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ABSTRACT

This paper studies a problem of optimal reinsurance design under asymmetric
information. The insurer adopts distortion risk measures to quantify his/her
risk position, and the reinsurer does not know the functional form of this dis-
tortion risk measure. The risk-neutral reinsurer maximizes his/her net profit
subject to individual rationality and incentive compatibility constraints. The
optimal reinsurance menu is succinctly derived under the assumption that one
type of insurer has a larger willingness to pay than the other type of insurer
for every risk. Some comparative analyses are given as illustrations when the
insurer adopts the value at risk or the tail value at risk as preferences.
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1. INTRODUCTION

This paper presents an asymmetric information model in optimal reinsurance
design. The reinsurer is not be able to identify the risk preferences of the
insurer. The literature on asymmetric information in insurance markets focuses
on adverse selection, where the underlying distribution of risk that is endowed
by the insurer is unknown to the reinsurer. In such markets, the insurers with
more risky endowments are buying reinsurance. See, for instance, Rothschild
and Stiglitz (1976), Landsberger and Meilijson (1999), Young (2000), Laffont
and Martimort (2009), Chade and Schlee (2012), and Cheung et al. (2020).
This leads a selection of only high-risk insurers (lemons) buying reinsurance
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(cf. Akerlof, 1970), and thus the reinsurer needs to charge a higher premium.
This paper, on the other hand, studies the situation where the underlying risk
preferences of the insurer are unknown by the reinsurer, and the distribution
of the reinsurable loss of the insurer is known by the reinsurer. The reinsurer
faces a trade-off between high premium/low demand and low premium/high
demand. The reinsurer could offer a cheap contract to the insurer, and let the
insurer buy this contract no matter what his/her underlying risk preferences
are, or the reinsurer could offer an expensive contract to the insurer so that
only the insurer with a high willingness to pay is buying it. Geruso (2017) shows
empirically that there is substantial demand heterogeneity related to hetero-
geneity in risk preferences that is not related to the underlying risk distribution.

A reinsurance contract (also called treaty) is a couple (π , f ), where π is the
premium and f is the reinsurance indemnity function (coverage). The reinsurer
presents the insurer a menu of reinsurance policies, and the insurer chooses to
buy either one of the policies or not. The risk-neutral reinsurer maximizes the
net profit, while taking into account the demand of the insurer. Because the
risk preferences of the insurer are unknown to the reinsurer, the optimization
problem is solved under the incentive compatibility and individual rationality
constraints. We assume that there are two types of the insurers, and the risk
preferences of both types are assumed to be a distortion risk measure. This
allows us to assume an ordering in the risk preferences; the type 1 insurer has
a lower willingness to pay than the type 2 insurer for every risk.

Distortion risk measures are equivalent to dual utility as introduced by
Yaari (1987) and have gained practitioner’s interest as the risk measures value
at risk (VaR) and tail value at risk (TVaR, also known as expected shortfall)
are special cases. The VaR is used in, for example, Solvency II regulations for
insurers in the European Union, and the TVaR is used in Basel III regulation
for banks. Preferences given by a distortion risk measure are therefore popular
in the context of insurers and financial firms. Therefore, rather than studying
a principal–agent model with an insurer and a policyholder, our focus is on a
principal–agent model with one reinsurer and one insurer.

Studying distortion risk measures in optimal reinsurance contract theory
gained substantial interest in the last decade that started with Cui et al. (2013).
We impose the assumption that indemnity functions are non-decreasing and
1-Lipschitz, which is also called a no-sabotage condition (Carlier and Dana,
2003). This is motivated by ex post moral hazard on the side of the ceding
insurer, as it creates no incentives for the insurer to report a lower loss, or to
create additional (incremental) losses (see, e.g., Huberman et al., 1983; Denuit
and Vermandele, 1998). Under the no-sabotage condition, a marginal indem-
nification function (MIF) approach can be used to solve standard optimal
reinsurance problems (Assa, 2015; Zhuang et al., 2016). This generally yields to
optimality of layer-type reinsurance indemnities. We follow this approach and
reduce the optimization problem to a problem of optimizing over MIFs under
one remaining incentive compatibility condition. We show that the remaining
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incentive compatibility constraint can be removed, and the problem is solved
via a quantile optimization approach. We provide solutions by characterizing
the marginal indemnities in closed form.

In most optimal reinsurance design papers that take the perspective of
the insurance seller (reinsurer) (e.g., Amarante et al., 2015; Boonen et al.,
2018; Anthropelos and Boonen, 2020), the preferences of the insurance buyer
(insurer) are common knowledge. The reinsurer exploits this information and
prices a reinsurance contract such that the insurer becomes indifferent between
buying or not buying the proposed contract. With asymmetric information, we
show that this no longer holds, and the insurer may benefit strictly from the
transaction.

The paper that is closest to ours is Landsberger and Meilijson (1994). They
study an asymmetric information model, where the insurer is assumed to be
a risk-averse, expected utility maximizing agent. Then, when the reinsurer is
assumed to be risk-neutral and the types differ substantially in their attitude
to heavy losses, they find that there is full insurance. Moreover, Julien (2000)
study an asymmetric information model with an expected utility maximizing
agent and assumes that the reservation utility depends on the underlying loss
distribution of the insurer. This paper differs from Landsberger and Meilijson
(1994) and Julien (2000) by a focus on distortion risk measures for the insurer,
who does not need to be averse to mean-preserving spreads because we allow
for non-concave distortion functions. In contrast to Landsberger andMeilijson
(1994) and Julien (2000), we obtain a full description of the optimal reinsur-
ance solutions. Another paper that is close to our approach is Boonen et al.
(2021), who study Bowley solutions under asymmetric information. In Bowley
solutions, the reinsurer discloses an entire pricing functional to the insurer.
Also, the insurer can select any indemnity function given such a pricing func-
tional. Such a pricing functional is assumed to be monotone, and the optimal
pricing functional may therefore be tedious to derive (Boonen et al., 2021).
In this paper, the insurer is only presented with two different policies (π1, f1)
and (π2, f2), and these two contracts are strategically chosen by the reinsurer.
Therefore, Bowley solutions are different from the reinsurance contracts under
asymmetric information that are obtained in this paper.

The setting of this paper is also similar to the setting of Cheung et al.
(2020), where the key difference is the type of asymmetric information that
is assumed. While Cheung et al. (2020) assume asymmetric information with
respect to the underlying distribution of the loss of the insurer, our focus in
this paper is on asymmetric information with respect to the risk preferences of
the insurer. Interestingly, and in contrast to Cheung et al. (2020), we derive the
optimal reinsurance menu in closed form, and we find that the optimal reinsur-
ance indemnities have the form of “tranches,” This means that the risk of the
insurer is split into layers (tranches), and the layers are then either kept or sold
to the reinsurer. Such functional form is popular in reinsurance, as (truncated)
stop-loss contracts are special cases. Under symmetric information, tranches
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are generally not optimal with expected utility (e.g., Raviv, 1979), and propor-
tional reinsurance indemnities are optimal with exponential expected utilities
(Barrieu and El Karoui, 2005).

