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ABSTRACT

We define and study in this work a simple model designed for managing
long-term market risk of financial institutions with long-term commitments.
It allows the assessment of solvency capital requirements and the allocation
of risk budgets. This model allows one to avoid over-assessment of solvency
capital requirements specifically after market disruptions. It relies on a damp-
ener component in charge of refining risk assessment after market failures.
Rather than aiming at a realistic and thus complex description of equity prices
movements, this model concentrates on minimal features enabling accurate
computation of capital requirements. It is defined both in a discrete and contin-
uous fashion. In the latter case, we prove the existence, uniqueness and stability
of the solution of the stochastic functional differential equation that specifies
the model. One difficulty is that the proposed underlying stochastic process
has neither stationary nor independent increments. We are however able to
perform statistical analyses in view of its validation. Numerical experiments
show that our model outperforms more elaborate ones of common use as far
as medium-term (between 6 months and 5 years) risk assessment is concerned.
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1. INTRODUCTION AND BACKGROUND

Insurance companies or pension funds with long-term commitments should
manage their market risk in a long-term perspective and need to rely on math-
ematical key indicators to optimize their portfolio’s risk/return profile. One of
them is the market risk solvency capital. This metric reflects the level of own
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FIGURE 1: S&P 500 losses between December 1927 and December 2014 (irregular curve), 99.5% VaR for
geometric Brownian motion (top curve) and for a hypothetical model that would minimize required own

funds while remaining prudent (broken lines).

funds or guarantees needed to face the market risk of the managed portfolio.
It is used to carry out dynamic asset allocation changes so as to maintain an
acceptable level of risk for the company.

The model proposed has the particularity of avoiding excessive over-
assessments of solvency capital requirements specifically after market disrup-
tion as illustrated in Figure 1. This figure displays the S&P 500 losses between
December 1927 and December 2014 (irregular curve), along with the 99.5%
VaR for geometric Brownian motion (top curve). As one can see, required own
funds are severely overestimated after market downs. An ideal model would
minimize required own funds while remaining prudent, as exemplified by the
black curve. Of course, such a model seems beyond reach, but one can try to
find mechanisms allowing financial companies with long-term commitments
to reduce their Solvency Capital Requirement (SCR) in market downs so as
to maintain a more stable asset allocation.

This work defines and studies a simple equity risk model with this spe-
cific aim. It focuses on risk assessment for a time horizon in the approximate
range of 6 months to 5 years. The lower bound makes it possible to avoid a
fine modelling of volatility (as, e.g., in stochastic volatility models): indeed,
accounting for volatility variations is crucial for short-term horizons, but less
so for medium-term ones. The upper bound allows us to ignore complex long-
term risk modelling issues. Numerical experiments show that the proposed
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model is indeed not suitable for equity derivatives pricing nor for equity risk
assessment for horizon terms below 6 months or above 5 years.

Our model exhibits the following desirable features:

• It is simple both conceptually and as far as implementation is concerned.
• Experiments show that its returns are stochastically dominated to the first

order by the ones of actual returns for a range of composite indices: as a con-
sequence, risks are not underestimated, a crucial requirement for prudential
purposes.
• Thanks to a careful evaluation of VaR during market downs, it miti-

gates the pro-cyclicality entailed by the market-consistency-based regulation
framework, avoiding in particular equities sell-off after disruptions.

Let us elaborate on the last item, which is the core of our approach. Beyond
the simple experiment of Figure 1, it is a well-documented fact that implement-
ing solvency capital requirement based on classical models such as geometric
Brownian motion may lead to pro-cyclical effects and thus have potentially
damageable impacts on the economy (Kashyap and Stein, 2004; Adrian and
Shin, 2007; Plantin et al., 2008; Rochet, 2008). This is mainly due to the fact
that, in order to fulfil their SCR, insurance and reinsurance companies may
have to sell assets during market falls, possibly leading to a vicious circle.

There are two main paths to reduce these effects in the frame of Solvency II.
The first one is based on using simple pro-cyclical models but to “correct”
them, as far as SCR is concerned, with an a posteriori adjustment of VaR.
The regulator has, for example, put forward a “standard formula” for VaR
that uses a so-called dampener mechanism. Several implementations of damp-
ener have been proposed by the EIOPA (formerly CEIOPS), first in the QIS4
technical specifications, and then, among others, see CEIOPS (2010). The posi-
tion paper (Solvency Assessment and Management, 2012) offers a unified view
of the main variants of the dampener mechanism.

The second path is more elaborate and consists in the introduction of a
kind of dampener mechanism within the risk model. In doing so, no a posteri-
ori adjustment of the VaR is needed: instead of post-processing VaRs obtained
with geometric Brownian motion or other classical models, this alternative
approach designs elaborate models that reflect more closely the nature of equi-
ties markets, and in particular those of their features that account for cycles, in
the hope that this will lead to counter-cyclical SCR. This is the path taken, for
instance, in Bec andGollier (2009a,b), where a vector autoregressive joint mod-
elling of stocks excess returns and of a certain financial market cycle indicator is
proposed. Other models, such as certain stochastic volatility ones that account
for empirical properties of volatility such as clustering, long-term dependence
or correlation with returns may also be used for more adequate estimations of
SCR. A drawback of such models is their complexity, which results in calibra-
tion issues: identifying their parameters, specially on short logs, is a difficult
task. The impact of any inaccuracy at this stage on the estimation of SCR is
hard to assess.
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Our work takes a middle term between these two paths: we design a model
that is easy to calibrate but at the same time is sufficiently fine so as to mitigate
pro-cyclical effects. In a nutshell, the idea is to incorporate the VaR correction
of the standard formula as a “continuous time” dampener rather than as an
end-of-term one as proposed by the regulator. In a sense that will become clear
in the next section, this amounts to avoiding a fine modelling of volatility, as is
present in elaborate models and which is responsible for calibration issues, in
recognition of the fact that it is more important, in a medium-term time hori-
zon, to model precisely drift than volatility for a correct assessment of equity
risk. This view is supported by numerical experiments performed in this article
and confirms some observations of, for example, Bec and Gollier (2009a,b).

