ · ∇̆)u⊥} + ε2δ2�(û · ∇̆)ũ⊥ + (ũ · ∇̆)û⊥�1

+ ε3δ3�(û · ∇̆)û⊥�1 = − 1

εβ
∇̆⊥p̃ +

ε2

R2
∇̆2

⊥ ũ⊥ +
βε3

R2

∂2ũ⊥

∂z̆2
, (3.3b)

∂ w̃

∂t̆
+

ε

λ
{(u · ∇̆)w̃ + (ũ · ∇̆)w} + ε2δ2�(û · ∇̆)w̃ + (ũ · ∇̆)ŵ�1 + ε3δ3�(û · ∇̆)ŵ�1

= −∂ p̃

∂z̆
+

ε2

R2
∇̆2

⊥ w̃ +
βε3

R2

∂2w̃

∂z̆2
. (3.3c)
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n̂

b̂
t̂

Y̆
Z̆ŷ

ẑ

x̂
X̆

Figure 4. A sketch depicting the boundary-layer coordinate system showing the three unit
vectors aligned with the (shaded) boundary surface in the steady configuration. Here n̂ is

defined to be normal to the tube wall, while t̂ and b̂ lie in the surface.

The higher-frequency components are

∇̆⊥ · û⊥ +
∂ ŵ

∂z̆
= 0, (3.4a)

∂ û⊥

∂t̆
+

ε

λ

{
(u · ∇̆)û⊥ + (û · ∇̆)u⊥

}
+ εδ�(û · ∇̆)ũ⊥ + (ũ · ∇̆)û⊥�2+

+ �(ũ · ∇̆)ũ⊥�2 + ε2δ2�(û · ∇̆)û⊥�2+ = − 1

εβ
∇̆⊥p̂ +

ε2

R2
∇̆2

⊥ û⊥ +
βε3

R2

∂2û⊥

∂z̆2
, (3.4b)

∂ ŵ

∂t̆
+

ε

λ

{
(u · ∇̆)ŵ + (û · ∇̆)w

}
+ εδ�(û · ∇̆)w̃ + (ũ · ∇̆)ŵ�2+

+ �(ũ · ∇̆)w̃�2 + ε2δ2�(û · ∇̆)ŵ�2+ = −∂ p̂

∂z̆
+

ε2

R2
∇̆2

⊥ ŵ +
βε3

R2

∂2ŵ

∂z̆2
. (3.4c)

These sets of equations are exact and are equivalent to the original dimensionless
governing equations (2.21).

Equations (3.2)–(3.4) also apply in the Stokes layer near the boundary, but there
the shorter length scale in the direction normal to the wall promotes some of the
viscous terms to leading order. The appropriate scalings and coordinates for the
Stokes boundary layer are discussed in § 3.2. Discussion of the boundary conditions
at the tube ends is deferred until § 3.3.

3.2. Coordinates and equations for the Stokes layer

We have assumed above that the O(εδa) amplitude of the wall oscillations is smaller
than the O(εa) thickness of the boundary layer. Therefore, we are able to use
stationary boundary-layer coordinates and linearize the boundary conditions onto
the position of the tube wall in the steady configuration. A scaled normal coordinate
X̆ in the −n̂ direction is added to the surface coordinates (Y̆ , Z̆) to provide the
coordinate system for the boundary layer (see figure 4). Full details of the coordinate
system, together with the components of the equations and boundary conditions, can
be found in Appendix A.

We decompose the velocity into the directions of the coordinate system, writing

ŭ = Ŭ ≡ Ŭ n̂ + V̆ t̂ + 	W̆ b̂. (3.5)
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The pressure and velocity components are decomposed into frequency components
in a similar manner to (3.1). We write

Ŭ = U + λδŨ + λεδ2Û , (3.6a)

V̆ = V + λδṼ + λδ2V̂ , (3.6b)

W̆ = W + λδW̃ + λδ2Ŵ , (3.6c)

P̆ =
ε

λ
P + λδP̃ + λεδ2P̂ . (3.6d )

Observe that the scales used for the tangential velocity components V̂ and Ŵ are
larger by a factor of ε than the corresponding scales (3.1) in the core. This is necessary
in order to match the size of the largest contributions from the boundary conditions
(A 13b) and (A 14b). As we shall see in § 7.2, the components with this larger scale
can still be matched successfully with the flow in the core by insisting that they tend
to zero as X̆ → ∞; this does not present any additional problems in the continuity
equation.

To aid the expression of the matching conditions and composite expansions, we
introduce notation for the asymptotic behaviour of the boundary-layer variables as
X̆ → ∞. For the pressure, we write

P̆ ∼ P̆ ∞ + P̆ ′∞X̆ +
1

2
P̆ ′′∞X̆2 + · · · , (3.7)

where the superscript ‘∞’ denotes the ‘outer limit’ of the velocity in the boundary
layer as X̆ → ∞. Analogous expansions are used for the other variables.

3.3. Boundary conditions at the tube ends

The upstream pressure condition (2.11a) implies that

p̆ = 0, P̆ = 0 at z̆ = 0. (3.8a,b)

If we impose a pressure condition at the downstream end, then (2.11b) implies

p̆ = − ε2

kR2
, P̆ = − ε2

kR2
at z̆ = 1. (3.9a,b)

Alternatively, if we impose a flux condition (2.10) at z̆ =1, then we need to introduce
a composite expansion w̆comp for the axial velocity. We have that

w̆comp = w̆ +
1

H s
Z

(W̆ − W̆ ∞ − X̆W̆ ′∞) + εβG(Ŭ − Ŭ∞) + O(ε2), (3.10)

allowing us to write (2.10) as∫∫
A0(1)

w̆ dA + ε

∮
C0(1)

[∫ ∞

0

(W̆ − W̆ ∞) dX̆

]
H s

Y dY̆ + O(ε2) = π. (3.11)

These boundary conditions are then decomposed into the different frequency
components in the obvious way.

4. Solution for the steady flow (part I)
The solution of a steady high-Reynolds-number flow problem in anything but

the simplest of tube geometries is far from straightforward (see Smith 1976a ,b,
for example). Fortunately, the exact details of the steady flow are unnecessary for
evaluating the leading-order oscillatory flow and associated energy transfer. All the
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information that is required is contained in the (non-dimensional) time-averaged
volume flux

� = �∫∫
A

w̆comp dA�0, (4.1)

where w̆comp is given by (3.10). For the pressure–flux case, �= π is fixed by the down-
stream boundary condition (2.10). For the pressure–pressure case, � is derived from
the solution to the steady flow problem, which may require numerical computation.

4.1. Series expansion for the steady flow

The equations and boundary conditions for the steady problem suggest using a double
series expansion in powers of ε and δ. However, at this stage it is sufficient to expand
only in δ. (Each term in this expansion then implicitly includes all powers of ε.) We
also note that symmetry considerations (specifically the invariance of the full problem
under δ → −δ, t̆ → t̆ + π/ω̆) mean that only even powers of δ are present in the
steady problem. We therefore write

u = u0 + δ2u2 + O(δ4), (4.2a)

p = p0 + δ2p2 + O(δ4). (4.2b)

The boundary-layer structure for the steady flow is potentially quite complicated and
certainly depends on the entrance flow profile at the upstream end. For fully developed
flow in a uniform tube, there will be no boundary layer at leading order. For a plug-
flow injection, there will be a viscous layer that grows as z̆ increases downstream. In
addition, products of oscillatory terms will contribute at higher orders and result in
a forcing of the equations that has a boundary-layer structure. At leading order, we
shall just consider the domain as a single region and not make any decomposition
into boundary layers.

4.2. Steady flow at O(δ0)

From (3.2), the leading-order equations for the steady flow are

∇̆⊥ · u⊥
0 +

∂w0

∂z̆
= 0, (4.3a)

(u0 · ∇̆)u⊥
0 = − 1

εβ
∇̆⊥p0 +

λε

R2
∇̆2

⊥ u⊥
0 +

λβε2

R2

∂2u⊥
0

∂z̆2
, (4.3b)

(u0 · ∇̆)w0 = −∂p0

∂z̆
+

λε

R2
∇̆2

⊥ w0 +
λβε2

R2

∂2w0

∂z̆2
. (4.3c)

These are simply the steady Navier–Stokes equations, written in a dimensionless
form. The boundary conditions are

u0 = 0 on W0, (4.4)

and the appropriate conditions at the tube ends. For the flux–pressure case, we have

p0 = 0 at z̆ = 0,

∫∫
A0

w0 dA = π at z̆ = 1. (4.5a,b)

For the pressure–pressure case, we have

p0 = 0 at z̆ = 0, p0 = − ελ

kR2
at z̆ = 1. (4.6a,b)

At this order, the mean flux is given by

�0 =

∫∫
A0

w0 dA. (4.7)
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The system represents the flow through the tube in the steady configuration, i.e. in
the absence of oscillations. As stated, the problem is not fully specified, since there is
the freedom to choose a flow profile at the inlet. However, to the orders that we are
working, it is only the mean axial flux (rather than the details of the flow distribution)
that is important.