This paper is organized as follows. Section 2 states some preliminaries that
are used in Section 3, where we define the main reinsurance problemwith asym-
metric information that we study in this paper. Section 4 provides the optimal
solutions that are separating equilibrium reinsurance contracts. This section
also studies the pooling equilibrium reinsurance contracts, which are shown to
be suboptimal. Section 5 provides two examples with the VaR and the TVaR,
and finally Section 6 concludes.

2. PRELIMINARIES

The insurer is initially endowed with a bounded, non-negative random loss
variable X , which is realized at a given future reference time period. Its distri-
bution function FX is known by both the insurer and the reinsurer, while the
risk preferences of the insurer are unknown to the reinsurer in our study.

The insurer cedes the risk f (X ) (the indemnity) to the reinsurer, and in
return the reinsurer receives a premium π ≥ 0 from the insurer. We assume
that f ∈F , with

F = { f : [0,M]→ [0,M]| f (0)= 0, 0≤ f (x)− f (y)≤ x− y for 0≤ y≤ x≤M},
whereM is the essential supremum of X . The purpose of restricting the admis-
sible set of indemnity functions to F is to avoid moral hazard; see for instance
Huberman et al. (1983), Denuit and Vermandele (1998), and many more recent
papers. This moral hazard condition has a close relationship with the mar-
ketability of indemnities. More specifically, Cheung et al. (2014) define the
class of universally marketable indemnities to ensure that the acceptability by
policyholders is universal. They show that an indemnity that is assumed to be
non-decreasing a priori is universally marketable if and only if it is a 1-Lipschitz
function; see also the related discussions in Lo et al. (2021). The function
f ∈F is non-decreasing and 1-Lipschitz and hence absolutely continuous. This
implies that f is almost everywhere differentiable on [0,M]. Moreover, there
exists a Lebesgue integrable function h : [0,M] �→ [0, 1] such that:

f (x)=
∫ x

0
h(z)dz, x ∈ [0,M], (1)

where h is the slope of the indemnity function f . Assa (2015) and Zhuang et al.
(2016) call this function the MIF.

The insurer adopts a distortion risk measure to evaluate his/her risk position.
A distortion risk measure ρg of a non-negative random variable Z is given by:

ρg(Z)=
∫ ∞

0
g
(
FZ(z)

)
dz, (2)
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whenever the integral exists, where FZ(z) := 1− FZ(z) is the survival function
of Z, g ∈ Gd , and

Gd = {g : [0, 1]→ [0, 1]|g(0)= 0, g(1)= 1, g is non-decreasing and

left-continuous}.
Two popular examples of a distortion risk measure are the VaR and the TVaR,
which will be explicitly defined in Section 5.

Distortion risk measures satisfy comonotonic additivity and translation
invariance (Schmeidler, 1986; Wang et al., 1997). A risk measure ρg is comono-
tonic additive when ρg(Y )+ ρg(Z) for all comonotonic random variables
Y ,Z,1 and in particular this implies ρg(X − f (X ))+ ρ( f (X ))= ρg(X ) for all
f ∈F . A risk measure ρg is translation-invariant when ρg(Z+ c)= ρg(Z)+ c
for all c ∈R and all random variables Z. Since ρg is translation-invariant,
it holds that ρg(Y − ρg(Y ))= ρg(Y )− ρg(Y )= 0= ρg(0) for all random vari-
ables Y , and thus we can interpret ρg(Y ) as willingness to pay for loss Y .
Moreover, if g, g∗ ∈ Gd are such that g(t)≥ g∗(t) for all t ∈ [0, 1], then it holds
that ρg(Y )≥ ρg∗(Y ) for all random variables Y , and thus the risk measure ρg
exhibits a higher willingness to pay for loss Y than risk measure ρg∗ .

We note that a risk–reward trade-off, given by V(Z)=E[Z]+ α(ρg(Z)−
E[Z]) for α ∈ [0, 1] and g ∈ Gd , can be written as a distortion risk measure:
V(Z)= ρĝ(Z), with ĝ(t)= (1− α)t+ αg(t). Here, ĝ ∈ Gd . The parameter α is
then interpreted as a cost-of-capital rate (Chi, 2012). See De Giorgi and Post
(2008) for a further study of such preferences.

3. PROBLEM FORMULATION

In this section, we formalize the principal–agent model with asymmetric infor-
mation studied in this paper. Assume that the identity of the insurer is hidden
information to the reinsurer, but the reinsurer knows that the insurer adopts
a distortion risk measure ρg1 with probability p and adopts another distortion
risk measure ρg2 with probability 1− p, where g1, g2 ∈ Gd . The distribution of
X is assumed to be the same for both types of insurers.2

A reinsurance contract is equal to a pair (π , f ), where π ≥ 0 is the premium
and f ∈F is the indemnity function. We assume that the reinsurer has the
monopoly in the reinsurance market. The reinsurer offers a reinsurance menu
that consists of two reinsurance contracts to the insurer, and this menu is given
by {(π1, f1);(π2, f2)}. This menu is designed such that the insurer of type 1 weakly
prefers to buy the reinsurance contract (π1, f1) rather than the reinsurance con-
tract (π2, f2), while the insurer of type 2 weakly prefers to buy the reinsurance
contract (π2, f2) rather than the reinsurance contract (π1, f1). Once the policy is
chosen by the insurer, the reinsurer knows the risk preferences of the insurer. In
the optimal solution, πj is thus the premium charged from the j-th type of the
insurer and fj is the corresponding indemnity function ceded to the reinsurer by
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the j-th type of the insurer, j= 1, 2. The reinsurer is assumed to be risk-neutral,
and the objective for the reinsurer is thus to maximize its expected net profit:

P :=E[ (π1 − f1(X )) 1{i=1} + (π2 − f2(X )) 1{i=2}]

= p
(
π1 −E[ f1(X )]

) + (1− p)
(
π2 −E[ f2(X )]

)
, (3)

where 1{i=j} is the indicator function that is one if the insurer has the j-th type
and 0 otherwise, j= 1, 2. For the reinsurer, 1{i=1} is a Bernoulli random variable
with success probability p, which we assumed to be independent of X .