It is important to realize that our model has no ambition to reflect ade-
quately equity prices returns. Our sole aim is to compute precise mid-term
horizon VaRs, a task that does not require reproducing fine properties of the
evolution of equity prices, which, as emphasized above, typically leads to cali-
bration issues. Numerical results confirm the relevance of this view. They show,
in particular, that our model both meets prudential requirements and miti-
gates pro-cyclical effects without resorting to an a posteriori adjustment of
the VaRs.

This remaining of this article is organized as follows: Section 2 recalls the
heuristic construction of our model in a discrete setting, which was introduced
in Majri and de Lauzon (2013). A continuous version is studied in Section 3.
It is obtained as the unique solution of a stochastic functional differential equa-
tion (SFDE): indeed, future increments depend in a non-linear way on a whole
range of past values, thus making the use of SFDE mandatory. Section 4
deals with statistical aspects. In particular, we design a specific goodness-of-
fit test for the model, whose increments are correlated and non-stationary, and
validate it on logs of three indices. Finally, numerical experiments are pro-
vided in Section 5. They indicate that our model compares favourably with
classical ones such as geometric Brownian motion, GARCH or AR as far as
VaR is concerned. More precisely, we consider a proxy for the amount of
required own funds and show that, with comparable prudential behaviours,
our model always requires less own funds than others, thanks essentially to a
better evaluation of VaR in market downs.

2. HEURISTIC CONSTRUCTION

Let us briefly recall the discrete model introduced in Majri and de Lauzon
(2013). We let Ci,Ri denote the price and arithmetic return at time i (while
the principle of the model is scale free, in practice we work with monthly data).
Thus

Ri+1 = Ci+1 −Ci

Ci
.
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Define Si as

Si = 2MAi(84)−MAi(36),

where MAi(T) is the moving average of Ci computed at time i over the T + 1
last time instants (months in our case). The model gives the return at time i+ 1
as a function of Ci and Si:

Ri+1 = exp (Zi)− 1+ 1
12

(
1− Ci

Si

)+
, (2.1)

where X+ =max (0,X ) and Zi is a centred Gaussian random variable with
variance σ .

Note that we use the same symbols for actual values when they are observed
at time i and computed ones at time i+ 1. This should not lead to any confu-
sion in the sequel as it will always be clear from the context which quantity is
involved.

The rationale behind this formula is the following one: the added term
1
12 (1− Ci

Si
)+ is what differentiates the model from pure gBm. It may be under-

stood as a kind of asymmetric implementation of the dampener mechanisms
proposed by the regulation authorities. It will increase the return in periods
where the price C is smaller than a certain average S of past prices by an
amount proportional to the relative excess of S over C. This will reduce the
pro-cyclical effect of VaR-based regulation by substituting to the “true” (in the
sense of the gBm model) return an “apparent” and larger one when markets
are down (i.e., in the lower part of the cycle). This will translate in an “appar-
ent” VaR that is smaller than the “true” one (again in the sense of the gBm
model), thus lessening the capital requirement put on financial institutions dur-
ing stressed periods. In this way, the damaging impact of market downs on
SCR is tempered, in agreement with the fact that usually market risk falls after
a market shock. However, no adjustment is made when the price is higher than
the average, hence the asymmetry. The justification of this asymmetry is empir-
ical: numerical experiments show that it yields better result than a symmetric
formula does. The exact form chosen from S does not either have an easy theo-
retical justification and is rather the result of numerous experiments. However,
a heuristic explanation for the use of two moving averages is that it delays
the mean reverting effect as compared to the use of only one moving average,
thus decreasing the risk of underestimating losses. This analysis is supported
by experiments.

Let us now comment on what distinguishes model (2.1) from the damp-
ener proposed by the regulator. The essence of our idea consists in noting that
the corrected VaRs given by the dampener mechanisms can in effect be seen as
plain VaRs corresponding to a modifiedmodel. Our approach then simply con-
sists in enhancing this modified model. Let us explain this in more detail. Since
our aim here is to emphasize the benefits of identifying the modified model
describing the evolution of returns as opposed to ex-post correction of VaR,
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we consider simplified versions, thus avoiding obscuring the main arguments
by technical details. We consider monthly returns and a one-year time horizon,
and we compare the QIS5 implementation of dampener, which reads:

VaRD =VaR+ Ci+12 −MAi+12(36)
MAi+12(36)

, (2.2)

where VaRD is the dampened VaR and VaR is the VaR given by gBm, to the
formula

Ri+j =Zi+j−1 + Ci+j−1 −MAi+j−1(36)
MAi+j−1(36)

(2.3)

for j= 1, . . . , 12, which we introduce as a simplified version of (2.1). By con-
struction, (2.2) amounts to replacing the centred Gaussian variable describing
the one-year return in the original gBm model by an “apparent” model where
the return follows a Gaussian law with same variance but mean equal to
Ci+12−MAi+12(36)

MAi+12(36) (a quantity which is known at the end of the period). In other
words, one simply translates the distribution function of the return, introduc-
ing a drift equal to Ci+12−MAi+12(36)

MAi+12(36) . With model (2.3), however, this correction is
made at each time step: for every i+ j, j= 1, . . . , 12, the original gBm model is
replaced by an apparent one where the drift is Ci+j−1−MAi+j−1(36)

MAi+j−1(36) . Thus, the damp-
ening adjustments are made “continuously” all along the path (or rather, they
will be made so in the continuous version developed in the next section) instead
of just once at the end of the period. To put it differently, at time i+ 12, the
net correction in model (2.3) depends on the whole path since time i, while the
EIOPA dampener depends only on the final price and the moving average of
the prices in the considered period. In general, procedures that depend on the
whole path are more precise than ones depending only on an average, unless
the considered process possesses some “nice” properties such as being strongly
Markovian. This fact is the core reason why our model behaves in a more
robust way than (2.2). Note that, to achieve such a “continuous” dampening
effect, it is essential to incorporate the correction in the evolution of returns as
in (2.1) or (2.3). This path-dependent adjustment cannot be implemented using
a correction of the sole ex-post VaR as in (2.2).

