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SUMMARY
This paper proposes an image sequence-based navigation
method under the teaching-replay framework for robots in
piecewise linear routes. Waypoints used by the robot contain
either the positions with large heading changes or selected
midway positions between junctions. The robot applies local
visual homing to move between consecutive waypoints.
The arrival at a waypoint is determined by minimizing the
average vertical displacements of feature correspondences.
The performance of the proposed approach is supported by
extensive experiments in hallway and office environments.
While the homing speed of robots using other approaches is
constrained by the speed in the teaching phase, our robot is
not bounded by such limit and can travel much faster without
compromising the homing accuracy.

KEYWORDS: Multi-waypoint visual homing; Piecewise
linear route.

1. Introduction
Navigation is one of the most important abilities of a service
robot. Navigation with visual sensors1 is widely investigated
due to the availability of fast processors, low-cost, and high-
quality cameras.

This paper presents an image sequence-based navigation
method. The image sequence-based navigation method
consists of two phases: teaching phase and replay phase.
In the teaching phase, the robot moves along a route with
manual guidance or other exploration methods. Meanwhile,
a reference image sequence is recorded to represent the route.
The positions where the reference images are captured are
used as waypoints. With the reference image sequence, the
robot is capable of navigating automatically between any two
consecutive waypoints with local visual homing (or visual
servoing2, 3) in the replay phase.

Prior work on image sequence-based navigation4–21

provides solutions for the selection of waypoints, the best
route when a destination is given, the navigation between
consecutive waypoints, and the moment to change the
targeted waypoint to the next, and to start another local
visual homing. Different methods for detecting the arrival
at a waypoint are discussed in Section 2.2.

Local visual homing approaches 22–33 that robots use
to travel between consecutive waypoints can be classified
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into two types: whole image-based approaches and
correspondence-based approaches. A whole image-based
approach derives motion vector to the targeted waypoint
from the sum square image distance or Fast Fourier
Transform21 between the robot’s view and the closest
reference image.32 On the other hand, a correspondence-
based approach first finds correspondences between images,
then computes the motion vector from the correspondences.
Some common features are SIFT (Scale-Invariant Feature
Transform),34 SURF (Speeded Up Robust Feature),35

corners, and lines. Different computations for the motion
vector in correspondence-based approaches are discussed
in Section 2.1. Both whole image-based approaches
and correspondence-based approaches aim to reduce the
difference between the robot’s current pose (XC, ZC, θC)
and the pose of the targeted waypoint (XW, ZW, θW ). In
this paper, the difference XW − XC , ZW − ZC , and θW − θC

are called lateral difference, forward difference, and heading
difference, respectively.

1.1. Summary of the proposed approach
This paper proposes an image sequence-based navigation
method under the teaching-replay framework for robots in
piecewise linear routes. The robot rotates at the departing
waypoint and moves directly toward the next waypoint in the
replay phase. Since the robot arrives at the waypoint in a dif-
ferent heading to the reference image and heading difference
leads to a large horizontal displacement of correspondences,
the proposed approach detects the arrival at a waypoint by
minimizing vertical displacement of correspondences. While
the homing speed of robots in prior work36 is constrained by
its speed in the teaching phase, the robot in the proposed
approach is less bounded by such speed limit and can travel
faster without compromising the homing accuracy.

1.2. Paper organization
The rest of this paper is organized as follows: Section 2
introduces related work on correspondence-based local
visual homing approaches and different detection of the
arrival at a waypoint; Section 3 explains the construction of
reference image sequence in a piecewise linear route and
the proposed approach of multi-waypoint visual homing;
Section 4 demonstrates the feasibility of the proposed
approach in simulations and experiments. Besides, prior
works on local visual homing and image sequence-based
navigation are compared to the proposed approach; Section 5
concludes this paper.
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2. Related Work
This section briefly introduces prior work on image
sequence-based navigation in two aspects: how a robot
navigates with local visual homing approach and how the
arrival at a waypoint is detected.

2.1. Motion in correspondence-based local visual homing
Most published work decides the motion vector
in local visual homing from multiple-view geo-
metry6, 9–11, 13–15, 17, 22, 23, 26–31, 33 , relative bearing angle from
features to the robot,5, 24 3D positions of features,12, 18, 19 or
the displacement of correspondences on image plane.4, 7, 16

Cherubini et al.8 compare the navigation performance
between some of the above approaches in multi-waypoint
routes.

