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SUMMARY
This paper focuses on behavior recognition in an underwater application as a substitute for
communicating through acoustic transmissions, which can be unreliable. The importance of this
work is that sensor information regarding other agents can be leveraged to perform behavior
recognition, which is activity recognition of robots performing specific programmed behaviors,
and task-assignment. This work illustrates the use of Behavior Histograms, Hidden Markov
Models (HMMs), and Conditional Random Fields (CRFs) to perform behavior recognition. We
present challenges associated with using each behavior recognition technique along with results on
individually selected test trajectories, from simulated and real sonar data, and real-time recognition
through a simulated mission.

KEYWORDS: Autonomous underwater vehicles; Multi-robot systems; Behavior recognition;
Auction-based methods.

1. Introduction
Multi-robot teams, in comparison with single robot solutions, can offer solutions that are more
economical, robust to failure, and more efficient than single robot solutions.1, 2 A team of robots
can work on tasks in parallel, perform distributed sensing and operate in multiple locations at once.
Furthermore, multiple robots add redundancy to the system. Unfortunately, a tradeoff is that these
teams must communicate and work together with the added uncertainty regarding the behaviors of
robots. For instance, a team member may have trouble cooperating due to communication errors,
because they are busy performing other tasks, or have conflicting goals.3 Many different methods
for performing distributed cooperation exist, including centralized optimization algorithms and game
theoretic techniques. A centralized method requires at least one agent or a home base to make
task or role assignments. Although this may be optimal when communication links are reliable,
its efficacy degenerates with intermittent communication, and a central organizer makes the whole
system come to a halt if it fails. Thus, a decentralized approach is much more viable because it is more
robust to failures of communication. Auction-based algorithms generally have low communication
requirements (where agents coordinate tasks through bid messages). Therefore, they can be well suited
to environments with communication constraints. Auctions can perform computations in parallel and
the methods take advantage of the local information known to each agent.4, 5

However, this method can still degrade in overall efficiency as communication deteriorates.6

Poor communication environments are encountered by autonomous underwater vehicles (AUVs)
using traditional acoustic modems for underwater communication. The effectiveness of acoustic
communications deteriorates in the presence of surface reflections, bottom reflections, ambient noise,
and noise sources within the water column, such as emissions from other vessels. Sotzing and Lane7

have demonstrated that using teammate prediction improves overall performance of a cooperative
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Fig. 1. (Colour online) Yellowfin Autonomous Underwater Vehicle – designed to be man-portable for
oceanographic observation.

AUV system. This type of system still needs communication to be sufficient to avoid degradation as
task predictions accumulate error over time without correction from teammates.

The motivation for this work is the need for multiple small AUVs to perform autonomous research
operations in underwater environments. The Georgia Tech Research Institute has developed the
Yellowfin AUV research platform, as seen in Fig. 1, and is planning future experiments with multiple
Yellowfin platforms.8 Because of the vehicle’s size, power constraints, and operating environment,
communication bandwidth is limited. The vehicle was fabricated with open standards and hardware
when possible and uses open-source software components.

The ultimate purpose of this research is to create a system that can efficiently operate with as
little explicit communication as possible, since this is the type of environment our own AUV will
encounter.8 We envision a system similar to that proposed by Novitzky9 that will utilize auction-
based methods augmented with prediction of teammate tasks during periods of poor communication.
If the confidence in a prediction of a teammate’s task is low, then an AUV can perform prediction
verification, through behavior recognition, as suggested by Baxter et al.10 Additionally, this handles
the situation where an AUV may have been assigned a task only to discover another agent already
performing the task but not communicating. The work in this paper specifically focuses on whether
behavior recognition of an AUV is possible using Behavior Histograms, Hidden Markov Models
(HMMs), or Conditional Random Fields (CRFs) and which is more suitable for the system described
above.

2. Related Work
This work focuses on behavior recognition of autonomous mobile robots, specifically in the
underwater domain. Baxter et al.10 performed behavior recognition using HMMs on post-mission
analysis of self-localization provided by an AUV. The post-mission analysis converted GPS pose
trajectories to low-level actions such as track-west and left u-turn east. The main drawback of
this method is that it claimed to be agnostic to the environment yet still required the use of
cardinal direction, which in itself is still somewhat constraining to the compass orientation within an
environment. The authors improved upon their discretization methods where they also enhanced
HMMs to deal with behavior sequences of variable length.11 They began with AUV location
information from simulated sonar data. These trajectories were fed into a maneuver-recognition
algorithm capable of identifying an AUV’s actions such as straight and veer-left, thus making it more
environmentally agnostic. While the algorithm was attempting to recognize top-level goals such as
mine-countermeasure (MCM), mine-countermeasure inspection (MCMI), and point inspection (PI),
it further divided the top-level goals into recognizable sub-goals which included dive, track, right
u-turn, and left u-turn along with inspection. Their results also included the observation that top-level
goals are achieved via the AUV performing sub-goal behaviors.

