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We are interested in the cubic-to-tetragonal phase transition in a shape memory
alloy. We consider geometrically linear elasticity. In this framework, Dolzmann and
Müller have shown that the only stress-free configurations are (locally) twins
(i.e. laminates of just two of the three martensitic variants). However, configurations
with arbitrarily small elastic energy are not necessarily close to these twins. The
formation of a microstructure allows all three martensitic variants to be mixed at
arbitrary volume fractions. We take an interfacial energy into account and establish a
(local) lower bound on elastic plus interfacial energy in terms of the martensitic
volume fractions. The introduction of an interfacial energy introduces a length scale
and, thus, together with the linear dimensions of the sample, a non-dimensional
parameter. Our lower Ansatz-free bound has optimal scaling in this parameter. It is
the scaling predicted by a reduced model introduced and analysed by Kohn and
Müller with the purpose of describing the microstructure near an interface between
austenite and twinned martensite. The optimal construction features branching of
the martensitic twins when approaching this interface.

1. Introduction

1.1. Twins

In the geometrically linear version of elasticity theory, the strain e (a field of sym-
metric 3×3 tensors) generated by a displacement u (a vector field) is approximated
by

e = 1
2 (∇u + ∇Tu). (1.1)

In the martensitic phase of a shape memory material that undergoes a cubic-to-
tetragonal phase transition, there are three different stress-free strains:

e(1) := ε

⎛
⎝−2 0 0

0 1 0
0 0 1

⎞
⎠ , e(2) := ε

⎛
⎝1 0 0

0 −2 0
0 0 1

⎞
⎠ , e(3) := ε

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ ,

(1.2)
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where ε > 0 is a (dimensionless) material parameter (typically of the order 0.1).
The corresponding deformations u are taken with respect to the austenite lattice,
so that the stress-free strain in the austenite phase is e = 0. The fact that e(1),
e(2) and e(3) are trace-free means that we have restricted ourselves to the case
where the transformation is volume preserving (we refer the interested reader to,
for example, [1, chapters 4.1 and 11.1]).

It is a classical result in the theory of elasticity that a displacement field u with
a constant strain field e must be affine. It is well known in the theory of shape
memory alloys that there are non-affine (Lipschitz continuous) displacement fields
u such that the corresponding strain fields e only assume the three values e(1),
e(2) and e(3). These are the so-called twins, which we now describe. Dolzmann
and Müller [5, theorem 3.1] have rigorously shown that these twins are the only
configurations with strain fields e that take only the three values e(1), e(2) and e(3):
a rigidity result. More precisely, they prove that

• e (locally) only assumes at most two of the three values,

• e (locally) only depends on a single variable (out of a fixed set of six possible
single variables).

More precisely, if e locally assumes both values e(1) and e(2), say, then e must be
either locally constant along the planes x1+x2 = const. or along the planes x1−x2 =
const. The two other cases are similar by cubic symmetry. These configurations
are called martensitic twins (or ‘simple laminates’ in the mathematical literature);
there are exactly six twins in a cubic-to-tetragonal phase transition (we refer the
interested reader to, for example, [1, chapters 5 and 11.3.1]).

1.2. Microstructure

It is natural to ask how stable this rigidity result is under perturbations, i.e. when
e is only close to the three values e(1), e(2) and e(3), that is, if the configuration is
not entirely stress-free. Since strain and stress are related via the elastic energy, we
first address the modelling of the latter. The stress-free strains (1.2) are typically
‘embedded’ into a piecewise quadratic elastic energy of e in the sample (or subset
of the sample) B,

Eelast =
∫

B

min{eC(0)e + ω0, (e − e(1))C(1)(e − e(1)),

(e − e(2))C(2)(e − e(2)), (e − e(3))C(3)(e − e(3))} dx, (1.3)

where C(0), C(1), C(2) and C(3) denote the elastic moduli (tensors of rank 4) of the
austenite and the three martensitic phases. Moreover, ω0 > 0 denotes the differ-
ence in Helmholtz free energy of the austenite phase with respect to the martensitic
phases. In the mathematical literature, this model is known as the ‘three well prob-
lem’. We will assume that the phases are elastically isotropic with identical shear
modulus µ and vanishing second Lamé constant λ. Moreover, we shall assume that
ω0 = 0, since we are interested in the behaviour of the energy at a given volume
fraction of the austenite. Hence, we obtain the simplest form possible for the elastic
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energy

Eelast = 2µ

∫
B

min{|e|2, |e − e(1)|2, |e − e(2)|2, |e − e(3)|2} dx,

where |e|2 denotes the sum of the squares of all entries of the 3×3-tensor e (i.e. the
Frobenius norm). For later reference, we will reformulate this elastic energy as

Eelast := 2µ

∫
B

|e − χ1e
(1) − χ2e

(2) − χ3e
(3)|2 dx,

where the minimum is taken over all functions χ1, χ2, χ3 with

χ1, χ2, χ3 ∈ {0, 1} and χ0 := 1 − χ1 − χ2 − χ3 ∈ {0, 1}. (1.4)

These characteristic functions χ0, χ1, χ2 and χ3 can be interpreted as the indicator
functions of the austenite phase and the three martensitic phases, respectively. We
refer the interested reader to [1, chapter 12.1] for more details.

After these preliminaries, we address the question of stability of the rigidity result.
It is well known in the theory of shape memory alloys that the above-mentioned
rigidity for strains e with exactly vanishing elastic energy Eelast = 0 is destroyed
on the level of sequences {eν}ν↑∞ of strains with energies Eelast → 0. The best-
studied rigidity result is related to a mixture of austenite and martensite. There
is no displacement field u with a stress-free strain field e assuming the value zero
and at least one of the three values e(1), e(2) and e(3) on a set of positive measure
each. In particular, there is no exactly stress-free interface between a martensitic
twin (with twin plane x1 + x2 = const., say) on the one side and an austenite on
the other side. However, the elastic energy of such a configuration can be made as
small as desired

• by letting the twin width � tend to zero,

• by choosing the twin volume fraction λ (i.e. the relative width of one layer
with respect to the other layer) appropriately (i.e. λ = 1

3 or λ = 2
3 ),

• by choosing the habit plane (i.e. the plane between the martensitic twin and
the austenite) appropriately (i.e. x1 +x3 = const., x1 −x3 = const., x1 +x2 =
const., x1 − x2 = const., x2 + x3 = const. or x2 − x3 = const.).

In fact, any volume fractions of the three martensitic variants and of the austenite
can be reached at vanishing elastic energy. The interested reader is referred to [1,
§§ 7.1 and 11.3.2] for more information.

1.3. Interfacial energy

Clearly, one way to remove this degeneracy of the energy functional is to take
an interfacial energy between the variants into account. Again, since we are only
interested in scaling properties of the energy, we assume that there is a single,
isotropic energy per area of the interface κ. Typical values of κ are between 20
and 200 mJ m−2 (see [11, chapter 6, table 5]; also Stefan Müller, personal com-
munication, 2010). It is mathematically more convenient to attach this interfacial
energy to the characteristic functions (1.4) instead of the strain e. The BV-norm
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B

|∇χ| dx of the characteristic function χ is a mathematically robust expression
for the surface area of ∂{χ = 1}. Hence, we consider

Einterf := κ

∫
B

(|∇χ0| + |∇χ1| + |∇χ2| + |∇χ3|) dx. (1.5)

Our result, theorem 2.2, shows that there is a qualitative difference between, on the
one hand, the scaling of the minimal energy Einterf + Eelast for volume fractions
that allow for configurations with exactly vanishing elastic energy, and, on the
other hand, volume fractions for configurations that only allow for a sequence of
configurations with vanishing elastic energy in the limit. More precisely, we have
the following.

• In the first case, just a single interface is needed so that the minimal energy
scales as

κL2, (1.6)

where L denotes the diameter of B.

• In the second case, a microstructure is needed and the minimal energy scales
as

(κL2)2/3(ε2µL3)1/3. (1.7)

In this sense, we may say that the interfacial energy unfolds the degenerate elastic
energy. The pair of exponents 2

3 , 1
3 = 1 − 2

3 is familiar, as we point out next.

1.4. Twin branching

In their seminal work [8,9], Kohn and Müller studied the effect of the interfacial
energy Einterf on the interface between a twinned martensite and an austenite phase.
They work on the level of a simplified and, in particular, scalar two-dimensional
model. As explained in [8, § 2.2], the simplifications of their model with respect to
the above model Einterf + Eelast are the following.

• The (implicit) selection of one of the six possible twin planes, say x1 + x2 =
const., by restricting to displacements of the form

u = affine + f

⎛
⎝ 1

−1
0

⎞
⎠ ,

i.e. displacements that amount to a shear. In particular, the third martensitic
variant does not occur (i.e. χ3 ≡ 0).

• The selection of one of the four possible habit planes (between the austenite
and a twin formed by the first two martensitic variants), say x2 +x3 = const.,
by imposing that the half-space x2 + x3 � 0 is the austenitic phase (i.e. χ0 is
the characteristic function of the set {x2 + x3 � 0}).

• The restriction that all quantities only depend on the two variables x1 + x2
and x2 + x3.
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Naively, one would expect that the minimal energy is found by optimizing the
twin width �. On the one hand, the interfacial energy scales as κL3�−1, since the
interfacial density scales as �−1. On the other hand, the elastic energy scales as
µε2L2�, since the stresses are confined to a sheet of thickness � around the austenite–
martensite interface. Hence, one would expect that the minimal energy scales as [8,
§ 3.1]

(κL2)1/2(ε2µL3)1/2.

This, however, is not the optimal energy scaling: a small twin width � is only
required near the austenite–martensite interface. Hence, it seems advantageous to
refine � by twin branching when approaching this interface (see, for example, [1,
plate 2(b), figure 1.2(b)] for experimental pictures of twin branching). However,
the branching of twins requires slight deviations from the twin plane and thus also
generates stresses. The reduced model of Kohn and Müller allows the elastic energy
generated by branching to be assessed. They construct a branched configuration
with energy scaling as follows [8, § 3.2]:

(κL2)2/3(ε2µL3)1/3. (1.8)

Kohn and Müller also prove [9, theorem 1.1] that their construction cannot be
improved in terms of scaling, provided the non-dimensional number κL2/ε2µL3 =
κ/ε2µL is sufficiently small (and that the neglected Lamé constant λ is not much
larger than µ). It is the main result of this paper (theorem 2.2) that this lower
bound also holds for the full model Einterf + Eelast.

Hence, loosely speaking, we may say that our analysis combines the qualitative
treatment (rigidity) of the full model in [5] with the quantitative treatment (Ansatz-
free lower bounds optimal in scaling) of the reduced model in [9].

This paper is an extension of [2]. The extension is twofold. Here, we treat the three
martensitic variants plus the austenite, whereas, in [2], no austenite was allowed
(i.e. χ0 ≡ 0). In [2], we considered the (somewhat artificial) case of periodic bound-
ary conditions (in particular, B was replaced by (0, L)3), whereas here we obtain
a local result. The latter, in particular, rules out Fourier methods that were exten-
sively used in [2].

1.5. The geometrically nonlinear case

The situation in the geometrically nonlinear case is different. Müller and Sverak
have constructed exactly stress-free configurations that involve two martensitic vari-
ants in two dimensions that are not twins [10, example (c)]. Extending these ideas,
Conti et al . have constructed exactly stress-free configurations involving all three
martensitic variants [4, theorem 1.1]. In particular, their result yields an exactly
stress-free configuration that involves austenite and martensite. These configura-
tions are constructed by an iterative method (Gromov’s ‘convex integration’) and
thus have a complicated phase distribution. Indeed, Dolzmann and Müller [6, the-
orem 1.1] have shown that, also in the geometrically nonlinear case, a mixture of
two martensitic variants in two dimensions with finite interfacial energy must be
(locally) twins. Kirchheim [7, theorem 1.2] extended this result to three marten-
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sitic variants in three dimensions. Hence, in the geometrically nonlinear case, the
finiteness of surface energy is needed even for the qualitative rigidity result.

2. Non-dimensionalization, symmetry and main result

We non-dimensionalize and rescale the model as follows:

• we measure energy density in units of 2µε,

• we measure length in units of the sample diameter L,

• we measure strains in units of ε.

Hence, we are left with the single non-dimensional parameter

η :=
κL2

2ε2µL3 =
κ

2ε2µL
.

Definition 2.1. The objects that we consider are as follows:

(i) The austenite and three martensitic phases described by their characteristic
functions, i.e.

χ0, χ1, χ2, χ3 ∈ {0, 1} and χ0 + χ1 + χ2 + χ3 = 1. (2.1)

(ii) The strain described by

e ∈ symmetric 3 × 3 tensors

such that there exists a field u ∈ R
3 with e = 1

2 (∇u + ∇Tu). (2.2)

(iii) The elastic and interfacial energies in the ball B1 of radius 1 given by

Eelast :=
∫

B1

∣∣∣∣∣∣e − χ1

⎛
⎝ −2 0 0

0 1 0
0 0 1

⎞
⎠

− χ2

⎛
⎝ 1 0 0

0 −2 0
0 0 1

⎞
⎠ − χ3

⎛
⎝ 1 0 0

0 1 0
0 0 −2

⎞
⎠

∣∣∣∣∣∣
2

dx,

Einterf :=
∫

B1

(|∇χ0| + |∇χ1| + |∇χ2| + |∇χ3|) dx.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.3)

The following axes and planes will play a special role in this cubic-to-tetragonal
phase transition.

• Three cubic axes, which correspond to the three martensitic variants χ1,
χ2, χ3. Note that the model is invariant under the permutations and reflec-
tions with respect to the cubic axes; those are generated by (x1, x2, x3) �
(x2, x1, x3), (x1, x2, x3) � (x3, x2, x1) and (x1, x2, x3) � (x1, x2,−x3).
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• Six planes (011), (011̄), (101), (1̄01), (110) and (11̄0), which, being of crystal-
lographic notation, are the planes defined by x2+x3 = const., x2−x3 = const.,
x1 + x3 = const., −x1 + x3 = const., x1 + x2 = const. and x1 − x2 = const.,
respectively. These are the twin planes of the cubic-to-tetragonal phase tran-
sition. Each unordered pair of martensite variants admits two twin planes. For
example, the (unordered) pair of martensitic variants χ1, χ2 admits the two
twin planes (110) and (11̄0). We occasionally identify these six planes with
the dual vectors with the coordinates (0, 1, 1), (0, 1,−1), (1, 0, 1), (−1, 0, 1),
(1, 1, 0) and (1,−1, 0), respectively. These planes first appear in proposi-
tion 3.9.

• Four space diagonals {[111], [111̄], [11̄1], [1̄11]}. We occasionally identify these
four axes with the primal vectors with the coordinates (1, 1, 1), (1, 1,−1),
(1,−1, 1) and (−1, 1, 1), respectively. These axes first appear in lemma 3.2
and mediate between the cubic axes and the twin planes.

Theorem 2.2. There exists a small but universal radius r > 0 such that we have,
for any parameter η � r, that if χ0, χ1, χ2, χ3, e, Einterf and Eelast are as in
definition 2.1, and if we abbreviate the rescaled energy in B1 as

E := η1/3Einterf + η−2/3Eelast,

then the following three dichotomies hold:

(i) we have ∫
Br

|1 − χ0| dx � E or
∫

Br

|χ0| dx � E; (2.4)

(ii) in the case of
∫

Br
|χ0| dx � E, we have∫

Br

|χ1| dx � E1/2 or
∫

Br

|χ2| dx � E1/2 or
∫

Br

|χ3| dx � E1/2;

(2.5)

(iii) in the case of
∫

Br
|χ3| dx � E1/2, there exist functions f(110), f(11̄0) such that

we have∫
Br

|χ1 − f(110)| dx � E1/4 or
∫

Br

|χ1 − f(11̄0)| dx � E1/4, (2.6)

where f(110), f(11̄0) denote functions only depending on x · (110) = x1 + x2
and x · (11̄0) = x1 − x2, respectively. In the two other cases, the analogous
statement holds.

We close this section with three remarks. The first is that parts (i) and (ii) of
theorem 2.2 can be reformulated in terms of the volume fractions

θ0 := −
∫

Br

χ0 dx, θ1 := −
∫

Br

χ1 dx,

θ2 := −
∫

Br

χ2 dx, θ3 := −
∫

Br

χ3 dx
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as follows:
(1 − θ0)θ0 � E, θ1θ2θ3 � E1/2.

The second remark is that it is possible to reformulate theorem 2.2 in terms of
the strain e alone by introducing

Ē := min
χ0,χ1,χ2,χ3 satisfy (2.1)

E. (2.7)

Indeed, provided Ē � 1, theorem 2.2 assumes the following form.

(i) We have ∫
Br

|e|2 dx � Ē (2.8)

or ∫
Br

min{|e − e(1)|2, |e − e(2)|2, |e − e(3)|2} dx � Ē, (2.9)

where we use the notation (1.2) with ε = 1.

(ii) In the last case, we have∫
Br

min{|e − e(2)|2, |e − e(3)|2} dx � Ē1/2,

∫
Br

min{|e − e(1)|2, |e − e(3)|2} dx � Ē1/2,

∫
Br

min{|e − e(1)|2, |e − e(2)|2} dx � Ē1/2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

(iii) In the last case, we have∫
Br

|e − f(110)e
(1) − (1 − f(110))e(2)|2 dx � Ē1/4,

∫
Br

|e − f(11̄0)e
(1) − (1 − f(11̄0))e

(2)|2 dx � Ē1/4,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.11)

where f(110), f(11̄0) denote {0, 1}-valued functions depending only on x ·
(110) = x1 + x2 and x · (11̄0) = x1 − x2, respectively.