The fundamental Revelation Principle in mechanism design applies and
states that we only need to consider incentive compatibility (IC) and individual
rationality (IR). In other words, we study the optimal reinsurance design where
the reinsurer maximizes (3) under IC and IR constraints. The IC constraint
states that the reinsurer provides a contract aiming at each type of insurers,
and the type 1 insurer will not choose the menu designed for type 2 insurer, and
vice versa. The IR constraint ensures that the insurer is not worse off through
buying the designated reinsurance contract. The problem that we study in this
paper is formalized as follows.

Problem 3.1. Maximize the objective function:

max
{(π1,f1);(π2,f2)}

p
(
π1 −E[ f1(X )]

) + (1− p)
(
π2 −E[ f2(X )]

)
, (4)

subject to the following constraints: π1, π2 ≥ 0, f1, f2 ∈F ,
IR1: ρg1 (X − f1(X )+ π1)≤ ρg1 (X ), (5a)

IR2: ρg2 (X − f2(X )+ π2)≤ ρg2 (X ), (5b)

IC1: ρg1 (X − f1(X )+ π1)≤ ρg1 (X − f2(X )+ π2), (5c)

IC2: ρg2 (X − f2(X )+ π2)≤ ρg2 (X − f1(X )+ π1). (5d)

We refer to the solution of Problem 3.1 as an optimal reinsurance menu or
separating equilibrium. As a standard assumption in asymmetric information
models (cf. Landsberger and Meilijson, 1999; Laffont and Martimort, 2009),
we make the following assumptions:

(i) if IC1 holds with an equality, it is implicitly assumed that the type 1 insurer
would select contract (π1, f1);

(ii) when IC2 is an equality, the type 2 insurer would select contract (π2, f2).

Because of the comonotonic additivity and translational invariance of the
distortion risk measures, we can simplify the constraints (5a)–(5d) as follows:

IR1: π1 ≤ ρg1 ( f1(X )), (6a)

IR2: π2 ≤ ρg2 ( f2(X )), (6b)
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IC1: π1 + ρg1 ( f2(X ))≤ π2 + ρg1 ( f1(X )), (6c)

IC2: π2 + ρg2 ( f1(X ))≤ π1 + ρg2 ( f2(X )). (6d)

Remark 3.1. We wish to emphasize that we do not study adverse selection. The
two types of insurers are endowed with the same reinsurable loss X; there is only
asymmetric information with respect to the risk preferences of the insurer. Thus,
there is no notion of high or low risk types. The reinsurer prices insurance policies
only based on the demand: if the reinsurer believes that the insurer is endowed
with a large function gi (a high willingness to pay), then the reinsurer may charge
a high premium.

Throughout the paper, we make the following assumption:

Assumption 1. g1(t)≤ g2(t) for all t ∈ [0, 1].

It holds that ρg1 (Y )≤ ρg2 (Y ) for all non-negative random variables Y . This
implies that the type 1 insurer has a weakly smaller willingness to pay than
the type 2 insurer for every risk, and so this allows us to rank the two types
of the insurer based on their willingness to pay. For instance, Assumption 1
is satisfied if both types of the insurer are endowed with a VaR measure, or
if both types of the insurer are endowed with a TVaR measure. This will be
further studied in Section 5. First, we argue that the IR1 constraint is bind-
ing under this assumption. Suppose that, for the optimal reinsurance menu
{(π1, f1);(π2, f2)}, π1 <ρg1 ( f1(X )). For this case, let

c := ρg1 ( f1(X ))− π1 > 0.

Then, from IC2 we get

ρg2 ( f2(X ))− π2 ≥ ρg2 ( f1(X ))− π1

≥ ρg1 ( f1(X ))− π1 = c> 0,

where the second inequality is due to Assumption 1. Thus,

ρg2 ( f2(X ))≥ π2 + c>π2.

Now, let us consider another reinsurance menu {(π̄1, f1);(π̄2, f2)}, where π̄1 =
π1 + c and π̄2 = π2 + c. The new menu {(π̄1, f1);(π̄2, f2)} also fulfills with the
four constraints (6a)–(6d), from which the reinsurer can make a profit strictly
higher than the menu {(π1, f1);(π2, f2)}. Hence, it must hold that π1 = ρg1 ( f1(X )),
that is, IR1 must be binding under Assumption 1. With this observation,
we have ρg2 ( f2(X ))− π2 ≥ ρg2 ( f1(X ))− π1 ≥ ρg1 ( f1(X ))− π1 = 0, meaning that
IR2 holds naturally under IR1 and IC2. Note that the objective function (4)
is increasing in π2, from which it follows that IC2 must hold with equality.

https://doi.org/10.1017/asb.2021.8 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.8


614 T.J. BOONEN AND Y. ZHANG

With the help of these observations, Problem 3.1 can be simplified into
maximizing the objective function in (4) subject to the constraints:

IR1′ : π1 = ρg1 ( f1(X )), (7a)

IC1′ : ρg2 ( f2(X ))− ρg2 ( f1(X ))≥ ρg1 ( f2(X ))− ρg1 ( f1(X )), (7b)

IC2′ : π2 − π1 = ρg2 ( f2(X ))− ρg2 ( f1(X )). (7c)

Observe that the objective function in (4) can be written as the bivariate
function of the indemnity functions f1 and f2 by substituting the variables π1

and π2 from IR1′ (7a) and IC2′ (7c). Then, Problem 3.1 reduces to the following
problem.

Problem 3.2. Under Assumption 1, solve

max
{ f1, f2}

p
[
ρg1 ( f1(X ))−E[ f1(X )]

] + (1− p)[ρg1 ( f1(X ))

+ρg2 ( f2(X ))− ρg2 ( f1(X ))−E[ f2(X )]]

s.t. IC1′ : ρg2 ( f2(X ))− ρg2 ( f1(X ))≥ ρg1 ( f2(X ))− ρg1 ( f1(X )).

(8)

From (1) and (2), we note that:

ρg1 ( f1(X ))=
∫ M

0
g1(FX (z))h1(z)dz, ρg2 ( f1(X ))=

∫ M

0
g2(FX (z))h1(z)dz,

ρg1 ( f2(X ))=
∫ M

0
g1(FX (z))h2(z)dz, ρg2 ( f2(X ))=

∫ M

0
g2(FX (z))h2(z)dz,

E[ f1(X )]=
∫ M

0
FX (z)h1(z)dz, E[ f2(X )]=

∫ M

0
FX (z)h2(z)dz,

where h1 and h2 are the slopes or MIFs of the indemnity functions f1 and f2,
respectively. In other words,

f1(x)=
∫ x

0
h1(z)dz and f2(x)=

∫ x

0
h2(z)dz, x ∈ [0,M].