More recently, Novitzky et al.12 performed exploratory work using HMMs to discriminate a small
number of robot behaviors. The authors successfully applied their technique to a very limited amount
of real data. Their data consisted of collected trajectories gathered while unmanned aerial vehicles
(UAVs) performed search and track behaviors of surface targets and AUV trajectories collected via a
forward-looking sonar. However, their data consisted of only a few behaviors and at most a handful
of tracks for each behavior.
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Fig. 2. (Colour online) In (a) an AUV’s location over time is used to determine its global yaw. The change in
global yaw from one time step to the next is encoded as an integer value, which represents a given range, as
seen in (b). The three behavior-recognition methods are Behavior Histograms, Hidden Markov Models, and a
Conditional Random Field, as seen in (c), (d), and (e), respectively.

Of specific importance to this work is that performed by Vail et al.13 in which the authors compared
the accuracy of CRFs and HMMs for activity recognition on robot systems. Their chosen domain
was simulated robot Tag. In their simulation, two robots were passively moving from waypoint to
waypoint while a third was the Seeker searching for a robot to Tag. As part of the analysis of CRFs
and HMMs, the authors tested the accuracy with different observations such as raw positions only,
including velocities, and chasing features. The authors also examined the effect of incorporating
features, which violate the independence assumptions between observations. The results showed that
a discriminatively trained CRF performed as well as or better than an HMM in their robot Tag domain.

Vail and Veloso14 used CRFs for analyzing roles in multi-robot domains. The authors experimented
with two approaches to feature selection and applied these methods to data recorded during RoboCup
soccer small-size league games. The goal of their work was to create a classifier that can provide
useful information to robots that are playing against a team whose roles are being classified. They
found that using feature selection can dramatically reduce the number of features required by CRFs
to achieve error rates that are close to or identical to the error rate achieved by the model with its full
complement of features. Reducing the number of features dramatically speeds up online classification
and training.

Unlike previous behavior recognition work in the AUV domain, our work does not rely on
trajectories provided through post-mission analysis nor only through simulation. Furthermore, it
performs behavior recognition of an AUV through the use of a simple discretization method, resulting
in only one feature, on both simulated trajectories and actual sonar data comparing the results of a
method using Behavior Histograms, HMMs, and a CRF.

While this work uses high-frequency sonar data to validate the ability to perform behavior
recognition of autonomous underwater vehicles, it is feasible to use other sensor modalities. Airborne
LIDAR has been used for bathymetry, underwater mine detection from helicopters, and shallow
underwater target detection from surface vessels.15–17 Thus, it is feasible that Airborne LIDAR could
be used by a heterogenous teammate in the form of an autonomous aerial platform to detect the
location of an AUV. Another source of teammate localization data underwater is through the use of
hydrophone arrays that have been capable of localizing targets and AUVs.18 Thus, a teammate capable
of interfacing with a hydrophone array can perform behavior recognition from a remote location.

3. Trajectory Discretization
The encoding method used is agnostic to any environment. The only measurement required is the
location x = (x, y) coordinates of an AUV in a fixed 2D plane, as seen in Fig. 2a. The motion model
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Fig. 3. (Colour online) Noisy versions of template trajectories are depicted in (a), (b), and (c).

of the AUV is assumed to be non-holonomic and always moving with a forward motion similar to a
tricycle model. The yaw of the AUV is calculated from the vector of motion from one time-step to
the next.

�x(t−1,t) = xt − xt−1 (1)

θ t = arctan(�x(t−1,t)) (2)

�θt = θt − θt−1 (3)

The encoding used in this research is the change in yaw between time steps. Possible changes in
yaw are discretized according to bins. Each bin corresponds to a range of values. Bin 3, for example,
represents a change in yaw between −0.12 and +0.12 rad. As seen in Fig. 2b, an AUV moving straight
ahead is observed as having no change in yaw and thus encoded as a 3 while one turning by 0.26 rad
is encoded as a 2. A series of these encodings are combined into a trajectory string for input into the
Behavior Histograms, Hidden Markov Models (HMMs), or the Conditional Random Field (CRF).