4.3. Steady flow at higher orders in δ

The equations governing the steady flow at higher orders in δ involve oscillatory
components, which we have yet to evaluate. Therefore, discussion thereof will be
postponed until § 7.

However, we observe that, with pressure–pressure boundary conditions, there is a
possibility that the largest component of w2 may be O(ε−1), resulting in an O(δ2/ε)
axial velocity. If δ2/ε � O(1), then this additional flow will be present at leading
order, and so contributes to the leading-order volume flux. However, in § 2.5, we
made the restriction δ2 � ε, so we only need to consider this additional contribution
for δ2/ε = O(1).

The O(δ2/ε) axial velocity can arise as follows. If the dominant resistance to the
axial flow is viscous, then (4.3c) shows that an O(ε) pressure gradient will drive an
O(1) axial velocity. Consequently, the addition of an O(δ2) forcing term as present in
(3.2c) could potentially induce an O(δ2/ε) axial flow. In the case of pressure–pressure
boundary conditions, we find that this mechanism does indeed lead to a change
in axial velocity of O(δ2/ε) (hence the earlier restriction δ2 � ε). For pressure–flux
boundary conditions, the extra forcing can be absorbed by a modified pressure at
leading order, and there is no change in the leading-order axial velocity.

For use in the following sections, we therefore introduce the notation u0+, p0+, �0+
to represent the true O(1) components of the steady velocity, pressure and flux; i.e.
including all the terms proportional to εnδm where εnδm = O(1). In the natural way,
we define

�0+=

∫∫
A0

w0+dA (4.8)

as the leading-order steady flux.

5. The fundamental oscillatory flow
The motion of the boundary drives an oscillatory flow in the core. Changes in

the cross-sectional area force an axial sloshing flow w̃, and changes in the boundary
shape result in an additional flow ũ⊥ within each cross-section.

We expand the oscillatory velocity in a double power series in ε and δ. However,
symmetry considerations, and the fact that δ enters only through an εδ combination,
mean that several of the coefficients (particularly lower combinations containing δ)
are zero. Taking into account these simplifications, the first few terms in the expansion
in the core are

ũ = Re
[
eiω̆t̆

(
ũ00 + εũ01 + ε2ũ02 + O(ε3, ε2δ2)

)]
, (5.1a)

p̃ = Re
[
eiω̆t̆

(
p̃00 + εp̃01 + ε2p̃02 + O(ε3, ε2δ2)

)]
, (5.1b)

where ũ00, ũ01 etc. are complex-valued functions of position, and the two subscripts
denote the powers of δ and ε, respectively. Similarly, in the Stokes layer, we write

Ũ = Re
[
eiω̆t̆

(
Ũ00 + εŨ01 + ε2Ũ02 + O(ε3, ε2δ2)

)]
, (5.2a)

P̃ = Re
[
eiω̆t̆

(
P̃00 + εP̃01 + ε2P̃02 + O(ε3, ε2δ2)

)]
. (5.2b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

29
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009992904


100 R. J. Whittaker, S. L. Waters, O. E. Jensen, J. Boyle and M. Heil

These expressions are substituted into (3.3) and their analogues from (A 6) and (A 7),
respectively.

5.1. The oscillatory core flow at O(ε−1)

Only one term in (3.3) is present at this order and hence must vanish. We have

∇̆⊥p̃00 = 0, (5.3)

so the leading-order pressure is uniform in each cross-section. The details of the flow
field and axial pressure variations enter only at the next order in ε.

5.2. The oscillatory flow in the Stokes layer at O(ε−1)

Only two of the governing equations (A 6) and (A 7) have terms at this order. In both
cases, it is a single term, which must therefore vanish. We have

∂ Ũ00

∂X̆
= 0,

∂ P̃00

∂X̆
= 0. (5.4a,b)

Hence, the leading-order normal velocity and pressure at the boundary are transmitted
unchanged through the thin Stokes layer to the core flow. From (A 12b) and (A 15a),
the relevant boundary and matching conditions are

Ũ00(0, Y̆ , Z̆) = iω̆ ξ (Y̆ , Z̆), P̃ ∞
00 (Y̆ , Z̆) = p̃00|C0

, (5.5a,b)

and hence

Ũ00 = iω̆ ξ (Y̆ , Z̆), P̃00 = p̃00(Z̆), (5.6a,b)

throughout the Stokes boundary layer.

5.3. The oscillatory core flow at O(1)

The relevant components of (3.3) are

∇̆⊥ · ũ⊥
00 +

∂ w̃00

∂z̆
= 0, (5.7a)

∇̆⊥p̃01 = −iω̆β ũ⊥
00, (5.7b)

∂ p̃00

∂z̆
= −iω̆w̃00. (5.7c)

Matching with the Stokes layer at the wall, we have from (A 15b)

n̂ ·
(
ũ⊥

00 + 	w̃00 ẑ
)

= Ũ∞
00 on W0, (5.8a)

which, using (2.32) and (5.6a), implies

H s
Z

−1n̂⊥ · ũ⊥
00 + Gw̃00 = iω̆ ξ on W0. (5.8b)

The pressure condition (3.8a) at the upstream end implies

p̃00(0) = 0. (5.8c)

At the downstream end, we have either∫∫
A0(1)

w̃00 dA = 0 or p̃00(1) = 0, (5.8d,e)

from (3.11) or (3.9a), respectively, for a flux or pressure condition.
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We now use the result (2.34) with ψ = w̃00. Substituting from (5.7a) and applying
the divergence theorem in the cross-section, we obtain

d

dz̆

∫∫
A0

w̃00 dA = −
∮

C0

(
ũ⊥

00 · n̂⊥ + GH s
Zw̃00

)
H s

Y dY̆ . (5.9)

Using the boundary condition (5.8b) and the fact that ∇̆⊥w̃00 = 0 from (5.3) and (5.7c),
we obtain

d

dz̆
(w̃00(z̆) A0(z̆)) = −iω̆Ã(z̆), (5.10)

where

Ã(z̆) =

∮
C0(z̆)

ξ H s
Y H s

Z dY (5.11)

is the effective oscillatory area change in each cross-section, and A0 is the cross-
sectional area of the tube in the steady configuration. Applying the pressure boundary
condition (5.8c) at z̆ = 0, we can integrate (5.7c) to obtain

p̃00(z̆) = −iω̆

∫ z̆

0

w̃00(z̆
′) dz̆′. (5.12)

It is convenient to introduce an effective volume variation �̃(z̆) by expressing the
axial velocity and pressure as

w̃00(z̆) = − iω̆�̃(z̆)

A0(z̆)
, p̃00(z̆) = −ω̆2

∫ z̆

0

�̃(z̆′)

A0(z̆′)
dz̆′. (5.13a,b)

The equation for �̃ is then

d�̃

dz̆
= Ã (5.14)

subject to either

�̃(1) = 0 or

∫ 1

0

�̃(z̆)

A0(z̆)
dz̆ = 0, (5.15a,b)

for pressure–flux or pressure–pressure end conditions respectively. We adopt a
Green’s-function representation for the solution of (5.14), writing

�̃(z̃) =

∫ z̃

0

χ(z̆′)Ã(z̆′) dz̆′ −
∫ 1

z̆

(1 − χ(z̆′))Ã(z̆′) dz̆′, (5.16)

where χ is independent of Ã. For the case of the flux condition, applying (5.15a) to
(5.16) we obtain

χ(z̆) ≡ 0. (5.17)

For the pressure condition, by substituting (5.16) into (5.15b) and exchanging the
order of integration, we find that

χ(z̆) =

∫ z̆

0

1

A0(z̆′)
dz̆′

/∫ 1

0

1

A0(z̆′)
dz̆′ . (5.18)

Physically, χ(z̆) is the proportion of the additional oscillatory flow generated by the
area changes Ã(z̆) at z̆ that goes downstream from z̆. With a flux condition at z̆ = 1,
all the flow must go upstream, and hence χ = 0. With a pressure condition at both
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ends, the flow partitions in inverse proportion to the inertance (inertial resistance to
oscillatory flow) in the upstream and downstream segments.

We now examine the problem for the cross-sectional flow. Combining (5.7a), (5.7b)
and (5.8b), we arrive at a Poisson problem for p̃01, which can be solved independently
in each cross-section:

∇̆2
⊥ p̃01 = iω̆β

∂ w̃00

∂z̆
in A0, (5.19a)

n̂⊥ · ∇̆⊥p̃01 = βH s
Z(ω̆2 ξ + iω̆Gw̃00) on C0. (5.19b)

Since we have Neumann boundary conditions, p̃01 is only defined at this stage up to an
arbitrary function of z̆. We therefore define the cross-sectionally averaged component

p̃∗
01(z̆) ≡ 1

A0(z̆)

∫∫
A0

p̃01 dA, (5.20)

and write

p̃01 = p̃∗
01(z̆) + p̃�

01(x̆, y̆, z̆). (5.21)

Therefore, p̃�
01 is the solution of (5.19) that also satisfies∫∫

A0

p̃�
01 dA = 0. (5.22)

The pressure component p̃�
01 is now well defined and can be computed explicitly. It

can be used to recover the cross-sectional flow ũ⊥
00 from (5.7b) since ∇⊥p̃�

01 = ∇⊥p̃01.
The axial variation of p̃01, and hence p̃∗

01, is governed by the core equations at O(ε),
subject to conditions at the tube ends. The solution is presented in § 5.5.

