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1. INTRODUCTION

Tree-indexed random process is one subfield of probability theory developed recently. Ben-
jamini and Peres [1] have given the definition of tree-indexed Markov chains and studied the
recurrence and ray-recurrence for them. Chen, Yang, and Wang [2] have studied equivalent
definition of tree-indexed Markov chains. Berger and Ye [3] have studied the existence of
entropy rate for some stationary random fields on a homogenous tree. Ye and Berger [4,5], by
using Pemantle’s [6] result and a combinational approach, have obtained Shannon–McMillan
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theorem in probability for a PPG-invariant and ergodic random field on a homogenous tree.
Yang and Liu [7] have established the strong law of large numbers for frequency of state
occurrence on Markov chains indexed by a homogenous tree (in fact, it is a special case of
tree-indexed Markov chains and PPG-invariant random field). Recently, Yang [8], Yang and
Ye [9] has obtained the strong law of large numbers and the asymptotic equipartition prop-
erty for tree-indexed Markov chains. Huang and Yang [10] have studied the strong law of
large numbers and Shannon–McMillian theorem for Markov chains indexed by an uniformly
bounded tree. Wang, Yang, and Shi [11] have obtained the strong law of large numbers for
countable Markov chains indexed by a Cayley tree. Peng, Yang, and Shi [12] have studied
the strong law of large numbers and the asymptotic equipartition property with a.e. con-
vergence for finite Markov chains indexed by a spherically symmetric tree. Dang, Yang, and
Shi [13] define a discrete form of nonhomogeneous bifurcating Markov chains indexed by
a binary tree and discuss the equivalent properties for them, meanwhile the strong law of
large numbers and the entropy ergodic theorem are studied for these Markov chains with
finite state space.

The study of Markov chains in random environment has a quite long history.
Nawrotzki [14,15] has established a basic theory for them. Cogburn [16–18] constructed
a Hopf-chain, and used Hopf-chain theorem to study a series of theorems for Markov chains
in random environment deeply which contains ergodic theorem, central limit theorem, peri-
odic relationship between direct convergence and transfer functions, and the existence of
invariant probability measure. Hu [19,20] studied the existence, and the equivalence theo-
rems of Markov processes in random environment with continuous time parameter. Li [21],
Li, Wang, and Hu [22] applied martingale difference theory for studying Markov chains in
random environment, and he obtained the sufficient conditions for establishing the strong
law of large numbers and some strong limit theorems on them under the assumption that
the double Markov chain is ergodic. Shi and Yang [23] gave the definition of tree-indexed
Markov chains in random environment with discrete state space, and proved the equivalence
on tree-indexed Markov chains in Markov environment and double Markov chains indexed
by a tree.

During observing the division of the rod-shaped bacteria, Biologists obtain the division
law of rod-shaped bacteria- “a rod-shaped bacteria in the division, disconnected from the
middle, then split into two new rod-shaped bacteria, these two new rod-shaped bacteria as
original rod-shaped bacteria offspring” Guyon [24]. If we take each rod-shaped bacterium
as a vertex, then the division process of bacillus strains can be described as a stochas-
tic process indexed by a tree. If the effect of environment on the splitting of rod-shaped
bacteria is considered, then the division process can be described as a stochastic process
indexed by a tree in random environment. Therefore, the study of stochastic process indexed
by a tree in random environment is of importance in theoretical research and practical
application.

In Shi and Yang [23], we gave the definition of tree-indexed Markov chains in random
environment with discrete state space, and then study some equivalent theorems of tree-
indexed Markov chains in random environment. Meanwhile, we also give the equivalence
on tree-indexed Markov chains in Markov environment and double Markov chains indexed
by a tree. In Huang [25], Huang proved the strong law of large numbers and Shannon–
McMillan theorem for finite Markov chains indexed by a homogeneous tree in the finite
i.i.d random environment. In this paper, we restate the definition of tree-indexed Markov
chains in random environment with countable state space, and prove the strong law of large
numbers and Shannon–McMillan theorem for Markov chains indexed by a Cayley tree in a
Markovian environment with countable state space. In fact, the results which we obtained
are a generalization of Huang’s results.

https://doi.org/10.1017/S0269964817000444 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000444


628 Z. Shi, P. Zhong, and Y. Fan

Guyon [24] derived laws of large numbers and central limit theorems for bifurcating
Markov ins, and then applied these results to detect cellular aging in Escherichia coli, by
using a bifurcating autoregressive model. Bifurcating Markov chains are just a generalization
of Markov chains indexed by tree, so we can try to detect cellular aging under the influence
of environment, by applying laws of large numbers of Markov chains indexed by a tree in
random environment.