4. Recognition Methods
This paper focuses on behavior recognition of an AUV performing the behaviors GoToWaypoint,
Loiter, and SearchPattern, which can be seen in Fig. 3. These behaviors are created using simple
rules integrated with sensor information. In normal operation, these behaviors could be coupled
with others such as AvoidObstacle which may use cameras or sonar to detect such obstacles. The
GoToWaypoint is the simplest of the three behaviors as the AUV proceeds from its current location to
a defined waypoint. The Loiter behavior is performed while waiting for instructions and is created by
the AUV following a set of waypoints placed along the perimeter of an octagon. The SearchPattern
behavior is typically performed while trying to cover a rectangular area by following waypoints
placed along evenly separated segmenting lines. In this paper, we assume the behaviors are performed
atomically, meaning no other behaviors are running in parallel. In general, observations are labeled
as Z = {z1, ..., zT } where the index represents successive time steps. In our domain, zt contains an
integer value of the change in yaw of the AUV, described above. In the HMM method, each hidden
state H may not have an explicit definition. In the CRF method, the labels Lt are drawn from one of
the three behaviors. Behavior recognition is the ability for each method to determine one of the three
behaviors as the most likely being observed. Accuracy is defined as the behavior recognition method
properly identifying the behavior being observed.

4.1. Histogram matching
The baseline behavior recognition method uses histogram matching. After a given trajectory is
discretized, as described previously, a histogram is created from the possible encodings. As an
example, if a trajectory is discretized into five possible changes in yaw then a histogram of that
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Fig. 4. (Colour online) The VideoRay ROV is seen in (a). An inverted sonar image of the VideoRay ROV along
with false positive noise is seen in (b). The largest object is assumed to be the target ROV, while the smaller
objects are noise.

trajectory will have five bins, as seen in Fig. 2c. The height of each bin will reflect the frequency of
that change in yaw throughout the trajectory. Each histogram is normalized.

4.1.1. Template histogram. A template histogram is made for each behavior that we wish to recognize.
A training set of trajectory instances are discretized and a normalized histogram is made for each
trajectory. A template histogram is then created by taking the mean of all the training instances for
each bin.

4.1.2. Recognition using histogram intersection. Histogram intersection is used to determine the
match value for each behavior template trajectory histogram Bj to a given behavior trajectory instance
histogram Bk:

Intersection : Bj , Bk =
n∑

i=1

min(Bj (i), Bk(i)) (4)

where each histogram has n total bins. A score of 1 means both histograms are an exact match,
while a score of 0.5 is a partial match, and a score of 0 is a total mismatch. Behavior recognition is
performed by taking the intersection of a behavior trajectory instance with each behavior template
histogram. The given trajectory instance is classified as the behavior template histogram resulting
with the highest histogram intersection.

4.2. Hidden markov model
In this approach to the recognition problem, each behavior is modeled using a separate Hidden
Markov Model (HMM). Each HMM is first trained on example trajectories of a specific behavior.
The trained HMM is then given test trajectories to determine the log-likelihood that the test trajectory
was generated by that behavior.

4.2.1. Training. The Hidden Markov Model (HMM), as seen in Fig. 2d, is composed of hidden states
and observations.19 In Fig. 2d, the hidden states are labeled with H1...Hn while the observations
are labeled z1...zt . A random process can be in any one of the hidden states and can emit any
one of the observations. In this work the observations consist of the labeled changes in yaw, �θ .
The number of hidden states for each HMM are empirically determined. An HMM must learn the
transition probabilities between hidden states, ai,j = P (ht+1 = j |ht = i), the probabilities that a
hidden state may produce an observation, bj,k = P (zt = k|ht = j ), and the initial state distribution,
πj = P (h1 = j ). The compact notation λ = (A, B, π) represents the complete parameter set of an
HMM. The Baum-Welch algorithm estimates the maximum likelihood of the parameters, λ, when
given a corpus of training data, Z, λ̄ = maxλP (Z|λ).
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Fig. 5. (Colour online) Real trajectories captured by a BlueView forward-looking sonar of an AUV performing
SearchPattern, Loiter, and GoToWaypoint are seen in (a), (b), and (c), respectively.