1. Multiple-view geometry: Local visual homing approach
based on multiple-view geometry37 decides robot motion
from essential matrix, epipole,11 homography17, 27 or
trifocal tensor.23, 30 The motion vector can be derived
from the translation matrix and rotation matrix which
are decomposed from essential matrix.6, 13–15 A curved
trajectory to the waypoint is designed by moving
epipoles gradually22, 26, 31 to desired locations. The
heading difference can be corrected from elements in
homography.30, 33 Courbon et al. derive the angular
velocity for navigation based on lateral difference and
heading difference, which can be obtained from either
homography9 or epipolar geometry.10 Lopez-Nicolas
et al.28 compute motion vector from epipolar geometry
or homography under different circumstances in order to
avoid the degeneracy of epipolar geometry due to short
baseline or a planar scene.

2. Bearing vectors from features to the robot:5, 24 For every
pair of features, the average bearing direction to the robot
is considered. The robot’s new heading is the weighted
average over these directions, where the weight of each
bearing direction is defined as the difference between
the relative bearing angles to the waypoint and to the
robot. This approach reduces the computational costs by
requiring few feature correspondences and eliminating the
use of image Jacobian matrix and multiple view geometry.
However, the robot is only guaranteed to reach a waypoint
located in the convex hull of features, therefore an
omnidirectional camera is required to ensure a beneficial
distribution of features.

3. 3D reconstruction of features: Local visual homing based
on 3D reconstruction estimates the 3D positions of
features globally or locally. Segvic et al.19 compute the 3D
positions of features between consecutive waypoints. The
occluded or temporarily invisible features can be retracked
by projecting features. Royer et al.18 reconstruct the taught
route and features globally before navigation by bundle
adjustment.37 Therefore, a position-based visual servo
control is designed by comparing the taught trajectory and
the robot’s current position. Fontanelli et al.12 localize the
robot and estimate the 3D positions of features between
waypoints.

4. Displacement of correspondences: The horizontal
displacement of correspondences is used to decide the

angular velocity or the direction of motion vector.
Ido et al.16 determine the direction of motion vector
from horizontal displacement of a matched template.
In the early work of Chen and Birchfield,36 every
correspondence votes for the direction of motion vector
according to its horizontal displacement. This approach
is later improved7 by combining the average horizontal
displacement of correspondences and the desired robot
heading from odometry recorded in the teaching phase.

2.2. Detection of the arrival at a waypoint
Most research detects the arrival at a waypoint from image
similarity,6, 13 displacement of correspondences,9, 15, 17, 20

traveled distance between waypoints,20 or the magnitude of
the motion vector.20 Ido et al.16 record the image similarity
when the robot is brought to the last waypoint in the teaching
phase. Thus, a precise navigation to the last waypoint is
achievable by comparing the current image similarity and
the recorded similarity. Argyros et al.5 detect the arrival at
a waypoint when a zero motion vector is found. Chen and
Birchfield7 define a criterion based on the displacement of
correspondences, traveled distance, and the robot’s heading
to detect the arrival of a waypoint.

Depending on a robot’s capability and its desired
trajectory, there are various realizations of detecting the
arrival using image correspondences. Some works10, 26, 31

design a trajectory to minimize lateral deviation and heading
deviation first, where the arrival at a waypoint is detected
by checking if the longest or average displacement of
correspondence is smaller than a threshold. The camera in
Erinc’s work11 is able to rotate independently to the robot.
In this case, the robot’s heading can be corrected first and
the arrival at a waypoint is detected only by examining the
horizontal displacement of correspondence.

3. Construction of Reference Images and Visual
Homing in Indoor Environments
This section first describes the construction of reference
images, then explains the local visual homing between
consecutive waypoints, especially on how to detect the arrival
at a waypoint. An overview of the proposed multi-waypoint
visual homing is provided at the end of this section.

3.1. The teaching phase: construction of reference images
Most works on image sequence-based navigation construct
the reference images by comparing image similarity between
the robot’s view and the reference images.11 The image
similarity is defined as the number of tracked features5, 7, 9 or
matched features.6, 10, 13, 15, 16 When the similarity is low, the
robot’s view is taken as a new reference image. On the other
hand, when a robot navigates in a hybrid (metric/topological)
map, Fontanelli et al.12 decide a new waypoint and take
a reference image when the uncertainty of 3D positions
for features is small; Vardy20 takes a reference image by
comparing the difference between visual odometry and
odometry; Zhang and Kleeman21 sample reference images
for fixed distance or angle.