5.4. The oscillatory flow in the Stokes layer at O(1)

As the tube wall is approached, the tangential components of the O(1) flow in the
core (e.g. (5.13a)) will not, in general, match the tangential velocity of the wall. At this
order viscous effects passively smooth the tangential velocities across the thickness
of the Stokes layer. Since the displacements and boundary-layer thickness are both
small, effects from the curvature and motion of the boundary are not present here.

Taking the appropriate components from (A 6) and (A 7), we find that the equations
are

−∂ Ũ01

∂X̆
+

K̆Y

H s
Y

Ũ00 +
1

H s
Y H s

Z

∂

∂Y̆

(
H s

ZṼ00

)
+

1

H s
Y H s

Z

∂

∂Z̆

(
H s

Y W̃00

)
= 0, (5.23a)

∂ P̃01

∂X̆
= 0, (5.23b)

iω̆Ṽ00 = − 1

βH s
Y

∂ P̃01

∂Y̆
+

1

R2

∂2Ṽ00

∂X̆2
, (5.23c)

iω̆W̃00 = −∂ P̃00

∂Z̆
+

1

R2

∂2W̃00

∂X̆2
, (5.23d )

with boundary conditions

Ũ01 = 0, Ṽ00 = iω̆ η, W̃00 = 0 on X̆ = 0, (5.24a–c)

and matching conditions

P̃01 → P̃ ∞
01 = p̃01|C0

, Ṽ00 → Ṽ ∞
00 = t̂ · ũ⊥

00

∣∣
C0

, W̃00 → W̃∞
00 = w̃00|C0

, (5.25a–c)
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∂ Ũ01

∂X
→ Ũ ′∞

01 = n̂ · ∂ ũ⊥
00

∂n

∣∣∣∣
C0

+ G
∂w̃00

∂n

∣∣∣∣
C0

as X̆ → ∞, (5.25d )

where ∂/∂n ≡ n̂ · ∇̆.
There are no specific conditions to be satisfied at the tube ends at this order. The

pressure already matches that in the core to satisfy (3.8a) and (3.9a), and the O(ε)
component of the mass flux condition (3.11) also has contributions from the O(ε)
core flow, which we have yet to determine.

Equation (5.23c) implies that P̃01 is uniform across the Stokes layer, and hence is
prescribed by the value in the core via (5.25a). Using (5.7b) and (5.7c), we can now
express the derivatives of P̃ that appear in (5.23c) and (5.23d) in terms of the fluid
velocity in the core. We have

∂ P̃01

∂Y
= H s

Y t̂ · ∇̆⊥p̃01

∣∣∣
C0

= −iω̆β H s
Y t̂ · ũ⊥

00

∣∣
C0

, (5.26a)

∂ P̃00

∂Z̆
=

∂ p̃00

∂z̆

∣∣∣∣
C0

= −iω̆ w̃00|C0
. (5.26b)

The solution to (5.23)–(5.25) for Ṽ00 and W̃00 is then given by

Ṽ00 = t̂ · ũ⊥
00

∣∣
C0

(1 − E(X̆)) + iω̆ η E(X̆), (5.27a)

W̃00 = w̃00|C0
(1 − E(X̆)), (5.27b)

where we have introduced

E(X̆) ≡ exp
(

−
(

1
2
ω̆

)1/2
(1 + i) RX̆

)
. (5.28)

Having found the two tangential components of the velocity, conservation of mass
allows the correction to the normal velocity to be calculated. Integrating (5.23b) and
applying the boundary condition (5.24a), we obtain

Ũ01 =
(1 − i)

(2ω̆)1/2R

1

H s
Y H s

Z

[
∂

∂Y

(
H s

Z

(
iω̆η − t̂ · ũ⊥

00

∣∣
C0

))
− ∂

∂Z̆

(
H s

Y w̃00

)] (
1 − E(X̆)

)
+

1

H s
Y H s

Z

[
∂

∂Y

(
H s

Z t̂ · ũ⊥
00

∣∣
C0

)
+

∂

∂Z̆

(
H s

Y w̃00

)
+ iω̆H s

ZK̆Y ξ

]
X̆. (5.29)

By applying incompressibility in the core (5.7a), it can be seen that this satisfies the
final matching condition (5.25d). Comparing (5.29) with the expression Ũ01 ∼ Ũ∞

01 +

Ũ ′∞
01 X̆ as X̆ → ∞, we find that

Ũ∞
01 =

(1 − i)

(2ω̆)1/2R

1

H s
Y H s

Z

[
∂

∂Y

(
H s

Z

(
iω̆η − t̂ · ũ⊥

00

∣∣
C0

))
− ∂

∂Z̆

(
H s

Y w̃00

)]
. (5.30)

This limiting value is used in the following section for matching with the core flow at
O(ε).

5.5. The oscillatory core flow at O(ε)

The oscillatory flow in the core at this order is forced from the walls by the normal
velocity correction Ũ01 in the Stokes layer, and also in the interior by Reynolds
stresses resulting from the interaction between the steady and oscillatory core flows
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at O(1). The relevant components of the governing equations (3.3) are

∇̆⊥ · ũ⊥
01 +

∂ w̃01

∂z̆
= 0, (5.31a)

iω̆β ũ⊥
01 +

β

λ

[
(u0+ · ∇̆)ũ⊥

00 + (ũ00 · ∇̆)u⊥
0+
]

= −∇̆⊥p̃02, (5.31b)

iω̆ w̃01 +
1

λ

[
(u0+ · ∇̆)w̃00 + (ũ00 · ∇̆)w0+

]
= −∂ p̃01

∂z̆
, (5.31c)

recalling that u0+= u⊥
0++ 	w0+ẑ is the leading-order steady velocity that was introduced

in § 4.3. The boundary conditions are

H s
Z

−1n̂⊥ · ũ⊥
01 + Gw̃01 = Ũ∞

01 on C0, (5.32a)

from the matching of the normal velocity to that in the Stokes layer, together with

p̃01 = 0 at z̆ = 0, (5.32b)

from the upstream pressure condition (3.8a), and either∫∫
A0

w̃01 dA = 0 or p̃01 = 0 at z̆ = 1, (5.32c,d )

from (3.9a) or (3.11) at the downstream end.
These equations are similar to their O(1) counterparts (5.7), except for the additional

Reynolds-stress terms. The method of solution is similar but slightly more involved
since w̃01 (unlike w̃00) is not uniform in each cross-section. However, we must first
complete the solution for p̃01 by finding its cross-sectional average p̃∗

01 (see (5.20)),
from which we can determine w̃01 via (5.31c). Finally, we will formulate a Poisson
problem for p̃02, the solution of which allows the transverse velocity ũ⊥

01 to be found.
To determine p̃∗

01, we begin by noting that the Reynolds-stress terms in (5.31c) can
be written as

SR ≡ ũ00 · ∇̆w0++ u0+ · ∇̆w̃00 = ∇̆⊥ ·
[
ũ⊥

00w0++ u⊥
0+w̃00

]
+ 2

∂

∂z̆
(w̃00w0+), (5.33)

and hence∫∫
A0

SR dA =

∮
C0

n̂⊥ ·
[
ũ⊥

00w0++ u⊥
0+w̃00

]
H s

Y dY + 2
d

dz̆

(
w̃00

∫∫
A0

w0+dA

)
. (5.34)

The first integral on the right-hand side of (5.34) vanishes, since n̂⊥ · u⊥
0+=w0+= 0 on

C0 from (4.4). The same result allows us to move the derivative through the second
integral despite the variations in A0 with z̆. Applying (4.8) we then obtain∫∫

A0

SR dA = 2�0+
dw̃00

dz̆
. (5.35)

We now apply the result (2.34) with ψ = w̃01, substituting from (5.31b) and (5.32a),
to obtain

d

dz̆

∫∫
A0

w̃01 dA +

∮
C0

Ũ∞
01H

s
Y H s

Z dY̆ = 0. (5.36)

Next, we integrate (5.31c) over each cross-section. Taking the derivative with respect
to z̆, and using the results (5.35) and (5.36) and the decomposition (5.21), we obtain

d

dz̆

(
A0(z̆)

dp̃∗
01

dz̆

)
= iω̆

∮
C0

Ũ∞
01H

s
Y H s

Z dY̆ −
2�0+
λ

d2w̃00

dz̆2
− d

dz̆

∫∫
A0

∂ p̃�
01

∂z̆
dA. (5.37)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

29
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009992904


The energetics of flow through an oscillating tube. Part 1. Theory 105

This is a second-order ordinary differential equation for p̃∗
01(z̆) in terms of known

quantities. Applying the pressure and flux conditions at the tube ends ties down the
two constants of integration, and hence we can obtain p̃∗

01(z̆). With p̃01 known, (5.31c)
gives w̃01.