These estimates follow immediately from those of theorem 2.2, as we shall argue at
the end of the proof of the latter.

The third remark points out the limitations of theorem 2.2. Zhang et al . [11]
prompted some interest in the nucleation of martensite in austenite. One natural
approach to characterizing the saddle point in the energy landscape is to deter-
mine the minimal energy given the volume of the martensite (here, we think of the
martensite embedded in an infinite matrix of austenite). By summation of trans-
lations of balls, the local estimate (2.4) would yield a lower bound on E (with
B1 replaced by R

3) in terms of the volume
∫

R3(1 − χ0) dx. However, this lower
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bound does not have the optimal scaling in the volume
∫

R3(1 − χ0) dx. In fact, a
more detailed argument within our approach (in particular, a quantification of the
scaling of estimate (3.17) in |h| + |h′| � 1) would already lead to an improved
scaling. Hence, theorem 2.2(i), as it stands, does not contribute to the problem of
nucleation, although we believe that some of the methods may.

3. Structure of the proof and auxiliary lemmas

3.1. Lemma 3.2

The form of the elastic energy makes it convenient to introduce the following three
modified characteristic functions.

Definition 3.1. We set

χ̃i := χ0 + 3χi − 1 for i = 1, 2, 3 (3.1)

noting that
χ̃1 + χ̃2 + χ̃3 = 0 (3.2)

and that the elastic energy in the ball B1 can be reformulated as

Eelast =
∫

B1

∣∣∣∣∣∣e +

⎛
⎝χ̃1 0 0

0 χ̃2 0
0 0 χ̃3

⎞
⎠

∣∣∣∣∣∣
2

dx. (3.3)

In view of (3.3), the compatibility constraints (2.2) for the symmetric strain
tensor e together with a control of the elastic energy Eelast yield some control on
the three functions χ̃1, χ̃2, χ̃3 (this is the content of the upcoming lemma 3.2).
Since the compatibility constraints on e can be characterized as linear second -
order differential relations, this control will be formulated in terms of linear second-
order differential operators. Indeed, the gradient ∇u of some displacement field u
is characterized by linear first-order differential constraints. The strain tensor e,
which is the symmetrized gradient 1

2 (∇u+∇Tu) in our geometrically linear setting,
is characterized by linear second-order differential relations.

Let us first discuss how lemma 3.2 relates to the symmetry of the cubic-to-
tetragonal phase transition by drawing its conclusion in the case of vanishing elastic
energy. In this extreme case, lemma 3.2 states that certain mixed second derivatives
of χ̃1, χ̃2, χ̃3 vanish. More precisely, these derivatives are in the direction of the four
space diagonals {[111], [111̄], [11̄1], [1̄11]} and the combinatorics are as follows. For
χ̃1, which is associated with the [100] axis, two mixed derivatives, namely, ∂[111]∂[1̄11]
and ∂[111̄]∂[11̄1], vanish. Let us argue that this is exactly the result we expect qual-
itatively. By an elementary argument (see statement (iii) before lemma 3.7), the
vanishing of these two mixed derivatives implies the decomposition of χ̃1 into four
functions of a single variable each. More precisely,

χ̃1 = f(101) + f(1̄01) + f(110) + f(11̄0), (3.4)

where f(101), f(1̄01), f(110), f(11̄0) denote functions that are constant along planes
perpendicular to (101), (1̄01), (110), (11̄0), respectively (that is, functions that only
depend on the coordinates (101) ·x, (1̄01) ·x, (110) ·x, (11̄0) ·x, respectively). With
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χ̃1 replaced by χ1, (3.4) is exactly what we expect qualitatively: (110) and (11̄0)
are the two twin planes that the martensitic variant χ1 can form with χ2; (101)
and (1̄01) are the two twin planes it can form with χ3.

Let us now briefly discuss the statement of the upcoming lemma 3.2 more quan-
titatively. Since the elastic energy is an L2-expression in the functions χ̃1, χ̃2, χ̃3
(see (3.3)), the above-mentioned mixed second derivatives of these functions are
controlled in the negative Sobolev space H−2. This means that they can be writ-
ten as a linear combination of second derivatives of functions (see (3.5)) that are
controlled in L2 (see (3.6)). However, it will be important for lemma 3.4 that, on
the right-hand side of (3.5), only the three combinations of the two directional
derivatives that appear on the left-hand side (that is, ∂[111], ∂[1̄11]) occur.

Lemma 3.2. There exist three functions ρ[111],[111], ρ[111],[1̄11], ρ[1̄11],[1̄11] with

∂[111]∂[1̄11]χ̃1

= ∂[111]∂[111]ρ[111],[111] + 2∂[111]∂[1̄11]ρ[111],[1̄11] + ∂[1̄11]∂[1̄11]ρ[1̄11],[1̄11], (3.5)

such that ∫
B1

(ρ2
[111],[111] + ρ2

[111],[1̄11] + ρ2
[1̄11],[1̄11]) dx � Eelast. (3.6)

The same statement holds if the pair of axes {[111], [1̄11]} is replaced by what we
obtain from (x1, x2, x3) � (x1, x2,−x3), that is, {[111̄], [11̄1]}. The same statement
also holds with χ̃1 and {[111], [1̄11]}, {[111̄], [11̄1]} replaced by what we obtain from
(x1, x2, x3) � (x2, x1, x3) and (x1, x2, x3) � (x3, x2, x1), that is,

• χ̃2 and the two pairs of axes {[111], [11̄1]} and {[111̄], [1̄11]},

• χ̃3 and the two pairs of axes {[111], [111̄]} and {[11̄1], [1̄11]}.

3.2. Lemma 3.4

The following lemma 3.4 encodes the information given in lemma 3.2 in terms of
finite differences instead of infinitesimal derivatives. As corollary 3.6 will show, the
passage from derivatives to finite differences is not just technical, but allows us to
connect, in a natural way, to the pointwise nonlinear constraint implied in our use
of characteristic functions.

Definition 3.3. For any function f , any vector a and scalar h, we define the
function ∂h

af via
(∂h

af)(x) = f(x + ha) − f(x).

Note that we do not divide by the step size h.

Naively, one might expect that, since the mixed second derivative ∂[111]∂[1̄11]χ̃1
is controlled in H−2, the corresponding mixed finite differences ∂h

[111]∂
h′

[1̄11]χ̃1 are
controlled in L2 for any shifts h and h′. This would be true in the sense that if
all second derivatives are controlled in H−2, then all second finite differences are
controlled in L2. It is not true for the control of just the two mixed derivatives
∂[111]∂[1̄11] and ∂[111̄]∂[11̄1].
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In the case of periodic boundary conditions or of a formulation in the whole
space, a reformulation in the Fourier space shows that this loss of exactly one entire
derivative is unavoidable. Indeed, the Fourier multiplier of χ̃1 associated with the
control of ∂[111]∂[1̄11] and ∂[111̄]∂[11̄1] in H−2 (in the stronger sense of (3.5)) is given
by

(k · [111])2(k · [1̄11])2

((k · [111])2 + (k · [1̄11])2)2
+

(k · [111̄])2(k · [11̄1])2

((k · [111̄])2 + (k · [11̄1])2)2
. (3.7)

On the other hand, the control of, say, the finite differences ∂h
[111]∂

h′

[1̄11]χ̃1 in H−α

for some exponent α leads to the Fourier multiplier

|e−ihk·[111] − 1|2|e−ih′k·[1̄11] − 1|2
|k|2α

. (3.8)

In essence, we will now probe these two Fourier multipliers with a layer-within-layer
construction, where the outer layer can be thought to consist just in a phase shift
of the inner layer. Let us denote by

�in � �out � 1 (3.9)

the periods of the inner and outer layers, respectively. The two families of planes,
along which the inner and the outer layer are constant, have to be chosen with care.

• The plane for the inner layer has to contain at least one of the axes [111],
[1̄11] and at least one of the axes [111̄], [11̄1], and has to be transversal to one
of the axes [111], [1̄11]. Let us pick (110).

• The plane for the outer layer also has to contain at least one of the axes [111],
[1̄11] and at least one of the axes [111̄], [11̄1], but has to be transversal to the
other of the two axes [111], [1̄11]. Let us pick (11̄0).

This choice of scales and planes amounts to evaluating the Fourier multipliers at
wave vectors k of the form

k =
2π

�out
(11̄0) +

2π

�in
(110). (3.10)

For maximal effect, we probe the layers by shifts h, h′ in transversal directions
which correspond to a quarter of the layer period, that is,

h =
�in
4

and h′ =
�out

4
. (3.11)

Note that
k · [111] =

4π

�in
, k · [1̄11] = − 4π

�out
,

k · [111̄] =
4π

�in
, k · [11̄1] =

4π

�out
.

⎫⎪⎪⎬
⎪⎪⎭ (3.12)

Using the separation of scales (3.9), this yields, for the Fourier multiplier (3.7),

(k · [111])2(k · [1̄11])2

((k · [111])2 + (k · [1̄11])2)2
+

(k · [111̄])2(k · [11̄1])2

((k · [111̄])2 + (k · [11̄1])2)2
≈ 2

�2in
�2out

. (3.13)
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We now turn to the Fourier multiplier (3.8). The choice (3.11) of the shifts is such
that, in conjunction with (3.12), we obtain

hk · [111] = π and h′k · [1̄11] = −π,

so that
|e−ihk·[111] − 1|2|e−ih′k·[1̄11] − 1|2

|k|2α
≈ 16

(2π)2α
(�2in)α, (3.14)

where we have used (3.10) and (3.9) to approximate the denominator. Now a com-
parison of (3.13) and (3.14) shows that, in case of α < 1, the Fourier multiplier
(3.7) can be made much smaller than the Fourier multiplier (3.8) while preserving
(3.9).

In the theory of partial differential equations, this loss of one derivative (with
respect to the maximal regularity) is well known for the (one-dimensional) wave
equation, where the D’Alembertian can also be written as a single mixed second
derivative ∂t∂t − ∂x∂x = (∂t + ∂x)(∂t − ∂x).

Lemma 3.4. There exists a possible small but universal radius r > 0 such that, for
any shifts |h|, |h′| � r, there exist three functions j[111], j[1̄11], j in Br with

∂h
[111]∂

h′

[1̄11]χ̃1 = ∂[111]j[111] + ∂[1̄11]j[1̄11] + j in Br (3.15)

such that ∫
Br

(j2
[111] + j2

[1̄11] + j2) dx � Eelast.

For lemma 3.2, the same statement holds with the pair of axes {[111], [1̄11]} replaced
by {[111̄], [11̄1]}. The same statement also holds with

χ̃1 and {[111], [1̄11]}, {[111̄], [11̄1]}

replaced by

χ̃2 and {[111], [11̄1]}, {[111̄], [1̄11]}

and by

χ̃3 and {[111], [111̄]}, {[11̄1], [1̄11]}.

3.3. Lemma 3.5

In order to proceed, we have to convert the weak H−1-control on the mixed
derivative ∂h

[111]∂
h′

[1̄11]χ̃ stated in lemma 3.4 into strong L2-control (which coincides
with strong L1-control, since ∂h

[111]∂
h′

[1̄11]χ̃ only assumes a fixed set of finite values).
Only on the level of a strong control are we able to connect to the additional
information that χ0, χ1, χ2 and χ3 are characteristic functions. This passage from
a weak to a strong topology can only be achieved with the help of the interfacial
energy. The scaling of (η1/3, η−2/3) (see (3.17)) in the parameter η is dictated by
the fact that, according to lemma 3.4, the elastic energy controls the square of a
negative gradient of ∂h

[111]∂
h′

[1̄11]χ̃1 (the square of the H−1-norm of ∂h
[111]∂

h′

[1̄11]χ̃1),
whereas the interfacial energy controls (the L1-norm of) a single gradient of χ̃1
(and thus also of its finite differences ∂h

[111]∂
h′

[1̄11]χ̃1).
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In the proof of lemma 3.5, the above scaling argument is made rigorous by the
application of the interpolation estimate

∫
φ2 dx �

( ∫
|∇φ| dx sup |φ|

)2/3( ∫
|j|2 dx

)1/3

� η1/3
∫

|∇φ| dx sup |φ| + η−2/3
∫

|j|2 dx, (3.16)

where the field j on the last factor on the right-hand side is related to φ via ∇·j = φ,
so that the last factor defines the H−1-norm of φ. This interpolation estimate was
identified as being crucial in [3, lemma 2.3, eqn (2.3)] for the analysis of branching
phenomena.

Lemma 3.5. There exists a universal radius r > 0 such that, for all parameters
η � r and shifts |h|, |h′| � r, we have∫

Br

|∂h
[111]∂

h′

[1̄11]χ̃1| dx � η1/3Einterf + η−2/3Eelast. (3.17)

As before, the same statement holds with {[111], [1̄11]} replaced by {[111̄], [11̄1]}.
The same statement also holds with χ̃1 and {[111], [1̄11]}, {[111̄], [11̄1]} replaced by
χ̃2 and {[111], [11̄1]}, {[111̄], [1̄11]}, and by χ̃3 and {[111], [111̄]}, {[11̄1], [1̄11]}.

3.4. Corollary 3.6

Working with (second-order) finite differences has many advantages:

• it allows us to convert the H−2-control of lemma 3.2 into H−1-control (cf.
lemma 3.4);

• it allows us to transfer the BV-control given by the interfacial energy from
the characteristic functions themselves to their derivatives (cf. the proof of
lemma 3.5);

• it allows us to make efficient use of the fact that we are taking second deriva-
tives of characteristic functions.

The last point becomes apparent in the following corollary 3.6 to lemma 3.5.

Corollary 3.6. There exists a universal radius r > 0 such that, for all parameters
η � r and shifts |h|, |h′| � r, we have∫

Br

|∂h
[111]∂

h′

[1̄11]χ0| dx +
∫

Br

|∂h
[111]∂

h′

[1̄11]χ1| dx � η1/3Einterf + η−2/3Eelast. (3.18)

As before, the same statement holds with {[111], [1̄11]} replaced by {[111̄], [11̄1]}.
The same statement also holds with the two characteristic functions χ0, χ1 and
the two sets of pairs of axes {[111], [1̄11]}, {[111̄], [11̄1]} replaced by χ0, χ2 and
{[111], [11̄1]}, {[111̄], [1̄11]}, χ0, χ3 and {[111], [111̄]}, {[11̄1], [1̄11]}.
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Note that, for the characteristic function χ0 of the austenite, corollary 3.6 pro-
vides the strong information that the six mixed finite differences

∂h
[111]∂

h′

[111̄], ∂h
[111]∂

h′

[11̄1], ∂h
[111]∂

h′

[1̄11],

∂h
[111̄]∂

h′

[11̄1], ∂h
[111̄]∂

h′

[1̄11], ∂h
[11̄1]∂

h′

[1̄11]

are locally controlled in L1. Suppose for a moment that they vanish (because, for
example, the elastic energy vanishes). Then the corresponding six mixed derivatives
also vanish. Note that the projection of the six 3 × 3-tensors

[111] ⊗ [111̄], [111] ⊗ [11̄1], [111] ⊗ [1̄11],
[111̄] ⊗ [11̄1], [111̄] ⊗ [1̄11], [11̄1] ⊗ [1̄11]

onto the space of symmetric tensors spans the space of symmetric tensors (since
this space has dimension six, the number is minimal). This would yield that all
second derivatives vanish. Hence, χ0 would be affine. But an affine characteristic
function is constant. This is the basis of the proof of theorem 2.2(i).

3.5. Lemma 3.7

From the martensitic part of corollary 3.6 we would like to draw a quantitative
version of (3.4) (with χ̃1 replaced by χ1). Since we do not know how to quantify
(3.20), we follow an algebraically more involved strategy that is somewhat similar
to the argument for vanishing elastic energy in [5, lemma 3.2]. In order to do so, we
need a quantification of two elementary statements of the following form. If certain
(second mixed) derivatives of a function f of three variables vanish, then f can be
written as the sum of functions which depend on one or two variables only.

In order to be more precise, we fix a basis {a, b, c} of R
3 and denote its dual

basis by {a∗, b∗, c∗}. In the applications, the basis will be formed by three out
of the four space diagonals {[111], [111̄], [11̄1], [1̄11]}, so that the dual basis is (up
to scalar factors) always formed by three linear independent vectors out of the
six face diagonals {(011), (011̄), (101), (1̄01), (110), (11̄0)} (for example, the dual
basis of {[111], [111̄], [11̄1]} is, up to scalar factors, {(011), (1̄01), (11̄0)}). The two
elementary statements we refer to are the following:

(i) we have
∂a∂bf ≡ 0 =⇒ f = fa + fb,

where fa and fb are constant along the lines parallel to a and b, respectively,
i.e. ∂afa = 0 and ∂bfb = 0;

(ii) we have
∂a∂bf ≡ ∂cf ≡ 0 =⇒ f = fa∗ + fb∗ ,

where fa∗ and fb∗ are constant along the planes perpendicular to a∗ and b∗,
respectively, i.e. fa∗ and fb∗ are functions of a∗ · x and b∗ · x, respectively.

Lemma 3.7 quantifies and localizes these statements on the level of L1-estimates of
finite differences.