The navigation approach in this paper teaches the robot
piecewise linear routes. Waypoints used by the robot contain
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Fig. 1. (Colour online) The procedure for construction of reference images.

either the positions with large heading changes or selected
midway positions between junctions. In the teaching phase,
reference images are captured when the robot moves toward
and arrives at a waypoint while no reference image is taken
during robot’s rotation on a waypoint. When the robot moves,
correspondences between the robot’s current image and the
last reference image are found to decide when a new reference
image should be taken. The pose where the reference image
is captured due to few correspondences is defined as an
intermediate waypoint. The reference image captured when
the robot arrives at a waypoint is a clue for the robot to
stop at a waypoint for a potential rotation. After the rotation,
a departing image is captured as a temporarily reference
image which is ready to be matched to the robot’s image. An
example for the construction of reference images is illustrated
in Fig. 1.

In this paper, correspondences are found by matching
SIFT features34 between two images. Incorrect corres-
pondences are removed with RANSAC (RANdom SAmple
Consensus)38 by estimating epipolar geometry.37

3.2. The replay phase: local visual homing between
consecutive waypoints
The proposed local visual homing approach reduces forward
difference, lateral difference, and heading difference between
the robot’s pose and a targeted waypoint. In the beginning,
the robot rotates until a similar scene to the targeted reference
image is found. With the matches between the robot’s view
and the reference image, the robot moves in a motion vector
computed from epipolar geometry to the waypoint in the
second step. After the waypoint is reached, the robot rotates
to correct heading as the last step. The last step is performed

only when the robot arrives at the last waypoint. In the
case of arriving at intermediate waypoints, the last step is
skipped and local visual homing repeats by targeting the
next reference image.

The proposed local visual homing method is designed
for a nonholonomic robot with a forward-looking camera
to navigate in a flat environment, such as most indoor
environments. The camera is installed so its optical axis
is parallel to the robot heading. This specific installation
simplifies calibration between the camera position and the
robot center.

The three steps in the local visual homing are described as
follows:

1. Rotation to find similar scene: A similar scene is found
when the number of matches between the current view and
the reference image is more than a threshold. The robot
rotates every fixed degree in order to take new image
to match the reference image. Since the forward-looking
camera has limited Field Of View(FOV), the fixed degree
is selected to be smaller than FOVmax.

2. Navigation to waypoint: The robot approaches the
waypoint straight by minimizing the forward difference
and lateral difference between the robot position and the
waypoint.
(a) Motion vector: The direction of the motion vector

is the relative direction from the robot position to
the waypoint. The relative direction is computed
from epipolar geometry between the robot current
view and the reference image.6, 13–15, 37 Given
correspondences, such as matched SIFT features, as
(uk, vk) ↔ (u′

k, v
′
k), k = 1, 2, · · ·, fundamental matrix
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F representing the epipolar geometry between two
images is calculated in

⎛
⎝u′

k

v′
k

1

⎞
⎠

T

F3×3

⎛
⎝uk

vk

1

⎞
⎠ = 0, k = 1, 2, · · · (1)

If the camera is calibrated, the essential matrix E is
derived from F and calibration matrix K as

E = KT FK. (2)

By decomposing E, relative translation and orientation
between two positions where two images are taken are
obtained as

E = R[t]x = R

⎛
⎝ 0 −TZ TY

TZ 0 −TX

−TY TX 0

⎞
⎠ , (3)

where R is the rotation matrix for relative orientation
and [t]x is the skew symmetric matrix of the translation
matrix. The relative direction ϕ from the robot position
to the waypoint is computed in

ϕ = arctan

(
TX

TZ

)
(4)

as the direction of motion vector. The estimated
relative direction becomes more accurate when the
robot gradually approaches the waypoint, because the
estimated epipolar geometry is more precise with more
matches.