Let us stress again that (2.1) is nothing more than an enhanced version of
the implicit model corresponding to the dampener correction of VaR. It is thus
by nomeans a realistic model for the evolution of prices, and this is so for many
reasons. For one, it is a rather simple model, with only one free parameter, σ ,
which does not even depend on time. It is a well-known fact that volatility does
vary in time and exhibit important features such as volatility clustering. This is
why a host of local and stochastic volatility models have been developed in the
past years. As noted in the introduction, however, a fine modelling of volatility
is less important for one-year returns than for short period ones. A second
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aspect is that the model does not allow for jumps and will thus lead to tails for
returns which will not display the fat tails that are commonly encountered on
markets. Finally, it should be noted that the added term 1

12 (1− Ci
Si
)+ is always

non-negative and is positive with positive probability. As a consequence, the
evolution predicted by (2.1) will lead to prices which are, in the long term,
significantly larger than the ones given by gBm for the same set of parameters.

Although this model is not an adequate representation of reality, it appears
that it allows one to evaluate one-year VaRs in an accurate but simple way that
greatly reduces pro-cyclical effects. While this fact cannot be easily proved in a
theoretical fashion, it is supported by exhaustive numerical experiments, some
of which are presented in Section 5. Heuristically, this is also justified by the
same arguments as the ones put forward by the regulators when introducing
the various dampener mechanisms.

From a numerical point of view, computing VaRs with our model is more
complex than with the dampener proposed by the regulator: indeed, a closed
formula for VaR is not available any more, and one has to resort to Monte-
Carlo simulations. The added computational burden is however small, and
VaRs can be obtained in a simple and quick way.

The model will be defined more generally in the next section and its param-
eters will be calibrated in Section 5. Note that the idea of lifting the VaR
correction into the evolution equation can be implemented with models other
than gBm. As an example, we have explored the case of a Variance-Gamma
model (see Section 5.2). Yet other variants could be considered.

3. THE MODEL

Even though we do not claim that the discrete equation presented in the previ-
ous section is a realistic model for the evolution of prices, it is still important to
check that it leads to a well-defined stochastic process when the time step tends
to 0. This will allow us in particular to be confident that the VaRs it will yield
are meaningful at all time scales. Having available a continuous time version
also makes it easier to study the dependency on the various parameters, and in
particular to assess stability.

We thus study in this section a continuous version of Model (2.1). We will
use the following notations. The moving average of the price C over the time
period [t−T , t] is denoted At,T :

At,T = 1
T

∫ t

t−T
C(u) du. (3.1)

Set

St = 2At,T1 −At,T2 . (3.2)
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When time is measured in months, we will typically use T1 = 84,T2 = 36 as in
the previous section. In general, we will always assume that T1 >T2. Define the
function

F(Ct,T1 )=
(
1− Ct

St

)+
, (3.3)

where

Ct,T1 = {C(t− s), 0≤ s≤T1}. (3.4)

The following equation is a continuous version of the discrete model of Majri
and de Lauzon (2013):

dCt =
(
F(Ct,T1 )+μ+

σ 2

2

)
Ct dt+ σCtdBt. (3.5)

which, by Itô’s Formula, is the same as:

d( ln (Ct))= (F(Ct,T1 )+μ) dt+ σdBt. (3.6)

Equation (3.5) is not a standard stochastic differential equation, as F depends
on past values of C and not only on Ct. Rather, it belongs to the class of
so-called stochastic functional differential equations (SFDE). Among the many
results about such equations, the one that we will use is as follows (Mao, 1997,
Theorem 2.2, p. 150).

Denote E the set of continuous functions from [−T1, 0] to R, equipped with
the norm ||ϕ|| = sup−T1≤u≤0 |ϕ(u)|. Thus, for instance, F defined in (3.3) is a
function from E to R. It is useful to regard Ct,T1 as an E-valued stochastic
process.

For a function G from E to R, one considers the following SFDE:

dC(t)=G(Ct,T1 )dt+ σCtdB(t), (3.7)

with initial condition

C0,T1 = ξ := {ξ (s),−T1 ≤ s≤ 0}, (3.8)

where ξ is assumed to be F0-measurable.
By definition,C(t) is called a solution of (3.7) on [−T1,T ],T > 0, with initial

condition (3.8) if

• C(t) is continuous and, for all t ∈ [0,T ], Ct,T1 is Ft-adapted;
• G(Ct,T1 ) is integrable on [0,T ];

https://doi.org/10.1017/asb.2018.35 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2018.35


A CONDITIONAL EQUITY RISK MODEL FOR REGULATORY ASSESSMENT 225

• C0,T1 = ξ and, for all t ∈ [0,T ],

C(t)= ξ (0)+
∫ t

0
G(Cs,T1 )ds+ σ

∫ t

0
CsdB(s)

almost surely.

The solution is said to be unique if, for any other solution C′,

IP
(
C(t)=C′(t) ∀t ∈ [−T1,T ]

)= 1,

that is, C and C′ are indistinguishable.