Then, the objective function (8) can be rewritten as:

∫ M

0

{
g1(FX (z))−

[
pFX (z)+ (1− p)g2(FX (z))

]}
h1(z)dz

+ (1− p)
∫ M

0

[
g2(FX (z))− FX (z)

]
h2(z)dz.
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In a similar manner, the IC1′ condition in Problem 3.2 can be equivalently
written as: ∫ M

0

[
g2(FX (z))− g1(FX (z))

]
[h1(z)− h2(z)]dz≤ 0. (9)

Hence, Problem 3.2 can be reformulated as follows.

Problem 3.3. Under Assumption 1, solve

max
{h1,h2}

∫ M
0

{
g1(FX (z))−

[
pFX (z)+ (1− p)g2(FX (z))

]}
h1(z)dz

+(1− p)
∫ M
0

[
g2(FX (z))− FX (z)

]
h2(z)dz

s.t. IC1′ :
∫ M
0

[
g2(FX (z))− g1(FX (z))

]
[h1(g1z)− h2(z)]dz≤ 0.

(10)

4. MAIN RESULTS

In this section, we first study the optimal reinsurance contracts. Thereafter, we
study the pooling equilibrium reinsurance contracts.

4.1. Optimal reinsurance contracts under asymmetric information

This subsection studies Problem 3.3 that yields the optimal reinsurance con-
tracts. We will show that condition IC1′ can be removed. First, we solve
the problem without considering the IC1′ condition, which is the following
problem.

Problem 4.1. Under Assumption 1, solve

max
{h1,h2}

∫ M
0

{
g1(FX (z))−

[
pFX (z)+ (1− p)g2(FX (z))

]}
h1(z)dz

+(1− p)
∫ M
0

[
g2(FX (z))− FX (z)

]
h2(z)dz.

(11)

Let

ψ1(t) := g1(t)− [ pt+ (1− p)g2(t)] and ψ2(t) := (1− p)[g2(t)− t], t ∈ [0, 1],

and define

Aψ1 = {z ∈ [0,M]|ψ1(FX (z))> 0}, Bψ1 = {z ∈ [0,M]|ψ1(FX (z))= 0},
Cψ1 = {z ∈ [0,M]|ψ1(FX (z))< 0}, Aψ2 = {z ∈ [0,M]|ψ2(FX (z))> 0},
Bψ2 = {z ∈ [0,M]|ψ2(FX (z))= 0}, Cψ2 = {z ∈ [0,M]|ψ2(FX (z))< 0}.

The following lemma summarizes the solution of Problem 4.1.
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Lemma 4.2. The optimal values of h̃1 and h̃2 that solve Problem 4.1 are given, for
z ∈ [0,M] almost everywhere (a.e.), as follows:

h̃1(z)=

⎧⎪⎨
⎪⎩
1 if z ∈Aψ1 ,

a1(z) if z ∈Bψ1 ,

0 if z ∈ Cψ1 ,

and h̃2(z)=

⎧⎪⎨
⎪⎩
1 if z ∈Aψ2 ,

a2(z) if z ∈Bψ2 ,

0 if z ∈ Cψ2 ,

where a1 and a2 are any Lebesgue integrable functions between 0 and 1.

Proof. Note that (10) can be written as:

max
{h1,h2}

∫ M

0

[
ψ1(F(z))h1(z)+ψ2(F(z))h2(z)dz

]

=max
h1

∫ M

0
ψ1(F(z))h1(z)dz+max

h2

∫ M

0
ψ2(F(z))h2(z)dz

=
∫ M

0
ψ1(F(z))h̃1(z)dz+

∫ M

0
ψ2(F(z))h̃2(z)dz,

where the last equality follows from Equation (17) in Assa (2015) or
Theorem 3.1 in Zhuang et al. (2016).

The next lemma shows that the solutions to Problem 4.1 presented in
Lemma 4.2 automatically fulfill with the constraint IC1′.

Lemma 4.3. Every solution to Problem 4.1 satisfies IC1′.

Proof. Let Assumption 1 hold. We show that any optimal MIF h̃1 and h̃2 in
Lemma 4.2 is such that:∫ M

0

[
g2(FX (z))− g1(FX (z))

]
[h̃1(z)− h̃2(z)]dz≤ 0. (12)

Let {h̃1, h̃2} be as in Lemma 4.2. By Assumption 1, it holds that g2(FX (z))−
g1(FX (z))≥ 0. We next identify the z ∈ [0,M] for which it may hold that h̃1(z)−
h̃2(z)> 0. Then, we separate three cases:

• if z ∈ Cψ2 , then ψ2(FX (z))< 0, or g2(FX (z))< FX (z), or

g1(FX (z))− [ pFX (z)+ (1− p)g2(FX (z))]

≤ g2(FX (z))− [ pFX (z)+ (1− p)g2(FX (z))]

= p(g2(FX (z))− FX (z))< 0,

and thus it holds z ∈ Cψ1 . Hence, Cψ2 ⊆ Cψ1 ;

https://doi.org/10.1017/asb.2021.8 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2021.8


OPTIMAL REINSURANCE UNDER ASYMMETRIC INFORMATION 617

• if z ∈Bψ2 , then ψ2(FX (z))= 0, or g2(FX (z))= FX (z), or

g1(FX (z))− [ pFX (z)+ (1− p)g2(FX (z))]

≤ g2(FX (z))− [ pFX (z)+ (1− p)g2(FX (z))]

= p(g2(FX (z))− FX (z))= 0,

and thus it holds z ∈Bψ1 ∪ Cψ1 . Hence, Bψ2 ⊆Bψ1 ∪ Cψ1 ;
• if z ∈Aψ2 , then h̃2(z)= 1≥ h̃1(z).

Thus, h̃1(z)> h̃2(z) only happens for z ∈Bψ1 ∩Bψ2 . But, for z ∈Bψ1 ∩Bψ2 , it
holds g2(FX (z))= FX (z) and g1(FX (z))= pFX (z)+ (1− p)g2(FX (z)), and thus
g1(FX (z))= g2(FX (z))= FX (z). Hence, for all z ∈ [0,M],

[
g2(FX (z))− g1(FX (z))

]
[h̃1(z)− h̃2(z)]≤ 0,

which implies condition IC1′.

From this result, we get that the solutions provided in Lemma 4.2 are indeed
the solutions to Problem 3.3. This is our main result and is summarized in the
following theorem.

Theorem 4.4. The optimal values of h̃1 and h̃2 that solve Problem 3.3 are given,
for z ∈ [0,M] a.e., as follows:

h̃1(z)=

⎧⎪⎨
⎪⎩
1 if z ∈Aψ1 ,

a1(z) if z ∈Bψ1 ,

0 if z ∈ Cψ1 ,

and h̃2(z)=

⎧⎪⎨
⎪⎩
1 if z ∈Aψ2 ,

a2(z) if z ∈Bψ2 ,

0 if z ∈ Cψ2 ,

where a1 and a2 are any Lebesgue integrable functions between 0 and 1.