We now turn to the transverse velocity ũ⊥
01. Eliminating ũ⊥

01 and w̃01 between (5.31)
results in the Poisson problem

∇̆2
⊥ p̃02 = −β

λ
∇ ·

[
(u0+ · ∇̆)ũ00 + (ũ00 · ∇̆)u0+

]
− β

∂2p̃01

∂z̆2
. (5.38)

Eliminating ũ⊥
01 from (5.31c) and (5.32a), the boundary condition on C0 is

n̂⊥ · ∇̆p̃02 = iω̆βH s
Z

(
Gw̃01 − Ũ∞

01

)
− β

λ
n̂⊥ ·

[
(ũ00 · ∇̆)u⊥

0+ + (u0+ · ∇̆)ũ⊥
00

]
. (5.39)

As was the case for p̃01 in § 5.3, the solution for p̃02 can be determined only up to an
additive function of z̆ at this point. Nevertheless, this is sufficient to recover ũ⊥

01 from
(5.31c), so this completes the solution for the O(ε) flow in the core.

We note that knowledge of the leading-order mean flow u0+ is required to calculate
the solution. Depending on the size of the oscillations relative to the other problem
parameters, this will require the solution of either the problem described in § 4.2 or
the problem described in § 7.1.

5.6. The oscillatory flow in the Stokes layer at O(ε)

Corrections to the Stokes layer are necessary to match the O(ε) core flow to the
velocity of the tube wall. The equations also contain forcing generated by the leading-
order flow in the boundary layer in the form of the nonlinear Reynolds stresses and
curvature-related terms. In addition, forcing from the leading-order flow enters via
the linearization of the matching conditions between the core and the boundary layer.

As in the O(1) case, the two transverse velocity components Ṽ01 and W̃01 smoothly
match the core flows to the boundary conditions. The continuity equation is then
solved to obtain the correction to the normal velocity ũ02. The details are omitted
here, since the results are not required.

6. The higher-frequency oscillatory flow
The higher-frequency oscillatory flow û is forced by products of lower-frequency

quantities in two ways. First, the nonlinear inertia terms provide a non-zero forcing
within the equations (see (3.4)). Second, the linearization of the boundary conditions
on the wall and of the matching conditions between the core and the boundary layer
results in non-zero boundary conditions on the higher-frequency components.

The size of each of these effects can be calculated, and hence the size of the
response determined. The previously assumed scalings are confirmed as the correct
choice, and hence the higher-frequency terms do not contribute to the leading-order
steady and fundamental frequency terms. It is therefore unnecessary to consider the
higher-frequency flow in any more detail.

7. Solution for the steady flow (part II)
Now that the first terms in the expansion of the oscillatory flow ũ, p̃ have been

calculated, we can return to the steady problem (first considered in § 4) and examine

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

29
04

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009992904


106 R. J. Whittaker, S. L. Waters, O. E. Jensen, J. Boyle and M. Heil

the leading-order effects of the oscillations on the steady flow. As can be seen from
(3.2), the contribution from the oscillatory flow comes in the form of an O(δ2)
Reynolds-stress term. As we shall see, this term is able to force velocities of O(δ2/ε)
which may therefore be present at leading order. It is therefore necessary to consider
at least the O(δ0) and O(δ2) terms together.

Since the oscillatory flow ũ00 has a boundary-layer structure, the forcing in, and
hence the solution of, the steady equations is expected to have a similar boundary-
layer structure. Fortunately, it is only necessary to examine the core flow in detail.
Moreover, it is possible to introduce a modified pressure to absorb the additional
Reynolds-stress term in the core. We write

u0 + δ2u2 = u′, (7.1a)

p0 + δ2p2 = Π + p′, (7.1b)

where

Π(x̆, y̆, z̆) ≡ − 1
2
(λδ)2εβ�|ũ(x̆, y̆, z̆, t̆)|2 − |ũ(0, 0, 0, t̆)|2�0

= − 1
4
(λδ)2(|w̃00(z̆)|2 − |w̃00(0)|2) + O(εδ2, δ4).

⎫⎬
⎭ (7.2)

In the Stokes layer we use a similar expansion, but the pressure modification is chosen
to match smoothly to the pressure in the core. As a result, it does not produce the
exact cancellation with the Reynolds-stress term in the boundary-layer equations as
we have in the core.

7.1. The steady flow in the core

Using the modified pressure, and neglecting the O(ε2δ4) terms involving û, the
equations (3.2) become

∇̆⊥ · u′⊥ +
∂w′

∂z̆
= 0, (7.3a)

(u′ · ∇̆)u′⊥ = − 1

εβ
∇̆⊥p′ +

λε

R2
∇̆2

⊥ u′⊥ +
λβε2

R2

∂2u′⊥

∂z̆2
, (7.3b)

(u′ · ∇̆)w′ = −∂p′

∂z̆
+

λε

R2
∇̆2

⊥ w′ +
λβε2

R2

∂2w′

∂z̆2
. (7.3c)

Since the oscillatory flow is irrotational in the core, the pressure modification
Π precisely cancels the additional Reynolds stress term from the oscillatory
flow. Equations (7.3) for (u′, p′) are, therefore, identical to (4.3) for (u0, p0). The
boundary conditions are slightly different however. The conditions at the tube ends
are

p′ = 0 at z̆ = 0 (7.4a)

as before, and then either ∫∫
A0

w′ dA = π at z̆ = 1 (7.4b)

if we are imposing a downstream flux condition, or

p′ = − ελ

kR2
− 1

4
(λδ)2(|w̃00(0)|2 − |w̃00(1)|2) + O(εδ2, ε4) at z̆ = 1 (7.4c)
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for a downstream pressure condition. The boundary condition to be applied to
the velocity in the core on W0 also changes, as we must now take account of the
boundary layer and the correct time-averaged linearization of the no-slip boundary
condition. However, these turn out not to affect the O(1) or O(δ2) flow in the core
(see § B.1) so can be neglected here to obtain a leading-order result. Formally, we find
that

u′ = 0 + O(εδ2, δ4) on W0. (7.4d )

For the case of pressure–flux boundary conditions, the equations and boundary
conditions above are identical to those described in § 4 in the absence of any
oscillations. Hence, to O(ε, δ2) the solution in the core is unchanged from the previous
solution, save for the pressure change Π given in (7.2).

For the case of pressure–pressure boundary conditions, the downstream condition
(7.4c) on the modified pressure is affected by the oscillations. The equations and
other boundary conditions remain unchanged to O(ε, δ2), and so we now re-solve
the system subject to an altered pressure difference between the tube ends. This will
result in a difference between the flux �0 in the absence of the oscillations and the
flux �0+ with them. If the flux is proportional to the effective pressure difference, then
we will have

�0+= �0

[
1 +

δ2

ε

kω̆2R2λ

4

(
|�̃(0)|2
A0(0)2

− |�̃(1)|2
A0(1)2

)]
, (7.5)

and the change in flux will be �0+ − �0 = O(δ2/ε). This is the reason for the

additional restriction δ2 � ε, specified in § 2.5. The restriction is necessary to
ensure that the mean axial flow in the presence of the oscillations still scales
with U .

7.2. Boundary-layer and higher-order effects

In the region occupied by the oscillatory boundary layers, the pressure modification
Π no longer cancels the Reynolds stresses at leading order, and so O(δ2) forcing
terms appear in the tangential components of the momentum equation. There is
also forcing at O(δ2) from the linearization of the boundary condition on the
tube wall. However, it turns out that this has no effect on the core flow at
leading order, and the boundary condition (7.4d) used previously can indeed be
applied.

The details of the calculations for the Stokes layer and consideration of other
higher-order effects can be found in Appendix B.

8. The energy budget for periodic oscillations
In § § 4–7 we constructed the leading-order terms in an asymptotic solution for the

flow inside a tube undergoing prescribed oscillations. The solution uses the temporal
decompositions (3.1) and (3.6), and series expansions in the small parameters ε

and δ.
We now examine the energy budget corresponding to this leading-order solution.

In particular, we determine the mean rate of working by the fluid on the tube walls,
since this provides an indication of whether or not the oscillations would grow or
decay if the external forcing were removed.
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We re-write the energy equation (2.12) in terms of the dimensionless variables
introduced in § 2.4. After taking the steady component, we obtain�[∫∫

A

1

2
(w̆2 + εβ|ŭ⊥|2)w̆ dA

]z̆=0

z̆=1

�
0︸ ︷︷ ︸

K

−

�
λ

ε

[∫∫
A

w̆p̆ − 2ε2

R2

(
ŭ · ĕ · ẑ

)
dA

]z̆=1

z̆=0

�
0︸ ︷︷ ︸

S

−
�
λ

ε

∫∫
W

p̆ ŭ · N̂ − 2ε2

R2

(
1

	
ŭ · ĕ · N̂

)
dS

�
0︸ ︷︷ ︸

E

−
�

ελ

R2

∫∫∫
V

2 ĕ : ĕ dV

�
0︸ ︷︷ ︸

D

= 0,

(8.1)

where

ĕ =
1

2	

[
∇̆ŭ + (∇̆ŭ)T

]
(8.2)

is the non-dimensional rate of strain tensor, which, following (3.1), can be decomposed
as

ĕ = e + λδẽ + λδε2ê, (8.3)

into steady, fundamental oscillatory and higher frequency components in the same
way as the other variables.