As mentioned above, it would be desirable for the treatment of martensite to
have a quantification of (3.4). Let us put (3.4) into the same form as (i) and (ii).
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(iii) We have

∂[111]∂[1̄11]f ≡ ∂[111̄]∂[11̄1]f ≡ 0

=⇒ f = f(110) + f(11̄0) + f(101) + f(1̄01). (3.19)

Note that the decomposition result (3.19) formally has the pleasing algebraic form

ker(∂[111]∂[1̄11]) ∩ ker(∂[111̄]∂[11̄1])

= ker(∂[1̄11]) ∩ ker(∂[11̄1]) + ker(∂[111]) ∩ ker(∂[111̄])

+ ker(∂[1̄11]) ∩ ker(∂[111̄]) + ker(∂[111]) ∩ ker(∂[11̄1]). (3.20)

We observe that (iii) follows easily by applying (ii) twice. Note that g := ∂[111]f
satisfies ∂[1̄11]g = ∂[111̄]∂[11̄1]g = 0. Hence, we may apply (ii) to g and a = [111̄],
b = [11̄1] and c = [1̄11], yielding the decomposition

g = g(110) + g(101).

The form of this decomposition lifts to the anti-derivative f at the expense of an
additional [111]-independent term

f = f(110) + f(101) + f[111]. (3.21)

Applying ∂[111̄]∂[11̄1] to the last identity, we find (since, by assumption, f and, by
construction, f(110) and f(101) vanish under this operator) that

∂[111̄]∂[11̄1]f[111] = 0.

Since, by construction, ∂[111]f[111] = 0, we may apply (ii) once more, this time with
f replaced by f[111] and a = [111̄], b = [11̄1] and c = [111]. This application yields

f[111] = f(1̄01) + f(11̄0). (3.22)

Inserting (3.22) as desired into (3.21), we obtain, as desired, the right-hand side of
(3.19).

We were not able to quantify (iii) as we did for (i) and (ii). The proof of parts (i)
and (ii) of lemma 3.7 relies on the fact that three (independent) vectors a, b and
c in R

3 come with a ‘fundamental domain’, the parallelopepid spanned by these
vectors. There is no suitable equivalent for four vectors like our [111], [111̄], [11̄1],
[1̄11]. Likewise, it does not seem straightforward to mimic the above derivation of
(iii) from (ii) on the level of finite differences (controlled in L1) instead of (vanishing)
infinitesimal derivatives. The operation of taking anti-derivatives as in (3.21) is ill-
defined on the discrete level in the sense that the anti-derivative depends on the
shift h.

Lemma 3.7. There exists a possibly small but universal radius r > 0 such that, for
any function f on B1,

(i) there exist two functions fa and fb on Br constant along the lines parallel to
a and b, respectively, such that∫

Br

|f − fa − fb| dx � sup
|ha|,|hb|�1

∫
B1

|∂ha
a ∂hb

b f | dx, (3.23)
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(ii) there exist two functions fa∗ and fb∗ on Br constant along the planes orthog-
onal to a∗ and b∗, respectively, such that∫

Br

|f − fa∗ − fb∗ | dx � sup
|ha|,|hb|,|hc|�1

∫
B1

(|∂ha
a ∂hb

b f | + |∂hc
c f |) dx. (3.24)

3.6. Lemma 3.8

The second ingredient is the quantification of a uniqueness statement in decom-
positions of the type occurring in lemma 3.7. The uniqueness statement is as follows.
Suppose that a function f of three variables can locally be written as the sum of
six functions of a single variable each, more precisely,

f = f(011) + f(011̄) + f(101) + f(1̄01) + f(110) + f(11̄0),

where, following the notation of lemma 3.7, f(011), f(011̄), f(101), f(1̄01), f(110) and
f(11̄0) are functions which are constant along planes orthogonal to the vectors (011),
(011̄), (101), (1̄01), (110) and (11̄0), respectively. Then the uniqueness statement
is actually a uniqueness result modulo affine functions and reads as follows:

f is affine =⇒ f(011), . . . , f(11̄0) are affine. (3.25)

Since affine functions are characterized by the vanishing of all second derivatives
∂a∂b, (3.25) can be reformulated as

∀a, b ∈ R
3, ∂a∂bf ≡ 0 =⇒ ∀a, b ∈ R

3, ∂a∂bf(011) ≡ · · · ≡ ∂a∂bf(11̄0) ≡ 0.
(3.26)

The statement(3.26) reflects the fact that the six symmetric 3 × 3-tensors

(011) ⊗ (011), (101) ⊗ (101), (110) ⊗ (110),

(011̄) ⊗ (011̄), (1̄01) ⊗ (1̄01), (11̄0) ⊗ (11̄0)

are linearly independent (note that six is the maximal number of linearly inde-
pendent symmetric 3 × 3-tensors). The following lemma 3.8 is a localization and
quantification of (3.26) on the level of finite differences in the L1-topology.

Lemma 3.8. There exists a possibly small but universal radius r > 0 with the fol-
lowing property. If the functions f(011), f(011̄), f(101), f(1̄01), f(110) and f(11̄0) are
constant along the planes (011), (011̄), (101), (1̄01), (110) and (11̄0), respectively,
and are related to the function f by

f = f(011) + f(011̄) + f(101) + f(1̄01) + f(110) + f(11̄0) on B1, (3.27)

then we have

sup
a,b∈S2

|ha|,|hb|�r

∫
Br

|∂ha
a ∂hb

b f(011)| dx + · · · + sup
a,b∈S2

|ha|,|hb|�r

∫
Br

|∂ha
a ∂hb

b f(11̄0)| dx

� sup
a,b∈S2

|ha|,|hb|�1

∫
B1

|∂ha
a ∂hb

b f | dx. (3.28)
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3.7. Proposition 3.9

Bringing together corollary 3.6 and the two auxiliary lemmas 3.7 and 3.8 on the
existence and uniqueness of decompositions, we are now in a position to establish
an important intermediary result. Loosely speaking, it states that, up to affine
functions (which are factored out by second-order finite differences), and up to a
controlled error in L1(Br), the four characteristic functions behave as

χ0 = 0,

χ1 = −f(101) − f(1̄01) + f(110) + f(11̄0),

χ2 = f(011) + f(011̄) −f(110) − f(11̄0),

χ3 = −f(011) − f(011̄) + f(101) + f(1̄01).

Loosely speaking, proposition 3.9 is the counterpart of [5, lemma 3.2] in the case of
vanishing elastic energy.

Proposition 3.9. There exists a small but universal radius r > 0 such that, for
sufficiently small parameters η � r, there exist functions f(011), f(011̄), f(101), f(1̄01),
f(110), and f(11̄0) constant along the planes (011), (011̄), (101), (1̄01), (110) and
(11̄0), respectively, such that

sup
a,b∈S2

|ha|,|hb|�r

∫
Br

(|∂ha
a ∂hb

b χ0| + |∂ha
a ∂hb

b (χ1 + f(101) + f(1̄01) − f(110) − f(11̄0))|

+ |∂ha
a ∂hb

b (χ2 − f(011) − f(011̄) + f(110) + f(11̄0))|

+ |∂ha
a ∂hb

b (χ3 + f(011) + f(011̄) − f(101) − f(1̄01))|) dx

� η1/3Einterf + η−2/3Eelast.
(3.29)

3.8. Lemma 3.10

In proposition 3.9, when using lemmas 3.7 and 3.8, which are of rather algebraic
character, we have not yet leveraged the fact that we apply them to characteristic
functions. However, the non-convexity of the set of values of characteristic functions
has already been crucially used in corollary 3.6. Corollary 3.6 separated the amal-
gamated information on χ̃1, χ̃2, χ̃3 into information on the characteristic function
χ0 of the austenite, on the one hand, and on the characteristic functions χ1, χ2 and
χ3 of the martensite, on the other hand.

In lemma 3.10 we again crucially use the property of a characteristic function.
Lemma 3.10 is the quantification of the following fact (in two space dimensions).
Let χ be a {0, 1}-valued function, let f1∗(x1) and f2∗(x2) be functions of x1 and
x2, respectively, and let � be an affine function. Suppose that they are related by
χ = f1∗ + f2∗ + �. Then f1∗ or f2∗ are affine. Avoiding the notion of ‘affine’ at the
expense of second derivatives, this can also be formulated as follows:

∂1∂1(χ − f1∗ − f2∗) ≡ ∂1∂2(χ − f1∗ − f2∗) ≡ ∂2∂2(χ − f1∗ − f2∗) ≡ 0

=⇒ ∂1∂1f1∗ ≡ 0 or ∂2∂2f2∗ ≡ 0.
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Like the previous lemmas, lemma 3.10 localizes and quantifies this fact on the level
of second-order finite differences in the L1-topology.

In the same sense that corollary 3.6 is at the core of the dichotomy for the
austenite (theorem 2.2(i)), lemma 3.10 is at the core of the dichotomy (by a slight
misuse of language) for the martensite (parts (ii) and (iii) of theorem 2.2).

Lemma 3.10. There exists a small but universal radius r > 0 with the following
property. If χ ∈ {0, 1} is a function of (x1, x2), f1∗ is a function of x1 and f2∗ is a
function of x2, then

min
{

sup
|h|,|h′|�r

∫
(−r,r)

|∂h
1 ∂h′

1 f1∗ | dx1, sup
|h|,|h′|�r

∫
(−r,r)

|∂h
2 ∂h′

2 f2∗ | dx2

}

�
(

sup
|h|,|h′|�1/2

∫
(−1,1)2

(|∂h
1 ∂h′

1 (χ − f1∗ − f2∗)| + |∂h
1 ∂h′

2 (χ − f1∗ − f2∗)|

+ |∂h
2 ∂h′

2 (χ − f1∗ − f2∗)|) dx1 dx2

)1/2

,

(3.30)

provided the right-hand side is less than or equal to 1.

The following example shows that the loss of homogeneity through the square
root on the right-hand side of (3.30) is unavoidable. For ε � 1 we consider the
following three functions:

• let f1∗ be the characteristic function of the small interval x1 ∈ (−ε, ε);

• let f2∗ be the characteristic function of the small interval x2 ∈ (−ε, ε);

• let χ be the characteristic function of the thin cross (x1, x2) ∈ ((−ε, ε)×{0})∪
({0} × (−ε, ε)).

Then, on the one hand, we have, for r � ε,

sup
|h|,|h′|�r

∫
(−r,r)

|∂h
1 ∂h′

1 f1∗ | dx1 ∼ sup
|h|,|h′|�r

∫
(−r,r)

|∂h
2 ∂h′

2 f2∗ | dx2 ∼ ε,

but, on the other hand, we have∫
(−1/2,1/2)2

|χ − f1∗ − f2∗ | dx1 dx2 = 4ε2,

and thus (at most) ε2-scaling also for the L1-norm of the second-order finite differ-
ences of χ − f1∗ − f2∗ .

3.9. Lemma 3.11

Suppose that a function f of one variable is periodic with two periods h1, h2
that are irrationally related. Then f is constant. This fact can be easily proved by
representing f with the help of Fourier series based one of the periods (h1, say)
and then expressing the other periodicity in that framework. This fact can also be
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expressed on the level of first-order finite differences as follows. Provided a set S of
shifts contains irrationally related numbers, then, for all h ∈ S,

∂h
1 f ≡ 0 =⇒ ∀h ∈ R, ∂h

1 f ≡ 0.

As always, we need a localization and a quantification in terms of the L1-topology.
On the other hand, we may be generous on the cardinality of the set S and assume
that it is of positive Lebesgue measure. Lemma 3.11 will be extremely useful for
the proof of proposition 3.12.

Lemma 3.11. There exists a universal radius r > 0 with the following property. For
any set S ⊂ [−r, r] and function f of a single variable x1, we have

(i)

sup
|h|�r

∫
(−r,r)

|∂h
1 f | dx1 � (L1(S))−2 sup

h∈S

∫
(−1/2,1/2)

|∂h
1 f | dx1, (3.31)

(ii)

sup
|h|�r

∫
(−r,r)

|∂h
1 f | dx1 � (L1(S))−3

∫
(−r,r)

∫
(−1/2,1/2)

|∂h
1 f | dx1 dh, (3.32)

(iii) ∫
(−r,r)

∫
(−r,r)

|∂h
1 f | dx1 dh � (L1(S))−3

∫
S

∫
(−1/2,1/2)

|∂h
1 f | dx1 dh. (3.33)

It is quite likely that such a result can be found in the literature; we do not claim
that the exponent of L1(S) is optimal.

3.10. Proposition 3.12

We are now in a position to establish a prototype of the dichotomy also for the
martensitic part, that is, of theorem 2.2(ii). By ‘prototype’ we mean that proposi-
tion 3.12 merely states that one of the three characteristic functions χ1, χ2, χ3 is
close to a quadratic function, or, more precisely, that its third -order finite differences
are controlled in L1. Hence, with respect to the austenitic part of proposition 3.9,
the kernel of the finite differences increases from affine functions to quadratic func-
tions. Since we are dealing with characteristic functions, this does not matter, as
lemma 3.13 will show.

Proposition 3.12. There exists a universal radius r > 0 such that, for all suffi-
ciently small parameters η � r, we have

min
{

sup
a,b,c∈S2

|ha|,|hb|,|hc|�r

∫
Br

|∂ha
a ∂hb

b ∂hc
c χ1| dx, sup

a,b,c∈S2

|ha|,|hb|,|hc|�r

∫
Br

|∂ha
a ∂hb

b ∂hc
c χ2| dx,

sup
a,b,c∈S2

|ha|,|hb|,|hc|�r

∫
Br

|∂ha
a ∂hb

b ∂hc
c χ3| dx

}

� (η1/3Einterf + η−2/3Eelast)1/2.
(3.34)
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3.11. Lemma 3.13

Finally, we need a quantification (and localization) of the fact that a characteristic
function χ for which all (distributional) second-order derivatives vanish, must be
constant, in particular χ ≡ 0 or χ ≡ 1. As in the previous lemmas, we quantify by
measuring second-order finite differences in L1. Of course, it is this lemma which
ultimately yields the dichotomy for both austenite and martensite, that is, yields
both parts (i) and (ii) of theorem 2.2.

Lemma 3.13. There exists a small but universal radius r > 0 such that, for any
{0, 1}-valued function χ, we have

min
{ ∫

Br

χ dx,

∫
Br

(1 − χ) dx

}
� sup

a,b,c∈S2

|h|,|h′|,|h′′|�1

∫
B1

|∂h
a∂h′

b ∂h′′

c χ| dx. (3.35)

Alternatively, we could have stated lemma 3.13 in two steps. First, the state-
ment that smallness of third-order finite differences implies closeness to quadratic
functions, or, more precisely, that there exists a quadratic function q such that∫

Br

|f − q| dx � sup
a,b,c∈S2

|h|,|h′|,|h′′|�1

∫
B1

|∂h
a∂h′

b ∂h′′

c f | dx,

and, secondly, the statement that characteristic functions that are close to quadratic
are close to constant, or, more precisely, that, for any function χ ∈ {0, 1} and
quadratic function q,

min
{ ∫

Br

χ dx,

∫
Br

(1 − χ) dx

}
�

∫
B1

|χ − q| dx.

However, the proof in one step is shorter.

4. Proofs

Proof of lemma 3.2. Let us start with a symmetry consideration. We remark that it
is sufficient to establish the result for χ̃1. Indeed, the property of being a strain (2.2)
and the elastic energy (3.3) is invariant under permutation of the cubic axes, so
the results for χ̃2 and χ̃3 follow by symmetry. We also note that it is sufficient to
establish the result for the pair of axes {[111], [1̄11]}. Indeed, the second pair of
(non-orientated) axes, {[111̄], [11̄1]}, can also be written as {[111̄], [1̄11̄]}. Hence,
it remains to observe that, under the change of variables x3 � −x3 (and likewise
u3 � −u3 for the displacement field), strains transform as⎛

⎝e11 e12 e13

e12 e22 e23

e13 e23 e33

⎞
⎠ �

⎛
⎝ e11 e12 −e13

e12 e22 −e23

−e13 −e23 e33

⎞
⎠ .

In particular, the elastic energy (3.3) is invariant under this change of coordinates.
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The main step in this proof involves rewriting the compatibility conditions on
the strain e as

(∂1 + (∂2 + ∂3))(−∂1 + (∂2 + ∂3))χ̃1

= −∂1∂1(e22 + 2e23 + e33 + χ̃1) + 2∂1(∂2 + ∂3)(e12 + e13)
− (∂2 + ∂3)(∂2 + ∂3)(e11 + χ̃2 + χ̃3). (4.1)

Before establishing formula (4.1), let us show how it yields (3.5) and (3.6). Express-
ing the directional derivatives ∂1 and ∂2 + ∂3 into directional derivatives ∂[111] and
∂[1̄11] according to ∂[111] = ∂1 + (∂2 + ∂3), ∂[1̄11] = −∂1 + (∂2 + ∂3), ∂1 = 1

2 (∂[111] −
∂[1̄11]) and ∂2 + ∂3 = 1

2 (∂[111] + ∂[1̄11]), (4.1) becomes

− 4∂[111]∂[1̄11]χ̃

= (∂[111] − ∂[1̄11])(∂[111] − ∂[1̄11])(e11 + χ̃1)

− 2(∂[111] − ∂[1̄11])(∂[111] + ∂[1̄11])(e12 + e13)

+ (∂[111] + ∂[1̄11])(∂[111] + ∂[1̄11])((e22 + χ̃2) + 2e23 + (e33 + χ̃3)). (4.2)

Factorizing the products of sums of derivatives shows that (4.2) turns into (3.5)
with the functions ρ[111],[111], ρ[111],[1̄11], ρ[1̄11],[1̄11] given by

−4ρ[111],[111] = (e11 + χ̃1) − 2(e12 + e13) + ((e22 + χ̃2) + 2e23 + (e33 + χ̃3)),

−4ρ[111],[1̄11] = −(e11 + χ̃1) + ((e22 + χ̃2) + 2e23 + (e33 + χ̃3)),

−4ρ[1̄11],[1̄11] = (e11 + χ̃1) + 2(e12 + e13) + ((e22 + χ̃2) + 2e23 + (e33 + χ̃3)).