Theorem 4.4 states all solutions to Problem 3.3. For instance, we find that there
is a unique solution to Problem 3.3 if and only if the Lebesgue measure of
Bψ1 ∪Bψ2 is zero.

Based on Theorem 4.4, the following statements can be made on the shape
of the optimal indemnity functions.

(i) If g2(t)< t for all t ∈ (0, 1), it must hold that ψ1(t)< 0 and ψ2(t)< 0 for
t ∈ (0, 1) since g1(t)≤ g2(t) due to Assumption 1. For this case, we have
Aψ1 =Bψ1 = ∅, and the Lebesgue measures of Aψ2 and Bψ2 are 0, which
implies that shutdown policies are ceded by both types of insurers.

(ii) If g2(t)> t for all t ∈ (0, 1), it follows that ψ2(t)> 0 for t ∈ (0, 1), which
means that a full reinsurance treaty is ceded by the type 2 insurer.
Furthermore,
(a) if g1(t)< t for all t ∈ (0, 1), we have ψ1(t)< 0 for all t ∈ (0, 1), indicat-

ing that the shutdown policy is ceded by the type 1 insurer;
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(b) if g1(t)> t for all t ∈ (0, 1), the optimal reinsurance indemnity depends
on the sign of the function ψ1(t) on t ∈ (0, 1), which can take var-
ious layer-type functional forms. For instance, if there exist some
t∗1 ∈ (0, 1) such that ψ1(t)> 0 for t ∈ (t∗1, 1) and ψ1(t)< 0 for t ∈ (0, t∗1),
then this leads to the conclusion that a dual stop-loss reinsurance
contract is ceded by the type 1 insurer.

(iii) If there exists some t∗2 ∈ (0, 1) such that g2(t)> t for t ∈ (t∗2, 1) and g2(t)< t
for t ∈ (0, t∗2), it implies that ψ2(t)> 0 for t ∈ (t∗2, 1). Then, a dual stop-loss
treaty is ceded by the type 2 insurer. Similar to the discussions in case (ii),
a variety of layer-type treaties can be optimally ceded by the type 1 insurer
depending on the sign of ψ1(t) on t ∈ (0, 1). We refer interested readers to
Section 5 for a more detailed treatment with the VaR and the TVaR.

Next, we discuss the net profit of the reinsurer in the optimal reinsurance
menu, where the net profit is defined in (3). To emphasize that this is the profit
in a separating equilibrium, we relabel it as PS. Using Theorem 4.4, the net
profit is given by:

PS =
∫
Aψ1

{
g1(FX (z))−

[
pFX (z)+ (1− p)g2(FX (z))

]}
dz

+ (1− p)
∫
Aψ2

[
g2(FX (z))− FX (z)

]
dz. (13)

Moreover, the welfare gain for the insurer of type 1 is WG1,S := ρg1 (X )−
(ρg1 (X − f1(X ))+ π1)= ρg1 ( f1(X ))− π1 = 0, where we use comonotonic addi-
tivity of ρg1 .

3 Moreover, the welfare gain for the insurer of type 2 is given by:

WG2,S := ρg2 (X )− (ρg2 (X − f2(X ))+ π2)

= ρg2 ( f2(X ))− π2

= ρg2 ( f2(X ))− π1 − ρg2 ( f2(X ))+ ρg2 ( f1(X ))

= ρg2 ( f1(X ))− ρg1 ( f1(X ))≥ 0. (14)

We make the following observations:

• Efficiency at the top: the optimal indemnities for the type 2 insurer coincide
with the optimal indemnities in the absence of asymmetric information;

• The type 1 insurer is indifferent between buying reinsurance or not buying
reinsurance; the type 2 insurer may strictly benefit from buying reinsurance.

From Theorem 4.4, it follows that h̃1(z)> 0 only if z ∈Aψ1 ∪Bψ1 , and thus
only if g1(FX (z))≥ FX (z). Moreover, from IR1′ it follows that π1 = ρg1 ( f1(X )).
Combining these two observations yields π1 = ρg1 ( f1(X ))≥E[ f1(X )].
Moreover, since the menu {(π1, f1);(π1, f1)} is feasible to Problem 3.1, it
must also hold that π2 ≥E[ f2(X )] because otherwise the objective P in (3)
is not maximized. This finding not only indicates that the net profit of the
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reinsurer is non-negative but also implies a non-negative risk loading for the
actuarial premium principle.

Recall that from IC2′ (7c), it follows that:

π2 = π1 + ρg2 ( f2(X ))− ρg2 ( f1(X ))

= π1 +
∫ M

0
g2(F̄X (z))[h2(z)− h1(z)]dz.

Thus, if the MIFs for the two types of insurers h2 and h1 are close to each
other, it is clear from the above expression that the premium π2 will be very
close to π1. Hence, if the indemnities f1 and f2 are similar, the corresponding
prices are similar as well. This excludes price discrimination.

In the absence of asymmetric information, the reinsurer only offers the
insurer a contract that makes the insurer indifferent between buying and not
buying reinsurance (e.g., Amarante et al., 2015). Asymmetric information
benefits the insurer if the insurer is of type 2, because the type 2 insurer can
mimic to be of type 1, and appears to have a lower willingness to pay. On the
other hand, the type 1 insurer is still indifferent between buying insurance or
not because this type cannot claim to have a lower willingness to pay. We shall
highlight the above-mentioned observations in Section 5.

4.2. Pooling equilibrium contracts

We again assume that Assumption 1 holds. Let us define the pooling equi-
librium contracts provided by the reinsurer. The reinsurer always provides
the same contract (πP, fP) regardless of the identity of the insurer. A pooling
equilibrium is given by the reinsurance contract (πP, fP) that solves

max
(π ,f )

{
π −E[ f (X )]

}
,

subject to π ≥ 0, f ∈F , and the following individual rationality conditions:

ρgi (X − f (X )+ π)≤ ρgi (X ), i= 1, 2.

It is straightforward to see that the individual rationality condition for the
type 1 insurer is binding.

Define

Ap,1 = {z ∈ [0,M]|g1(FX (z))> FX (z)}, Bp,1 = {z ∈ [0,M]|g1(FX (z))= FX (z)},
Cp,1 = {z ∈ [0,M]|g1(FX (z))< FX (z)}.