(b) Detection of the arrival at a waypoint: The detection
of the arrival at a waypoint is used to stop the robot
on the waypoint without 3D reconstruction during
local visual homing, since the relative distance from
the robot to the waypoint is unknown. Detection of
the arrival at a waypoint based on image similarity,
displacement of correspondences, traveled distance,
or magnitude of motion vector is adopted in prior
works, as discussed in Section 2.2. However, detection
of the arrival at a waypoint with image similarity
may not be metrically precise; heading difference
must be minimized first when the displacement of
correspondences is used to detect the arrival at a
waypoint since a large heading difference leads to
large horizontal displacement of correspondences; the
methods based on traveled distance may be infeasible
when the total traveled distance is so long that the
accumulated error is large; the methods based on zero
motion vector are feasible only with holonomic robots
and panoramic view.
The proposed method detects the arrival at a
waypoint when a small enough local minimum of
the vertical displacement of corresponding features
is found instead of the displacement of corresponding
features, since the heading difference in the proposed
local visual homing is not corrected first. Different
heading induces a larger horizontal displacement of

Fig. 2. Camera perspective model.

corresponding features than the vertical displacement
of corresponding features when the robot is on the
waypoint. In the following, this property is first
derived, then the feasibility on detection of the arrival
at a waypoint by checking vertical displacement of
correspondences is discussed.
Given a landmark Lk and its relative position
(Xk, Yk, Zk) to the camera optical center C, as shown
in Fig. 2, a simplified camera perspective model is
used to calculate its projected feature Fk on the image
plane I as

Fk =
(

uk

vk

)
=

( f Xk

Zk

f Yk

Zk

)
, (5)

where f is the focal length. An azimuth angle α and
an elevation angle ε from C to Lk are computed in

{
α = arctan Xk

Zk

ε = arctan Yk

Zk
.

(6)

After the camera rotates θ along Y-axis, the
corresponding feature F ′

k is calculated in

F ′
k =

(
u′

k

v′
k

)
=

⎛
⎜⎜⎜⎝

f (Xk cos θ − Zk sin θ)

Xk sin θ + Zk cos θ

f Yk

Xk sin θ + Zk cos θ

⎞
⎟⎟⎟⎠ . (7)

The horizontal and vertical displacements of
corresponding features caused by different heading
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are written as

|�u| = |uk − u′
k|

= f

∣∣∣∣Xk

Zk

− Xk cos θ − Zk sin θ

Xk sin θ + Zk cos θ

∣∣∣∣
= f |Xk sin θ + Zk cos θ ||X2

k sin θ + Z2
k sin θ |

(8)

and

|�v| = |vk − v′
k|

= f

∣∣∣∣ Yk

Zk

− Yk

Xk sin θ + Zk cos θ

∣∣∣∣
= f |Xk sin θ + Zk cos θ ||XkYk sin θ

+ YkZk cos θ − YkZk|. (9)

By replacing Xk and Yk with Eqs. (6), (8) and (9)
become

|�u| = f Z2
k |Xk sin θ + Zk cos θ || tan2 α sin θ + sin θ |

= f Z2
k |Xk sin θ + Zk cos θ || sin θ || tan2 α + 1|

(10)

and

|�v| = f Z2
k |Xk sin θ + Zk cos θ || tan ε sin θ tan α

+ tan ε cos θ − tan ε|
= f Z2

k |Xk sin θ + Zk cos θ || tan ε sin θ || tan α

+ cot θ − csc θ |. (11)

The camera used in this paper is calibrated so that
|αmax| = 31.1◦ and |εmax| = 23.2◦. In order for two
views to overlap, |θmax| = 2|αmax|. We note that for
general off-the-shelf cameras |α| and |ε| are ranged
between ±27.3◦ and ±18.9◦ respectively and the focal
length is 35mm.
In Eq. (10), | tan2 α + 1| ≥ 1. On the other
hand, in Eq. (11), |(tan α + cot θ − cscθ)| < 1.5
and | tan ε| < 0.5 for general parameters of front-
facing cameras given above, and | tan ε||(tan α +
cot θ − csc θ)| < 0.75 < 1. Therefore, |�u| ≥ f Z2

k |
Xk sin θ + Zk cos θ || sin θ | > |�v|, when θ �= 0. If
θ = 0, both |�u| and |�v| are 0.
Since the vertical displacement of corresponding
feature is less affected by the different heading
direction than the horizontal displacement of
corresponding feature when two images are captured
on a same location but in different direction, the
proposed method uses the vertical displacement �v

as a signal to detect the arrival at a waypoint.
The positions where the robot can find zero �v are
examined. Given a waypoint W as origin, the top view
of Fig. 2 is shown in Fig. 3. When �vk = 0, the robot

Fig. 3. The positions where �vk is 0.

position must fit

(Xk − XC) × sin θC + (Zk − ZC) × cos θC = Zk.