Theorem 1. [Mao (1997, Theorem 2.2, p. 150)] Assume that there exists K > 0
such that, for all ϕ,ψ in E:

1. |G(ϕ)−G(ψ)| ≤K||ϕ −ψ ||,
2. G(ϕ)2 ≤K(1+ ||ϕ||)2.
Then there exists a unique solution C to (3.7) with initial condition (3.8).
Furthermore, this solution verifies IE

( ∫ T
−T1

C(t)2dt
)
<∞.

Our model (3.5) is of the form (3.7) with G(Ct,T1 )= (F(Ct,T1 )+ σ 2

2 )Ct.
Unfortunately, Theorem 1 does not apply in our situation. Indeed, it is easy
to see that, since S ranges in R, G cannot fulfil its assumptions.

However, empirical evidence shows that St almost always remains positive
and bounded away from 0 on all analysed assets. Furthermore, in the rare sit-
uations where St comes close to 0 or gets negative, the philosophy of the model
would be to set F = 0.

These considerations prompt us to modify (3.3) as follows:

F1(Ct,T1 )=
(
1− Ct

St

)+
1l(St > ε),

where ε is positive real number which may be chosen as small as desired.
While these modifications prevent explosion of G, they introduce a discon-

tinuity at the value ε, which again forbids the use of Theorem 1. To avoid this,
we introduce yet another variant as follows:

F2(Ct,T1 )=
(St −Ct)+

St
1l(St > ε)+ St (ε−Ct)+

ε2
1l(0≤ St ≤ ε) (3.9)

3.1. Existence and uniqueness

Proposition 1. Let

G(Ct,T1 )=
(
(St −Ct)+

St
1l(St > ε)+ St (ε−Ct)+

ε2
1l(0≤ St ≤ ε)+ σ

2

2

)
Ct.
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Then G satisfies Assumptions 1 and 2 of Theorem 1. As a consequence, for any
T > 0, the equation

dCt =
(
F2(Ct,T1 )+

σ 2

2

)
Ct dt+ σCtdBt (3.10)

with initial condition (3.8) has a unique solution C on [−T1,T ]. Furthermore,

IE
(∫ T
−T1

C(t)2dt
)
<∞.

Proof. Assumption 1 says that G must be a Lipschtz function of its
argument, which is a continuous function from [−T1, 0] to R. Remark that:

• A, as defined in (3.1), is a Lipschtz function of Ct,T1 .• By (3.2), the same is true of St.
• The right-hand side of (3.9) defines a function that is Lipschtz both in St

and Ct.

By composition, F2 is itself a Lipschtz function of C0,T1 , and Assumption 1 is
satisfied.

Assumption 2 is obviously verified since F2 ranges in [0, 1].
Theorem 1 then ensures existence and uniqueness of the solution

of (3.10). �

3.2. Stability

It is a well-known fact that solutions of standard SDEs are stable with respect
to small modifications of the model. That is, if the functions defining the SDE
undergo a small variation (in a certain sense), then the solution is also only
slightly modified. See, for instance, Friedman (1975, Theorem 5.2 p.118) or
Protter (2004, Theorem 9 p. 257) for precise statements. This is important in
practice since, for the model to be trustworthy, one needs to check that if the
parameters (which, in our case are T1,T2, σ and ε) are estimated in a slightly
inaccurate way, then the output remains roughly the same, and so do the VaRs
computed based on it.

Although we believe a general result for SFDE should exist, we have not
been able to spot one. For this reason, we prove stability in our particular
case.

Proposition 2. Let (T (n)
1 ,T (n)

2 , σ (n))n be a sequence of strictly positive elements of
R

3, with T (n)
1 >T (n)

2 for all n, converging to (T1,T2, σ ) where T1 >T2 > 0, σ > 0.
Fix ε > 0. Consider, for n ∈N, the SFDE:

dC(n)
t =G(n)

(
C(n)

t,T (n)
1

)
dt+ σ (n)C(n)

t dBt, (3.11)
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with initial condition (3.8), where

G(n)
(
C(n)

t,T (n)
1

)
=
(
(S(n)

t −C(n)
t )+

S(n)
t

1l(S(n)
t > ε)

+S(n)
t
(ε(n) −C(n)

t )+

(ε)2
1l(0≤ S(n)

t ≤ ε)+ (σ (n))2

2

)
C(n)
t

and

S(n)
t = 2

1

T (n)
1

∫ t

t−T (n)
1

C(n)(u) du− 1

T (n)
2

∫ t

t−T (n)
2

C(n)(u) du.

Then, as n tends to infinity, the unique solution C(n) to (3.11) converges to the one
of (3.10) in the following sense:

lim
n→∞ IE

(
sup
0≤t≤T

|C(n)(t)−C(t)|2
)
= 0. (3.12)

Proof. The proof draws, on the one hand, on the proof of existence and
uniqueness for the solution of an SFDE and, on the other hand, on the classical
proof of stability for standard SDEs.

The fact that Equation (3.11) has a unique solution for each n is proved in
the same way as Proposition 1.

Write, for 0≤ u≤ t≤T ,

C(n)
u −Cu = ηn(u)+

∫ u

0

(
G(n)

(
C(n)

s,T (n)
1

)
−G(n)(Cs,T1 )

)
ds+ σ (n)

∫ u

0

(
C(n)
s −Cs

)
dBs,

where

ηn(u)=
∫ u

0

(
G(n)(Cs,T1 )−G(Cs,T1 )

)
ds+ (σ (n) − σ )

∫ u

0
Cs dBs.

Then

(C(n)
u −Cu)2 ≤ 3 ηn(u)2 + 3

(∫ u

0

(
G(n)

(
C(n)

s,T (n)
1

)
−G(n)(Cs,T1 )

)
ds
)2

+ 3
(
σ (n)

∫ u

0

(
C(n)
s −Cs

)
dBs

)2

.