Note that the conditions IR1 and IR2 jointly reduce to IR1, and thus πP =
ρg1 ( fP(X )). Then, the optimal indemnity function fP can be obtained by solving

max
fP∈F

{
ρg1 ( fP(X ))−E[ fP(X )]

}
,
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which is equivalent to solving

max
hP

∫ M

0

[
g1(FX (z))− FX (z)

]
hP(z)dz.

By Equation (17) in Assa (2015) or the result of Theorem 3.1 in Zhuang et al.
(2016), the optimal MIF for fP can be derived as:

h̃P(z)=

⎧⎪⎪⎨
⎪⎪⎩

1 if z ∈Ap,1,

aP(z) if z ∈Bp,1,

0 if z ∈ Cp,1,
where aP is any Lebesgue integrable function between 0 and 1. Thus, the net
profit acquired by the reinsurer is given by:

PP :=
∫
Ap,1

[
g1(FX (z))− FX (z)

]
dz. (15)

Obviously, it is easy to see that PP ≥ 0, meaning that the net profit acquired
by the reinsurer is non-negative. Moreover, the welfare gains of the type 1
and type 2 insurer are given by WG1,P := ρg1 ( fP(X ))− πP = 0 and WG2,P :=
ρg2 ( fP(X ))− πP ≥ 0, respectively.

We next show that the pooling equilibrium optimal reinsurance contracts
are never better than the separating equilibrium reinsurance contracts.

Theorem 4.5. If Assumption 1 holds, then it holds that PS ≥PP, where PS and
PP are defined in (13) and (15), respectively.

Proof. We readily verify that any reinsurance menu {(π , f );(π , f )} satisfying
IR1 satisfies IR2, IC1, and IC2 as well. Thus, for the pooling equilibrium
reinsurance contract (πP, fP), the result is a direct consequence of the fact that
the reinsurance menu {(πP, fP);(πP, fP)} is feasible in Problem 3.1.

It follows from Theorem 4.5 that the competitive reinsurance market that
we study in this paper may only have a separating equilibrium and not a
pooling equilibrium. The pooling equilibrium always leads to a (weakly) lower
net profit for the reinsurer than the net profit in a separating equilibrium.

Remark 4.1. If g1(t)= g2(t) for all t ∈ [0, 1], then it holds that PP =PS. In this
case, the two types of insurers are identical, and it is optimal to offer the same
insurance contract to the types of insurers.
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5. NUMERICAL STUDIES

In this section, we present two examples to illustrate our findings developed in
the previous section. We shall discuss the optimal reinsurance menu when the
insurer adopts the VaR measure or the TVaR measure.

5.1. The insurer adopts a VaR measure

In this subsection, we provide an example that serves as an illustration of
Theorem 4.4 when the insurer adopts two types of VaR measures.

Definition 5.1. The VaR of a non-negative random variable Z at a confidence
level α ∈ (0, 1) is defined as:

VaRα(Z)= inf{z ∈R+ : P(Z≤ z)≥ α}.
The VaR is a distortion risk measure with distortion function g(t)= 1{1−α<t≤1}
for t ∈ [0, 1], where 1A = 1 if A holds and 1A = 0 otherwise. If Z is a continuous
random variable, the VaR of Z coincides with the corresponding the quantile.

Let the type 1 and type 2 insurer both use a VaR. The distortion func-
tions are given by g1(t)= 1{1−α1<t≤1} and g2(t)= 1{1−α2<t≤1}, for t ∈ [0, 1] and
0≤ α1 ≤ α2 ≤ 1. Clearly, we have g2(t)≥ g1(t) for all t ∈ [0, 1], and thus
Assumption 1 is satisfied. Also, let p ∈ (0, 1).

Note that:

ψ2(t)=

⎧⎪⎪⎨
⎪⎪⎩

−(1− p)t if 0< t≤ 1− α2,

(1− p)(1− t) if 1− α2 < t< 1,

0 if t ∈ {0, 1}.
Thus, Aψ2 = {z ∈ [0,M]|1− α2 < FX (z)< 1}, Bψ2 = {z ∈ [0,M]|FX (z) ∈ {0, 1}},
and Cψ2 = {z ∈ [0,M]|0< FX (z)≤ 1− α2}. Then, from Theorem 4.4 it follows
that:

h̃2(z)=

⎧⎪⎪⎨
⎪⎪⎩

1 if z ∈Aψ2 ,

a2(z) if z ∈Bψ2 ,

0 if z ∈ Cψ2 .

Further, it can be easily calculated that f2(x)=
∫ x
0 h̃2(z)dz= ∫ x

0 1{z∈Aψ2 }dz=
min{x, F−1

X (1− α2)}, x≥ 0, which is a dual stop-loss indemnity contract ceded
by the type 2 insurer.
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Moreover, it holds that:

ψ1(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−pt if 0< t≤ 1− α2,

−( pt+ 1− p) if 1− α2 < t≤ 1− α1,

p(1− t) if 1− α1 < t< 1,

0 if t ∈ {0, 1},
from which we can obtain that Aψ1 = {z ∈ [0,M]|1− α1 < FX (z)< 1}, Bψ1 =
{z ∈ [0,M]|FX (z) ∈ {0, 1}}, and Cψ1 = {z ∈ [0,M]|0< FX (z)≤ 1− α1}. Thus, the
result of Theorem 4.4 implies that:

h̃1(z)=

⎧⎪⎨
⎪⎩
1 if z ∈Aψ1 ,

a1(z) if z ∈Bψ1 ,

0 if z ∈ Cψ1 .

We get that f1(x)=
∫ x
0 h̃1(z)dz=min{x, F−1

X (1− α1)}, x≥ 0, which is also a
dual stop-loss contract ceded by the type 1 insurer. Furthermore, the premium
charged from the type 1 insurer is

π1 = ρg1 ( f1(X ))= F
−1
X (1− α1),

and the premium charged from the type 2 insurer is

π2 = π1 + ρg2 ( f2(X ))− ρg2 ( f1(X ))= F
−1
X (1− α2),

which follows from ρg1 ( f1(X ))= ρg2 ( f1(X )). The net profit of the reinsurer is
given by

PS = p
(
F

−1
X (1− α1)−E

[
min

{
x, F

−1
X (1− α1)

}])

+ (1− p)
(
F

−1
X (1− α2)−E

[
min

{
x, F

−1
X (1− α2)

}])
.

Assume that the loss variable X has an exponential distribution with mean
1.4 Then, FX (z)= exp (− z). Moreover, let α1 = 0.95 and α2 = 0.99. We
derive that f1(x)≈min{x, 3.00}, f2(x)≈min{x, 4.61}, π1 ≈ 3.00, π2 ≈ 4.61,
and PS = 3.62− 1.57p, p ∈ (0, 1). This means that the type 2 insurer is also
indifferent between buying or not buying the reinsurance contract (π2, f2),
that is, WG2,S = 0. Moreover, the net profit of the reinsurer is decreasing in
the probability that the insurer is of type 1. Thus, dual stop-loss treaties are
provided for the insurer regardless of which type he/she belongs to. Moreover,
a higher cap is set for the type of insurer with the highest VaR parameter, and
as a result more premium will be charged to that type.