4.2.2. Testing. The probability of an observation sequence, Z, given an HMM trained on a
behavior, λ,

P (Z|λ) =
∑

allH

P (Z|H, λ)P (Z|λ) (5)

is efficiently produced by the forward algorithm.19 This produces a log-likelihood that a test trajectory
instance was produced by the behavior it was trained upon.19 A trial consists of an instance of a
behavior trajectory being tested against each possible HMM. At each trial, the HMM producing the
maximum log-likelihood is determined as the representative behavior of the trial. If the representative
behavior matches the true test instance label, then it is logged as a positive identification. The accuracy
of each trained HMM is the number of positive identifications over the entire corpus of similarly
labeled instances.

4.3. Conditional random field
As seen in Fig. 2e, conditional random fields (CRFs) are undirected graphical models and are
commonly used for structured classification.20 CRFs are built from a vector of weights and a vector
of features. Features take the form fi(t, lt−1, lt , Z) where i is an index into the feature vector f and t

is an offset into the sequence, lt−1 and lt are values of the label pair at time t − 1 and t , respectively.
Z represents the entire observation sequence across all values of t . In both the following subsections,

�Z =
∑

L

T∏

t=1

exp(wT f (t, lt−1, lt , Z)) (6)

is a normalizing constant.

4.3.1. Training. Training of CRFs is performed by finding a weight vector w∗ that maximizes the
conditional log-likelihood of labeled training data:

L(L|Z; w) = wT f (t, lt−1, lt , Z) − log(�Z) (7)

w∗ = arg max
w

L(L|Z; w) (8)

4.3.2. Testing. The conditional probability of a label sequence given an observation sequence is
computed from the weighted sum of the features as:

P (L|Z) = 1

�Z

T∏

t=1

exp(wT f (t, lt−1, lt , Z)) (9)
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Fig. 6. (Colour online) An AUV using its forward-looking sonar to Track & Trail a leader AUV in order to
perform behavior recognition.

Fig. 7. (Colour online) Simulated survey mission in which the AUV loiters, proceeds to a location, and then
performs SearchPattern of a specific area. The three behavior-recognition techniques label the behaviors in
real-time.

The most likely behavior label l is assigned to each observation for each test instance presented to
the trained CRF.

5. Experiments
We performed experiments in two scenarios: a stationary observer and Tracking & Trailing observer
that followed the vehicle of interest. The stationary experiments were first performed using trajectory
data gathered through simulation and then using a stationary forward-looking sonar. In order to test
our method with two AUVs, trajectory data was gathered in simulation with one Tracking & Trailing
a leader vehicle. The final set of experiments was performed with the three behavior recognition
techniques receiving data in real time from a simulated mission.

5.1. Stationary observer
5.1.1. Simulation. MOOS-IvP, a widely used behavioral architecture for real and simulated AUVs,
is used to generate the simulated trajectory data.21 The behaviors GoToWaypoint, Loiter, and
SearchPattern are run within iMarineSim and viewed through pMarineViewer, which are tools
included in MOOS-IvP. The locations of the AUVs are recorded as each behavior is executed,
providing a template trajectory. In order to create more realistic results, the template trajectories
undergo rotation and translation transformations and are injected with Gaussian noise. Variations of
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Table I. Accuracy of simulated stationary behavior recognition.

Behavior Training Testing Histogram HMM CRF

SearchPattern 600 400 84.25% 100.00% 100.00%
Loiter 600 400 92.25% 99.25% 100.00%
GoToWaypoint 600 400 65.00% 96.00% 100.00%

Table II. Confusion matrices: simulated stationary data.

Recognized behavior

Actual Behavior SearchPattern Loiter GoToWaypoint

Histogram SearchPattern 337 0 63

Loiter 31 369 0

GoToWaypoint 121 19 260

HMM SearchPattern 400 0 0

Loiter 0 397 3

GoToWaypoint 16 0 384

CRF SearchPattern 400 0 0

Loiter 0 400 0

GoToWaypoint 0 0 400

each behavior trajectory template are created as they undergo a random assignment of transformations,
including changes in rotation and translation along with an injection of cumulative Gaussian noise
with random assignments of standard deviation ranging from 0 to 0.25, as seen in 4a, 4b, and 4c. This
will demonstrate that our methods are agnostic to the environment as they are robust to rotations and
translations and environmental noise. The global change in yaw for these experiments is discretized
into seven bins with a spread of four degrees per bin.