Using the Lipschitz condition on G(n), the convergence of the sequence (σ (n))n
and the fact that C(n) and C coincide before time 0, one sees that

IE

(
3
(∫ u

0

(
G(n)

(
C(n)

s,T (n)
1

)
−G(n)(Cs,T1 )

)
ds
)2

+ 3
(
σ (n)

∫ u

0

(
C(n)
s −Cs

)
dBs

)2
)

≤K
∫ u

0
IE||C(n)

s −Cs||2 ds≤K
∫ t

0
IE
(
sup
0≤r≤s
|C(n)

r −Cr|2
)
ds,
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where K is constant depending only on T (that may change from line to line
when used in the sequel). As a consequence,

IE
(
sup
0≤u≤t

(C(n)
u −Cu)2

)
≤K IE

(
sup
0≤u≤t

ηn(u)2
)
+K

∫ t

0
IE
(
sup
0≤r≤s
|C(n)

r −Cr|2
)
ds.

(3.13)
Now,

IE
(
sup
0≤u≤t

ηn(u)2
)
≤K

(∫ t

0
IE
(
G(n)(Cs,T1 )−G(Cs,T1 )

)2
ds

+ (σ (n) − σ )2
∫ t

0
IE(C2

s ) ds
)
.

Since
∫ T
0 IE(C2

s ) ds is finite, the term
(
σ (n) − σ )2 ∫ t0 IE(C2

s ) ds tends to 0 when n
tends to infinity.

Furthermore, by examining the forms of G(n) and G, one easily checks that,
for all positive N,

lim
n→∞ sup

ϕ∈E,||ϕ||≤N
|G(n)(ϕ)−G(ϕ)| = 0. (3.14)

As a consequence, using a classical localization argument, one has that
IE
(
sup0≤u≤t ηn(u)2

)
tends to 0 when n tends to infinity. Inequality (3.13) and

the Gronwall lemma allow to conclude that (3.12) indeed holds. �
Note that the result does not hold anymore if one also allows ε to vary:

that is, if one considers a sequence of equations as (3.11) where ε is replaced
by a sequence ε(n) which tends to ε, one cannot guarantee that the sequence of
solutions C(n) will converge to C. This is because (3.14) does not hold in the
situation. This is however of little consequence in practice.

4. STATISTICAL ANALYSIS

We perform in this section a statistical analysis which suggests that our model
is able to some extent reproduce prudential aspects of observed returns. In
that view, we build a goodness-of-fit test for which we provide empirical
justification.

Since our model generates neither stationary nor independent increments,
many usual tools in statistics are not available in our case. For this reason,
we use an indirect approach and base our tests on (1) Bernoulli random vari-
ables detecting the violations of either historical or simulated returns, that is,
the occurrences of the event “the return is smaller than the one predicted by
the model at confidence level p”, and (2) averages of these random variables.
Considering these quantities makes sense in a prudential context, where the
main concern is to evaluate VaR.
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Let us first recall and fix some notations. We let ri (resp. r̂i) denote the
historical (resp. simulated) return at month i, and RT (resp. R̂T ) the historical
(resp. simulated) annual return between months T and T + 12. Thus:

1+RT =
T+11∏
i=T

(1+ ri), 1+ R̂T =
T+11∏
i=T

(1+ r̂i). (4.1)

We let FR̂t (resp. FRt) denote the cumulative distribution functions (cdf) of R̂t

(resp. Rt). No closed form exists for FR̂t , but it may be approximated to any
desired accuracy by Monte-Carlo simulation. Let Qt,M be such an approx-
imation obtained with M draws. In the following, p will always denote the
confidence level.

4.1. Building blocks

4.1.1. Definitions and dependence.
In this section we define the “building blocks” of our test: we consider the
Bernoulli random variables defined by 1l(RT ≤ F−1R̂T

(p)) and 1l(R̂T ≤ F−1R̂T
(p)).

Since FR̂T is unknown, we approximate these variables by the following ones:

Yp
T = 1lRT≤Q−1T ,M ( p)

and

Ŷ p
T = 1lR̂T≤Q−1T ,M ( p).

We have remarked previously that, by increasing M, which is independent of
all other variables, the distribution of the Yp

T (resp. Ŷ p
T ) will be as close as

desired to the one of the 1l(RT ≤ F−1R̂T
(p)) (resp. 1l(R̂T ≤ F−1R̂T

(p))). With an abuse

of notation, in the sequel, we will use interchangeably Yp
T and 1l(RT ≤ F−1R̂T

(p))

and the same for Ŷ p
T and 1l(R̂T ≤ F−1R̂T

(p)).
We wish to test two hypotheses:
H0 : the random variables Yp

T are iid Bernoulli with parameter p.
Ĥ0 : the random variables Ŷ p

T are iid Bernoulli with parameter p.
Under H0, our model is a prudential one for violations at level p of observed
returns. The relevance of Ĥ0 lies in the “independent” assumption: indeed, by
definition, each Ŷ p

T is Bernoulli random variable with parameter p. However,
independence is not guaranteed. To the contrary, since there is a strong overlap
between successive Ŷ p

T , we do not expect these variables to be independent.
A possibility to test the hypothesisH0 is to compute the following counting

statistics (the case of Ĥ0 is similar): we define two classes, C0 = {i :Yp
i = 0} and

C1 = {i :Yp
i = 1}. Under the null hypothesis, the number of elementsN0 andN1

observed in classes C0 and C1 should be close to the theoretical ones, namely
Np and N(1− p), respectively, where we recall that N is the total number of
observations and p is the Bernoulli parameter.
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We are thus led to consider the statistics

S= (Np−N0)2

Np
+ (N(1− p)−N1)2

(N(1− p)) .

We expect S to follow a χ 2 law with one degree of freedom. Experiments show
thatH0 and Ĥ0 are rejected.