The rest of this paper is organized as follows. Section 2 provides a definition of
tree-indexed Markov chains in random environment with countable state space, which gen-
eralized the definition of both tree-indexed Markov chains and tree-indexed Markov chains
in random environment. Section 3 provides some important lemmas. Section 4 studies the
strong law of large numbers for Markov chain indexed by a Cayley tree in Markovian envi-
ronment. Section 5 establishs the Shannon–McMillan theorem for Markov chains indexed
by a Cayley tree in Markovian environment.

2. BASIC CONCEPT

Let T be an infinite tree but locally finite, and for any two vertices σ �= t ∈ T , there exists a
unique path σ = z1, z2, . . . , zm = t from σ to t, where z1, z2, . . . , zm are distinct and zi, zi+1

are adjacent vertices. Thus m − 1 is defined as the distance from σ to t, that is to say, m − 1
is the number of edges in the path connecting σ and t . In order to label the tree T , we
select a vertex as root o. For any two vertices σ and t of tree T , we write σ ≤ t if σ is on
the unique path from root o to t. And we use σ ∧ t to denote the farthest vertex from o
satisfying σ ∧ t ≤ t and σ ∧ t ≤ σ.

Let t be any vertex of T , we use |t| to express the distance from o to t. If |t| = n,
we say vertex t is on the n-th level of T . We denote by T (n) the subtree of tree T con-
taining the vertices from level 0 (the root o) to level n. Let Ln denote set containing all
the vertices on the n-th level, and let Ln

m denote the set of all the vertices from level
m to level n. For any vertex t of T , we denote the first predecessor of t by 1t, the pre-
decessor of 1t by 2t and the predecessor of (n − 1)t by nt, we also say that nt is the
n-th predecessor of t. Similarly, we denote the first offspring of t by 1t, the offspring of
1t by 2t and the offspring of (n − 1)t by nt, we also say that nt is the n-th offspring of
t. We call it a Cayley tree and denoted it by TC,M (see Figure 1), if the root of T has
M adjacent vertices and the other vertices have M + 1 adjacent vertices, that is to say,
every vertex of T has M sons. When the context permits, this type of tree is denoted sim-
ply by T . {Xt, t ∈ T} is said to be tree-indexed stochastic process. Let XS = {Xt, t ∈ S},
S ⊂ T, then we say that xS is the realization of XS and use |S| to denote the number of
vertices of S.

Figure 1. Cayley tree TC,2.
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Let Θ = {1, 2, . . .}, χ = {1, 2, . . .} be two countable state spaces, ξT = {ξt, t ∈ T}, and
XT = {Xt, t ∈ T} collections of random variables in probability space (Ω,F , P ) taking
values in Θ and χ, respectively. Suppose pθ = {p(θ;x), x ∈ χ}, θ ∈ Θ is a distribution with
parameter θ and Pθ = {p(θ;x, y), x, y ∈ χ}, θ ∈ Θ is a transition matrix with parameter θ
defined on χ2.

Definition 2.1 (Wang et al. [11]): Let T be a tree and χ = {1, 2, . . .} a countable state
space. Let {Xt, t ∈ T} be a collection of variables defined on probability space (Ω,F , P )
taking values in χ. Let p = {p(x), x ∈ χ} be a probability distribution on χ and P =
{p(x, y), x, y ∈ χ} be a transition matrix on χ2. If ∀t ∈ T,∀n ≥ 1, we have

P (XLn = xLn |XT (n−1)
= xT (n−1)

) =
∏

t∈Ln

p(x1t
, xt), (2.1)

and

P (Xo = xo) = p(xo),∀xo ∈ χ. (2.2)

Then we call {Xt, t ∈ T} tree-indexed Markov chains with initial distribution p and
transition matrix P with state space χ.

Remark 2.2: A variety of equivalent forms of definition of tree-indexed Markov chain is
given by reference Chen et al. [2], and Definition 2.1 is just one of them. For the detailed
equivalent forms of definition of tree-indexed Markov chains, please refer to reference Chen
et al. [2].

We will give the concept of tree-indexed Markov chains in random environment which
is similar to Definition 2.1 of Markov chains indexed by a tree.