5.1.2. Real sonar data. For our real sonar data experiments, a surrogate vehicle called the VideoRay
ROV is used instead of the Yellowfin AUV due to space limitations in our testing tank, the Acoustic
Water Tank facility of the Georgia Tech Woodruff School of Mechanical Engineering. The testing
tank is 7.62 meters deep, 7.62 meters wide, and 10.36 meters long. The VideoRay is a modified
Pro 4 model ROV from Video Ray LLC. that includes the addition of Yellowfin subsystems such as
the WHOI acoustic micro-modem and a BlueView forward looking sonar, as seen in Fig. 4a. The
experiments were conducted with a BlueView forward-looking sonar positioned statically in a corner
while it recorded the location of a human piloted VideoRay ROV. Throughout the experiment, the
VideoRay ranged between 1 and 10 meters from the BlueView sonar. For these experiments,
the perception algorithm makes the simplifying assumptions that there is only one relevant object
in the scene, the VideoRay, and that it will always be in the FOV of the sonar. The VideoRay operators
were asked to perform multiple runs of three behaviors, GoToWaypoint, Loiter, and SearchPattern.

The BlueView forward-looking sonar provides an image with intensity values corresponding to
the acoustic response of a surface, as seen in Fig. 4b. The more intense a pixel, the more likely that
an object exists at that location. In order to smooth the ROV’s trajectory, only every ith frame is
used, here i = 10. This reduces the number of outliers significantly as the sonar data is extremely
noisy. Edges are found in the sonar image, which are used to create contours. The contour with the
largest area is assumed to be the ROV, as we assume that only the ROV is in the image and
the smaller contours are noise. The API of the BlueView sonar then produces the range and bearing of
the center pixel relative to the sonar itself. Range and bearing are then converted to x and y coordinates
to produce trajectories, as seen in Fig. 5. In this form, the discretization process converts location to
global yaw then to change in yaw as described above. In this experiment, the global change in yaw
is discretized into five bins with a spread of four degrees each.
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Table III. Accuracy of sonar behavior recognition.

Behavior Training Testing Histogram HMM CRF

SearchPattern 21 12 75.00% 100.00% 75.00%
Loiter 23 16 68.75% 68.75% 68.75%
GoToWaypoint 14 10 90.00% 100.00% 80.00%

Table IV. Confusion matrices: stationary sonar data.

Recognized behavior

Actual Behavior SearchPattern Loiter GoToWaypoint

Histogram SearchPattern 9 1 2

Loiter 4 11 1

GoToWaypoint 1 0 9

HMM SearchPattern 12 0 0

Loiter 5 11 0

GoToWaypoint 0 0 10

CRF SearchPattern 9 1 2

Loiter 5 11 0

GoToWaypoint 0 2 8

5.2. Track & Trail
In order to test our methods with a non-stationary observer, testing was performed on simulated data
with one AUV performing Track & Trail of a leader performing a behavior, as seen in Fig. 6. As in
the experiments above, the MOOS-IvP simulator is used to generate template trajectories of a leading
AUV performing GoToWaypoint, Loiter, and SearchPattern while an observing AUV performs Track
& Trail.

In order to use the change in yaw method of encoding, the template trajectories of each vehicle
are used to produce the pose (x, y, θ) of the trailing vehicle along with range and bearing to the lead
vehicle. Using this information allows the trailing AUV to reconstruct the leading AUV’s trajectory,
which will be discretized for use in behavior recognition. In order to create more realistic results,
the original measurements of the trailing AUV’s location (x, y, θ) along with range and bearing to
the leader AUV are injected with Gaussian noise, similar to those seen in 4a, 4b, and 4c. This more
accurately represents the uncertainty an AUV will have of its own location and the uncertainty of
the location of the target AUV present in sonar data. In this experiment, the global change in yaw is
discretized into seven bins with a spread of four degrees each.

5.3. Real-time recognition
In order to test our methods performing recognition in real-time, an example survey mission was
simulated in MOOS-IvP, as seen in Fig. 7. The mission consisted of an AUV performing a repeated
survey of an area. First, the AUV performs the Loiter behavior as it awaits the start mission order. In
transit to the survey location, the AUV performs the GoToWaypoint behavior. Once it arrives at the
appropriate coordinates, the AUV begins the SearchPattern behavior of the area. At the termination
of the SearchPattern behavior, the AUV performs GoToWaypoint behavior to return to the start of the
survey coordinates to perform a second SearchPattern behavior.