However, if one considers a sub-sampled sequence Ŷ p
i , Ŷ

p
k+r, Ŷ

p
2k+r, . . . for a

sufficiently large k (of the order of 100) and arbitrary but fixed r and performs
not only first-order tests but also higher order ones, then Ĥ0 is not rejected.
Here, higher order tests means that, for order 2 for instance, we consider the
classes

C00 =
{
(i, j) : Ŷ p

ik+r = Ŷ p
jk+r = 0

}
,

C01 =
{
(i, j) : Ŷ p

ik+r + Ŷ p
jk+r = 1

}
,

C11 =
{
(i, j) : Ŷ p

ik+r = Ŷ p
jk+r = 1

}
,

with theoretical sizes, respectively, p2N/2, 2p(1− p)N/2 and (1− p)2N/2.1
Denoting observed sizes by N00,N01 and N00, we are now interested in the
statistics

(p2N/2−N00)2

p2N/2
+ (2p(1− p)N/2−N01)2

2p(1− p)N/2 + ((1− p)2N/2−N11)2

(1− p)2N/2 ,

which is supposed to follow a χ 2 law with two degrees of freedom.
It thus seems plausible that sufficiently far apart random variables Ŷ p

T are
not correlated, a property that we explore more precisely in the next section.

4.1.2. m-dependence and consequences.
We provide in this section experimental evidence that the sequence (Ŷ p

T )T is
m-dependent for m sufficiently large. Let us first briefly recall the notion of
m-dependence. Define a distance between two subsets A,B of N as follows:

d(A,B)= inf{|i− j|, i ∈A, j ∈B}.
A sequence (Xj) of random variables is said to be m-dependent if for all couple
(A,B) of subsets of N such that d(A,B)>m, the sets {Xi, i ∈A} and {Xi, i ∈B}
are independent. As we expect that the correlations between the random vari-
ables Yp

t and Yp
t′ disappear when |t− t′| gets large (the previous section hints

that |t− t′|> 100 is a suitable value), we may try to verify experimentally
whether m-dependence holds in our case. In that view, we estimate the auto-
correlations of the sequence Ŷ p

t . Note that, since we have no reasons to believe
that this sequence is stationary, the autocorrelation between say Ŷ p

t and Ŷ p
t+δ

may in general differ from the one between say Ŷ p
t′ and Ŷ p

t′+δ for t 	= t′. This
is why we draw on Figure 2 sample autocorrelations between Ŷ p

t and Ŷ p
t+δ for
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FIGURE 2: Top : autocorrelations between the Ŷ p
t for various starting times, lags between 0 and 200 and

p= 0.05 (left) and p= 0.005 (right). Bottom: maximum over all starting times of the autocorrelations between
the Ŷ p

t for lags between 0 and 200 and p= 0.05 (left) and p= 0.005 (right). The horizontal dotted line
corresponds to the 95% confidence interval.

δ = 0, . . . , 200 and a number of starting times twith p= 0.1 and p= 0.05, along
with the maximum over all starting times t of these autocorrelations. As is
apparent on the graphs, it seems plausible that the random variables Ŷ p

t are
indeed m-dependent for m of the order of 180 or larger.

Amajor interest ofm-dependence sequences is that they obey, under certain
additional conditions, a central limit theorem that we recall now.

Theorem 2. (Hoeffding and Robbins, 1948) Let (Xi)i be a sequence of
m-dependent random variables such that, for all i, IE(Xi)= 0 and IE

(|Xi|3
)
<∞.

Set :

Ai = IE
(
X 2
i+m
)+ 2

m∑
j=1

IE
(
Xi+m−jXi+m

)
.

Then, if, for all i,

lim
p→∞ p

−1
p∑

k=1
Ai+k =:A (4.2)
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FIGURE 3: Plot of p−1
∑p

k=1 Ai+k for m= 100, various starting times i and a confidence level of 99.5%. Left :
p= 1000. Right : p= 2000.
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FIGURE 4: Convergence in law of T̂p to a normal distribution. Left: empirical pdf for N = 50, 000 and
p= 0.005 (10,000 simulations). Right: corresponding (dashed) and theoretical (continuous) cdf.

exists and is independent of i, the random variable n−1/2 (X1 + · · · +Xn) tends
in law to a centred Gaussian random variable with variance A when n tends to
infinity.

The goodness-of-fit test in the next section will be a direct application of
this result. However, in order to use it, we need to verify, at least empirically,
that withXi = 1l

(
R̂i ≤ F−1R̂i

(p)
)− IE

(
1l
(
R̂i ≤ F−1R̂i

(p)
))
, the limit in (4.2) exists and

is independent of i. In that view, we compute the renormalized p−1
∑p

k=1 Ai+k
for m= 100 and various values of i and p and a confidence level of 99.5%. The
results are plotted on Figure 3 for two values of p. As one can see, on both
graphs (i.e., for p= 1000 and p= 2000) and for all i, the value is very close to
0.0184. This gives an experimental support to the fact that A does exist inde-
pendently of i. Furthermore, it is remarkable that its value is equal (within very
small statistical fluctuations) to the empirical variance of n−1/2 (X1 + · · · +Xn)

that may be estimated independently to be 0.0187. Note that this empirical
verification that the assumptions and results of Theorem 2 hold explains the
graphs in Figure 4 as well as the slope in Figure 5.
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FIGURE 5: Logarithm of the empirical standard deviation of T̂p as a function of the logarithm of n for
p= 0.05 (left) and p= 0.005 (right).

4.2. Statistical test

4.2.1. Definition of the statistics.
We set up in this section a test based on averages of the Bernoulli ran-
dom variables considered in the previous section. We introduce the following
statistics:

• Tp = 1
n

n∑
t=1

1l(Rt ≤ F−1R̂t
(p)), which counts the percentage of violations of his-

torical returns, that is, the percentage of historical returns up to time t
that fall below the quantile of confidence at level p of the distribution
R̂t. As mentioned above, we approximate Tp by the computable quantity
1
n

∑n
t=1 Y

p
t .