Hence, the functions ρ[111],[111], ρ[111],[1̄11], ρ[1̄11],[1̄11] are linear combinations of the
entries of the 3 × 3-tensor

e +

⎛
⎝χ̃1 0 0

0 χ̃2 0
0 0 χ̃3

⎞
⎠ =

⎛
⎝e11 + χ̃1 e12 e13

e12 e22 + χ̃2 e23

e13 e23 e33 + χ̃3

⎞
⎠ .

The Frobenius norm of the latter is the elastic energy density (see (3.3)). This
observation implies (3.6).

We now argue that (4.2) is indeed just a reformulation of the compatibility con-
straint

∂1∂1(e22 + 2e23 + e33) − 2∂1(∂2 + ∂3)(e12 + e13) + (∂2 + ∂3)(∂2 + ∂3)e11 = 0 (4.3)

on the strain tensor

e =

⎛
⎝e11 e12 e13

e12 e22 e23

e13 e23 e33

⎞
⎠ .

Indeed, this follows from the identity

(∂1 + (∂2 + ∂3))(−∂1 + (∂2 + ∂3))χ̃1 = (−∂1∂1 + (∂2 + ∂3)(∂2 + ∂3))χ̃1

(3.2)
= −∂1∂1χ̃1 − (∂2 + ∂3)(∂2 + ∂3)(χ̃2 + χ̃3),

which shows that the functions χ̃1, χ̃2, χ̃3 drop out of (4.1).
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For the convenience of the reader, we derive the compatibility relation (4.3) from
(2.2). We first note that a two-dimensional strain tensor(

e11 e12

e12 e22

)

is characterized by the linear second-order constraint

∂1∂1e22 − 2∂1∂2e12 + ∂2∂2e11 = 0, (4.4)

which has the same structure as (4.3). Indeed, if the strain tensor comes from the
two-dimensional displacement field

(
u1
u2

)
, i.e.(

e11 e12

e12 e22

)
=

1
2

(
∂1u1 ∂2u1

∂1u2 ∂2u2

)
+

1
2

(
∂1u1 ∂1u2

∂2u1 ∂2u2

)
,

we have

∂1∂1e22 − 2∂1∂2e12 + ∂2∂2e11 = ∂1∂1∂2u2 − ∂1∂2(∂1u2 + ∂2u1) + ∂2∂2∂1u1

= 0,

since partial derivatives commute.
Next, we note that if ⎛

⎝e11 e12 e13

e12 e22 e23

e13 e23 e33

⎞
⎠

is a three-dimensional strain, then(
e11 e12 + e13

e12 + e13 e22 + 2e23 + e33

)

is a two-dimensional strain. Indeed, let the vector field⎛
⎝u1

u2

u3

⎞
⎠

be a three-dimensional displacement field corresponding to the three-dimensional
strain. Then (

u1

u2 + u3

)
,

seen as a function of x1 and x2 + x3, is a displacement field corresponding to the
two-dimensional strain

∂1(u2 + u3) + (∂2 + ∂3)u1 = (∂1u2 + ∂2u1) + (∂1u3 + ∂3u1)
= 2(e12 + e13),

(∂2 + ∂3)(u2 + u3) = ∂2u2 + (∂2u3 + ∂3u2) + ∂3u3

= e22 + 2e23 + e33.

Thus, in view of (4.4), our three-dimensional strain satisfies (4.3).
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Proof of lemma 3.4. Let a and b be two linearly independent vectors out of the
four {[111], [111̄], [11̄1], [1̄11]}. Let χ denote one of the three functions χ̃1, χ̃2, χ̃3.
Lemma 3.2 provides the following type of information. There exist three functions
ηaa, ηab and ηbb such that

∂a∂bχ = ∂a∂aηaa + 2∂a∂bηab + ∂b∂bηbb in B1. (4.5)

Let 0 < r � 1 denote a generic but universal radius (‘generic’ means that its value
may change from formula to formula). In order to prove lemma 3.4, we have to
show that, for any shifts |ha|, |hb| � r, there exist three functions ja, jb, j with

∂ha
a ∂hb

b χ = ∂aja + ∂bjb + j in Br (4.6)

and ∫
Br

(j2
a + j2

b + j2) dx �
∫

B1

(η2
aa + η2

ab + η2
bb) dx. (4.7)

We reformulate (4.5) as

∂a∂b(χ − 2ηab) = ∂a∂aηaa + ∂b∂bηbb in B1,

evaluate at x + h′
aa + h′

bb (for |x| � r), i.e.

d
dh′

a

d
dh′

b

(χ − 2ηab)(x + h′
aa + h′

bb)

=
d

dh′
a

∂aηaa(x + h′
aa + h′

bb) +
d

dh′
b

∂bηbb(x + h′
aa + h′

bb),

and integrate over ∫ ha

0
dh′

a

∫ hb

0
dh′

b,

that is,

∂ha
a ∂hb

b (χ − 2ηab)(x)
= (χ − 2ηab)(x + haa + hbb) − −(χ − 2ηab)(x + haa)

− (χ − 2ηab)(x + hbb) + (χ − 2ηab)(x)

= ∂a

( ∫ hb

0
ηaa(x + haa + h′

bb) dh′
b −

∫ hb

0
ηaa(x + h′

bb) dh′
b

)

+ ∂b

( ∫ ha

0
ηbb(x + h′

aa + hbb) dh′
a −

∫ ha

0
ηbb(x + h′

aa) dh′
a

)
.

Hence, the functions satisfying (4.6) are seen to be

ja(x) :=
∫ hb

0
ηaa(x + haa + h′

bb) dh′
b −

∫ hb

0
ηaa(x + h′

bb) dh′
b,

jb(x) :=
∫ ha

0
ηbb(x + h′

aa + hbb) dh′
a −

∫ ha

0
ηbb(x + h′

aa) dh′
a,
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j(x) := −2∂ha
a ∂hb

b ηab(x)
= −2(ηab(x + haa + hbb) − ηab(x + haa) − ηab(x + hbb) + ηab(x)).

Estimate (4.7) follows immediately from this representation.

Proof of lemma 3.5. Let 0 < r′ � r � 1 denote generic, but universal radii (generic
means that the particular value may change from estimate to estimate). We fix the
shifts |h|, |h′| � r and set, for abbreviation,

φ := ∂h
[111]∂

h′

[1̄11]χ̃1
(3.1)
= ∂h

[111]∂
h′

[1̄11](χ0 + 3χ1).

Since χ0 and χ1 are {0, 1}-valued and the second finite differences are a fixed
combination of values at four points, φ has values in a fixed finite set. Therefore,
we have two estimates that defy homogeneity in both directions:∫

Br

|φ| dx �
∫

Br

φ2 dx and sup
B1

|φ| � 1. (4.8)

Moreover, since φ is a linear combination of translations of χ0 and χ1, we have
that the BV-norm of φ is controlled by the interfacial energy. More precisely, since
|h|, |h′| � r, we have ∫

Br

|∇φ| dx � Einterf(B1). (4.9)

Finally, we note that lemma 3.4 translates into the H−1-control of φ by the elastic
energy

φ = ∇ · j + j0 in Br with
∫

Br

(|j|2 + j2
0) dx � Eelast(B1). (4.10)

Lemma 3.5 now follows from the interpolation estimate (3.16) in its local version∫
Br′

φ2 dx � η1/3
∫

Br

|∇φ| dx sup
Br

|φ| + η−2/3
∫

Br

(|j|2 + j2
0) dx, (4.11)

which, in view of η � 1, holds for 0 < r′ � r. Indeed, in view of the first estimate
in (4.8), the left-hand side of (3.17) can be estimated by the left-hand side of (4.11).
On the other hand, because of the second estimate in (4.8), and the estimates
in (4.9) and (4.10), the right-hand side of (4.11) can be controlled by the total
energy, that is, the right-hand side of (3.17).

For the reader’s convenience we reproduce the easy proof of (4.11). By rescaling
(with the universal radius r), we may, without loss of generality, assume that r = 1,
and rename r′ to r. Let fε denote the convolution of the function f with a universal
Dirac kernel of scale ε. We recall the convolution estimates for ε � 1 as follows:

sup
Br

|φε| � sup
B1

|φ|, (4.12)

∫
Br

j2
0,ε dx �

∫
B1

j2
0 dx, (4.13)
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Br

|φε − φ| dx � ε

∫
B1

|∇φ| dx, (4.14)

∫
Br

(∇ · jε)2 dx � ε−2
∫

B1

|j|2 dx. (4.15)

We also note that the identity in (4.10) turns into

φε = ∇ · jε + j0,ε in Br. (4.16)

We collect these results in∫
Br

φ2 dx �
∫

Br

(φε − φ)2 dx +
∫

Br

φ2
ε dx

(4.16)
�

(
sup
Br

|φε| + sup
Br

|φ|
) ∫

Br

|φε − φ| dx

+
∫

Br

(∇ · jε)2 dx +
∫

Br

j2
0,ε dx

(4.12),(4.14),(4.15),(4.13)
� ε sup

B1

|φ|
∫

B1

|∇φ| dx + ε−2
∫

B1

|j|2 dx +
∫

B1

j2
0 dx.

We now see that the choice of ε = η1/3 � 1 yields (4.11).

Proof of corollary 3.6. In order to pass from lemma 3.5 to corollary 3.6, it suffices
to argue that, for two characteristic functions χ0, χ, for two vectors a, b and for
two shifts ha, hb, we always have

|∂ha
a ∂hb

b χ0| + |∂ha
a ∂hb

b χ| � |∂ha
a ∂hb

b (χ0 + 3χ)|. (4.17)

In fact, this is straightforward. For any {0, 1}-valued function χ, its second-order
finite differences can only assume the following values:

∂ha
a ∂hb

b χ(x) = χ(x+haa+hbb)−χ(x+haa)−χ(x+hbb)+χ(x) in {−2,−1, 0, 1, 2}.
(4.18)

In particular, for the right-hand side of (4.17), that is, for

∂ha
a ∂hb

b (χ0 + 3χ) = ∂ha
a ∂hb

b χ0 + 3∂ha
a ∂hb

b χ,

the first right-hand side terms can only assume the values {−2,−1, 0, 1, 2}, whereas
the second right-hand side term can only assume the values 3{−2,−1, 0, 1, 2} =
{−6,−3, 0, 3, 6}. Hence, the sum of both terms vanishes only if both terms van-
ish individually. Since there is only a finite set of values involved, this qualitative
statement implies the quantitative statement (4.17).

Proof of lemma 3.7. After an affine change of variables, {a, b, c} = {a∗, b∗, c∗} may
be assumed to be the standard basis of R

3 (the Jacobian cannot degenerate since,
before transformation, the basis {a, b, c} is chosen from the fixed set {[111], [111̄],
[11̄1], [1̄11]}). At the expense of reducing r, we may replace balls by cubes so that
the statement of lemma 3.7 follows from the following statements.
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(i) There exist functions f1(x2, x3), f2(x1, x3) such that∫
(−1/2,1/2)3

|f − f1(x2, x3) − f2(x1, x3)| dx

� sup
|h1|,|h2|�1

∫
(−1,1)3

|∂h1
1 ∂h2

2 f | dx. (4.19)

(ii) There exist functions f1∗(x1), f2∗(x2) such that∫
(−1/2,1/2)3

|f − f1∗(x1) − f2∗(x2)| dx

� sup
|h1|,|h2|,|h3|�1

∫
(−1,1)3

(|∂h1
1 ∂h2

2 f | + |∂h3
3 f |) dx, (4.20)

We start with (4.19) and note that

sup
|h1|,|h2|�1

∫
(−1,1)3

|∂h1
1 ∂h2

2 f | dx

= sup
|h1|,|h2|�1

∫
(−1,1)3

|f(x1 + h1, x2 + h2, x3) − f(x1, x2 + h2, x3)

− f(x1 + h1, x2, x3) + f(x1, x2, x3)| dx

�
∫

(−1,1)2

∫
(−1,1)3

|f(x1 + h1, x2 + h2, x3) − f(x1, x2 + h2, x3)

− f(x1 + h1, x2, x3) + f(x1, x2, x3)| dxdh1 dh2

�
∫

(−1/2,1/2)2

∫
(−1/2,1/2)3

|f(x′
1, x

′
2, x3) − f(x1, x

′
2, x3)

− f(x′
1, x2, x3) + f(x1, x2, x3)| dx1 dx2 dx3 dx′

1 dx′
2

(4.21)

�
∫

(−1/2,1/2)3

∣∣∣∣
∫

(−1/2,1/2)2
f(x′

1, x
′
2, x3) dx′

1 dx′
2

−
∫

(−1/2,1/2)
f(x1, x

′
2, x3) dx′

2

−
∫

(−1/2,1/2)
f(x′

1, x2, x3) dx′
1 + f(x1, x2, x3)

∣∣∣∣ dx1 dx2 dx3,

(4.22)

where we have used the change of variables (x′
1, x

′
2) = (x1 + h1, x2 + h2) in (4.21)

and Jensen’s inequality in (4.22). Hence, we obtain (4.19) with

f1(x2, x3) :=
∫

(−1/2,1/2)
f(x′

1, x2, x3) dx′
1 − 1

2

∫
(−1/2,1/2)2

f(x′
1, x

′
2, x3) dx′

1 dx′
2,

f2(x1, x3) :=
∫

(−1/2,1/2)
f(x1, x

′
2, x3) dx′

2 − 1
2

∫
(−1/2,1/2)2

f(x′
1, x

′
2, x3) dx′

1 dx′
2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.23)
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We now turn to (4.20). In view of (4.19) and the triangle inequality in L1, it
suffices to show that∫

(−1/2,1/2)2
|f1(x2, x3)−f2∗(x2)| dx2 dx3+

∫
(−1/2,1/2)2

|f2(x1, x3)−f1∗(x1)| dx1 dx3

� sup
|h3|�1

∫
(−1,1)3

|∂h3
3 f | dx, (4.24)

where we define f1∗ , f2∗ via averaging in x3 ∈ (− 1
2 , 1

2 ) as follows:

f1∗(x1) :=
∫

(−1/2,1/2)
f2(x1, x3) dx3 and f2∗(x2) :=

∫
(−1/2,1/2)

f1(x2, x3) dx3.

(4.25)
Let us show the second half of (4.24):∫

(−1/2,1/2)2
|f1∗(x1) − f2(x1, x3)| dx1 dx3

(4.25)
�

∫
(−1/2,1/2)

∫
(−1/2,1/2)2

|f2(x1, x
′
3) − f2(x1, x3)| dx1 dx3 dx′

3

(4.23)
� 3

2

∫
(−1/2,1/2)

∫
(−1/2,1/2)3

|f(x1, x2, x
′
3) − f(x1, x2, x3)| dx1 dx2 dx3 dx′

3

� 3
2

∫
(−1,1)

∫
(−1,1)3

|f(x1, x2, x3 + h3) − f(x1, x2, x3)| dx1 dx2 dx3 dh3

� 3 sup
|h3|�1

∫
(−1,1)3

|f(x1, x2, x3 + h3) − f(x1, x2, x3)| dx1 dx2 dx3

= 3 sup
|h3|�1

∫
(−1,1)3

|∂h3
3 f | dx.

Proof of lemma 3.8. First we note that, by symmetry, it is sufficient to show

sup
a,b∈S2

|ha|,|hb|�r

∫
Br

|∂ha
a ∂hb

b f(011)| dx � sup
a,b∈S2

|ha|,|hb|�1

∫
B1

|∂ha
a ∂hb

b f | dx. (4.26)

Next, we note that for a sufficiently small universal r > 0 for all |h|, |h′| � r,∫
Br

|∂h
[111]∂

h′

[1̄11]f(011)| dx �
∫

Br

|∂h
[111]∂

h′

[1̄11]f | dx (4.27)

(in fact, we have equality). Indeed, we apply the second-order finite differences
∂h
[111]∂

h′

[1̄11] to the identity (3.27) (because of the shifts, the identity on B1 dete-
riorates into an identity on the smaller ball Br) and note that ∂h

[111]∂
h′

[1̄11] makes
the five remaining functions f(011̄), f(101), f(1̄01), f(110), f(11̄0) vanish. Indeed,

• like its continuous counterpart ∂[111], the first-order finite differences ∂h
[111]

make three of the five functions vanish

∂h
[111]f(011̄) = ∂h

[111]f(1̄01) = ∂h
[111]f(11̄0) = 0,
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• the operator ∂h′

[1̄11] makes three of the five functions vanish

∂h′

[1̄11]f(011̄) = ∂h′

[1̄11]f(101) = ∂h′

[1̄11]f(110) = 0.

Both cover the remaining five functions.
It remains to integrate over Br.
We finally argue that (4.27) implies (4.26). Obviously, the right-hand side of

(4.27) is estimated by the right-hand side of (4.26). We turn to the integrand of the
left-hand side of (4.26) and note that, for all vectors a, b ∈ R, we have, by definition,

∂ha
a ∂hb

b f(011)(x) = f(011)(x · (011) + haa · (011) + hbb · (011))
− f(011)(x · (011) + haa · (011))
− f(011)(x · (011) + hbb · (011)) + f(011)(x · (011)), (4.28)

where we identify f(011)(x) = f(011)(x · (011)). In particular, with the choice of a =
[111], b = [1̄11], ha = h and h′ = hb, equation (4.28) turns into a representation of
the integrand of the left-hand side of (4.27)

∂h
[111]∂

h′

[1̄11]f(011)(x) = f(011)(x · (011) + 2(h + h′)) − f(011)(x · (011) + 2h)

− f(011)(x · (011) + 2h′) + f(011)(x · (011)). (4.29)

From (4.28) and (4.29) we see that any second-order finite differences ∂ha
a ∂hb

b of the
single-variable function f(011) can be expressed in terms of the particular second-
order finite differences ∂h

[111]∂
h′

[1̄11] as follows:

∂ha
a ∂hb

b f(011) = ∂h
[111]∂

h′

[1̄11]f(011)

for the choice of h = 1
2a · (011)ha and h′ = 1

2b · (011)hb.