Definition 2.3 (Shi and Yang [23]): Let T be a tree, XT = {Xt, t ∈ T} and ξT = {ξt, t ∈
T} collection of random variables taking values in χ and Θ, respectively. Let pθ =
{p(θ;x), x ∈ χ}, θ ∈ Θ be a probability distributions with parameter θ on χ and Pθ =
{p(θ;x, y), x, y ∈ χ}, θ ∈ Θ a transition matrix with parameter θ on χ2. If

P (Xo = xo|ξT ) = p(ξo;xo), a.e., (2.3)

P (XLn = xLn |ξT ,XT (n−1)
) =

∏
t∈Ln

p(ξ1t
;X1t

, xt) a.e., (2.4)

we call XT tree-indexed Markov chains in random environment ξT determined by distri-
butions pθ with parameter θ and transition matrices Pθ with parameter θ. If ξT is Markov
chains indexed by a tree, then we call XT tree-indexed Markov chains in Markov environ-
ment.

Remark 2.4: When ξT is constant, tree-indexed Markov chains in random environment are
general Markov chains indexed by a tree. If each vertex in the tree has only one son, tree-
indexed Markov chains in random environment are Markov chains in random environment.
Therefore, tree-indexed Markov chains in random environment generalized both Markov
chains indexed by a tree and Markov chains in random environment.
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Lemma 2.5 (Shi and Yang [23]): XT is tree-indexed Markov chains in random environment
defined as Definition 2.3 if and only if

(i)

P (Xo = xo|ξT (n)
= θT (n)

) = p(θo;xo). (2.5)

(ii) When k ≥ n − 1,

P (XLn = xLn |ξT (k)
= θT (k)

,XT (n−1)
= xT (n−1)

) =
∏

t∈Ln

p(θ1t
;x1t

, xt). (2.6)

Lemma 2.6 (Shi and Yang [23]): (2.5) and (2.6) of Lemma 2.5 are true if and only if

P (XT (n)
= xT (n)

, ξT (n) = θT (n)
) = P (ξT (n) = θT (n)

)p(θo;xo)
∏

t∈T (n)\{o}
p(θ1t

;x1t
, xt).

(2.7)

Remark 2.7: Let Ω = χT × ΘT and F ′ be a σ-algebras produced by all finite cylinder sets
on Ω. We can define tree-indexed random processes in random environment as follows:
ω = (xT , θT ) ∈ Ω, denote XT (xT , θT ) = xT , ξT (xT , θT ) = θT , denote the value of μP on
cylinder sets (XT (n)

= xT (n)
, ξT (n)

= θT (n)
) as the right of (2.7), then μP can be expanded

to a probability measure on the whole space (Ω,F ′) by Kolmogorov existence theorem.
Consequently, (XT , ξT ) is a Markov chain indexed by a tree in random environment under
μP . In this way, we get the realization of Markov chains indexed by a tree in random
environment.

Remark 2.8: If ξT is a Markov chains indexed by a tree which has initial distribution p′(θ)
and transition matrix K = (K(θ, a)), then by (2.4) and (2.7) we have

P (XT (n)
= xT (n)

, ξT (n) = θT (n)
) = p(θo;xo)p′(θo)

∏
t∈T (n)\{o}

p(θ1t
;x1t

, xt)K(θ1t
, θt).

If we suppose that Q(x, θ; y, a) = p(θ;x, y)K(θ, a), q(xo, θo) = p(θo;xo)p′(θo), then

P (XT (n)
= xT (n)

, ξT (n) = θT (n)
) = q(xo, θo)

∏
t∈T (n)\{o}

Q(x1t
, θ1t

;xt, θt). (2.8)

So XT is tree-indexed Markov chains in Markov environment ξT , then (XT (n)
, ξT (n)

) is tree-
indexed double Markov chains with an initial distribution q(xo, θo) and transition matrix
Q(x, θ; y, a). Conversely, it is easy to see that (XT , ξT ) is a double Markov chains indexed
by a tree, then XT is a tree-indexed Markov chain in Markov environment ξT . So we give
the equivalence on tree-indexed Markov chains in Markov environment and double Markov
chains indexed by a tree.