• T̂p = 1
n

n∑
t=1

1l(R̂t ≤ F−1R̂t
(p)), which counts the percentage of violations gener-

ated by our model. Again, T̂p is approximated by 1
n

∑n
t=1 Ŷ

p
t .

4.2.2. Convergence.
The results in Section 4.1.2 and Theorem 2 make it plausible that T̂p converges
to a Gaussian law when n tends to infinity.

The numerical experiments below indicate that this indeed seems to be the
case (see Figure 4): T̂p appears to tend in law to a normal random variable with
mean p and variance σp that may be computed empirically and coincide with
the theoretical value predicted by Theorem 2. Experiments not displayed in
this article show that, as expected, convergence is slower when p is smaller. An
additional noteworthy fact (see Figure 5) is that the standard deviation of T̂p

seems to decrease as a power law of the number of observations n, with slope
approximately equal to −1/2 for n large enough, again in agreement with the
statement of Theorem 2.
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4.2.3. Goodness-of-fit test.
Our aim is to ensure that risk is assessed in a prudential way. As a consequence,
it is natural to test for the following inequality:

R̂t ≤Rt,

in distribution for all t. In other words, we wish to verify that R̂t is stochastically
dominated at first order by Rt. This is the same as testing whether

1l(Rt ≤ F−1R̂t
(p))≤ 1l

(
R̂t ≤ F−1R̂t

(p)
)

in distribution for all p and all t. We then choose to formulate our null
hypothesis as

H0(p) :Tp ≤ T̂p,

in distribution for all p and all n, which, heuristically, simply means that,
on average, the model generates more violations than observed for historical
returns.

As shown empirically above, the statistic T̂p tends to a normal distribution
N (μ(p), σ (p)) when n tends to infinity.We are thus lead to compute the p-value
of our test as:

p− value(p)= P
[
Tp ≤N (μ(p), σ (p))

]

for any given confidence level p.
In Section 5.3, we choose a significance level equal to 5% and verify numer-

ically that the hypothesis H0(p) of first-order stochastic dominance is not
rejected for three indices: MSCI, Eurostoxx50 and S&P500.

5. NUMERICAL EXPERIMENTS

5.1. Empirical verification of the stability with respect to the parameters and
calibration issues

As shown in Proposition 2, the model is not too sensitive to small changes in
its parameters, namely the standard deviation and the durations of the two
moving averages. This is a desirable property since, in practice, it is impossible
to calibrate these values exactly. We verify empirically this fact in this section,
and also explain how we calibrate σ on market data.

5.1.1. Variation with respect to the duration of the first moving average.
We fix here the duration of the secondmoving average to 36months, and let the
duration of the first moving average take the values 48, 60, 72 and 84 months.
Here, as well as in the following sections, the initial data are provided by the
Eurostoxx50 index.
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FIGURE 6: Quantiles at levels 0.5%, 50% and 99.5% for the distribution of our model at each date for a fixed
duration of 3 years of the second moving average and various durations for the first moving average (4 years:

dashed, 5 years: continuous—black—, 7 years: dotted—greyish—).

Figure 6 displays certain quantiles of the distribution of the returns esti-
mated through Monte-Carlo simulations over 240 months. As expected, one
can see that the variations with respect to changes in the duration of the first
moving average are small.

Extensive tests suggest that a value of 84 months is appropriate for most
cases.

5.1.2. Variation with respect to the duration of the second moving average.
We now fix the duration of the first moving average 84 months and let the
duration of the second one take the values 24, 36, 48 and 60 months.

The results are presented in Figure 7. The same comment as in the previ-
ous section can be made. Extensive tests suggest that a value of 36 months is
appropriate for most cases.

5.1.3. Variation and calibration with respect to σ .
Varying σ translates into a homothetic transformation centred on the middle
quantile, as can be seen in Figure 8.

The calibration of σ is asset dependent and is carried out in such a way as
to achieve the desired number of violations at a given confidence level p for
the duration of the longer moving average. In practice, σ is re-evaluated on a
daily basis. While this is a backward looking procedure, the facts that consec-
utive evaluations seldom differ in a significant way and that the model is stable
with respect to σ ensure that this calibration method yields meaningful results.
Empirical results show that this procedure typically amounts to multiplying the
estimated historical standard deviation by a factor between 1 and 2. As such,
it is not unlike the device put forward in the Bale III recommendations that
consists in using 3 σ instead of the estimated σ for VaR computations.
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FIGURE 7: Quantiles at levels 0.5%, 50% and 99.5% for the distribution of our model at each date for a fixed
duration of 7 years the first moving average and various durations for the second moving average (2 years:

dashed, 3 years: continuous—black—, 4 years: dotted—greyish—).
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FIGURE 8: Quantiles at levels 0.5%, 50% and 99.5% for the distribution of our model at each date with
increasing multipliers for σ : 1 (dotted), 1.3 (continuous -black-) and 1.6 (dashed -greyish-). These numbers

refer to the multiplying factor applied to the estimated historical standard deviation.

5.2. Empirical verification of the counter-cyclical property of the model

We present in this section numerical experiments showing that our model yields
VaRs which, while being conservative (because of the calibration of σ ), does
minimize own funds requirements thanks to its counter-cyclical character, as
compared with models with similar or greater complexity. Recall that this was
our major motivation for introducing our “continuous dampener” mechanism.
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To this end, we compare its performances with the one of the three classical
models: plain geometric Brownian motion (referred to as “gBm” in the sequel),
GARCH(1,1) and AR(1), which are of common use in this context. In order to
test whether it would be advantageous to replace the Brownian innovation in
(3.5) by a pure jump one, we have also tested our model in the form:

dCt =
(
F(Ct,T1 )+μ+

σ 2

2

)
Ct dt+ σCtdVt, (5.1)

whereV is a Variance–Gamme process (Madan et al., 1998). This did not result
in any significant difference with the Gaussian version, and thus the results
obtained with this variant are not shown.