(12)

By considering the limited FOV of a forward-looking
camera, the positions where zero �vk is found in

∣∣∣∣∣arccos
(Xk − XC) × sin θC + (Zk − ZC) × cos θC√

(Xk − XC)2 + (Zk − ZC)2

∣∣∣∣∣
<= FOVmax

2
. (13)

By solving Eqs. (12) and (13), all positions where zero
�vk form an annulus Annulusk , as the gray region
shown in Fig. 3. The inner radius RIn of the annulus is
found when the robot is facing to Lk directly. On the
other hand, the outer radius ROut is obtained when the
robot bearing angle to Lk is FOVmax

2 . RIn and ROut are
computed in

⎧⎨
⎩

RIn = Zk

ROut = Zk

cos FOVmax
2

.
(14)

In general, multiple landmarks are observed within
FOV and multiple annuli are constructed, as Fig. 4.
All annuli intersect at a region around the waypoint, as
the black small region shown in Fig. 4. Therefore, the
robot can detect the arrival at a waypoint by checking
if the average �v becomes zero during the navigation.
In the proposed method, due to possible incorrect
matches and noise, the robot is aware of the arrival at
a waypoint by finding a small enough local minimum
of the average |�v|.

(c) Moving velocity: The moving velocity is proportional
to the average |�v|. In this design, the robot tends to
move quickly when departing from previous waypoint
and gradually slow down when approaching the
targeted waypoint.

3. Rotation to correct heading: The heading difference is
corrected by rotating the robot after the robot stops on the
waypoint. The robot rotates in a fixed angular velocity to
minimize the average |uk − u′

k|.
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Fig. 4. Multiple annuli.

3.3. Summary of multi-waypoint visual homing
The multi-waypoint visual homing approach is summarized
as a state machine in Fig. 5. The robot starts to rotate in
state 1 until the robot observes a similar scene to the targeted
reference image. In state 2, the robot computes the motion
vector and moves accordingly. The motion stops when a small
enough local minimum of the average |�v| is found since
the robot has arrived at the waypoint. When the robot arrives

Fig. 5. State machine of multi-waypoint visual homing.

at the final destination, it aligns its heading to the direction
where the last reference image is taken. Otherwise, the robot
changes its targeted reference image to the next and transits
to state 1.

4. Performance Evaluations
The feasibility and performance of the proposed multi-
waypoint visual homing are evaluated in this section.
Section 4.1 provides the variation of |vk − v′

k| in a simulation
in order to demonstrate the effectiveness of the detection
of the arrival at a waypoint; Section 4.2 describes the used
robot and platform for experiments; Section 4.3 demonstrates
experiments of the proposed multi-waypoint visual homing
in long routes of multiple waypoints; Section 4.4 compares
the navigation accuracy of the proposed approach of local
visual homing to other prior work26 which computes
motion vector from epipolar geometry and detects the
arrival at a waypoint based on the average displacement

of correspondence
√

(uk − u′
k)2 + (vk − v′

k)2; Section 4.5
compares the performance of proposed multi-waypoint
visual homing in a piecewise linear route and the performance
of other image sequence-based navigation method36 in a
smooth trajectory.

4.1. Variation of vertical displacement of correspondences
A simulation shows |vk − v′

k| when the robot is in a neighbor
region of a waypoint in order to demonstrate the effectiveness
of the detection of the arrival at a waypoint. Given a waypoint
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Fig. 6. (Colour online) The simulation of |vk − v′
k| around waypoint (0, 0).

and landmarks, the simulation calculates |vk − v′
k| at each

position in the neighbor region around the waypoint. The
landmarks are generated randomly inside the FOV when
the robot is on the waypoint in order to produce observable
landmarks on the reference image. Figure 6 shows the
variation of |vk − v′

k|. The size of the neighbor region around
the waypoint is 100 m2 and |vk − v′

k| is calculated every
10 cm. The heading of the robot is the direction from the
robot to the waypoint. The waypoint is set as origin and
the heading direction is 0◦, which is in the same direction
to the positive forward axis. Figures 7(a) and (b) are the
observations of Fig. 6 from the lateral and forward axes,
respectively. The simulation shows that |vk − v′

k| reduces
when the robot approaches the waypoint and drastically
increases after the robot passes the waypoint.