In particular, the left-hand side of (4.26) can be expressed in terms of the left-hand
side of (4.27). This completes the argument that (4.27) implies (4.26).

Proof of proposition 3.9. Let 0 < r′′ � r′ � r � 1 denote generic, but universal
radii. We use the shorthand notation introduced before lemma 3.7.

• For any vector a (like [111], [111̄], [11̄1], [1̄11]), fa denotes a function in Br

that is constant along axes parallel to a.

• For any dual vector a∗ (like (011), (011̄), (101), (1̄01), (110), (11̄0)), fa∗

denotes a function in Br that is constant along planes perpendicular to a∗.

Let us denote by E the quantity controlled by the rescaled energy according to
corollary 3.6, that is,

E := max
(a,b)

sup
|ha|,|hb|�r

∫
Br

(|∂ha
a ∂hb

b χ0| + |∂ha
a ∂hb

b χ1| + |∂ha
a ∂hb

b χ2| + |∂ha
a ∂hb

b χ3|) dx,

where the maximum is taken over the six pairs of axes

(a, b) ∈ {([111], [1̄11]), ([111̄], [11̄1]), ([111], [11̄1]),
([111̄], [1̄11]), ([111], [111̄]), ([11̄1], [1̄11])}.
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It suffices to show there exist single variable functions f(110), f(011̄), f(101), f(1̄01),
f(110), f(11̄0), such that, for the austenite, we have

sup
a,b∈S2

|ha|,|hb|�r′

∫
Br′

|∂ha
a ∂hb

b χ0| � E, (4.30)

and, for the martensite, we have

sup
a,b∈S2

|ha|,|hb|�r′

∫
Br′

|∂ha
a ∂hb

b (χ1 + f(101) + f(1̄01) − f(110) − f(11̄0))| dx

+ sup
a,b∈S2

|ha|,|hb|�r′

∫
Br′

|∂ha
a ∂hb

b (χ2 − f(011) − f(011̄) + f(110) + f(11̄0))| dx

+ sup
a,b∈S2

|ha|,|hb|�r′

∫
Br′

|∂ha
a ∂hb

b (χ3 + f(011) + f(011̄) − f(101) − f(1̄01))| dx � E.

(4.31)

We first establish the austenitic result (4.30), which amounts to the statement
that all second-order finite differences can be controlled by our six mixed second-
order finite differences (note that six is the minimal number for such a result, since
it is the dimension of the space of symmetric 3 × 3-tensors). For that purpose we
need the auxiliary result that all first-order finite differences can be controlled by
three first-order finite differences. More precisely, for any basis {a, b, c} formed from
the four vectors [111], [111̄], [11̄1] and [1̄11], and for any function f on Br, we have

sup
d∈S2

|h|�r′

∫
Br′

|∂h
d f | dx � sup

|h|�r

∫
Br

(|∂h
af | + |∂h

b f | + |∂h
c f |) dx. (4.32)

The auxiliary result is easy to establish. Let a direction d ∈ S2 and a shift with
|h| � r′ be given. Since {a, b, c} is a basis, there exist scalars α, β, γ such that d
can be written as a linear combination

d = αa + βb + γc. (4.33)

Since {a, b, c} is one of four possible bases, the coefficients cannot blow up:

|α|, |β|, |γ| � 1. (4.34)

We first note that (4.33) implies

(∂h
d f)(x) = f(x + hd) − f(x)

= (f(x + αha + βhb + γhc) − f(x + αha + βhb))
+ (f(x + αha + βhb) − f(x + αha)) + (f(x + αha) − f(x))

= (∂γh
c f)(x + αha + βhb) + (∂βh

b f)(x + αha) + (∂αh
a f)(x). (4.35)

We then note that, because of (4.34), the formula (4.35) yields the estimate (4.32).
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We now can establish the second-order result (4.30) by applying the first-order
result (4.32) twice. Let the two directions a, b ∈ S2 taken with the two shifts
|ha|, |hb| � r′′ be given. We apply (4.32) to {a, b, c} replaced by {[111̄], [11̄1], [1̄11]},
to f = ∂hb

b χ0, to d replaced by a and to h replaced by ha:∫
Br′′

|∂ha
a ∂hb

b χ0| dx � sup
|h|�r′

∫
Br′

(|∂h
[111̄]∂

hb

b χ0| + |∂h
[11̄1]∂

hb

b χ0| + |∂h
[1̄11]∂

hb

b χ0|) dx

= sup
|h|�r′

∫
Br′

(|∂hb

b ∂h
[111̄]χ0| + |∂hb

b ∂h
[11̄1]χ0| + |∂hb

b ∂h
[1̄11]χ0|) dx.

(4.36)

Let us treat the first term on the right-hand side of (4.36) (the two others are
treated likewise). We apply (4.32) to {a, b, c} replaced by {[111], [11̄1], [1̄11]}, to
f = ∂h

[111̄]χ0, to d replaced by b and h replaced by hb:∫
Br′

|∂hb

b ∂h
[111̄]χ0| dx

� sup
|h′|�r

∫
Br

(|∂h′

[111]∂
h
[111̄]χ0| + |∂h′

[11̄1]∂
h
[111̄]χ0| + |∂h′

[1̄11]∂
h
[111̄]χ0|) dx. (4.37)

Inserting (4.37) into (4.36) yields (4.30).
We now turn to the martensitic result (4.31). To ease the notation, we introduce

two equivalence relations:
• For two functions f and g, we write

f ≈0,E g,

provided for some r > 0, the L1(Br) norm of f − g is estimated by E (as
usual, with a universal multiplicative constant) as follows:∫

Br

|f − g| dx � E.

• For two functions f and g, we write

f ≈2,E g,

provided that, for some r > 0, all second-order finite differences of f − g in
the L1(Br)-norm are estimated by E

sup
a,b∈S2

|ha|,|hb|�r

∫
Br

|∂ha
a ∂hb

b (f − g)| dx � E.

In essence, f ≈2,E g means that f and g are L1-close up to affine functions.
In this language, the statement of proposition 3.9 takes on the compact form of

χ0 ≈2,E 0,

χ1 ≈2,E −f(101) − f(1̄01) + f(110) + f(11̄0),

χ2 ≈2,E f(011) + f(011̄) −f(110) − f(11̄0),

χ3 ≈2,E −f(011) − f(011̄) + f(101) + f(1̄01).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.38)
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We will use the austenitic result that we just established in the following form:

χ1 + χ2 + χ3
(2.1)
= 1 − χ0 ≈2,E 0. (4.39)

We start by applying lemma 3.7(i) to f , a and b replaced by

χ1, a = [111], b = [1̄11],
χ1, a = [111̄], b = [11̄1],
χ2, a = [111], b = [11̄1],
χ2, a = [111̄], b = [1̄11],
χ3, a = [111], b = [111̄],
χ3, a = [11̄1], b = [1̄11].

This yields 2 × 3 = 6 relations

χ1 ≈0,E f1,[111] + f1,[1̄11],

χ1 ≈0,E f1,[111̄] + f1,[11̄1],

χ2 ≈0,E f2,[111] + f2,[11̄1],

χ2 ≈0,E f2,[111̄] + f2,[1̄11],

χ3 ≈0,E f3,[111] + f3,[111̄],

χ3 ≈0,E f3,[11̄1] + f3,[1̄11].

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.40)

We now insert these 2 × 3 = 6 relations into the austenitic result (4.39), giving us
potentially 23 = 8 new relations. But we are only interested in those new relations
where the functions f·,· involved depend only on three out of the four possible
axes [111], [1̄11], [11̄1] and [111̄]. There are four of these relevant relations, which
can be thought of as being parametrized by the axis they omit. In the following
enumeration, the first relation omits [111], the second omits [1̄11], the third omits
[11̄1] and the fourth omits [111̄]:

0 ≈2,E (f1,[111̄] + f1,[11̄1]) + (f2,[111̄] + f2,[1̄11]) + (f3,[11̄1] + f3,[1̄11])

= (f1,[111̄] + f2,[111̄]) + (f3,[11̄1] + f1,[11̄1]) + (f2,[1̄11] + f3,[1̄11]),

0 ≈2,E (f1,[111̄] + f1,[11̄1]) + (f2,[111] + f2,[11̄1]) + (f3,[111] + f3,[111̄])

= (f2,[111] + f3,[111]) + (f3,[111̄] + f1,[111̄]) + (f1,[11̄1] + f2,[11̄1]),

0 ≈2,E (f1,[111] + f1,[1̄11]) + (f2,[111̄] + f2,[1̄11]) + (f3,[111] + f3,[111̄])

= (f3,[111] + f1,[111]) + (f2,[111̄] + f3,[111̄]) + (f1,[1̄11] + f2,[1̄11]),

0 ≈2,E (f1,[111] + f1,[1̄11]) + (f2,[111] + f2,[11̄1]) + (f3,[11̄1] + f3,[1̄11])

= (f1,[111] + f2,[111]) + (f2,[11̄1] + f3,[11̄1]) + (f3,[1̄11] + f1,[1̄11]).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.41)

We now probe ≈2,E in (4.41) by our second-order finite differences ∂h
a∂h′

b with
(a, b) one of the six pairs ([111], [1̄11]), ([111̄], [11̄1]), ([111], [11̄1]), ([111̄], [1̄11]),
([111], [111̄]), ([11̄1], [1̄11]). Since there are four relations and six operators, this
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potentially yields 6 × 4 = 24 new relations. However, we are only interested in
those relations that arise when ∂h

a∂h
b falls onto one of those four relations in (4.41)

where the omitted axis is neither a nor b, since, in this case, two out of three of
the parentheses on the right-hand side of (4.41) vanish. These leaves 3 × 4 = 12
relations of interest:

∂h
[11̄1]∂

h′

[1̄11](f1,[111̄] + f2,[111̄]) ≈0,E 0,

∂h
[111̄]∂

h′

[1̄11](f3,[11̄1] + f1,[11̄1]) ≈0,E 0,

∂h
[111̄]∂

h′

[11̄1](f2,[1̄11] + f3,[1̄11]) ≈0,E 0,

∂h
[111̄]∂

h′

[11̄1](f2,[111] + f3,[111]) ≈0,E 0,

∂h
[111]∂

h′

[11̄1](f3,[111̄] + f1,[111̄]) ≈0,E 0,

∂h
[111]∂

h′

[111̄](f1,[11̄1] + f2,[11̄1]) ≈0,E 0,

∂h
[111̄]∂

h′

[1̄11](f3,[111] + f1,[111]) ≈0,E 0,

∂h
[111]∂

h′

[1̄11](f2,[111̄] + f3,[111̄]) ≈0,E 0,

∂h
[111]∂

h′

[111̄](f1,[1̄11] + f2,[1̄11]) ≈0,E 0,

∂h
[11̄1]∂

h′

[1̄11](f1,[111] + f2,[111]) ≈0,E 0,

∂h
[111]∂

h′

[1̄11](f2,[11̄1] + f3,[11̄1]) ≈0,E 0,

∂h
[111]∂

h′

[11̄1](f3,[1̄11] + f1,[1̄11]) ≈0,E 0.

An application of lemma 3.7(ii) to f , a, b and c replaced by

f1,[111̄] + f2,[111̄], [11̄1], [1̄11], [111̄],

f3,[11̄1] + f1,[11̄1], [111̄], [1̄11], [11̄1],

f2,[1̄11] + f3,[1̄11], [111̄], [11̄1], [1̄11],

f2,[111] + f3,[111], [111̄], [11̄1], [111],
f3,[111̄] + f1,[111̄], [111], [11̄1], [111̄],

f1,[11̄1] + f2,[11̄1], [111], [111̄], [11̄1],

f3,[111] + f1,[111], [111̄], [1̄11], [111],
f2,[111̄] + f3,[111̄], [111], [1̄11], [111̄],

f1,[1̄11] + f2,[1̄11], [111], [111̄], [1̄11],

f1,[111] + f2,[111], [11̄1], [1̄11], [111],
f2,[11̄1] + f3,[11̄1], [111], [1̄11], [11̄1],

f3,[1̄11] + f1,[1̄11], [111], [11̄1], [1̄11]

yields the 12 relations

f1,[111̄] + f2,[111̄] ≈0,E g(011) + g(101),

f3,[11̄1] + f1,[11̄1] ≈0,E g(011) + g(110),

f2,[1̄11] + f3,[1̄11] ≈0,E g(101) + g(110),
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f2,[111] + f3,[111] ≈0,E g(11̄0) + g(1̄01),

f3,[111̄] + f1,[111̄] ≈0,E g(11̄0) + g(011),

f1,[11̄1] + f2,[11̄1] ≈0,E g(1̄01) + g(011),

f3,[111] + f1,[111] ≈0,E g(11̄0) + g(011̄),

f2,[111̄] + f3,[111̄] ≈0,E g(11̄0) + g(101),

f1,[1̄11] + f2,[1̄11] ≈0,E g(011̄) + g(101),

f1,[111] + f2,[111] ≈0,E g(1̄01) + g(011̄),

f2,[11̄1] + f3,[11̄1] ≈0,E g(1̄01) + g(110),

f3,[1̄11] + f1,[1̄11] ≈0,E g(011̄) + g(110).

Here, and up to the end of this proof, the symbol ga∗ will denote a generic function
that is constant along the planes orthogonal to the dual vector a∗. We now consider
all four triplets {f1,a, f2,a, f3,a} with one of the four axes

a ∈ {[111], [111̄], [11̄1], [1̄11]}

fixed. In the above relations, the elements of a given triplet appear in the three
forms of f1,a + f2,a, f2,a + f3,a, f3,a + f1,a. Since the 3 × 3-matrix

⎛
⎝1 −1 0

0 1 −1
1 0 −1

⎞
⎠

is non-singular, the above 3 × 4 relations yield new 3 × 4 relations. These we order
by the axes a in the usual order [111], [111̄], [11̄1], [1̄11]:

f1,[111] ≈0,E g(011̄) + g(1̄01) + g(11̄0),

f2,[111] ≈0,E g(011̄) + g(1̄01) + g(11̄0),

f3,[111] ≈0,E g(011̄) + g(1̄01) + g(11̄0),

f1,[111̄] ≈0,E g(011) + g(101) + g(11̄0),

f2,[111̄] ≈0,E g(011) + g(101) + g(11̄0),

f3,[111̄] ≈0,E g(011) + g(101) + g(11̄0),

f1,[11̄1] ≈0,E g(011) + g(1̄01) + g(110),

f2,[11̄1] ≈0,E g(011) + g(1̄01) + g(110),

f3,[11̄1] ≈0,E g(011) + g(1̄01) + g(110),

f1,[1̄11] ≈0,E g(011̄) + g(101) + g(110),

f2,[1̄11] ≈0,E g(011̄) + g(101) + g(110),

f3,[1̄11] ≈0,E g(011̄) + g(101) + g(110).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.42)

After this ‘unfolding’ to 12 relations, we ‘contract’ to 6 relations by inserting (4.42)
into (4.40). We stick to our notational convention that ga∗ denotes a generic func-
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tion, whereas fa∗ denotes a function we (momentarily) want to give a specific name:

χ1 ≈0,E f(011̄) + g(101) + g(1̄01) + g(110) + g(11̄0),

χ1 ≈0,E f(011) + g(101) + g(1̄01) + g(110) + g(11̄0),

χ2 ≈0,E g(011) + g(011̄) + f(1̄01) + g(110) + g(11̄0),

χ2 ≈0,E g(011) + g(011̄) + f(101) + g(110) + g(11̄0),

χ3 ≈0,E g(011) + g(011̄) + g(101) + g(1̄01) + f(11̄0),

χ3 ≈0,E g(011) + g(011̄) + g(101) + g(1̄01) + f(110).
(4.43)

Contracting once more from six to three by taking the difference of an even and
the following odd row in (4.43) we obtain the three relations

0 ≈0,E f(011) − f(011̄) + g(101) + g(1̄01) + g(110) + g(11̄0),

0 ≈0,E g(011) + g(011̄) + f(101) − f(1̄01) + g(110) + g(11̄0),

0 ≈0,E g(011) + g(011̄) + g(101) + g(1̄01) + f(110) − f(11̄0).

According to the approximate uniqueness statement modulo affine functions in
lemma 3.8, this yields, for our ‘named’ functions (we are interested only in these),

f(011) ≈2,E f(011̄) ≈2,E 0,

f(101) ≈2,E f(1̄01) ≈2,E 0,

f(110) ≈2,E f(11̄0) ≈2,E 0.

With this information, (4.43) can be updated to

χ1 ≈2,E f1,(101) + f1,(1̄01) + f1,(110) + f1,(11̄0),

χ2 ≈2,E f2,(011) + f2,(011̄) + f2,(110) + f2,(11̄0),

χ3 ≈2,E f3,(011) + f3,(011̄) + f3,(101) + f3,(1̄01),
(4.44)

where we gave the remaining functions specific names.
Using once more the austenitic result (4.39), by contracting (4.44) we obtain the

following relation:

0 ≈2,E f1,(101) + f1,(1̄01) + f1,(110) + f1,(11̄0)
+ f2,(011) + f2,(011̄) + f2,(110) + f2,(11̄0)
+ f3,(011) + f3,(011̄) + f3,(101) + f3,(1̄01).