We introduce K , S , E and D to represent the various time-averaged
(dimensionless) energy fluxes as indicated in (8.1). Each of these energy fluxes is
non-dimensionalized on

ρU 3a2, (8.4)

chosen to match the steady flux of kinetic energy from the background flow. The
energy budget (8.1) can then be written as

E = K − S − D . (8.5)

Physically, K is the time-averaged net kinetic energy influx from the tube ends, S
is the time-averaged rate of working of fluid at the tube ends, E is the time-averaged
rate of working done by fluid on the tube walls and D is the time-averaged rate of
dissipation.

We will now evaluate these four energies and, in particular, the energy transfer to
the wall E . Since we were unable to write down a closed-form solution for the steady
flow even at leading order, we cannot evaluate the contributions from the steady flow.
However, it will turn out that the problematic terms cancel amongst themselves by
virtue of the steady system satisfying a separate energy equation. We exploit this fact
to derive the leading-order energy budget for the oscillatory components of the system.

Since the (u′, p′) system described in § 7.1 also satisfies the Navier–Stokes equations
at leading order, we can also construct a similar energy balance with (ŭ, p̆) in
(8.1) replaced by (u′, εp′/λ). (The factor multiplying p′ is a consequence of the
decomposition (3.1b).) We denote the corresponding steady fluxes by E ′, S ′, K ′ and
D ′. Equation (7.4d) shows that in the (u′, p′) system the normal velocity at the wall
is zero at leading order, and so we have

K ′ − S ′ − D ′ = O(ε2, εδ2, δ4). (8.6)

We now express each of the variables in the full energy equation (8.1) in terms of the
temporal decomposition (3.1), keeping terms up to O(δ2). We also express the steady
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components using the decomposition (7.1). Each of the four time-averaged energy
contributions can then be expressed as the sum of its (u′, p′) counterpart and an
expansion in powers of ε and δ. It will be sufficient to evaluate just the leading-order
term in the expansion for each flux.

8.1. The kinetic energy flux through the tube ends

Using the decomposition (3.1) and the modified steady state defined in (7.1), the
time-averaged net influx of kinetic energy flux through the tube ends is given by

K =
1

2

[∫∫
A0

w′(w′2 + εβ|u′⊥|2
)
dA

]z̆=0

z̆=1

+
1

2
(λδ)2

[∫∫
A0

3w′�w̃2�0 dA

]z̆=0

z̆=1

+ O(ε2, εδ2, δ4). (8.7)

The equivalent flux for the (u′, p′) system is

K ′ =
1

2

[∫∫
A0

w′(w′2 + εβ|u′⊥|2
)
dA

]z̆=0

z̆=1

. (8.8)

We observe that K and K ′ differ only by O(δ2), and hence we write

K = K ′ + δ2K2 + O(ε2, εδ2, δ4), (8.9)

where

K2 =
3λ2

4

[∫∫
A0

w′|w̃00|2 dA

]z̆=0

z̆=1

. (8.10)

Physically, K ′ arises due to any acceleration or deceleration of the mean flow
along the length of the tube. The second term K2 arises from the non-zero mean of
the square of the axial sloshing flow at the inlet.

To evaluate K2, we note that w̃00 is uniform in the core of each cross-section, and
so we can evaluate the integral directly using (4.8). We obtain

K2 =
3λ2�0+

4

[
|w̃00|2

]z̆=0

z̆=1
=

3λ2ω̆2�0+
4

(
|�̃(0)|2
A0(0)2

− |�̃(1)|2
A0(1)2

)
, (8.11)

where we have eliminated w̃ in favour of �̃ using (5.13a).

8.2. The work done by the fluid at the tube ends

The mean rate of working by the fluid at the ends of the tube is dominated by the
pressure term acting over the core region. We have

S =

[∫∫
A0

(
w′(p′ + Π) +

λ3δ2

ε
�w̃p̃�0

)
dA

]z̆=1

z̆=0

+ O(ε2, εδ2, δ4). (8.12)

The contribution from the w̃p̃ term is at most O(εδ2): at an end with a pressure
condition, we have p̃ = 0 so there is no contribution from that end at all; at an end
with a flux condition, then the facts that w̃00 = 0,

∫∫
w̃01 dA=0 and ∇⊥p̃00 = 0 ensure

that the O(1) and O(ε) contributions from w̃p̃ vanish.
The equivalent expression to (8.12) for the (u′, p′) system is

S ′ =

[∫∫
A0

w′p′ dA

]z̆=1

z̆=0

+ O(ε2, εδ2, δ4). (8.13)
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From (7.2), we have that Π = δ2Π2(z̆) + O(εδ2, δ4), where

Π2(z̆) ≡ −λ2

4
(|w̃00(z̆)|2 − |w̃00(0)|2), (8.14)

and so S and S ′ differ by an O(δ2) amount. We therefore write

S = S ′ + δ2S2 + O(ε2, εδ2, δ4), (8.15)

where

S2 =

[∫∫
A0

w′Π2 dA

]z̆=1

z̆=0

. (8.16)

Substituting for Π2 from (8.14) and using (4.8) and (5.13a), we obtain

S2 =
ω̆2λ2�0+

4

(
|�̃(0)|2
A0(0)2

− |�̃(1)|2
A0(1)2

)
. (8.17)

Physically, S ′ represents the work done by the (u′, p′) system itself, while S2

is the leading-order work done by the combination of the mean flow u′ and the
pressure gradient Π due to the Reynolds stresses from the oscillatory flow. The
steady boundary conditions at the tube ends mean that there is no direct contribution
from the oscillatory flow.

8.3. The dissipation in the Stokes layer and the core

The dissipation is given by the local dissipation integrated over the whole volume.
Linearizing to the mean volume incurs only O(ε2δ2) errors, so we arrive at

D =
2ελ

R2

∫∫∫
V0

(
e′ : e′ + (λδ)2�ẽ : ẽ�0

)
dV + O(ε2, εδ2, δ4). (8.18)

The corresponding expression for the (u′, p′) system is

D ′ ≡ 2ελ

R2

∫∫∫
V0

e′ : e′ dV + O(ε2, εδ2, δ4). (8.19)

As before, there is an O(δ2) difference, and we write

D = D ′ + δ2D2 + O(ε2, εδ2, δ4). (8.20)

The leading-order dissipation from the oscillatory flow occurs in the Stokes layer
adjacent to the wall. (The dissipation in the core is smaller by a factor of O(ε).)
Since the layer is thin and axial velocities are larger than tangential velocities, the
leading-order component of the rate-of-strain tensor comes from the normal gradient
of the axial velocity. We, therefore, have

D2 ≡ λ3

4R2

∫∫
W0

∫ ∞

0

∣∣∣∣∂W̃00

∂X̆

∣∣∣∣2 dX̆ dS. (8.21)

From (5.27b), the leading-order axial velocity in the Stokes layer can be written in
terms of w̃00 at the outer edge of the core. From this, we obtain∣∣∣∣∂W̃00

∂X̆

∣∣∣∣ = w̃00|C0
ω̆1/2R exp {−(ω̆/2)1/2R X̆}, (8.22)

and hence

D2 =
ω̆1/2λ3

2
√

2 R

∫∫
W0

|w̃00|2 dS =
ω̆5/2λ3

2
√

2 R

∫ 1

0

∮
C0(z̆)

|�̃(z̆)|2
A0(z̆)2

H s
Y H s

Z dY̆ dz̆. (8.23)
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There is an implicit assumption here that the flow w̃00 is O(1) over a significant
portion of the tube, so that the ∂W̃00/∂X term in the rate-of-strain tensor does indeed
provide the dominant contribution to the dissipation. In particular, this restriction
excludes deformations that result in no area change at leading order (e.g. the non-
axisymmetric normal modes of an elastic circular cylinder).

8.4. The work done by the fluid on tube walls

We decompose E in a similar manner to the other fluxes, writing

E = E ′ + δ2E2 + O(ε2, εδ2, δ4), (8.24)

where E ′ is the time-averaged energy flux in the (u′, p) system. As already noted, E ′

may be neglected at the orders in which we are interested, since the normal velocity
in the (u′, p′) system is sufficiently small at the wall.

Starting from the energy balance (8.5), we can use the decompositions (8.9), (8.15),
(8.20) and (8.24) to express each term in terms of the corresponding term from the
(u′, p) system, the δ2 correction and higher-order errors. From (8.6) the sum of the
(u′, p) terms is negligible, and we are left with

E2 = K2 − S2 − D2 (8.25)

as the leading-order balance. Equivalently, E may be evaluated by direct calculation
of the work done on the wall, and this method does indeed give the same answer
(details omitted for brevity).