In the following sections, we always assume ξT is a Markov environment, so
(XT (n)

, ξT (n)
) is tree-indexed double Markov chains with an initial distribution q(xo, θo),

and transition matrix Q(x, θ; y, a) in the probability space (Ω,F , P ). We will study the
strong law of large numbers and Shannon–McMillan theorem for a Markov chain indexed
by a Cayley tree in Markov environment with countable state space.
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Definition 2.9: Let Q = {Q(i, α; j, β)} be a transition matrix for Markov chains indexed
by a tree in Markov environment with countable state space (χ × Θ)2. If there exists a
distribution π = {π(j, β)}(j,β)∈(χ,Θ), satisfy

sup
(i,α)∈(χ,Θ)

∑
(j,β)∈(χ,Θ)

|Q(n)(i, α; j, β) − π(j, β)| −→ 0, (n −→ ∞), (2.9)

where Q(n) is a n step transition probability determined by Q. Then we say Q is strong
ergodic for distribution π.

Remark 2.10: If (2.9) holds, obviously we have πQ = π. we also say π is a stationary
distribution determined by Q.

3. SOME LEMMAS

In order to study the strong law of large numbers and Shannon–McMillan theorem for a
Markov chain indexed by a Cayley tree in Markov environment with countable state space,
we first give some important lemmas.

Lemma 3.1 (Huang [25]): Let XT be a Markov chain indexed by an Cayley tree T with a
Markov environment ξT . Let gt(x, θ; y, α) be a collection of functions defined on (χ × Θ)2.
Let L0 = {o}, Fn = σ(XT (n)

, ξT (n)
) (n ≥ 1),

tn(λ, ω) =
e
λ

∑
t∈T (n)\{0}

gt(X1t ,ξ1t ;Xt,ξt)

∏
t∈T (n)\{o}

E[eλgt(X1t ,ξ1t ;Xt,ξt)|X1t
, ξ1t

]
, (3.1)

where λ is a real number. Then {tn(λ, ω),Fn, n ≥ 1} is a nonnegative martingale.

Lemma 3.2 (Huang [25]): Let XT be a Markov chain indexed by a Cayley tree T in Markov
environment ξT . Let {gt(i, α; j, β), t ∈ T} be a collection of functions defined on (χ × Θ)2.
Set

Hn(ω) =
∑

t∈T (n)\{0}
gt(X1t

, ξ1t
;Xt, ξt), (3.2)

Gn(ω) =
∑

t∈T (n)\{0}
E[gt(X1t

, ξ1t
;Xt, ξt) | X1t

, ξ1t
], (3.3)

Let b > 0, set

M(ω) = lim sup
n→∞

1
|T (n)|

∑
t∈T (n)\{0}

E[g2
t (X1t

, ξ1t
;Xt, ξt)eb|gt(X1t ,ξ1t ;Xt,ξt)| | X1t

, ξ1t
] (3.4)

and
D(b) = {ω | M(ω) < ∞}. (3.5)

Then

lim
n→∞

Hn(ω) − Gn(ω)
|T (n)| = 0, a.e., ω ∈ D(b). (3.6)
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Remark 3.3: If {gt(i, α; j, β), t ∈ T} are a collection of uniformly bounded functions on (χ ×
Θ)2, that is, there exists a positive integer K such that |gt(i, α; j, β)| ≤ K for any t ∈ T .
Then for all b > 0,

E[g2
t (X1t

, ξ1t
;Xt, ξt)eb|gt(X1t ,ξ1t ;Xt,ξt)| | X1t

, ξ1t
] ≤ K2ebK ,

thus Ω ⊂ D(b). We have

lim
n→∞

Hn(ω) − Gn(ω)
|T (n)| = 0, a.e.. (3.7)

Lemma 3.4: Let XT , ξT and Fn be defined as before. Then ∀(i, α) ∈ χ × Θ, h ≥ 2,

P (Xht = i, ξht = α | F|t|) = P (Xht = i, ξht = α | Xt, ξt). (3.8)

Proof: In order to prove Eq. (3.8), we only need to prove the case of h = 2. In fact,

P (X2t = i, ξ2t = α | F|t|)

=
∑

(x,θ)∈(χ,Θ)

P (X2t = i, ξ2t = α,X1t = x, ξ1t = θ | F|t|)

=
∑

(x,θ)∈(χ,Θ)

P (X2t = i, ξ2t = α | X1t = x, ξ1t = θ,F|t|) · P (X1t = x, ξ1t = θ | F|t|)

=
∑

(x,θ)∈(χ,Θ)

P (X2t = i, ξ2t = α | X1t = x, ξ1t = θ,Xt, ξt) · P (X1t = x, ξ1t = θ | Xt, ξt)

=
∑

(x,θ)∈(χ,Θ)

P (X2t = i, ξ2t = α,X1t = x, ξ1t = θ | Xt, ξt) = P (X2t = i, ξ2t = α | Xt, ξt).