(4.45)
Applying lemma 3.8 once again, we obtain the six relations

0 ≈2,E f2,(011) + f3,(011),

0 ≈2,E f2,(011̄) + f3,(011̄),

0 ≈2,E f1,(101) + f3,(101),

0 ≈2,E f1,(1̄01) + f3,(1̄01),

0 ≈2,E f1,(110) + f2,(110),

0 ≈2,E f1,(11̄0) + f2,(11̄0).

Inserting this into (4.44) yields the martensitic part of (4.38).
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Proof of lemma 3.10. We first establish lemma 3.10 in a version without the affine
function, that is, in the case where there are no second -order difference quotients.
For two functions g1∗ and g2∗ depending only on x1 and x2, respectively, we claim

min
{

sup
|h|�1/2

∫
(−1/2,1/2)

|∂h
1 g1∗ | dx1, sup

|h|�1/2

∫
(−1/2,1/2)

|∂h
2 g2∗ | dx2

}

�
( ∫

(−1,1)2
|χ − g1∗ − g2∗ | dx1 dx2

)1/2

, (4.46)

under the assumption that the right-hand side of (4.46) is � 1. We start by arguing
that we may assume, in addition, that there exist values a1, a2 such that

g1∗ ∈ {a1, a1 + 1} and g2∗ ∈ {a2, a2 + 1}. (4.47)

Let us give the argument for the first half of (4.47) (the argument for the second
half is the same). Since there always exists a point where a function is below its
average, there exists an x∗

2 ∈ (−1, 1) such that

∫
(−1,1)

|χ(x1, x
∗
2) − g1∗(x1) − g2∗(x∗

2)| dx1

� 1
2

∫
(−1,1)2

|χ(x1, x2) − g1∗(x1) − g2∗(x2)| dx1 dx2.

Hence, the L1((−1, 1))-distance of g1∗ to the function

g̃1∗(x1) := χ(x1, x
∗
2) − g2∗(x∗

2)

is controlled by the right-hand side of (4.46) (since it is at most 1, the square
root does not matter here). Clearly, the g1∗ -term on the left-hand side of (4.46) is
Lipschitz continuous with respect to the L1((−1, 1))-distance. So g1∗ may indeed
be replaced by g̃1∗ , which, because of χ ∈ {0, 1}, only assumes the two values
−g2∗(x∗

2) and 1 − g2∗(x∗
2), so that the first part of (4.47) can be assumed to hold

(with a1 = −g2∗(x∗
2)).

We now turn to the proof of (4.46) proper. We introduce the volume fractions

λ1 := 1
2L1({x1 ∈ (−1, 1) | g1∗(x1) = a1}),

λ2 := 1
2L1({x2 ∈ (−1, 1) | g2∗(x2) = a2})

}
(4.48)

and observe that, because χ ∈ {0, 1},

ε :=
∫

(−1,1)2
|χ − g1∗ − g2∗ | dx1 dx2

(4.48),(4.47)
� 4λ1λ2 dist(a1 + a2, {0, 1})

+ 4(1 − λ1)(1 − λ2) dist(a1 + a2 + 2, {0, 1}). (4.49)
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Since the two factors dist(a1 + a2, {0, 1}) and dist(a1 + a2 + 2, {0, 1}) cannot both
be small in view of

max{dist(a1 + a2, {0, 1}), dist(a1 + a2 + 2, {0, 1})}
= max{min{|a1 + a2|, |a1 + a2 − 1|}, min{|a1 + a2 + 2|, |a1 + a2 + 1|}}
� min{max{|a1 + a2|, |a1 + a2 + 2|}, max{|a1 + a2|, |a1 + a2 + 1|},

max{|a1 + a2 − 1|, |a1 + a2 + 2|}, max{|a1 + a2 − 1|, |a1 + a2 + 1|}}
� 1

2 ,

we obtain, from (4.49), one of the two cases

λ1λ2 � 1
2ε or (1 − λ1)(1 − λ2) � 1

2ε.

This yields one of the four cases

λ1 �
√

1
2ε, λ2 �

√
1
2ε, 1 − λ1 �

√
1
2ε, 1 − λ2 �

√
1
2ε.

Let us just treat the first case (the argument in the other three cases is the same).
In this case we have∫

(−1,1)
|g1∗ − (a1 + 1)| dx1

(4.48),(4.47)
= 2λ1 �

√
2ε.

The fact that g1∗ is L1-close to a constant yields, as desired, that the finite differ-
ences are small in L1 on a smaller interval:

sup
|h|�1/2

∫
(−1/2,1/2)

|∂h
1 g1∗ | dx1 � 2

√
2ε.

We now turn to lemma 3.10 in its original version (i.e. with affine functions).
We shall derive it by post-processing (4.46). Let 0 < r′ � r � 1 be generic but
universal radii. Let E denote the right-hand side of (3.30). Then we have

E := sup
|h|,|h′|�1/2

∫
(−1,1)2

(|∂h
1 ∂h′

1 (χ − f1∗ − f2∗)| + |∂h
1 ∂h′

2 (χ − f1∗ − f2∗)|

+ |∂h
2 ∂h′

2 (χ − f1∗ − f2∗)|) dx1 dx2.
(4.50)

Note that, since ∂h
1 ∂h′

2 (f1∗ + f2∗) = 0, we have, for the mixed derivatives,

sup
|h|,|h′|�1/2

∫
(−1,1)2

|∂h
1 ∂h′

2 χ| dx1 dx2 � E.

Hence, by lemma 3.7(ii) (to be more precise, we introduce x3 as a dummy variable
and apply lemma 3.7(ii) to a = [100], b = [010] and c = [001]), there exist functions
g1∗ and g2∗ of x1 and x2, respectively, such that∫

(−r,r)2
|χ − g1∗ − g2∗ | dx1 dx2 � E. (4.51)

https://doi.org/10.1017/S0308210510000478 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000478


A quantitative rigidity result 309

We now apply (4.46) and obtain, because of (4.51) and E � 1,

min
{

sup
|h|�r

∫
(−r,r)

|∂h
1 g1∗ | dx1, sup

|h|�r

∫
(−r,r)

|∂h
2 g2∗ | dx2

}
� E1/2.

Say that

sup
|h|�r

∫
(−r,r)

|∂h
1 g1∗ | dx1 � E1/2.

Hence, by (4.51), ∂h
1 g2∗ = 0 and E � 1, we have

sup
|h|�r

∫
(−r,r)2

|∂h
1 χ| dx � E1/2. (4.52)

Using ∂h
1 ∂h′

1 f2∗ = 0 and E � 1, we obtain the desired result:

sup
|h|,|h′|�r′

∫
(−r′,r′)

|∂h
1 ∂h′

1 f1∗ | dx1

(4.50)
� E + sup

|h|,|h′|�r′

∫
(−r′,r′)2

|∂h
1 ∂h′

1 χ| dx

� E + sup
|h|�r

∫
(−r,r)2

|∂h
1 χ| dx

(4.52)
� E1/2. (4.53)

Proof of lemma 3.11. Let us drop the subscript 1 from the variable x1 and the
differential ∂1.

The main part of lemma 3.11 is part (i). We first prove an L2-version of (3.31),
that is,

sup
|h|�1/4

∫
(−1/4,1/4)

|∂hf |2 dx � (L1(S))−2 sup
h∈S

∫
(−1/2,1/2)

|∂hf |2 dx. (4.54)

The advantage of this L2-version is that it is amenable to Fourier series techniques.
We first prove (4.54) under the additional assumption that the set S ⊂ [−1, 1]
actually reaches as far out as possible, i.e. 1 ∈ S or −1 ∈ S. By symmetry, we may,
without loss of generality, assume

1 ∈ S ⊂ [−1, 1]. (4.55)

We now give the argument for (4.54) under the assumption (4.55). Despite the
fact that f is not (exactly) 1-periodic, we introduce its Fourier coefficients on the
interval (−1/2, 1/2) (which is of length 1):

Ff(k) :=
∫

(−1/2,1/2)
eikxf(x) dx for k ∈ 2πZ.

We will re-express both sides of (4.54) in terms of the Fourier coefficients of f . We
shall first argue that the right-hand side of (4.54) can be minorated in terms of the
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Fourier coefficients. More precisely, for any |h| � 1 (hence, in particular, for h ∈ S),

∑
k∈2πZ

|(1 − e−ihk)Ff(k)|2 �
∫

(−1/2,1/2)
|∂hf |2 dx +

∫
(−1/2,1/2)

|∂1f |2 dx. (4.56)

Let us give the argument for (4.56). By symmetry, we may assume h ∈ [0, 1].
Momentarily introducing fper, the 1-periodic extension of f|(−1/2,1/2), we see that
the left-hand side of (4.56) can be expressed as∑
k∈2πZ

|(1 − e−ihk)Ff(k)|2

=
∫

(−1/2,1/2)
|fper(x + h) − fper(x)|2 dx

=
∫

(−1/2,1/2−h)
|f(x + h) − f(x)|2 dx +

∫
(1/2−h,1/2)

|f(x + h − 1) − f(x)|2 dx.

By the triangle inequality in L2(( 1
2 − h, 1

2 )) and a change of variables, this yields,
as desired (4.56),∑

k∈2πZ

|(1 − e−ihk)Ff(k)|2

�
∫

(−1/2,1/2−h)
|f(x + h) − f(x)|2 dx

+ 2
∫

(1/2−h,1/2)
|f(x + h) − f(x)|2 dx

+ 2
∫

(1/2−h,1/2)
|f(x + h) − f(x + h − 1)|2 dx

=
∫

(−1/2,1/2−h)
|f(x + h) − f(x)|2 dx

+ 2
∫

(1/2−h,1/2)
|f(x + h) − f(x)|2 dx

+ 2
∫

(−1/2,−1/2+h)
|f(x + 1) − f(x)|2 dx

� 2
∫

(−1/2,1/2)
|f(x + h) − f(x)|2 dx + 2

∫
(−1/2,1/2)

|f(x + 1) − f(x)|2 dx.

We now argue that the left-hand side of (4.54) can also be majorated in terms of
the Fourier coefficients of f . Indeed, we have, for all |h| � 1

4 ,∫
(−1/4,1/4)

|∂hf |2 dx =
∫

(−1/4,1/4)
|f(x + h) − f(x)|2 dx

� 2
∫

(−1/4,1/4)
|f(x + h) −

∫
(−1/2,1/2)

f(x′) dx′|2 dx

+ 2
∫

(−1/4,1/4)
|f(x) −

∫
(−1/2,1/2)

f(x′) dx′|2 dx
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|h|�1/4

� 4
∫

(−1/2,1/2)
|f(x) −

∫
(−1/2,1/2)

f(x′) dx′|2 dx

= 4
∑

k∈2πZ

k �=0

|Ff(k)|2. (4.57)

In view of (4.56), (4.55) and (4.57), statement (4.54) follows from∑
k∈2πZ

k �=0

|Ff(k)|2 � (L1(S))−2 sup
h∈S

∑
k∈2πZ

|(1 − e−ihk)Ff(k)|2,

which, in turn, follows from its averaged version∑
k∈2πZ

k �=0

|Ff(k)|2 � (L1(S))−3
∫

S

∑
k∈2πZ

|(1 − e−ihk)Ff(k)|2 dh.

This formulation in terms of Fourier series has the advantage that, as we now see,
it reduces to the following property of the set S:∫

S

|1 − e−ihk|2 dh � L1(S)3 for all non-zero k ∈ 2πZ. (4.58)

Let us establish (4.58) and first argue that it is sufficient to consider the case of
k = 2π. Indeed, consider a general non-zero k ∈ 2πZ. Given the measure L1(S)
of the set S ⊂ [−1, 1], the minimum value of

∫
S

|1 − e−ihk|2 dh only depends on
the distribution of values of the function g : [−1, 1] � h �→ |1 − e−ihk|2. In fact, the
best choice is always of the form S = {h ∈ [−1, 1] | |1 − e−ihk|2 < α}. Note that g
is a rescaling of the 1-periodic function ĝ : [−1, 1] � h �→ |1 − e−2πih|2 by an integer
and, thus, has the same distribution function as ĝ. Therefore, it does indeed suffice
to consider the case of k = 2π in (4.58), that is, it suffices to show that∫

S

|1 − e−2πih|2 dh � L1(S)3. (4.59)

Estimate (4.59) is easily seen to be true. The only zeros of the function [−1, 1] �
h �→ |1 − e−2πih|2 are h ∈ {−1, 0, 1} and those zeros are of first order. Hence, the
best strategy for minimizing

∫
S

|1 − e−2πih|2 dh given L1(S), sets S of the form
Sα = {h ∈ [−1, 1]||1 − e−2πih|2 < α}, leads to

L1(Sα) ∼ α1/2 and
∫

Sα

|1 − e−2πih|2 dh ∼ α3/2

for α � 1. This yields (4.59).
We now derive part (i) in its L1-version, that is,

sup
|h|�1/16

∫
(−1/16,1/16)

|∂hf | dx � (L1(S))−3/2 sup
h∈S

∫
(−1/2,1/2)

|∂hf | dx (4.60)

from the L2-version (4.54). For (4.54), we first prove (4.60) under the additional
assumption that the set S ⊂ [−1/4, 1/4] actually reaches as far out as possible,
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i.e. 1
4 ∈ S or − 1

4 ∈ S. By symmetry, we may assume, without loss of generality,
that

1
4 ∈ S ⊂ [− 1

4 , 1
4 ]. (4.61)

In fact, we will apply (4.54) not to f , but to its convolution f ∗φ with the function
φ that corresponds to the average over S, i.e.

φ(h) =

{
(L1(S))−1 for h ∈ S,

0 for h �∈ S.
(4.62)

Moreover, we will apply (4.54) in its rescaled version by a factor of 4 (to fit (4.61)),
yielding

sup
|h|�1/16

∫
(−1/16,1/16)

|∂h(f ∗ φ)|2 dx � (L1(S))−2 sup
h∈S

∫
(−1/8,1/8)

|∂h(f ∗ φ)|2 dx.

(4.63)
We now argue that we can trade in the convolution against a passage from L2 to
L1 on both sides of (4.63).

We start with the right-hand side of (4.63), where the convolution (with some
L2-function) is necessary to replace the L2-norm by the L1-norm. Indeed, we have,
by the standard convolution estimate, for any h ∈ [− 1

4 , 1
4 ] (and, a fortiori, in S),∫

(−1/8,1/8)
|∂h(f ∗ φ)|2 dx =

∫
(−1/8,1/8)

|(∂hf) ∗ φ|2 dx

supp(φ)⊂[−1/4,1/4]
�

∫
R

|φ|2 dh

( ∫
(−1/2,1/2)

|∂hf | dx

)2

(4.62)
= (L1(S))−1

( ∫
(−1/2,1/2)

|∂hf | dx

)2

. (4.64)

We now turn to the left-hand side of (4.63), where the convolution (with a func-
tion supported on S) does not hurt, as we shall see. Indeed, we have, for all |h| � 1

16 ,∫
(−1/16,1/16)

|∂hf | dx

|h|�1/16
�

∫
(−1/16,1/16)

|∂h(f ∗ φ)| dx + 2
∫

(−1/8,1/8)
|f ∗ φ − f | dx

(4.62)
�

∫
(−1/16,1/16)

|∂h(f ∗ φ)| dx + 2(L1(S))−1
∫

S

∫
(−1/8,1/8)

|∂h′
f | dxdh′

� 8−1/2
( ∫

(−1/16,1/16)
|∂h(f ∗ φ)|2 dx

)1/2

+ 2 sup
h′∈S

∫
(−1/2,1/2)

|∂h′
f | dx.

(4.65)

Now, inserting the square of (4.65) into (4.63) and then into (4.64) yields(
sup

|h|�1/16

∫
(−1/16,1/16)

|∂hf | dx

)2

� ((L1(S))−3 + 1)
(

sup
h∈S

∫
(−1/2,1/2)

|∂hf | dx

)2

,

which clearly implies (4.60).
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Finally, we have to get rid of the constraint (4.61). First we note that if we replace
(4.61) by

S ⊂ [−h∗, h∗] and (h∗ ∈ S or − h∗ ∈ S) (4.66)

for some h∗ ∈ (0, 1
4 ], (4.60) becomes

sup
|h|�h∗/4

∫
(−h∗/4,h∗/4)

|∂hf | dx � h
3/2
∗ (L1(S))−3/2 sup

h∈S

∫
(−2h∗,2h∗)

|∂hf | dx, (4.67)

as can be seen by rescaling all length with 4h∗. We now will get rid of the possibly
small h∗ on the left-hand side of (4.67) in order to obtain (3.31).