Examining the values of K2 in (8.11) and S2 in (8.17), the expression for the energy
may also be written as

E = δ2E2 = δ2

(
2

3
K2 − D2

)
. (8.26)

The time-averaged work on the wall comprises an input of 2δ2K2/3 due to the axial
oscillatory velocity at the tube ends, minus dissipative losses of δ2D2 from the Stokes
layer. Of the total kinetic energy input δ2K2, only 2/3 is available to do work on
the wall. The other 1/3 goes into the (u′, p) system and is lost either as dissipation
from an increased mean flow (pressure–pressure conditions) or as additional work
against an increased mean pressure gradient (flux–pressure conditions). Interestingly,
the 2 : 1 partition is the same as that seen by Jensen & Heil (2003) in their analysis
of a two-dimensional channel with pressure boundary conditions at both ends.

Observe that (8.25) could not simply be obtained by equating the O(δ2) terms in
the full energy balance (8.5), since there are also some O(δ2) terms present in the
(u′, p′) system and its energy equation (8.6).

9. Neutral energy condition and interpretation
9.1. The critical inverse Strouhal number

We now consider the implications of the expression (8.25) for the leading-order time-
averaged energy flux from the fluid to the wall. We substitute in the expressions (8.11),
(8.17) and (8.21) for the fluxes K2, S2 and D2. After a little rearrangement, we obtain

E2 =
ω̆2λ2�0+

2

|�̃(0)|2
A0(0)2

[(
1 − |�̃(1)|2

|�̃(0)|2
A0(0)2

A0(1)2

)
− λ

R�0+
(2πω̆A0(0))1/2I

]
, (9.1)
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where

I ≡
∫ 1

0

{
�(z̆)

A0(0)3/2

A0(z̆)3/2
|�̃(z̆)|2

|�̃(0)|2

}
dz̆, (9.2)

and

�(z̆) ≡ 1

2π1/2A0(z̆)1/2

∮
C0(z̆)

H s
Y H s

Z dY (9.3)

is a ‘shape factor’, giving the ratio of the surface area between z̆ and z̆ + dz̆ to that
of a circular cylinder with the same cross-sectional area A0(z̆), in the limit as dz̆ → 0.

Recalling that E = δ2E2, and rewriting (λ, R, δ) in terms of (α, 	, St), we obtain

E =
ω̆2Δ2	2St2�0+

2

|�̃(0)|2
A0(0)2

[(
1 − |�̃(1)|2

|�̃(0)|2
A0(0)2

A0(1)2

)
− 	St

α�0+
(2πω̆A0(0))1/2I

]
. (9.4)

The condition E = 0 can be used to define a criticality condition, in terms of a
critical inverse Strouhal number St−1

c , at which there is zero time-averaged energy
transfer to the wall. In terms of the unscaled dimensionless groups introduced in
(2.22), we find that

1

St c

=
	

α�0+
(2πω̆A0(0))1/2

(
1 − |�̃(1)|2 A0(0)2

|�̃(0)|2 A0(1)2

)−1 ∫ 1

0

{
�(z̆)

A0(0)3/2

A0(z̆)3/2
|�̃(z̆)|2

|�̃(0)|2

}
dz̆.

(9.5)

Recall that 	 and α are the aspect ratio and Womersley number defined in (2.22);
A0(z̆) is the cross-sectional area of the tube in the steady configuration; �0+ is the
dimensionless steady flux defined in (4.8); �(z̆) is the shape factor defined in (9.3);
and �̃(z̆) is the effective volume change due to the oscillations, as defined in (5.16).
Observe that �(z̆) and A0(z̆) are simply functions of the geometry of the steady
configuration, and that the only additional information required to calculate �̃(z̆) is
the oscillatory change in cross-sectional area Ã(z̆).

For pressure–pressure conditions and δ2 ∼ ε, the oscillations have a leading-order
effect on � (i.e. �0+ �= �0). Then �0+ will, in general, have a dependence on St , and
(9.5) must be manipulated further to obtain a closed-form expression for St c. For
example, for the case of a tube whose undeformed configuration is axially uniform,
the change in flux will be given by (7.5), which we can rewrite as

�0+= �0 (1 + Ψ St) , (9.6)

where we have introduced

Ψ =
kω̆2α2	Δ2

4A2
0

(
|�̃(0)|2 − |�̃(1)|2

)
. (9.7)

The criticality condition (9.5) can then be expressed as

1

St c

=
	

α�0

(2πω̆A0)
1/2

|�̃(0)|2 − |�̃(1)|2

∫ 1

0

�(z̆) |�̃(z̆)|2 dz̆ − Ψ. (9.8)

With pressure–flux boundary conditions and also for pressure–pressure conditions
when δ2 � ε (i.e. when �0+=�0 to leading order), (9.8) still applies, but with Ψ = 0.

When �0+= �0, condition (9.5) is independent of the amplitude of the oscillations
(although its derivation requires them to be small, which is appropriate for an analysis
of the onset of self-excited oscillations), and the overall length of the tube enters only
through the single factor 	.
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As St−1 ∝ U , this parameter can be thought of as a dimensionless strength of the
background flow. For St−1 < St−1

c , energy is being supplied by the wall to maintain
the motion, so the system is stable to such oscillations. For St−1 > St−1

c we have a
mean transfer of energy to the wall, suggesting that an instability may be possible.

9.2. Physical interpretation

Examining (9.5), we can decrease St−1
c , and hence reduce the flow rate at which self-

excited oscillations are likely to develop, by one or more of the following procedures:
(i) decreasing the value of the group 	(ω̆A0(0))1/2/(α�0+);
(ii) choosing a cross-sectional shape for the tube so as to reduce the relative

perimeter �(z̆);
(iii) increasing the cross-sectional area A0(z̆) over most of the tube, relative to its

value A0(0) at the upstream end;
(iv) localizing the disturbance near the upstream (z̆ = 0) end, so that |�̃(z̆)/�̃(0)| is

smaller over a greater proportion of the interval [0, 1] (e.g. by adjusting the lengths
of any upstream and downstream rigid sections);

(v) ensuring that the changes in cross-sectional area at different axial locations are
more in phase with each other, so that contributions to |�̃(z̆)| within the tube also
contribute to |�̃(0)| at the end;

(vi) in the case of pressure–pressure conditions, having A0(1) large relative to A0(0),
which helps to minimize kinetic energy losses from the downstream end.

Item (i) serves to alter the dimensional scalings to decrease the relative strength
of the dissipative term relative to the energy input term. For example, consider the
dependence of tube length 	. The oscillatory energy input scales with the square of
the size of the oscillations in the volume of the tube, which is proportional to 	2. The
dissipation scales with the square of the size of the oscillations (	2), and also with the
volume of the Stokes layers, which is proportional to 	. Hence, increasing the tube
length reduces the energy transfer to the wall, thus making the development of an
instability less likely.

The scaling with the Womersley number α2 arises purely from the dissipative term.
The dissipation scales like the product of viscosity, the square of the velocity gradients
and the volume of the Stokes layers. The first factor scales like α−2, while the second
and third depend on the thickness of the Stokes layers raised to the −2 and +1
powers, respectively. The thickness of the Stokes layer scales like α−1, hence there is
an overall factor of α−1 in St−1

c .
The other items (ii)–(vi) reduce the dimensionless viscous losses relative to the

kinetic energy input. Item (ii) reduces the volume of the Stokes layer by minimizing
the tube perimeter at each cross-section. (We note that this result does not contradict
Heil & Waters’ (2008) finding that the instability mechanism ceases to operate
efficiently for small-amplitude oscillations of circular cylindrical tubes, even though
such tubes have the smallest possible relative perimeter. This is because natural
oscillations about a circular cross-section are a special case and behave differently,
for the reasons described in § 9.3.) Items (iii) and (iv) reduce the axial sloshing flow
(and hence the dissipation it causes) over as much of the tube as possible, relative to
that at the inlet (which is responsible for the energy input). Item (v) arises from the
fact that if the wall motion at different points is not in phase, then the amplitude of
the oscillations in the tube volume, and hence of the sloshing flows seen at the ends,
is reduced. Item (vi) increases the net input of kinetic energy by reducing the relative
losses at the downstream end.
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9.3. Limits of validity and pathological cases

The expression (9.5) is valid provided the various parameters (including the predicted
St−1

c ) are within the asymptotic regime defined in § 2.5. There is one exception.

If �̃(z̆) = 0 or is small over most of the tube, then neglected higher-order effects
may dominate. The dissipation is assumed to be dominated by the flow in the Stokes
boundary layer that is induced by the oscillatory axial plug flow in the core. If this
oscillatory flow in the boundary layer has a small amplitude over much of the tube,
then the leading-order dissipation could come from higher-order effects (for instance,
dissipation due to the cross-sectional flow), which were neglected in the analysis. More
precisely, we require that the integral in (9.5) be O(1) as ε → 0 to ensure that the
dissipation is dominated by the assumed terms.