Thus we complete the proof of this lemma. �

4. STRONG LAW OF LARGE NUMBERS

Let XT be a Markov chain indexed by a Cayley tree T in Markov environment ξT . We
define two stochastic sequences as following:

Sn(i, α) =
∑

t∈T (n)

Ii(Xt)Iα(ξt),∀(i, α) ∈ χ × Θ, (4.1)

Sn(i, α; j, β) =
∑

t∈T (n)\{o}
Ii(X1t

)Iα(ξ1t
)Ij(Xt)Iβ(ξt),∀(i, α; j, β) ∈ (χ × Θ)2, (4.2)

where

Ik(i) =

{
1, i = k,

0, i �= k.
(4.3)

In fact, Sn(i, α) is the number of (i, α) in the collection of {(Xt, ξt), t ∈ T (n)}, and
Sn(i, α; j, β) is the number of (i, α; j, β) in the collection of {(X1t

, ξ1t
;Xt, ξt), t ∈ T (n)\{o}}.
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Theorem 4.1: Let {Xt, t ∈ T} be a Markov chain indexed by a Cayley tree T in
Markov environment {ξt, t ∈ T}. Suppose that transition matrix Q be strong ergodic, and
Sn(i, α), Sn(i, α; j, β) be defined as (4.1) and (4.2), respectively. Then

lim
n→∞

Sn(i, α)
|T (n)| = π(i, α),∀(i, α) ∈ χ × Θ, (4.4)

lim
n→∞

Sn(i, α; j, β)
|T (n)| = π(i, α)Q(i, α; j, β),∀(i, α; j, β) ∈ (χ × Θ)2, (4.5)

where {π(i, α), (i, α) ∈ χ × Θ} is the stationary distribution determined by Q.

Proof: Let gt(X1t
, ξ1t

;Xt, ξt) = Ii(Xt)Iα(ξt) in Lemma 3.2. By (3.2) and (3.3) we have

Hn+N (ω) =
∑

t∈T (n+N)\{o}
gt(X1t

, ξ1t
;Xt, ξt)

=
∑

t∈T (n+N)\{o}
Ii(Xt)Iα(ξt) = Sn+N (i, α) − Ii(Xo)Iα(ξo), (4.6)

and

Gn+N (ω) =
∑

t∈T (n+N)\{o}
E[gt(X1t

, ξ1t
;Xt, ξt) | X1t

, ξ1t
]

=
∑

t∈T (n+N)\{o}

∑
(x,θ)∈χ×Θ

Ii(x)Iα(θ)P (Xt = x, ξt = θ | X1t
, ξ1t

)

=
∑

t∈T (n+N)\{o}
Q(X1t

, ξ1t
; i, α) = M

∑
t∈T (n+N−1)

Q(Xt, ξt; i, α). (4.7)

Since {gt(X1t
, ξ1t

;Xt, ξt) = Ii(Xt)Iα(ξt), t ∈ T} are a collection of uniform bounded func-
tions on (χ × Θ)2, by Lemma 3.2 we have,

lim
n→∞

Sn+N (i, α) − M
∑

t∈T (n+N−1)

Q(Xt, ξt; i, α)

|T (n+N)| = 0, a.e. (4.8)

We also let gt(X1t
, ξ1t

;Xt, ξt) = P (X1t = i, ξ1t = α | Xt, ξt), that is to say gt(X1t
, ξ1t

;
Xt, ξt) = Q(Xt, ξt; i, α). By Lemma 3.4 we have

E[gt(X1t
, ξ1t

;Xt, ξt) | X1t
, ξ1t

]

= E[P (X1t = i, ξ1t = α | Xt, ξt) | X1t
, ξ1t

]

= E[E[Ii(X1t)Iα(ξ1t) | Xt, ξt] | X1t
, ξ1t

]

= E[E[Ii(X1t)Iα(ξ1t) | F|t|] | F|t|−1]

= E[E[Ii(X1t)Iα(ξ1t) | F|t|−1] | F|t|]

= E[Ii(X1t)Iα(ξ1t) | F|t|−1]

= P (X1t = i, ξ1t = α | F|t|−1)

= P (X1t = i, ξ1t = α | X1t
, ξ1t

)