Now, let us consider the pooling equilibrium reinsurance contract pro-
posed in Subsection 4.2. In this case, it is easy to derive that Ap,1 =Aψ1 ,
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Bp,1 =Bψ1 , and Cp,1 = Cψ1 , which yields fP(x)= f1(x)≈min{x, 3.00}, πP =
π1 ≈ 3.00, and PP = πP −E[ fP(X )]= − ln (1− α1)− α1 ≈ 2.05. Clearly, it
follows that PP ≤PS; indeed, they are equal when p→ 1. Moreover, the
welfare gains of the insurer types 1 and 2 in the pooling equilibrium contract
are given byWG1,P = 0 andWG2,P = ρg2 ( fP(X ))− πP = 0.

5.2. The insurer adopts a TVaR measure

Next, we present a numerical example when the insurer employs two types of
distortion functions corresponding to the TVaR measures.

Definition 5.2. The TVaR of a non-negative random variable Z at a confidence
level α ∈ (0, 1) is defined as:

TVaRα(Z)=
∫ 1

α

VaRτ (Z)dτ .

The TVaR is a distortion risk measure with distortion function g(t)=
min{t/(1− α), 1} for t ∈ [0, 1]. If Z is a continuous random variable, then
TVaRα(Z)=E[Z|Z≥VaRα(Z)].

Let the type 1 and type 2 insurer both use a TVaR measure. The distortion
functions are given by g1(t)=min{t/(1− α1), 1} and g2(t)=min{t/(1− α2), 1},
for t ∈ [0, 1] and 0<α1 ≤ α2 < 1. We note that Assumption 1 is satisfied. Let
p ∈ (0, 1).

We find that ψ2(t)= (1− p)( min{t/(1− α), 1} − t)> 0 for all t ∈ (0, 1),
and ψ2(0)=ψ2(1)= 0. Thus, Aψ2 = (0,M), Bψ2 = {0,M}, and Cψ2 = ∅. By
Theorem 4.4, we get that f2(x)= x, x≥ 0, is optimal. In other words, full
reinsurance is optimal for the type 2 insurer.

Define p∗ = 1− α1
α2

1−α1 and t∗ = (1−p)(1−α1)
1−p(1−α1) . To determine the indemnity f1, we get

from Theorem 4.4 that we need to determine the sign of ψ1(t) for t ∈ [0, 1]. It
holds that:

ψ1(t)=min{t/(1− α1), 1} − [ pt+ (1− p) min{t/(1− α2), 1}].
We separate three different cases of the probability p that is the probability
that the insurer is of type 1.

(a) Case 1: 0< p< p∗. For this case, it follows that:

ψ1(t)

⎧⎪⎨
⎪⎩
< 0 if 0< t< t∗,

> 0 if t∗ < t< 1,

= 0 if t ∈ {0, t∗, 1},
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which means that Aψ1 = {z ∈ [0,M]|t∗ < FX (z)< 1}, Bψ1 = {z ∈ [0,M]|
FX (z) ∈ {0, t∗, 1}}, and Cψ1 = {z ∈ [0,M]|0< FX (z)< t∗}. From 0< p< p∗
and α1 > 0, we get that 1− α2 < t∗ < 1− α1.

According to Theorem 4.4, we have f1(x)=
∫ x
0 1{z∈Aψ1 }dz=

min{x, F−1
X (t∗)}, x≥ 0. Therefore, a dual stop-loss contract is opti-

mal for the type 1 insurer, while a full reinsurance policy is optimal for
the type 2 insurer as mentioned above. Furthermore, the corresponding
premium charged by the reinsurer to the type 1 insurer is given by:

π1 = ρg1 ( f1(X ))=
∫ M

0
g1(FX (z))h̃1(z)dz=

∫
F(z)>t∗

g1(FX (z))dz

=
∫
1−α1<FX (z)≤1

dz+
∫
t∗<FX (z)≤1−α1

FX (z)
1− α1

dz

= F
−1
X (1− α1)+ 1

1− α1

∫ F
−1
X (t∗)

F
−1
X (1−α1)

FX (z)dz.

The premium charged from the type 2 insurer is given by:

π2 = π1 + ρg2 ( f2(X ))− ρg2 ( f1(X ))

= π1 +
∫ M

0
g2(FX (z))h̃2(z)dz−

∫ M

0
g2(FX (z))h̃1(z)dz

= π1 +
∫ M

0
g2(FX (z))dz−

∫
FX (z)>t∗

g2(FX (z))dz

= π1 +
∫
FX (z)≤t∗

g2(FX (z))dz

= π1 +
∫
FX (z)≤1−α2

FX (z)
1− α2

dz+
∫
1−α2<FX (z)≤t∗

dz

= π1 + 1
1− α2

∫ M

− ln (1−α2)/λ
FX (z)dz+ (F

−1
X (1− α2)− F

−1
X (t∗).

Suppose again that the risk X has an exponential distribution with
mean λ. Then,
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π1 = − ln (1− α1)
λ

+ 1− α1 − t∗

λ(1− α1)
= − ln (1− α1)

λ
− t∗

λ(1− α1)
+ 1
λ
,

π2 = π1 + 1
1− α2

∫ M

− ln (1−α2)/λ
e−λzdz+

∫ − ln (1−α2)/λ

− ln (t∗)/λ
dz

= π1 + 1
λ

+
ln

(
t∗

1−α2

)

λ
=

2+ ln
(

t∗
(1−α1)(1−α2)

)

λ
− t∗

λ(1− α1)
.

The welfare gain of the type 2 insurer is given by:

WG2,S = ρg2 ( f2(X ))− π2 = 1
λ

− ln (1− α2)
λ

− π2 = t∗

λ(1− α1)
−

1+ ln
(

t∗
1−α1

)

λ
.

Finally, the net profit of the reinsurer from the menu {(π1, f1);(π2, f2)} is
given by:

PS = π1 − p
λ
(1− t∗)+ 1− p

λ
ln (t∗/(1− α2)).