Each behavior recognition method had slight modifications for real-time recognition. The CRF
produces a histogram of each behavior ID and if a single behavior was above a threshold of 70%
then it was labeled as that behavior. If no behavior was above 70% then the CRF system returned no
label. The HMM method produces a negative log-likelihood that a learned behavior HMM produced
the trajectory found in the behavior window. The larger the negative log-likelihood, closer to zero,
the more likely that behavior produced the trajectory seen in the window. The HMM method was
sensitive to the number of hidden states used to represent a behavior. A manual tuning process resulted
in all the HMMs having the same number of states. The behavior histogram method produced an
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Table V. Accuracy of simulated Track & Trail behavior recognition.

Behavior Training Testing Histogram HMM CRF

SearchPattern 600 400 97.50% 97.25% 99.50%
Loiter 600 400 96.25% 94.75% 99.75%
GoToWaypoint 600 400 56.25% 95.25% 99.75%

Table VI. Confusion matrices: simulated Track & Trail data.

Recognized behavior

Actual Behavior SearchPattern Loiter GoToWaypoint

Histogram SearchPattern 390 0 10

Loiter 8 385 7

GoToWaypoint 116 59 225

HMM SearchPattern 389 0 11

Loiter 1 379 20

GoToWaypoint 13 6 381

CRF SearchPattern 398 2 0

Loiter 1 399 0

GoToWaypoint 0 1 399

intersection value for each trained behavior. A value of one meant that the behavior in the window
was a perfect match for the behavior histogram and anything less meant it was less like the trained
behavior histogram. In the simulated survey mission each behavior was labeled by hand, including
an extra label for transitions between behaviors. The results for the real-time behavior recognition
experiments are the percentage of correctly labeled behaviors versus those incorrectly labeled.

6. Results
The results of three different sources of data are analyzed and presented below. The accuracy of the
Behavior Histogram, Hidden Markov Model (HMM), and Conditional Random Field (CRF) methods
are considered for each data source. Accuracy is defined as the behavior recognition method correctly
identifying the behavior with its true label.

6.1. Stationary observer
6.1.1. Simulation. As seen in Table I, each method was trained on a specific behavior using a
corpus of 600 instances of trajectories generated by running the behavior offline. A total of 400
trajectories from each behavior, for a total of 1200 instances, were presented to the three methods for
classification. The trajectories were generated by inserting Gaussian noise with a standard deviation
of 0.25 on the location. As is seen in Table I, the Behavior Histogram method was able to achieve an
accuracy of 84.25%, 99.25%, and 65% for SearchPattern, Loiter, and GoToWaypoint, respectively.
The HMMs performed well for SearchPattern, Loiter, and GoToWaypoint as they were able to
accurately discriminate trials by 100%, 99.25%, and 96%, respectively. The CRF had 100% accuracy
on all three behaviors. As seen in Table II, the confusion matrix for the Behavior Histogram shows that
63 instances of SearchPattern were confused with GoToWaypoint, while GoToWaypoint was confused
with SearchPattern and Loiter. For the three behaviors, the HMM method had the most difficulty in
discriminating GoToWaypoint, recognizing 16 instances of that behavior as SearchPattern.

6.1.2. Sonar data. As seen in Table III, each method was trained on real sonar data while an ROV
performed a specific behavior using a corpus of 21 instances for SearchPattern, 23 instances for
Loiter, and 14 instances for GoToWaypoint. A total of 38 instances were presented to each method
for testing. The HMM discrimination method had the best accuracy of 100%, 68.75%, and 100%,
respectively. The Behavior Histogram method had an accuracy of 75%, 68.75%, and 90%. The

https://doi.org/10.1017/S0263574713001306 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713001306


Behavior recognition of autonomous underwater vehicles 301

Table VII. Percentage confusion matrices: real-time simulated survey mission
(Window Size 40, HMM with 7 states).

Recognized behavior

Actual Behavior SearchPattern Loiter GoToWaypoint NoLabel

Histogram SearchPattern 91.49 0.00 8.51 0.00

Loiter 8.16 90.31 0.00 1.53

GoToWaypoint 8.74 26.21 65.05 0.00
Transition 61.46 0.00 0.00 38.54

HMM SearchPattern 95.82 0.00 0.00 4.18

Loiter 21.63 75.46 0.00 2.91

GoToWaypoint 52.43 2.52 0.00 45.05
Transition 58.33 0.00 0.00 41.67

CRF SearchPattern 93.14 0.36 5.21 1.29

Loiter 4.80 86.79 0.00 8.42

GoToWaypoint 14.47 24.85 50.97 9.71
Transition 53.33 4.90 0.00 41.77

Table VIII. Percentage confusion matrices: real-time simulated survey mission
(Window Size 55, HMM 7 states).