4.2. Robot and platform for experiments
The robot for experiments is called U-BOT39 which is de-
signed by Industrial Technology Research Institute(ITRI).40

U-BOT is a four-wheeled robot with two-wheeled drive in the
front. The dimension of U-BOT is 596 × 495 × 373(mm3)
and the maximal payload is 23 kg. The maximal moving
velocity and acceleration of U-BOT is 1200 mm/sec and
1000 mm/sec2, respectively. The commands of moving
velocity and the direction of motion vector are transmitted
through serial communication to U-BOT, and a Digital Signal
Processor(DSP) inside U-BOT controls U-BOT accordingly.
A usb webcam, QuickCam Ultra Vision41 from Logitech,
is mounted on the top of U-BOT as the forward-looking
camera. A laptop with Intel Core 2 Duo P7450 (2.13 GHz) is
used to perform the navigation approach. The graphics card
of the laptop is NVIDIA GeForce G 105M so that the SIFT
feature matching can be processed by GPU. Figure 8 shows
U-BOT and the forward-looking camera. In the teaching
phase, the forward-looking camera is used to take reference
images on waypoints. In the replay phase, the robot motion
for navigation is decided by the proposed approach of local

Fig. 7. (Colour online) Observations of Fig. 6. (a) Observations
from lateral axis; (b) Observations from forward axis.

visual homing with the forward-looking camera. The sonars,
infrared distance sensors, the laser range finder from Hokuyo,
and the side-looking camera are not used.
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Fig. 8. (Colour online) U-BOT and the mounted forward-looking
camera.

4.3. Experiments of multi-waypoint visual homing
Three experiments are conducted in different environments
in order to evaluate the feasibility of the proposed
multi-waypoint visual homing. The first environment is a
rectangular route in a hall. The other two environments are
l-shaped hallways on different floors of a building. Figure 9
shows one of the reference images in each environment. The
length, the shape, and the average runtime for navigation in
each route are summarized in Table I. The navigation error
is smaller than 17 cm for all waypoints. For all experiments,
a same set of parameters is adopted in the proposed local
visual homing. In the first step, due to the similarity in the

Fig. 9. (Colour online) One of reference images in the test environments. (a) Reference image in test environment 1 (hall); (b) Reference
image in test environment 2 (hallway); (c) Reference image in test environment 3 (hallway with similarity).

Table I. The length, shape, and runtime in each test environment.

Length Average runtime
Environment Shape (m) (sec)

1 Rectangle 25 217
2 L shape 28 204
3 L shape 35 245

third test environment, the robot view is considered as a
similar scene to a reference image when at least 20 matched
SIFT features are found, while 8 matched SIFT features are
sufficient to calculate epipolar geometry in the second step.
In the second step, the robot detects the arrival at a waypoint
when the average magnitude of vertical displacement of
correspondences |vk − v′

k| is a local minimum and smaller
than 4. In the last step, the robot stops heading correction
when the magnitude of average horizontal displacement of
correspondences |uk − u′

k| is a local minimum and smaller
than 10.

The experiment in the third environment is discussed in
detail, because of the similarity and dynamic objects in the
environment. Figure 10 provides the positions of waypoints
in the third environment and 18 required reference images.
The length of the route from S to 18th waypoint is about 35
meters. Figure 11 shows the views when the robot arrives at
all waypoints in one trial.

In each local visual homing, the proposed approach tends
to increase the number of matched SIFT features and to
decrease the average magnitude of vertical displacement for
correspondences |vk − v′

k|. Figure 12 shows the number of
matched SIFT features and the average magnitude of vertical
displacement for correspondences |vk − v′

k|. The robot takes
image and does local visual homing at each timestep. The
scales on horizontal axis are the timesteps at which the robot
arrives at waypoints. After the robot arrives at each waypoint
and changes its target to the next waypoint, the number
of matched SIFT features decreases and |vk − v′

k| increases
steeply.