Now, let λ= 1, α1 = 0.95 and α2 = 0.99. Then, we find p∗ = 0.81. Figure 1
displays the plot of the net profit PS as function of the probability p that
the insurer is of type 1. The net profit of the reinsurer PS is decreasing
in p ∈ (0, p∗). The welfare gain obtained by the type 2 insurer through
buying reinsurance is plotted in Figure 2, from which we know the type 2
insurer will definitely benefit from the reinsurance menu since WG2,S > 0.
It depends on the probability p via t∗. Taking p= 0.6 as an example,
we have f1(x)≈min{x, 3.88}, x≥ 0, π1 ≈ 3.58, π2 ≈ 5.31, PS ≈ 3.29, and
WG2,S ≈ 0.30.

(b) Case 2: p= p∗. It follows thatψ1(t)= 0, for t ∈ [0, 1− α2], andψ1(t)> 0, for
t ∈ (1− α2, 1). For z ∈Bψ1 , the function a1(z) can be chosen freely between

0 and 1, and we pick a1(z)= 0. Then, we have f1(x)=min{x, F−1
X (1− α2)},

x≥ 0. Now, if X is exponentially distributed with mean λ, then f1(x)=
min{x,− ln (1− α2)/λ}, x≥ 0, π1 = F

−1
X (1− α1)− α1−α2

λ(1−α1) , π2 = 2−ln (1−α1)
λ

−
1−α2
λ(1−α1) , and PS = − ln (1−α1)

λ
− α1−α2

λ(1−α1) − pα2
λ
. Now, assume that λ= 1,

α1 = 0.95, and α2 = 0.99. Thus, p= p∗ = 0.81. For this case, we have
f1(x)≈min{x, 4.61}, x≥ 0, π1 ≈ 3.80, π2 ≈ 4.80, PS ≈ 3.00, and the type 2
insurer’s benefit from the reinsurance menu isWG2,S = ρg2 (X )− π2 ≈ 0.81.

(c) Case 3: p∗ < p< 1. For this case, it can be seen that ψ1(t)> 0 for all
t ∈ (0, 1). Thus, f1(x)= x, x≥ 0, that is, the same full reinsurance policy
will be ceded by the insurer no matter which type the insurer is. As a result,
π1 = π2 = ρg1 (X ) and PS = ρg1 (X )−E[X ]. Now, let X be exponentially dis-
tributed with mean 1, and, moreover, let α1 = 0.95 and α2 = 0.99. We then
have π1 = π2 ≈ 4.00 and PS ≈ 3.00 (see the red dashed line in Figure 1).
The benefit obtained by the type 2 insurer from the menu is given as
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FIGURE 1: Net profit of the reinsurer in the optimal reinsurance menu, PS , as function of p ∈ (0, 1),
corresponding to Section 5.2.
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FIGURE 2: Welfare gain of the type 2 insurer in the optimal reinsurance menu,WG2,S , as function of
p ∈ (0, 1), corresponding to Section 5.2.

WG2,S = ρg2 (X )− π2 ≈ 1.61 (see the red line in Figure 2). It is interesting
to note that the welfare gain acquired by the type 2 insurer for p∗ < p< 1
is strictly larger than that for 0< p≤ p∗. If the reinsurer believes that it is
more likely to face a type 1 insurer (so if p is large), then the optimal rein-
surance contract aims to attract maximum welfare from the type 1 insurer,
and thus the type 2 insurer benefits more from the asymmetric information.
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According to the three cases above, we know that a full reinsurance menu
will be provided to the insurer without considering his/her identity when the
probability that the insurer is of type 1 exceeds a threshold p∗; otherwise, a
dual stop-loss treaty and a full insurance treaty will be ceded by the two types
of the insurer.

Next, we discuss the pooling equilibrium contract. We find that the pooling
equilibrium reinsurance contract is given by fP(x)= x, x≥ 0, and πP = ρg1 (X ).
Thus, PP = ρg1 (X )−E[ fP(X )], WG1,P = 0, and WG2,P = ρg2 ( fP(X ))− πP. If
we assume again that X is exponentially distributed with mean 1, α1 = 0.95,
and α2 = 0.99, then fP(x)≈min{x, 3.00}, x≥ 0, πP ≈ 4.00, PP ≈ 3.00, and
WG2,P ≈ 1.61. This means that the type 2 insurer strictly benefits from the
pooling reinsurance contract. In fact, if 0< p< p∗, then the welfare gain of
the type 2 insurer is larger in the pooling equilibrium than in the separating
equilibrium. Moreover, the net profit of the reinsurer in the pooling equilib-
rium contract is not larger than the net profit of the reinsurer in the separating
equilibrium contract.

Summary: To conclude this section, let us briefly summarize our findings.
First, we summarize the case where the insurer adopts a VaR measure. For
the separating equilibrium, both types of insurers buy (possibly different)
dual stop-loss treaties and pay their indifference premiums. This implies that
the welfare gains for the types 1 and 2 insurers are both zero. The pooling
equilibrium indemnity is also a dual stop-loss treaty.

Next, we summarize the case where the insurer adopts a TVaR measure.
For the separating equilibrium, the type 2 insurer buys full insurance, while
the type 1 insurer may buy a dual stop-loss or full insurance treaty. The type 2
insurer may strictly benefit from buying reinsurance. The pooling equilibrium
indemnity is a full insurance treaty.

6. CONCLUSION

We have studied a problem of optimal reinsurance design under asymmetric
information when the risk preferences of the insurer are unknown to the
reinsurer. We propose a framework in which the insurer adopts distortion
risk measures and one type of insurer has a larger willingness to pay than the
other type of insurer for every risk. The optimal reinsurance contract menu is
derived in closed form by maximizing the net profit of the reinsurer under two
individual rationality constraints and two incentive compatibility constraints.
We also presented two examples to illustrate the reinsurance menu when the
insurer uses the VaR or the TVaR. The present results can be easily generalized
to the case when the reinsurer minimizes a distortion risk measure as well.

Our results hold under Assumption 1 that states that one type of insurer has
a larger willingness to pay than the other type of insurer for every risk. Further
investigation is needed to find solutions of Problem 3.1 without Assumption 1.
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NOTES

1. Random variablesY andZ are called comonotonic if there exists a non-decreasing function
k such that Y = k(Z).

2. For the sake of presentation, we assumed that the essential supremumM is finite, and thus
that X is bounded. However, all the results obtained in the paper still hold even if M = ∞, but
when we assume ρg1 (X )<∞, ρg2 (X )<∞, and E[X ]<∞.

3. While the welfare gains are related to the concept of net profit for the reinsurer, we here
refrain from using the terminology “net profit” in relation with risk measures. The welfare
gain WG·,· represents the willingness to pay for a reinsurance contract (π , f ) since it holds by
construction that ρg(X − f (X )+ π +WG·,·)= ρg(X ).

4. While we assumed boundedness of X , we here slightly abuse our notation by allowing for
unbounded risk (cf. Footnote 2).
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