In the sequel, we thus compare four models: gBm, AR(1), GARCH(1,1),
and the one described by (3.5), termed BCD (for “Brownian Continuous
Dampener”).

Let us briefly recall the description of the models AR(1) and GARCH(1,1):
GARCH(1,1)

yt = σtzt,

σ 2
t = κ + γ σ 2

t−1 + αy2t−1,
AR(1)

yt = c+ ϕyt−1 + σzt,
with yt the return at time t and zt Gaussian innovation of mean 0 and
variance 1.

For the models AR(1) and GARCH(1,1), the parameters are estimated
using the maximum likelihood estimation. We observe that the BCD is fitted
on the same number of parameters than AR(1) and GARCH(1,1) models. In
other words, with the exception of gBm, which serves as a “baseline”, all three
other models have exactly three parameters.

To allow for fair comparisons, all models are tested in the same conditions:
at each date i, one starts by estimating the parameters using the last 84 monthly
data. Then, Monte-Carlo simulations are performed to compute sets of prices
for each of the next 12 months, which allows one to obtain VaRs at time i+ 12
months. Since our aim is to compare the models with respect to the amount of
SCR they require in a prudential setting, we calibrate the variance as explained
in Section 5.1.3: independently for each model, we scale the estimated historical
standard deviation in such a way that the proportion of violations is exactly
equal to, or slightly smaller than, 0.5%. The exact number of violations for
each model is shown in Table 1, along with the associated theoretical value
(which depends on the length of each particular log).

Figures 9–14 show graphical comparisons of VaRs obtained at the 99.5%
level with the four models along with historical 1-year losses on three indices:
monthly MSCI, Eurostoxx50 and S&P500 (for better readability, two graphs
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TABLE 1

THEORETICAL AND EMPIRICAL NUMBER OF LOSSES
EXCEEDING VAR FOR THE FOUR TESTED MODELS AND

THREE TESTED INDICES.

MSCI Eurostoxx50 S&P500

Theoretical 2 1 4
gBm 2 1 4
BCD 2 1 4
GARCH(1,1) 1 1 3
AR(1) 2 1 1
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FIGURE 9: Eurostoxx50 monthly data and comparison of historical losses (circles), 99.5% VaRs for the gBm
(dotted) and BCD (solid) models.

are displayed for each index: one comparing gBm and BCD, the other GARCH
and AR). As is apparent from the figures, our model tends to “dip” after peri-
ods of large losses, inducing the sought-after counter-cyclical effect. This is
particularly clear when comparing BCD with gBm: they sometimes coincide,
as is to be expected, but BCD sharply goes down when appropriate while
gBm decreases only slowly. To quantify this fact, we gather on Table 2 the
values of an indicator allowing one to assess the quality of the models with
respect to their counter-cyclical properties, namely the area under the VaR
curve: this serves as a reasonable proxy for the amount of capital required
in the model. A good model is one for which this value is “small”, provided
prudential constraints are met.

As one can see from Tables 1 and 2, with comparable prudential behaviour,
our model significantly outperforms gBm, GARCH(1,1) and AR(1) in terms of
SCR for the three indices.

We note that, although GARCH(1,1) is, among the four models that we
have considered, the one that accounts for the largest number of properties of
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TABLE 2

AREAS UNDER VAR FOR THE FOUR TESTED MODELS AND
THREE TESTED INDICES.

MSCI Eurostoxx50 S&P500

gBm 205 118 436
BCD 185 99 407
GARCH(1,1) 208 117 462
AR(1) 204 118 448
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FIGURE 10: Eurostoxx50 monthly data and comparison of historical losses (circles), 99.5% VaRs for the
GARCH(1,1) (dotted) and AR(1) (solid) models.
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FIGURE 11: MSCI monthly data and comparison of historical losses (circles), 99.5% VaRs for the gBm
(dotted) and BCD (solid) models.
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FIGURE 12: MSCI monthly data and comparison of historical losses (circles), 99.5% VaRs for the
GARCH(1,1) (dotted) and AR(1) (solid) models.
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FIGURE 13: S&P500 monthly data and comparison of historical losses (circles), 99.5% VaRs for the gBm
(dotted) and BCD (solid) models.

equity returns, it is not the one that yields the most satisfactory results here.
This is probably because calibrating the model on short logs as is imposed by
our setting is a hard task. As a consequence, the benefit of using a more refined
model is counter-balanced by the difficulty of estimating its parameters.

5.3. Empirical verification of the first-order stochastic dominance

As a final validation, we present on Table 3 numerical results for the test setup
in Section 4.2.3. We have performed experiments on the three same indices
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TABLE 3

p-VALUES FOR OUR MODEL ON THREE
INDICES FOR TWO CONFIDENCE LEVELS.

Confidence level 0.5% 5%

MSCI 52.96% 87.48%
Eurostoxx50 53.59% 11.9%
S&P500 56.61% 97.27%
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FIGURE 14: S&P500 monthly data and comparison of historical losses (circles), 99.5% VaRs for the
GARCH(1,1) (dotted) and AR(1) (solid) models.

as above for two values of the percentile, namely 5% and 0.5%. The model is
calibrated with 84 and 36 months for the moving averages and multipliers of
historical standard deviation chosen as indicated in the previous section.

For each confidence level, the p-values for our model on three indices are
widely higher than the significance level of 5% that we defined in Section 4.2.3.
Thus hypothesis H0(p) of first-order stochastic dominance is not rejected for
three indices.
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NOTES

1. For our test to be valid, we need that all couples be independent. This simply amounts to
using each index only once. As a consequence, N/2 couples (or observations) are available.
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