This case also includes the situation in which the tube has a circular cross-section
in the undeformed configuration. Natural small-amplitude deformations of a circle
with dimensionless amplitude Δ result in changes to the cross-sectional area only of
O(Δ2). Since we only consider changes that are linear in the displacement amplitude,
we would find that �̃ ≡ 0. With the axial sloshing flows only of O(Δ2) the dissipation
in the Stokes layers is reduced, and dissipation due to the flow in the cross-section
becomes significant. The effect of this additional contribution to the dissipation is
sufficient to dominate the effect (ii) in § 9.2. Therefore, even though a circular cross-
section has the smallest relative perimeter, the instability mechanism does not operate
as effectively there. This is consistent with the findings of Heil & Waters (2008).

There are two other cases that may appear problematic looking at (9.5), but in fact
are not. First, when

|�̃(0)|
A0(0)

=
|�̃(1)|
A0(1)

, (9.9)

the denominator on the right-hand side of (9.5) vanishes. In this case, the kinetic
energy fluxes at the two ends of the tube are equal at leading order, and there is no
net influx of energy. Therefore, dissipative losses dominate and there must be a net
transfer of energy from the wall to the flow in order to sustain the oscillations. An
infinite critical inverse Strouhal number is therefore predicted. In general, higher-order
effects will result in a small positive or negative influx of kinetic energy, yielding a
large yet finite critical inverse Strouhal number. However, such values of St are outside
the range of validity of the theory, and the energy transfer is correctly predicted for
ε	St = O(1).

Finally, observe that the limit �̃(0) = 0 is not singular, and with a little
rearrangement, expression (9.5) can still be used. However, with no kinetic energy flux
at the upstream end, a negative critical Strouhal number (corresponding to a negative
mean flow) will be predicted. In other words, the flow must be reversed, interchanging
the effective upstream and downstream ends, for the instability to manifest itself.

10. Conclusions
We have constructed an asymptotic solution for the flow through an oscillating

tube with a prescribed wall motion and a background axial flow induced by either
flux or pressure conditions at the tube ends. The solution applies to an arbitrary
initial tube shape and harmonic oscillation mode but is restricted to tubes with an
axially slowly varying shape, a small-amplitude high-frequency oscillation and the
parameter values satisfying (2.27), a regime chosen to include the case of energetically
neutral oscillations (see § 2.5).
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Using these results, we derived an expression (9.1) for the time-averaged energy
transfer from the fluid to the wall. We postulate that the sign of this energy transfer
is associated with the stability of the system to free oscillations. We obtained a simple
expression (9.5) that describes the critical case of oscillations with a neutral energy
budget. The scaling St−1

c ∝ α is consistent with the results of Heil & Waters (2008),
who used scaling arguments to obtain the functional relationship between these two
quantities. In addition, as will be shown in Part 2 of this paper (Whittaker et al.
2010), our asymptotic results show excellent agreement with numerical simulations of
a fully three-dimensional flow.

Our analysis shows that the instability mechanism proposed by Jensen & Heil (2003)
for two-dimensional flows (and described briefly in the introduction) also applies to
three-dimensional tubes. The partition of the additional kinetic energy input due to
the oscillations remains exactly 2 : 1 between the energy that is available to do work
on the walls and the energy that is lost because of changes in the steady flow, as in
the two-dimensional case. More surprisingly, the same 2 : 1 partition is seen to hold,
at least approximately, in a one-dimensional model of two-dimensional channel flow
in a regime without the presence of Stokes layers (Stewart, Waters & Jensen 2009).
We anticipate that this common partition can be explained more generally, and this
will be addressed in future work.

We stress that the energy transfer criterion is not identical to the actual stability
criterion for free oscillations involving full fluid–structure interaction. Part of the
excess energy that is transmitted to the walls in the case of prescribed constant-
amplitude oscillations would instead be required to increase the kinetic energy of the
fluid in order to increase the amplitude of free oscillations. Therefore, more complex
interactions may need to be considered. Nevertheless, the results presented in this
paper provide an essential ingredient in the understanding of the physical mechanisms
underlying a particular global instability of flows through a collapsible tube. The key
result (9.5) also provides a remarkably simple stability criterion that can be applied
to any observed or postulated mode shape. The extension of this work to the full
fluid–structure interaction problem for free oscillations is currently in progress.

We note that the instability mechanism that applies in the regime studied here
requires the flow to be oscillatory at the upstream end of the tube in order to allow
additional energy into the system. This contrasts with the case studied by Luo &
Pedley (1996), Luo et al. (2008) and many others, in which a flux condition is applied
at the upstream end of the tube, so that the oscillatory flow is zero there. With such a
set-up, the net kinetic energy flux from the two ends will be negative in the presence of
oscillations, since the oscillatory flow at the downstream end will increase the outflux
there. Therefore, a different mechanism is required to provide the energy to drive the
instability in this case.

The mechanism that we have studied in this paper involves the extraction of energy
from the external agent that is maintaining boundary conditions to induce the steady
background flow. The increased mean kinetic energy flux K means that more work
must be done at the tube ends to maintain the assumed boundary conditions. We
note that the presence of dissipation is not a prerequisite for the instability, and the
mechanism persists as μ → 0.

It is possible to generalize our results to the case where the oscillation amplitude is
still small, but no longer much smaller than the width of the Stokes layer. To describe
such a flow, the boundary-layer coordinates must move and deform with the boundary,
leading to more complicated equations and matching conditions. Nevertheless, since
the motion of the layer is small, inertial and divergence effects are also small, and at
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leading order the form of the solution is unaffected. This will be presented in a future
paper.
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Appendix A. Coordinates and equations for the Stokes layer
In this appendix, we define the coordinate system and variables used to describe

the flow in the Stokes boundary layers adjacent to the tube walls and derive the
appropriate governing equations and boundary conditions.

A.1. Coordinate system

We use the previously introduced dimensionless surface coordinates (Y̆ , Z̆) to which
we add a normal coordinate X̆, as illustrated in figure 4. The surface X̆ =0 coincides
with the tube wall in the steady configuration. The X̆ coordinate is scaled with the
boundary-layer thickness ε, so that the dimensionless position vector r̆ of the point
(X̆, Y̆ , Z̆) is related to that of the corresponding point r̆0 at (0, Y̆ , Z̆) on the wall in
the steady configuration by

r̆(X̆, Y̆ , Z̆) = r̆0(Y̆ , Z̆) − ε X̆ n̂(Y̆ , Z̆). (A 1)

Derivatives of a general dimensional position vector r relate the coordinates to the
unit vectors. Following (2.4), we write

∂ r̆

∂X̆
= −εn̂ ,

∂ r̆

∂Y̆
= HY (X̆, Y̆ , Z̆) t̂,

∂ r̆

∂Z̆
= 	 HZ(X̆, Y̆ , Z̆)b̂, (A 2a–c)

where HY and HZ are the dimensionless scale factors. Substituting (A 1) into (A 2),
we obtain

HY (X̆, Y̆ , Z̆) = H s
Y (Y̆ , Z̆) − ε K̆Y X̆, (A 3a)

HZ(X̆, Y̆ , Z̆) = H s
Z(Y̆ , Z̆) − ε2β K̆Z X̆, (A 3b)

where H s
Y and H s

Z are the scale factors for the surface coordinates that were defined

in (2.4), K̆Y and K̆Z are two of the dimensionless curvatures introduced through (2.6)
and (2.26) and β is defined in (2.31c).

A.2. Navier–Stokes equations

The (dimensional) fluid velocity Ŭ in the boundary layer is decomposed into
components aligned with the unit vectors corresponding to the boundary-layer
coordinates, thus

ŭ = Ŭ ≡ Ŭ n̂ + V̆ t̂ + 	W̆ b̂. (A 4)

As in the core, different scales are used in different directions to reflect the geometry
of the tube. The pressure P̆ in the boundary layer is scaled in the same way as the
oscillatory pressure in the core, so

p̆ = P̆ . (A 5)
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The form of the Navier–Stokes equations in general orthogonal curvilinear
coordinates is well known (see, e.g. Aris 1962). We now rewrite them using the
stretched boundary-layer coordinates introduced above. The continuity equation (2.8a)
becomes

− 1

εHY HZ

∂

∂X̆
(HY HZ Ŭ ) +

1

HY HZ

∂

∂Y̆
(HZ V̆ ) +

1

HY HZ

∂

∂Z̆
(HY W̆ ) = 0. (A 6)

Since HY and HZ are independent of X̆ at leading order, the leading-order components
of U and Ũ (see (3.6)) are uniform in X. (The different scaling for V̂ and Ŵ in (3.6)
means that the same is not true of Û .) In particular, Ũ is equal to the normal
boundary motion at leading order.