When the robot moves, people move in the hallway and
several doors are opened. These environmental changes or
occlusions may reduce the number of matched SIFT features
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Fig. 10. (Colour online) Waypoints in the third environment where similarity and moving objects appear. (a) Route and waypoints (circles)
in the test environment; (b) Reference images on waypoints.

during navigation but does not affect local visual homing,
as long as the number of matched SIFT features is sufficient
to calculate the motion vector. Figure 13(a) shows the robot
views in which a person appears when the robot moves from
7th waypoint to 8th waypoint. Figure 13(b) shows an open
door as an environmental change when the robot moves from
14th waypoint to 15th waypoint.

4.4. Navigation accuracy between consecutive waypoints
Since the navigation error does not accumulate in the
image sequence-based approach, the navigation accuracy in
a multi-waypoint route depends on the navigation accuracy
between consecutive waypoints. In order to evaluate the

navigation accuracy, the proposed approach is compared to
prior work26 which designs local visual homing based on
epipolar geometry and kinematics of the robot. In the rest of
this section, epipole-based visual homing(EVH) is used to
represent this prior work.26

Epipole-based visual homing (EVH) designs a control law
for local visual homing by linearizing the visual servoing
system with input-output linearization, while the input is the
robot’s motion command and the outputs are the locations
of epipoles. The robot’s trajectory to the waypoint depends
on a specific reference trajectories defined for both epipoles
in the robot’s image and the reference image. By following
the trajectory, the robot minimizes the lateral difference and

Fig. 11. (Colour online) The robot views when the robot arrives at each waypoint in the third environment.
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Fig. 12. (Colour online) Number of matched SIFT features and |vk − v′
k| during navigation. (a) Number of matched SIFT features; (b)

Variation of |vk − v′
k|.

Fig. 13. (Colour online) Environmental changes during navigation. (a) Moving person and opened door; (b) Opened door.
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Table II. Navigation accuracy of local visual homing.

Applied Average Average Detection the arrival
approach lateral error forward error at a waypoint

Proposed approach 5.76 cm 7.36 cm average |�v|
EVH 1.63 cm 5.96 cm average

√
�u2 + �v2

Proposed trajectory failed failed average
√

�u2 + �v2

heading difference, then reduces the forward difference. The
arrival at the waypoint is detected by finding a minimal
average displacement of correspondences.

To compare the navigation accuracy, 30 tests of the
proposed approach and EVH are done under different robot’s
initial location and location distribution of features in indoor
environments. In each test, objects in the scene change their
location and the robot is randomly placed to start local
visual homing. Between the robot’s initial location and the
waypoint, the lateral difference is within 50 cm and the
forward difference is between 100 cm and 200 cm. The
features are at least 150 cm away from the waypoint. The
same set of parameters and control gains is used during these
30 tests.

The average navigation errors of the proposed approach
and EVH are shown in the first two rows of Table II. On
average, the navigation of EVH is more accurate, especially
in the lateral part. The forward motion at the last step in EVH
contributes to the smaller lateral error. However, the design
of the trajectory for the robot requires more parameters
or control gains such as the coefficients for the reference
trajectories of epipoles.

The last row in Table II shows the necessity of
observing the average magnitude of vertical displacement
of correspondences to detect the arrival at a waypoint in the
proposed approach. If the robot moving along a piecewise
linear trajectory detects the arrival at each waypoint by
observing the displacements of correspondences, it is unable
to stop at the waypoint by minimizing the magnitude of the
displacement of correspondence unless no lateral difference
is found between the robot’s initial location and the waypoint,
because the displacements of correspondences often do not
converge steadily when the robot approaches the waypoint.

4.5. Navigation efficiency in long routes
The proposed multi-waypoint visual homing approach
is compared to other work on image sequence-based
navigation which decides the motion vector from horizontal
displacement of correspondences.4, 7, 16, 36 As mentioned in
qualitative visual navigating method,36 the robot’s velocity
in the replay phase must be smaller by a factor of 1.5∼2.5
in order to avoid going off course due to the delay caused
by computational and response times. This section provides
experiments that confirm the speed limit of prior work and
shows the proposed method is not bounded by such limit.

Qualitative visual navigation(QVN)36 is implemented
because its visual input configuration and computational
requirement are similar to our settings. In the teaching
phase, QVN takes reference images along a smooth route
every 0.8 s in order to divide the route into segments. In

Fig. 14. (Colour online) Test environment for comparison between
MVH and QVN.

each segment, up to 50 corners are tracked as features, to
which correspondences are found in the replay phase. In the
replay phase, the robot moves in a fixed velocity and the
direction of motion vector is decided by a simple algorithm
based on voting. Each correspondence between the robot’s
image and the closest reference image is compared in its
locations on both images and votes for the direction: right,
left, or unchanged. In the experiment, corners are detected
and tracked by functions provided in OpenCV.42 The velocity
and the angular velocity in the teaching phase are 10 cm/s
and 4◦/s, respectively.