Recognized behavior

Actual Behavior SearchPattern Loiter GoToWaypoint NoLabel

Histogram SearchPattern 86.08 0.00 13.92 0.00

Loiter 5.10 85.71 0.00 9.18

GoToWaypoint 15.53 35.92 48.54 0.00
Transition 61.46 0.00 0.00 38.54

HMM SearchPattern 94.33 0.00 0.00 5.67

Loiter 22.55 66.94 0.00 10.51

GoToWaypoint 42.14 1.75 0.00 56.12
Transition 55.52 0.00 0.00 44.48

CRF SearchPattern 84.90 0.00 10.88 4.23

Loiter 4.80 78.47 1.33 15.41

GoToWaypoint 16.89 24.56 41.94 16.60
Transition 47.29 0.00 2.92 49.79

CRF performed worse than both the other methods with recognition of SearchPattern, Loiter, and
GoToWaypoint with accuracy of 75%, 68.75%, and 80%, respectively. As seen in Table IV, the
Behavior Histogram method mis-identified one instance of SearchPattern with Loiter and two as
GoToWaypoint. Its worst performance was misidentifying four instances of Loiter as SearchPattern
and one instance as GoToWaypoint. The HMM method only had errors in recognizing Loiter with
five instances being identified as SearchPattern. The CRF method performed similarly to the HMM
method in misinterpreting Loiter as SearchPattern. Additionally, the CRF method identified one
instance of SearchPattern as Loiter and two instances as GoToWaypoint. The CRF method’s best
performance on the real sonar data was in recognizing GoToWaypoint as it only mis-identified two
instances as Loiter.
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Table IX. Percentage confusion matrix: real-time simulated survey mission
(HMM 7 states variable window sizes 70,70,25).

Recognized behavior

Actual SearchPattern Loiter GoToWaypoint NoLabel

SearchPattern 92.73 0.00 0.08 7.19

Loiter 20.87 60.97 0.00 18.16

GoToWaypoint 31.07 0.87 32.91 35.15
Transition 58.54 0.00 0.00 41.46

Table X. Percentage confusion matrix: real-time simulated survey mission
(HMM 7 states variable window sizes 70,70,10).

Recognized behavior

Actual SearchPattern Loiter GoToWaypoint NoLabel

SearchPattern 90.75 0.00 4.51 4.74

Loiter 20.87 60.97 0.00 18.16

GoToWaypoint 28.93 0.87 49.71 20.49
Transition 56.35 0.00 2.19 41.46

6.2. Track & Trail
As seen in Table V, using the change in yaw of the leading vehicle as a discretization method resulted
in sufficient accuracy as most of the accuracy was above 90%. The results are from inserting Gaussian
noise with a standard deviation of 0.75 on the location (x, y, θ) of the trailing vehicle, range, and
bearing to the leader. The Behavior Histogram method had an accuracy of 97.5%, 96.25%, and
56.25% of SearchPattern, Loiter, and GoToWaypoint, respectively. The HMM discrimination method
had accuracy of 97.25% with SearchPattern, 94.75% with Loiter, and 95.25% with GoToWaypoint.
The CRF discrimination method had the best accuracy of discrimination of SearchPattern, Loiter,
and GoToWaypoint with accuracy of 99.50%, 99.75%, and 99.75%, respectively. As seen in Table VI,
the CRF method only had at the worst case two mis-recognitions of SearchPattern versus the HMM
method which had a best case of only 11 mis-recognitions and the Behavior Histogram method had
175 mis-recognitions of GoToWaypoint.

6.3. Real-time recognition
As seen in Tables VII–X, the three behavior recognition methods were able to recognize the behaviors
in real-time during the simulated survey mission with varying success. The discretization of the change
in yaw for each run was performed every two seconds with nine bins each representing eight degrees
of change in yaw. Experiments were performed with varying behavior window sizes. In Table VII, all
three behavior recognition techniques were tested with a behavior window size of 40 observations. The
HMM method fared the worst of the three methods as it was unable to recognize the GoToWaypoint
behavior while also only recognizing 75.46% of the Loiter behavior. The CRF performed better as
it was able to identify 93.14%, 86.79%, and 50.97% of SearchPattern, Loiter, and GoToWaypoint
behaviors, respectively. The behavior histogram method fared the best overall as it was above 90.0%
accuracy for both the SearchPattern and Loiter behaviors but only had a 65.05% accuracy for the
GoToWaypoint behavior. Increasing the behavior window size to 55 observations for all three methods
decreased their performance across the board, as seen in Table VIII.