We start with the h∗ in
∫
(−1/4h∗,1/4h∗) of (4.67). Note that the interval (− 1

16 , 1
16 )

can be covered by the order of h−1
∗ (more precisely, 1

4h∗ many) translates of the
interval (− 1

4h∗,
1
4h∗). Because of h∗ � 1

4 , the translates of the enlarged interval
(−2h∗, 2h∗) are all contained in (− 1

2 , 1
2 ). Hence, summing these translates of (4.67),

we obtain

sup
|h|�h∗/4

∫
(−1/16,1/16)

|∂hf | dx � h
1/2
∗ (L1(S))−3/2 sup

h∈S

∫
(−1/2,1/2)

|∂hf |2 dx. (4.68)

We now turn to the h∗ in sup|h|�h∗/4 of (4.67). Since finite differences ∂hf of f
with shift h of order at most one (or, more precisely, |h| � 1

32 ) can be written as the
sum of the order of h−1

∗ terms (more precisely, at most 1
8h∗ terms), each of these

terms being a translate of the finite differences ∂h′
f (or, more precisely, translated

by at most 1
32 ) with a shift at most of order h∗ (or, more precisely, |h′| � 1

4h∗), we
can pass from shifts of order h∗ to shifts of order one. More precisely, from (4.68),
by the triangle inequality in L1, we obtain

sup
|h|�1/32

∫
(−1/32,1/32)

|∂hf | dx � h
−1/2
∗ (L1(S))−3/2 sup

h∈S

∫
(−1/2,1/2)

|∂hf | dx

(4.66)
� (L1(S))−2 sup

h∈S

∫
(−1/2,1/2)

|∂hf | dx. (4.69)

It remains to argue that an h∗ ∈ (0, 1
4 ] with (4.66) exists. Indeed, by continuity in

h of the left-hand side of (3.31), we may assume that S is closed. Choosing r � 1
4 in

the statement of lemma 3.11 appropriately, we may also assume that S ⊂ [− 1
4 , 1

4 ].
If we then set

h∗ = max |S| = max{|h||h ∈ S},

we automatically have (4.66) and h∗ � 1
4 .

Finally, we address parts (ii) and (iii) of lemma 3.11, which will be easy conse-
quences of part (i). Since we trivially have∫

S

∫
(−1/2,1/2)

|∂hf | dxdh �
∫

(−r,r)

∫
(−1/2,1/2)

|∂hf | dxdh,

∫
(−r,r)

∫
(−r,r)

|∂hf | dxdh � sup
|h|�r

∫
(−r,r)

|∂hf | dx,
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it only remains to show that

sup
|h|�r

∫
(−r,r)

|∂hf | dx � (L1(S))−3
∫

S

∫
(−1/2,1/2)

|∂hf | dxdh. (4.70)

In order to show (4.70), we introduce a density ρ and its average M on S:

ρ(h) :=
∫

(−1/2,1/2)
|∂hf | dx, M := (L1(S))−1

∫
S

ρ(h) dh. (4.71)

Consider the subset S̃ of S of shifts with not too much above-average density:

S̃ := {h ∈ S | ρ(h) � 2M}. (4.72)

The set S̃ has measure comparable to S. Indeed, because of

L1(S − S̃) = L1({h ∈ S | ρ(h) > 2M})

� (2M)−1
∫

S

ρ(h) dh

(4.71)
= 1

2L1(S),

we get
L1(S̃) � 1

2L1(S). (4.73)

We now obtain (4.70) with the help of part (i) of lemma 3.11, applied to S̃:

sup
|h|�1/32

∫
(−1/32,1/32)

|∂hf | dx
(4.69)
� (L1(S̃))−2 sup

h∈S̃

∫
(−1/2,1/2)

|∂hf | dx

(4.71)
= (L1(S̃))−2 sup

h∈S̃

ρ(h)

(4.72)
� (L1(S̃))−22M

(4.71)
= (L1(S̃))−22(L1(S))−1

∫
S

∫
(−1/2,1/2)

|∂hf | dxdh

(4.73)
� (L1(S))−3

∫
S

∫
(−1/2,1/2)

|∂hf | dxdh.

Proof of proposition 3.12. Let 0 < r′′′ � r′′ � r′ � r � 1 denote generic but
universal radii (by convention, ordered in the above fashion). We abbreviate the
(rescaled) energy as

E := η1/3Eintef(B1) + η−2/3Eelast(B1)

and observe that we may assume that

E � 1, (4.74)

since the estimate (3.34) holds trivially for E � 1 because the left-hand side of
(3.34) (finite differences of characteristic functions in L1) is at most of order 1. To
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ease the notational burden, we introduce an equivalence relation similar to those in
proposition 3.9. For two functions f and g defined on Br, we write

f ≈3,E1/2 g,

provided all third -order finite differences of f −g are controlled in L1(Br), for some
r by E1/2,

sup
a,b,c∈S2

|ha|,|hb|,|hc|�r

∫
Br

|∂ha
a ∂hb

b ∂hc
c (f − g)| dx � E1/2.

The starting point for proposition 3.12 is the martensitic part of proposition 3.9,
which, in particular (in view of (4.74), ≈2,E entails ≈3,E1/2) yields

χ1 ≈3,E1/2 −f(101) − f(1̄01) + f(110) + f(11̄0),

χ2 ≈3,E1/2 f(011) + f(011̄) −f(110) − f(11̄0),

χ3 ≈3,E1/2 −f(011) − f(011̄) + f(101) + f(1̄01).

⎫⎪⎬
⎪⎭ (4.75)

The main step of the proof involves using lemma 3.10 (and lemma 3.11) to establish
the three alternatives

f(101) ≈3,E1/2 f(1̄01) ≈3,E1/2 0 or f(110) ≈3,E1/3 f(11̄0) ≈3,E1/2 0, (4.76)

f(011) ≈3,E1/2 f(011̄) ≈3,E1/2 0 or f(110) ≈3,E1/2 f(11̄0) ≈3,E1/2 0, (4.77)

f(011) ≈3,E1/2 f(011̄) ≈3,E1/2 0 or f(101) ≈3,E1/2 f(1̄01) ≈3,E1/2 0. (4.78)

Before establishing (4.76)–(4.78), let us show how they imply the statement of
proposition 3.12. Since none of the three pairs (f(011), f(011̄)), (f(101), f(1̄01)) and
(f(110), f(11̄0)) appears in all three lines (4.76)–(4.78) simultaneously, at least two of
these pairs must be controlled. Hence, one of the following three cases must occur:

(f(101) ≈3,E1/2 f(1̄01) ≈3,E1/2 f(110) ≈3,E1/2 f(11̄0) ≈3,E1/2 0),

(f(011) ≈3,E1/2 f(011̄) ≈3,E1/2 f(110) ≈3,E1/2 f(11̄0) ≈3,E1/2 0),

(f(011) ≈3,E1/2 f(011̄) ≈3,E1/2 f(101) ≈3,E1/2 f(1̄01) ≈3,E1/2 0).

A glance back at (4.75) reveals that these three cases translate one-by-one into

χ1 ≈3,E1/2 0, χ2 ≈3,E1/2 0, χ3 ≈3,E1/2 0,

which is just our compact reformulation of the statement of proposition 3.12.
We now turn to the proof of (4.76)–(4.78). By symmetry, it is sufficient to treat

(4.76). In this process, it is helpful to combine the pairs according to

f[010] := −f(101) − f(1̄01) and f[001] := f(110) + f(11̄0).

Note that this notation is in line with our usual convention: f[010] is a function
constant in x2 and f[001] is a function constant in x3. We start from the statement
on χ1 in proposition 3.9 but use only the three second-order finite differences in the
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direction of x2 and x3:

sup
|h|,|h′|�r

(|∂h
2 ∂h′

2 (χ1 − f[010] − f[001])| + |∂h
2 ∂h′

3 (χ1 − f[010] − f[001])|

+ |∂h
3 ∂h′

3 (χ1 − f[010] − f[001])|) dx � E.
(4.79)

In order to prepare the application of lemma 3.10 to the variables (x2, x3), we now
show, with the help of lemma 3.11(ii), that (4.79) can be strengthened to∫

(−r,r)
sup

|h|,|h′|�r

∫
(−r,r)2

(|∂h
2 ∂h′

2 (χ1 − f[010] − f[001])|

+ |∂h
2 ∂h′

3 (χ1 − f[010] − f[001])|
+ |∂h

3 ∂h′

3 (χ1 − f[010] − f[001])|) dx2 dx3 dx1 � E.
(4.80)

Indeed, introducing the abbreviation g := χ1 − f[010] − f[001], we shall show that
lemma 3.11(ii) yields the ‘inverse estimate’

sup
|h|,|h′|�r

∫
Br

|∂h
2 ∂h′

2 g| dx �
∫

(−r′,r′)
sup

|h|,|h′|�r′

∫
(−r′,r′)2

|∂h
2 ∂h′

2 g| dx2 dx3 dx1. (4.81)

The passage of the second and third row of (4.79) to the second and third row of
(4.80), respectively, follows by the same arguments. The string of inequalities that
establishes (4.81) is as follows:

sup
|h|,|h′|�r

∫
Br

|∂h
2 ∂h′

2 g| dx

�
∫

(−r′,r′)

∫
(−r′,r′)

∫
(−r′,r′)

∫
(−r′,r′)

∫
(−r′,r′)

|∂h
2 ∂h′

2 g| dx2 dh dh′ dx3 dx1

(3.32)
�

∫
(−r′,r′)

∫
(−r′,r′)

∫
(−r′,r′)

sup
|h|�r′′

∫
(−r′′,r′′)

|∂h
2 ∂h′

2 g| dx2 dh′ dx3 dx1

(4.82)

�
∫

(−r′,r′)
sup

|h|�r′′

∫
(−r′,r′)

∫
(−r′,r′)

∫
(−r′′,r′′)

|∂h′

2 ∂h
2 g| dx2 dh′ dx3 dx1

(3.32)
�

∫
(−r′,r′)

sup
|h|�r′′

∫
(−r′,r′)

sup
|h′|�r′′′

∫
(−r′′′,r′′′)

|∂h′

2 ∂h
2 g| dx2 dx3 dx1 (4.83)

�
∫

(−r′,r′)
sup

|h|,|h′|�r′′′

∫
(−r′′′,r′′′)2

|∂h
2 ∂h′

2 g| dx2 dx3 dx1. (4.84)

In order to get to (4.82), we have applied (3.32) to the function x2 �→ ∂h′

2 g(x1, x2, x3)
and to the shift h. In order to obtain (4.83), we have applied (3.32) to the function
x2 �→ ∂h

2 g(x1, x2, x3) and the shift h′.
Now comes the central step of the proof. We consider x1 as a parameter and

apply lemma 3.10 to the characteristic function (x2, x3) �→ χ1(x1, x2, x3) and the
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‘single-variable’ functions x2 �→ f[001](x1, x2) and x3 �→ f[010](x1, x3). We obtain

min
{

sup
|h|,|h′|�r′

∫
(−r′,r′)

|∂h
2 ∂h′

2 f[001]| dx2, sup
|h|,|h′|�r′

∫
(−r′,r′)

|∂h
3 ∂h′

3 f[010]| dx3

}

�
(

sup
|h|,|h′|�r

∫
(−r,r)2

(|∂h
2 ∂h′

2 (χ1 − f[010] − f[001])|

+ |∂h
2 ∂h′

3 (χ1 − f[010] − f[001])|

+ |∂h
3 ∂h′

3 (χ1 − f[010] − f[001])|) dx2 dx3

)1/2

.

We now integrate this estimate over x1 ∈ (−r′, r′), use the Cauchy–Schwarz inequal-
ity on the right-hand side and combine with (4.80) to obtain∫

(−r,r)
min

{
sup

|h|,|h′|�r

∫
(−r,r)

|∂h
2 ∂h′

2 f[001]| dx2,

sup
|h|,|h′|�r

∫
(−r,r)

|∂h
3 ∂h′

3 f[010]| dx3

}
dx1 � E1/2.

We use this estimate only in its weaker form:∫
(−r,r)

min
{ ∫

(−r,r)2

∫
(−r,r)

|∂h
2 ∂h′

2 f[001]| dx2 dh dh′,

∫
(−r,r)2

∫
(−r,r)

|∂h
3 ∂h′

3 f[010]| dx3 dh dh′
}

dx1 � E1/2.

Hence, there exists a set I ⊂ [−r0, r0] (where r0 is a small universal radius chosen
at the end of the proof) of x1-coordinates with the property that

L1(I) ∼ 1

and such that one of the following alternatives holds:∫
I

∫
(−r,r)2

∫
(−r,r)

|∂h
2 ∂h′

2 f[001]| dx2 dh dh′ dx1 � E1/2,

∫
I

∫
(−r,r)2

∫
(−r,r)

|∂h
3 ∂h′

3 f[010]| dx3 dh dh′ dx1 � E1/2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.85)

By symmetry, it is enough to consider the first case and to show that it implies the
second case in (4.76), which we can also formulate as

sup
|h|,|h′|,|h′′|�r

∫
(−r,r)

(|∂h
s ∂h′

s ∂h′′

s f(110)(s)| + |∂h
s ∂h′

s ∂h′′

s f(11̄0)(s)|) ds � E1/2. (4.86)

By symmetry, it suffices to show the first part of the preceding estimate, that is,

sup
|h|,|h′|,|h′′|�r

∫
(−r,r)

|∂h
s ∂h′

s ∂h′′

s f(110)(s)| ds � E1/2. (4.87)

The rest of the proof is devoted to deducing (4.87) from (4.85).
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The main step in passing from (4.85) to (4.87) involves showing that (4.85) implies∫
(−r,r)3

∫
(−r,r)

|∂h
s ∂h′

s ∂h′′

s f(110)(s)| ds dh dh′ dh′′ � E1/2. (4.88)

The passage from (4.88) (average) to (4.87) (supremum) is again an easy application
of lemma 3.11(ii), as we shall see later. Note that, in view of the definition of f[001],
(4.85) can be reformulated as∫

(−r,r)2

∫
I

∫
(−r,r)

|∂h
s ∂h′

s f(110)(x1 + x2)

+ ∂h
s̄ ∂h′

s̄ f(11̄0)(x1 − x2)| dx2 dx1 dh dh′ � E1/2. (4.89)

Hence, in order to pass from (4.89) to (4.88), it suffices to show that∫
(−r′,r′)3

∫
(−r′,r′)

|∂h′′

s ∂h
s ∂h′

s f(110)(s)| ds dh dh′ dh′′

�
∫

(−r,r)2

∫
I

∫
(−r,r)

|∂h
s ∂h′

s f(110)(x1 + x2)

+ ∂h
s̄ ∂h′

s̄ f(11̄0)(x1 − x2)| dx2 dx1 dh dh′. (4.90)

We now see that (h, h′) can be treated as a parameter so that (4.90) follows from∫
(−r′,r′)

∫
(−r′,r′)

|∂h′′

s g(110)(s)| ds dh′′

�
∫

I

∫
(−r,r)

|g(110)(x1 + x2) + g(11̄0)(x1 − x2)| dx2 dx1, (4.91)

where we have used the abbreviations

g(110) := ∂h
s ∂h′

s f(110) and g(11̄0) := ∂h
s̄ ∂h′

s̄ f(11̄0).

Let us now address (4.91), which we will do with the help of lemma 3.11(iii).
First, we have to eliminate g(11̄0). To this end, we write down two copies of the
right-hand side of (4.91),∫

I

∫
(−r,r)

|g(110)(x1 + x2) + g(11̄0)(x1 − x2)| dx2 dx1,

∫
I

∫
(−r,r)

|g(110)(x′
1 + x′

2) + g(11̄0)(x
′
1 − x′

2)| dx′
2 dx′

1,

which we integrate over a dummy variable over I (since I ⊂ [−r0, r0] this does not
increase the value) in the following way:∫

I

∫
I

∫
(−r,r)

|g(110)(x1 + x2) + g(11̄0)(x1 − x2)| dx2 dx1 dx′
1, (4.92)

∫
I

∫
I

∫
(−r,r)

|g(110)(x′
1 + x′

2) + g(11̄0)(x
′
1 − x′

2)| dx′
2 dx1 dx′

1. (4.93)
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We now change the inner variables

• in (4.92) from x2 to s such that x1 + x2 = s with the effect that x1 − x2 =
2x1 − s,

• in (4.93) from x′
2 to s such that x′

1 − x′
2 = 2x1 − s with the effect that

x′
1 + x′

2 = s + 2(x′
1 − x1).

This yields∫
I

∫
I

∫
(−r′,r′)

|g(110)(s) + g(11̄0)(2x1 − s)| ds dx1 dx′
1,

∫
I

∫
I

∫
(−r′,r′)

|g(110)(s + 2(x′
1 − x1)) + g(11̄0)(2x1 − s)| ds dx1 dx′

1.

By the above derivation, both terms are dominated by the right-hand side of (4.91)
and, hence, also the modulus of their difference. We therefore obtain, by the triangle
inequality in L1(I × I × (−r′, r′)),∫

I

∫
I

∫
(−r′,r′)

|g(110)(s + 2(x′
1 − x1)) − g(110)(s)| ds dx1 dx′

1

�
∫

I

∫
(−r,r)

|g(110)(x1 + x2) + g(11̄0)(x1 − x2)| dx2 dx1. (4.94)

With (4.94) we have successfully eliminated g(11̄0) and thus reduced our goal (4.91)
to the following statement on a single function g(110) of a single variable and on a
set I of full measure∫

(−r′,r′)

∫
(−r′,r′)

|∂h′′

s g(110)(s)| ds dh′′

�
∫

I

∫
I

∫
(−r′,r′)

|g(110)(s + 2(x′
1 − x1)) − g(110)(s)| ds dx1 dx′

1. (4.95)

We finally show how to reduce estimate (4.95) from lemma 3.11(iii). Clearly, we
have to understand the shifts produced by 2(x′

1 −x1). We note that the right-hand
side of (4.95) can be written as∫

I

∫
I

∫
(−r′,r′)

|g(110)(s + 2(x′
1 − x1)) − g(110)(s)| ds dx1 dx′

1

=
∫

R

∫
(−r′,r′)

|∂h′′

s g(110)(s)| dsω(h′′) dh′′, (4.96)

where the weight function ω can be computed to be the rescaled convolution of the
characteristic function χI of I with the characteristic function of −I:

ω(h′′) = 1
2 (χI ∗ χ−I)( 1

2h′′).