The momentum equation (2.8b) becomes

∂ Ŭ

∂t̆
+

ε

λ

[
− Ŭ

ε

∂ Ŭ

∂X̆
+

V̆

HY

(
∂ Ŭ

∂Y̆
− K̆Y V̆

)
+

W̆

HY

(
∂ Ŭ

∂Z̆
− K̆ZW̆

)]

=
1

ε2β

∂ P̆

∂X̆
+

1

R2

∂

∂X̆

(
1

HY HZ

∂

∂X̆
(HY HZŬ )

)
+ O(ε2), (A 7a)

∂ V̆

∂t̆
+

ε

λ

[
− Ŭ

ε

∂ V̆

∂X̆
+

V̆

HY

(
∂ V̆

∂Y̆
+ K̆Y Ŭ + Γ̆Y W̆

)
+

W̆

HZ

(
∂ V̆

∂Z̆
− Γ̆ZW̆

)]

= − 1

εβHY

∂ P̆

∂Y̆
+

1

R2HZ

∂

∂X̆

(
HZ

HY

∂

∂X̆
(HY V̆ )

)
+ O(ε2), (A 7b)

∂W̆

∂t
+

ε

λ

[
− Ŭ

ε

∂W̆

∂X̆
+

V̆

HY

(
∂W̆

∂Y̆
− εβ Γ̆Y V̆

)
+

W̆

HZ

(
∂W̆

∂Z̆
+ εβ K̆ZU + εβ Γ̆ZV̆

)]

= − 1

HZ

∂P̆

∂Z̆
+

1

R2HY

∂

∂X̆

(
HY

HZ

∂

∂X̆
(HZW̆ )

)
+ O(ε2). (A 7c)

The omitted O(ε2) terms come from the expansion of the Laplacian. We have also
made use of the identities

Γ̆Y ≡ 1

HZ

∂HY

∂Z̆
, Γ̆Z ≡ 	2

HY

∂HZ

∂Y̆
, (A 8a,b)

which can be derived by expanding both sides of

∂

∂Y

(
HY t̂

)
≡ ∂ 2r

∂Y∂Z
≡ ∂

∂Z

(
HZ b̂

)
. (A 9)

From (A 7a), we see that the pressure is uniform across the boundary layer at
leading order as ε → 0. Its value will be determined by matching with the pressure in
the core.

We decompose the variables in the boundary layer into steady, fundamental, and
higher frequency components, as we did for the core; see (3.6). The corresponding
decomposition of the equations is straightforward, and we omit the details for brevity.

A.3. Boundary and matching conditions

We now translate the various boundary conditions to dimensionless variables and
derive the matching conditions between the core and the Stokes boundary layer.
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We apply the no-slip condition (2.9) at the material point (X̆′, Y̆ ′, Z̆′) on the wall
that would have been at (0, Y̆ , Z̆) in the steady configuration. We obtain

Ŭ = λδω̆Re(iξeiω̆t̆ ), V̆ = λδω̆Re(iηeiω̆t̆ ), W̆ = λεδβω̆ Re(iζeiω̆t̆ ) (A 10a–c)

at

X̆′ = 0 − δ Re(ξ (Y̆ , Z̆) eiω̆t̆ ), (A 11a)

Y̆ ′ = Y̆ + εδ Re(η(Y̆ , Z̆) eiω̆t̆ ), (A 11b)

Z̆′ = Z̆ + ε2δβ Re(ζ (Y̆ , Z̆) eiω̆t̆ ). (A 11c)

Linearizing to (X̆′, Y̆ ′, Z̆′) back to (0, Y̆ , Z̆), and splitting into frequency components
as in (3.1), we obtain

U = O(εδ2), Ũ = Re(iω̆ξeiω̆t̆ ) + O(εδ2), (A 12a,b)

Û =
1

ε

�
Re(ξeiω̆t̆ )

∂ Ũ

∂X̆

�
2

−
�
Re(ηeiω̆t̆ )

∂ Ũ

∂Y̆

�
2

+ O(ε), (A 12c)

V = λδ2

�
Re(ξeiω̆t̆ )

∂ Ṽ

∂X̆

�
0

+ O(εδ2), Ṽ = Re(iωηeiω̆t̆ ) + O(ε), (A 13a,b)

V̂ =

�
Re(ξeiω̆t̆ )

∂ Ṽ

∂X̆

�
2

+ O(ε), (A 13c)

W = λδ2

�
Re(ξeiω̆t̆ )

∂W̃

∂X̆

�
0

+ O(εδ2), W̃ = O(ε), (A 14a,b)

Ŵ =

�
Re(ξeiω̆t̆ )

∂W̃

∂X̆

�
2

+ O(ε). (A 14c)

Simplifications arise since Ũ and U are uniform in X̆ at leading order, which follows
from (A 6) and the fact that the leading-order steady flow does not have a Stokes-layer
structure. In particular, we have ∂ Ũ/∂X̆ = O(ε), so there is no O(ε−1) contribution
to the condition on Û .

Equations relating the velocity and pressure between the Stokes layer and core
region are derived from matching the asymptotic expansions between the two regions
(see § 5 of Hinch 1991). We must compare the behaviour of the boundary-layer
variables as X̆ → ∞ with the behaviour of the core variables as W is approached.
We make use of the notation introduced in (3.7) and expand the boundary-layer and
core variables about a point x̆0 corresponding to the surface coordinates (Y̆0, Z̆0). For
the pressure we have

p̆(x̆0) + (x̆ − x̆0) · ∇̆p̆(x̆0) + · · · ∼ P̆ ∞(Y̆0, Z̆0) + X̆ P̆ ′∞(Y̆0, Z̆0) + · · · , (A 15a)

ŭ(x̆0) + (x̆ − x̆0) · ∇̆ŭ(x̆0) + · · · ∼ Ŭ
∞
(Y̆0, Z̆0) + X̆ Ŭ

′∞(Y̆0, Z̆0) + · · · , (A 15b)

where the coordinates are related by

x̆ − x̆0 = −εX̆n̂. (A 16)

We split (A 15) into frequency components and expand both sides in powers of ε

and δ. Equating coefficients then yields the appropriate matching conditions on the
various components.
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Appendix B. Boundary-layer and higher-order steady effects
B.1. The leading-order flow in the Stokes layer

Following § 7.2, we consider the steady flow in the Stokes-layer region to O(δ2). There
are O(δ2) forcing terms due to the incomplete cancellation between the pressure
modification and the Reynolds stress term from the oscillatory flow, and also from
the linearization of the boundary condition on the tube wall. However, as shown
below, there is no overall effect on the core flow at O(δ2).

We expand the variables in powers of δ as in the core, so

U = U0 + δ2U2 + O(δ4), (B 1)

P = P0 + δ2P2 + O(δ4). (B 2)

At O(δ0), there is no specific boundary-layer behaviour. An analysis in the
boundary-layer coordinates shows that the boundary-layer flow just mimics the core
flow close to the wall and transfers the wall boundary conditions unchanged to the
core region.

At O(δ2), the steady components of (A 6) and (A 7) are

∂U2

∂X̆
= O(ε), (B 3a)

0 = − 1

βλ

∂P2

∂X̆
+ O(ε2), (B 3b)

−1

λ

(
U2

∂V0

∂X̆
+U0

∂V2

∂X̆

)
− λ

2
Re

(
Ũ

†
00

∂ Ṽ00

∂X̆

)
= − 1

λβH s
Y

∂P2

∂Y̆
+

1

R2

∂2V2

∂X̆2
+ O(ε), (B 3c)

−1

λ

(
U2

∂W0

∂X̆
+ U0

∂W2

∂X̆

)
− λ

2
Re

(
Ũ

†
00

∂W̃00

∂X̆

)
=

1

R2

∂2W2

∂X̆2
+ O(ε), (B 3d )

where the superscript † denotes the complex conjugate. From (A 12)–(A 14) the
boundary conditions at X̆ = 0 are

U2 = O(ε), V2 =
λ

2
Re

(
ξ † ∂ Ṽ00

∂X̆

)
+O(ε), W2 =

λ

2
Re

(
ξ † ∂W̃00

∂X̆

)
+O(ε), (B 4a–c)

and from (A 15) the relevant matching conditions as X̆ → ∞ are

U ′∞
2 = O(ε), V ′∞

2 = O(ε), W ′∞
2 = O(ε), P2 → P ∞

2 = p2|C . (B 5a–d )

Noting that ∇⊥p2 = O(ε) from (7.3b) and U0 = O(ε), and making use of (5.23c) and
(5.23d), we find that the solution to (B 3)–(B 5), to leading order in ε, can be written
as

U2 = O(ε), V2 =
λ

2
Re

(
ξ † ∂ Ṽ00

∂X̆

)
+O(ε), W2 =

λ

2
Re

(
ξ † ∂W̃00

∂X̆

)
+O(ε), (B 6a–c)

P2 = p2|C0
+ O(ε). (B 6d )

Since Ṽ ′∞
00 = W̃ ′∞

00 = 0, we have

U∞
2 = O(ε), V ∞

2 = O(ε), W ∞
2 = O(ε), (B 7a–c)

which confirms the boundary conditions (7.4d) assumed above for the core flow.
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B.2. Steady streaming effects in the core

Beyond leading order, the flow in the core has additional forcing from the matching
conditions with the boundary layer. In general, there will be non-zero boundary
conditions on both the normal and tangential velocities. The latter is analogous to
the classical ‘steady streaming’ flow that is a typical feature of flows with oscillatory
Stokes boundary layers. The effects are not present at leading order and are not
readily observable in the numerical computations presented in Part 2 of this paper
(Whittaker 2010). We therefore do not investigate this feature further.
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