The HMM method proved to be fragile in relation to the behavior window size. Several experiments
were performed with varying behavior window sizes for each behavior HMM. As seen in Table IX,
by adjusting the behavior window size of the trajectory presented to the SearchPattern, Loiter,
GoToWaypoint HMMs to 70, 70, and 25, respectively, increased the accuracy of the HMM method in
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recognizing GoToWaypoint from 0.0% to 32.91%. The accuracy in determining the GoToWaypoint
behavior increased to 49.71% by decreasing the behavior window size even more to 10 observations,
as seen in Table X. There was a slight decrease in the accuracy of the HMM method in recognizing
both SearchPattern and Loiter in the 70,70,25 and 70,70,10 window size conditions compared to
40 and 55 window sizes that is a reflection of the window size and interplay between the negative
log-likelihood produced by each behavior HMM.

7. Conclusion
The work presented here demonstrates the ability of the three behavior recognition systems to work
relatively well when static testing data is provided. The Hidden Markov Models (HMM) method
resulted in sufficient performance with static data as most of the recognition accuracy was above
90%. Using Behavior Histograms resulted in the worst performance of the three methods in both the
simulated stationary data and the simulated Track & Trail data while performing slightly better than
the CRF method in the sonar data. It is not surprising that the baseline method, Behavior Histogram,
is the worst performer when compared to the other two methods as it only takes the frequency of
the changes in yaw into account making it less suitable for time series data. Using the Conditional
Random Field method resulted in better performance than the HMM method when there was ample
training data available, as in the simulated stationary observer data or the simulated Track & Trail
data. However, the CRF method performed poorly in discrimination of the real sonar data. Due to
the small sample size of real sonar data it may be an indication of under-training the CRF. However,
all the methods struggled with discriminating the Loiter behavior in the real sonar data set. It is
possible that the sonar-captured Loiter behavior should be further separated into counter-clockwise
and clockwise Loiter as that could be the reason for the methods performing poorly. This is in contrast
to the simulated Loiter trajectories, which only performed them in the counter-clockwise direction.

The three behavior recognition techniques did not fare as well during real-time recognition
experiments as an ideal system would have above 90% accuracy for all the behaviors. In general,
the behavior histogram method performed the best. This may be due to the lack of noise in the
simulated mission trajectory. Both the CRF and HMM methods poorly recognized the GoToWaypoint
behavior. When using one behavior window size for all behaviors, the CRF method performed with
more accuracy overall than the HMM method. In general, the HMM method is more difficult to tune
because the number of hidden states must be determined in conjunction with the behavior window
size for each behavior for best performance. The poor overall results for all the behavior recognition
methods may be due to the method in which the simulated mission trajectory is labeled. The real-time
data was labeled according to which behavior the vehicle was running at the time of discretization.
This does not correspond to what a human can distinguish by looking at the behavior window. This
will be a focus of our future research.

Discretization parameters for the change in yaw observations play a crucial role in the success
of behavior recognition in these experiments. For example, an experiment that discretizes the global
change in yaw with five bins each with a spread of four degrees has a limited resolution. Any change
in yaw greater than six or less than negative six degrees is placed into bins one and five, respectively.
Thus, if a crucial distinction between two behaviors occurs beyond these terminal edge bins they
will not be properly discriminated. The discretization parameters were empirically determined for
each experiment. While simple, global changes of yaw by time as an observation method is very
susceptible to changes in speed. Alternatives are to use an observation of changes in yaw by distance
or describe higher level primitives such as straight, left turn, and right turn as observations for our
behavior recognition methods.

Future work includes further investigation of discretization and behavior recognition methods
along with a larger data set. It may be possible that each behavior recognition method requires
different change in yaw discrimination parameters for improved accuracy. Alternatively, higher level
motion primitives may increase accuracy and robustness. Alternative recognition methods may be
more appropriate. Handwriting recognition has similarities with behavior recognition with a long
history and may yield improved methods.22 Recognition should be verified with more behaviors than
the ones used in these experiments, as they are a small sample representation. Future research will
include adding noise to the simulated real-time missions and a real-time mission with data gathered
from actual vehicles.
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