The proposed approach of multi-waypoint Visual Homing
(MVH) and QVN are tested in U-shaped routes in an office,
as shown in Fig. 14. The endpoints of the routes, S and E,
are two positions in the office. The length of the route of
MVH and QVN are 6.4 m and 5.3 m, respectively. Both
approaches are tested under different moving velocities: 4
cm/sec, 8 cm/sec, 10 cm/sec, 20 cm/sec, and 50 cm/sec. QVN
adopts each moving velocity as its fixed moving velocity in
the replay phase, while MVH adopts the moving velocity
as a maximal moving velocity. If the calculated velocity in
second step of MVH is higher than the maximal velocity, the
robot moves in the maximal velocity. The same parameters
in Section 4.3 are used by MVH in this comparison. Table III
shows the results of experiments.

Our results show the claimed limit on velocity in QVN36

and demonstrate that the moving velocity in MVH is not
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Table III. Comparison between the proposed approach of MVH
and QVN.

Velocity Lateral error Forward error runtime
Method (cm/sec) (cm) (cm) (sec)

MVH 4 −1 ∼ 1.5 −0.5 ∼ 1.5 174 ∼ 189
MVH 8 −2.5 ∼ 1 1 ∼ 3.5 108 ∼ 121
MVH 10 −1 ∼ 1.5 1 ∼ 3 96 ∼ 101
MVH 20 −3 ∼ 2.5 −4.5 ∼ 1.5 70 ∼ 74
MVH 50 −1.5 ∼ 2 2 ∼ 4.5 61 ∼ 64
QVN 4 −2.5 ∼ 1 0.5 ∼ 1 135 ∼ 141
QVN 8 −4.5 ∼ 3 2 ∼ 4.5 68 ∼ 71
QVN 10 −9.5 ∼ −6.5 7 ∼ 11 55 ∼ 57
QVN 20 failed failed failed
QVN 50 failed failed failed

constrained by such speed limit. When the velocity in the
replay phase is below the velocity in the teaching phase, both
MVH and QVN work well and QVN spends less time on
navigation than MVH. Increasing the velocity in the replay
phase in QVN causes deviation from the taught route and this
deviation sometimes leads to a failed navigation, especially
when the robot makes sharp turns in the curvilinear part of the
route. On the other hand, because the accurate motion vector
reduces the lateral difference and large change of heading
is performed on waypoints, the deviation in MVH is not as
large as the deviation in QVN at high speed.

Two main reasons in MVH to break the limit on velocity
are the accurate motion vector and the variable velocity when
the robot approaches a waypoint. The computed motion
vector in MVH not only minimizes the displacement of
correspondences but also points to the waypoint, however the
motion vector in QVN is only to minimize the displacement
of correspondences and does not point to the waypoint
mostly. A visual navigation with less accurate motion vector
requires higher frame rate in order to correct the robot’s
motion more often so that the moving velocity is limited.
Besides, the robot with slower velocity when approaching a
waypoint allows more corrections of the robot’s motion and
denser sampling of the displacement of correspondences in
order to avoid a premature or late detection of the arrival at
the waypoint.

5. Conclusion
This paper proposes an image sequence-based navigation
method under the teaching-replay framework for robots
in piecewise linear routes. Waypoints used by the robot
contain either the positions with large heading changes
or selected midway positions between junctions. Between
consecutive waypoints, local visual homing is designed
to rotate on the departing waypoint and to move directly
toward the targeted waypoint. The arrival at a waypoint is
determined by minimizing the average vertical displacements
of feature correspondences. The performance the proposed
approach is evaluated through extensive experiments in
hallway and office environments. Robots employing the
proposed approach can break the speed limit claimed by other

studies and travel at higher speeds without compromising the
navigation accuracy.

Robot navigation in highly dynamic environments is still a
challenging work. We plan to refine the proposed framework
to be adoptable in these environments. Different clues such
as virtual reality43 and 3D environment models may also
be used for navigation. Also, fusing visual information with
probabilities in pose44, 45 are under investigation.
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