This implies

ω � 1
2 and

∫
R

ω dh′′ = (L1(I))2.
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Moreover, since I ⊂ [−r0, r0] and L1(I) ∼ 1, we have

suppω ⊂ [−4r0, 4r0], ω � 1,

∫
R

ω dh′′ ∼ 1,

so that there exists a set S of shifts with

ω � χS , S ⊂ [−4r0, 4r0], L1(S) ∼ 1.

In view of this, (4.96) yields∫
I

∫
I

∫
(−r′,r′)

|g(110)(s + 2(x′
1 − x1)) − g(110)(s)| ds dx1 dx′

1

�
∫

S

∫
(−r′,r′)

|∂h′′

s g(110)(s)| ds dh′′. (4.97)

If we now choose r0 sufficiently small with respect to the generic but universal r′

in (4.97) (so small that 4r0 � r1r
′, where r1 is the small universal radius from

lemma 3.11), we may apply lemma 3.11(iii) (rescaled by the universal factor 2r′)
to obtain∫

S

∫
(−r′,r′)

|∂h′′

s g(110)(s)| ds dh′′ �
∫

(−r′′,r′′)

∫
(−r′′,r′′)

|∂h′′

s g(110)(s)| ds dh′′. (4.98)

The combination of (4.97) and (4.98) gives (4.95). This establishes (4.88).
Finally, we need to argue how lemma 3.11(ii) allows us to pass from (4.88) to

(4.87). What separates (4.88) from (4.87) is the estimate

sup
|h|,|h′|,|h′′|�r′

∫
(−r′,r′)

|∂h
s ∂h′

s ∂h′′

s f(110)(s)| ds

�
∫

(−r,r)3

∫
(−r,r)

|∂h
s ∂h′

s ∂h′′

s f(110)(s)| ds dh dh′ dh′′.

For (4.84), this estimate can be derived by iteratively (or, rather, inductively over
the dimension) applying lemma 3.11(ii):∫

(−r,r)

∫
(−r,r)

∫
(−r,r)

∫
(−r,r)

|∂h
s ∂h′

s ∂h′′

s f(110)(s)| ds dh dh′ dh′′

(3.32)
�

∫
(−r,r)

∫
(−r,r)

sup
|h|�r′

∫
(−r′,r′)

|∂h
s ∂h′

s ∂h′′

s f(110)(s)| ds dh′ dh′′

� sup
|h|�r′

∫
(−r,r)

∫
(−r,r)

∫
(−r′,r′)

|∂h′

s ∂h
s ∂h′′

s f(110)(s)| ds dh′ dh′′

(3.32)
� sup

|h|�r′

∫
(−r,r)

sup
|h′|�r′′

∫
(−r′′,r′′)

|∂h′

s ∂h
s ∂h′′

s f(110)(s)| ds dh′′

� sup
|h|�r′

sup
|h′|�r′′

∫
(−r,r)

∫
(−r′′,r′′)

|∂h′′

s ∂h′

s ∂h
s f(110)(s)| ds dh′′

(3.32)
� sup

|h|�r

sup
|h′|�r′′

sup
|h′′|�r′′′

∫
(−r′′′,r′′′)

|∂h′′

s ∂h′

s ∂h
s f(110)(s)| ds.
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Proof of lemma 3.13. The crucial object will be the unsigned moving average φ ∗χ
of the function χ defined via

(φ ∗ χ)(x) := 4
3 (L3(B1))−1

∫
B1(x)

χ(x′) dx′ − 1
3 (L3(B2))−1

∫
B2(x)

χ(x′) dx′. (4.99)

As the notation suggests, we also think of it as the convolution with a radially
symmetric piecewise constant function φ.

We start by arguing that∫
B1

|φ ∗ χ − χ| dx � 1
3

sup
a,b,c∈S2

|h|,|h|,|h′′|�1

∫
B1

|∂h
a∂h′

b ∂h′′

c χ| dx. (4.100)

Spelling out the third-order differences

(∂h
a∂h′

b ∂h′′

c χ)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

χ(x + ha + h′b + h′′c) − χ(x + ha + h′b)
− χ(x + ha + h′′c) + χ(x + ha)
− χ(x + h′b + h′′c) + χ(x + h′b)
+ χ(x + h′′c) − χ(x)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (4.101)

we see that, for a = b = c and h = −h′ = −h′′, the third-order finite differences
collapse to

(∂h
a∂−h

a ∂−h
a χ)(x) = −χ(x − 2ha) + 3χ(x − ha) − 3χ(x) + χ(x + ha).

Averaging this sub-family of third-order finite differences over ha ∈ B1, we obtain
φ ∗ χ:

( 1
3H2(S2))−1

∫
(0,1)

∫
S2

(∂h
a∂−h

a ∂−h
a χ)(x)H2(da)h2 dh

= −(L3(B2))−1
∫

B2(x)
χ(x′) dx′ + 3(L3(B1))−1

∫
B1(x)

χ(x′) dx′

− 3χ(x) + (L3(B1))−1
∫

B1(x)
χ(x′) dx′

= 3((φ ∗ χ)(x) − χ(x)).

This representation of φ ∗ χ − χ directly implies (4.100).
We now turn to the proof of lemma 3.13 proper. By the symmetry χ � 1 − χ,

we may assume that χ has below-average volume fraction in B1:

(L3(B1))−1
∫

B1

χ dx � 1
2 , (4.102)

in which case we will show, for some small but universal radius r > 0,∫
Br

χ dx � sup
a,b,c∈S2

|h|,|h′|,|h′′|�1

∫
B1

|∂h
a∂h′

b ∂h′′

c χ| dx.
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In view of (4.100), it is sufficient to show that∫
Br

χ dx �
∫

B1

|φ ∗ χ − χ| dx. (4.103)

The argument for (4.103) is easy. In view of the definition (4.99), (4.102) and χ � 0
imply that φ ∗ χ is strictly less than 1 at the origin:

(φ ∗ χ)(0) � 4
3

1
2 = 2

3 . (4.104)

Note that φ ∗ χ is Lipschitz continuous with universal constant. (This can be seen,
for example, from the convolution estimate

sup |∇(φ ∗ χ)| �
∫

|∇φ| dx sup |χ| =
∫

|∇φ| dx � 1, (4.105)

using the fact that the three-valued radially symmetric φ has automatically finite
BV-norm

∫
|∇φ| dx.) Hence, there exists a possibly small but universal radius r > 0

so that the boundedness (4.104) away from 1 is preserved in the small ball Br:

φ ∗ χ � 3
4 in Br. (4.106)

Hence, we obtain, finally using the non-convex constraint χ ∈ {0, 1},∫
B1

|φ ∗ χ − χ| dx �
∫

Br∩{χ=1}
|φ ∗ χ − 1| dx

(4.106)
� 1

4L3(Br ∩ {χ = 1})
χ∈{0,1}

� 1
4

∫
Br

χ dx,

which gives (4.103) as desired.

Proof of theorem 2.2. As we are dealing with characteristic functions we can, with-
out loss of generality, assume E � 1. Let 0 < r � 1 be a generic but universal
radius. We extend our shorthand notation from proposition 3.9 and 3.12. For two
functions f and g, we write

f ≈i,Eα g,

provided for some r > 0, all ith order finite differences of f − g with shifts |h| � r
in the L1(Br)-norm are estimated by Eα. In this compact notation, the statement
of theorem 2.2 involves the following three claims.

(i) We have
χ0 ≈0,E 1 or χ0 ≈0,E 0. (4.107)

(ii) In case of χ0 ≈0,E 0,

χ1 ≈0,E1/2 0 or χ2 ≈0,E1/2 0 or χ3 ≈0,E1/2 0. (4.108)

(iii) In case of χ3 ≈0,E1/2 0,

χ1 ≈0,E1/4 f(110) or χ1 ≈0,E1/4 f(11̄0). (4.109)
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We now prove claim (4.107). By the austenitic part of proposition 3.9, we have

χ0 ≈2,E 0.

In particular, this yields χ0 ≈3,E 0, so that (4.107) follows via lemma 3.13. Claim
(4.108) is also at hand. By proposition 3.12, we have

χ1 ≈3,E1/2 0 or χ2 ≈3,E1/2 0 or χ3 ≈3,E1/2 0.

Hence, (4.108) follows from lemma 3.13.
Claim (4.109) requires a bit more care. We recall the martensitic part of propo-

sition 3.9,

χ1 ≈2,E −f(101) − f(1̄01) + f(110) + f(11̄0),

χ2 ≈2,E f(011) + f(011̄) −f(110) − f(11̄0),

χ3 ≈2,E −f(011) − f(011̄) + f(101) + f(1̄01).

⎫⎪⎬
⎪⎭ (4.110)

Because of our assumption that χ3 ≈0,E1/2 0, the last line of (4.110) turns into

0 ≈2,E1/2 −f(011) − f(011̄) + f(101) + f(1̄01).

Because of lemma 3.8, this yields

0 ≈2,E1/2 f(011) ≈2,E1/2 f(011̄) ≈2,E1/2 f(101) ≈2,E1/2 f(1̄01).

Therefore, the first line of (4.110) reduces to

χ1 ≈2,E1/2 f(110) + f(11̄0). (4.111)

As in proposition 3.12, we use lemma 3.10 (with some assistance from part (ii)
of lemma 3.11) to deduce

χ1 ≈2,E1/4 f(110) or χ1 ≈2,E1/4 f(11̄0) (4.112)

from (4.111). Indeed, we probe (4.111) by second-order finite differences in direc-
tions orthogonal to x3 only:

∀a, b ∈ {[110], [11̄0]},

sup
|h|,|h′|�r

∫
Br

|∂h
a∂h′

b (χ1 − f(110) − f(11̄0))| dx � E1/2. (4.113)

We now appeal to the ‘inverse estimate’ (4.81) of proposition 3.12 (which is a
consequence of part (ii) of lemma 3.11) to upgrade (4.113) to

a, b ∈ {[110], [11̄0]},∫
(−r,r)

sup
|h|,|h′|�r

∫
(−r,r)2

|∂h
a∂h′

b (χ1 − f(110) − f(11̄0))| dx1 dx2 dx3 � E1/2.

In particular, there exists an x∗
3 ∈ (−r, r) such that

∀a, b ∈ {[110], [11̄0]},

sup
|h|,|h′|�r

∫
(−r,r)2

|∂h
a∂h′

b (χ1(·, x∗
3) − f(110) − f(11̄0))| dx1 dx2 � E1/2.
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Hence, by applying lemma 3.10 to (x1, x2) �→ χ1(x1, x2, x
∗
3), (x1, x2) �→ f(110)(x1 +

x2), (x1, x2) �→ f(11̄0)(x1 − x2) and the coordinates (s, s̄) = (x1 + x2, x1 − x2), we
obtain

min
{

sup
|h|,|h′|�r

∫
(−r,r)

|∂h
s ∂h′

s f(110)(s)| ds,

sup
|h|,|h′|�r

∫
(−r,r)

|∂h
s̄ ∂h′

s̄ f(11̄0)(s̄)| ds̄

}
� E1/4. (4.114)

Since f(110) and f(11̄0) are single-variable functions, this just means

f(110) ≈2,E1/4 0 or f(11̄0) ≈2,E1/4 0. (4.115)

Inserting this into (4.111), we obtain (4.112).
Finally, we want to upgrade (4.112) to (4.109) with possibly modified single-

variable functions:

χ1 ≈0,E1/4 g(110) or χ1 ≈0,E1/4 g(11̄0). (4.116)

Let us assume that the first alternative of (4.112) holds. We probe it only with
second-order finite difference quotients along directions in the plane (110) because
they make the f(110)-term vanish:

∀a, b ∈ {[11̄1], [1̄11]}, sup
|h|,|h′|�r

∫
Br

|∂h
a∂h′

b χ1| dx � E1/4.

We can add another finite difference at no cost:

∀a, b, c ∈ {[11̄1], [1̄11]}, sup
|h|,|h′|,|h′′|�r

∫
Br

|∂h
a∂h′

b ∂h′′

c χ1| dx � E1/4.

Once again, we appeal to the ‘inverse estimate’ (4.81) to upgrade the above to

∀a, b, c ∈ {[11̄1], [1̄11]},

∫
(−r,r)

sup
|h|,|h′|,|h′′|�r

∫
(−r,r)2

|∂h
a∂h′

b ∂h′′

c χ1| dx′ ds � E1/4,

where s = (110) ·x is the coordinate perpendicular to the plane (110) and x′ stands
for two coordinates in the plane (for example, in the direction of [11̄1], [1̄11]). We
may now apply lemma 3.13 (in two instead of three space dimensions) to x′ �→
χ1(x′, s): ∫

(−r,r)
min

{ ∫
(−r,r)2

|χ1| dx′,

∫
(−r,r)2

|1 − χ1| dx′
}

ds � E1/4.

This statement has exactly the same content as the first alternative of (4.108).
We finally give the argument for (2.8)–(2.11). Let χ0, χ1, χ2 and χ3 be minimizers

in (2.7) (the infimum is attained because BV ∩L∞ embeds compactly into L2;
working with a minimal sequence would suffice for the following argument). We
first turn to (2.8) and argue that the first alternative of theorem 2.2(i) implies the
first alternative of (2.8). By the triangle inequality in L2(Br), we have∫

Br

|e|2 dx �
∫

Br

|e − χ1e
(1) − χ2e

(2) − χ3e
(3)|2 dx +

∫
Br

(χ2
1 + χ2

2 + χ2
3) dx.
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The second term on the right-hand side is estimated, since we assume the first
alternative of theorem 2.2(i):

∫
Br

(χ2
1 + χ2

2 + χ2
3) dx

(I.1)
�

∫
Br

(χ1 + χ2 + χ3) dx
(I.1)
=

∫
Br

(1 − χ0) dx � E.

Hence, we obtain ∫
Br

|e|2 dx � Eelast + E
η�1
� E = Ē

as desired. We now argue that the second alternative of theorem 2.2(i) implies the
second alternative of (2.8). We note that (2.1) implies

min{|e − e(1)|, |e − e(2)|, |e − e(3)|}
� (1 − χ0)|e − χ1e

(1) − χ2e
(2) − χ3e

(3)|
+ χ0 min{|e − e(1)|, |e − e(2)|, |e − e(3)|}

� |e − χ1e
(1) − χ2e

(2) − χ3e
(3)| + χ0 min{|e(1)|, |e(2)|, |e(3)|}.

Hence, we obtain

∫
Br

min{|e − e(1)|2, |e − e(2)|2, |e − e(3)|2} dx

�
∫

Br

|e − χ1e
(1) − χ2e

(2) − χ3e
(3)|2 dx +

∫
Br

χ2
0 dx.

The second term on the right-hand side is estimated by E since we assume the
second alternative of theorem 2.2(i). Hence, we have, as for the first alternative,

∫
Br

min{|e − e(1)|2, |e − e(2)|2, |e − e(3)|2} dx � Eelast + E
η�1
� E = Ē.

We now argue that the last alternative in theorem 2.2(ii) implies the last alter-
native in (2.10). In the same manner as above, we use (2.1) to obtain

min{|e − e(1)|, |e − e(2)|}
� (χ1 + χ2)|e − χ1e

(1) − χ2e
(2)| + (χ0 + χ3) min{|e − e(1)|, |e − e(2)|}

� |e − χ1e
(1) − χ2e

(2)| + (χ0 + χ3) min{|e(1)|, |e(2)|}
� |e − χ1e

(1) − χ2e
(2) − χ3e

(3)| + χ3|e(3)| + (χ0 + χ3) min{|e(1)|, |e(2)|}.

This implies, by the triangle inequality in L2(Br),∫
Br

min{|e − e(1)|2, |e − e(2)|2} dx

�
∫

Br

|e − χ1e
(1) − χ2e

(2) − χ3e
(3)|2 dx +

∫
Br

χ2
0 dx +

∫
Br

χ2
3 dx.
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By the last alternative in theorem 2.2(ii), the last two terms on the right-hand side
are estimated by E and E1/2, respectively. Hence, we obtain

∫
Br

min{|e − e(1)|2, |e − e(2)|2} dx

� Eelast + E + E1/2
η�1
� E + E1/2 = Ē + Ē1/2

Ē�1
� Ē1/2.

We finally argue that the first alternative in theorem 2.2(iii) implies the first
alternative in (2.11). We first note that, without loss of generality, we may assume
that f(110) is {0, 1}-valued. Indeed, we can replace f(110) by

f̃(110) :=

⎧⎨
⎩

1 for f(110) � 1
2 ,

0 for f(110) < 1
2 .

Clearly, f̃(110) inherits from f(110) the property of only depending on x1 + x2 and
it satisfies |χ1 − f̃(110)| � 2|χ1 − f(110)|. We next note that, according to (2.1) and
the last alternatives in parts (i) and (ii) of theorem 2.2, we have∫

Br

|χ1 + χ2 − 1| dx =
∫

Br

χ0 dx +
∫

Br

χ3 dx � E + E1/2.

Hence, we may upgrade the first alternative in part (iii) of theorem 2.2 to∫
Br

(|χ1 − f(110)| + |χ2 − (1 − f(110))| + |χ3|) dx � E + E1/2 + E1/4.

Since all functions are {0, 1}-valued, we may reformulate this as∫
Br

(|χ1 − f(110)|2 + |χ2 − (1 − f(110))|2 + |χ3|2) dx � E + E1/2 + E1/4.

In view of the triangle inequality in L2(Br), this yields∫
Br

|e − f(110)e
(1) − (1 − f(110))e(2)|2 dx � Eelast + E + E1/2 + E1/4

η�1
� E + E1/2 + E1/4

= Ē + Ē1/2 + Ē1/4
Ē�1
� Ē1/4

as desired.
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