= Q(2)(X1t
, ξ1t

; i, α). (4.9)
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Obviously {gt(X1t
, ξ1t

;Xt, ξt), t ∈ T} are also a collection of uniform bounded functions on
(χ × Θ)2. By Lemma 3.2 and (4.9), we have

lim
n→∞

∑
t∈T (n+N−1)\{o}

Q(Xt, ξt; i, α) − ∑
t∈T (n+N−1)\{o}

Q(2)(X1t
, ξ1t

; i, α)

|T (n+N−1)| = 0, a.e. (4.10)

Noticing that
∑

t∈T (n+N−1)\{o} Q(2)(X1t
, ξ1t

; i, α) = M
∑

t∈T (n+N−2) Q(2)(Xt, ξt; i, α) and

lim
n→∞

|T (n+N)|
|T (n+N−1)| = M . By (4.8) and (4.10) we have

lim
n→∞

Sn+N (i, α) − M2
∑

t∈T (n+N−2)

Q(2)(Xt, ξt; i, α)

|T (n+N)| = 0, a.e. (4.11)

By induction, for arbitrary positive integer N, when 1 ≤ h ≤ N we have

lim
n→∞

Sn+N (i, α) − Mh
∑

t∈T (n+N−h)

Q(h)(Xt, ξt; i, α)

|T (n+N)| = 0, a.e. (4.12)

Set h = N in (4.12), we get

lim
n→∞

Sn+N (i, α) − MN
∑

t∈T (n)

Q(N)(Xt, ξt; i, α)

|T (n+N)| = 0, a.e. (4.13)

Since ∑
t∈T (n)

Q(N)(Xt, ξt; i, α)

=
∑

t∈T (n)

∑
(x,θ)∈χ×Θ

Ix(Xt)Iθ(ξt)Q(N)(Xt, ξt; i, α)

=
∑

t∈T (n)

∑
(x,θ)∈χ×Θ

Ix(Xt)Iθ(ξt)Q(N)(x, θ; i, α)

=
∑

(x,θ)∈χ×Θ

Sn(x, θ)Q(N)(x, θ; i, α). (4.14)

By (4.13) and (4.14), and noticing that lim
n→∞

|T (n+N)|
|T (n)| = MN , we get

lim
n→∞

⎧⎪⎨
⎪⎩

Sn+N (i, α)
|T (n+N)| −

∑
(x,θ)∈χ×Θ

Sn(x, θ)Q(N)(x, θ; i, α)

|T (n)|

⎫⎪⎬
⎪⎭ = 0, a.e. (4.15)

Since
∑

(x,θ)∈χ×Θ

Sn(x, θ) = |T (n)|, we have for any n

∣∣∣∣∣∣∣
∑

(x,θ)∈χ×Θ

Sn(x, θ)Q(N)(x, θ; i, α)

|T (n)| − π(i, α)

∣∣∣∣∣∣∣ ≤ sup
(x,θ)∈χ×Θ

|Q(N)(x, θ; i, α) − π(i, α)|. (4.16)

Since Q is strong ergodic, the right side of the Eq. (4.16) becomes arbitrarily small when
N is sufficiently large. By (4.15) and (4.16), (4.4) follows.
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We will come to prove the Eq. (4.5). Let gt(X1t
, ξ1t

;Xt, ξt) = Ii(X1t
)Iα(ξ1t

)Ij(Xt)Iβ(ξt)
in Lemma 3.2. Then

Hn(ω) =
∑

t∈T (n)\{o}
gt(X1t

, ξ1t
;Xt, ξt)

=
∑

t∈T (n)\{o}
Ii(X1t

)Iα(ξ1t
)Ij(Xt)Iβ(ξt) = Sn(i, α; j, β), (4.17)

and

Gn(ω) =
∑

t∈T (n)\{o}
E[gt(X1t

, ξ1t
;Xt, ξt) | X1t

, ξ1t
]

=
∑

t∈T (n)\{o}
E[Ii(X1t

)Iα(ξ1t
)Ij(Xt)Iβ(ξt) | X1t

, ξ1t
]

=
∑

t∈T (n)\{o}

∑
(x,θ)∈χ×Θ

Ii(X1t
)Iα(ξ1t

)Ij(x)Iβ(θ)P (Xt = x, ξt = θ | X1t
, ξ1t

)

=
∑

t∈T (n)\{o}
Ii(X1t

)Iα(ξ1t
)P (Xt = j, ξt = β | X1t

, ξ1t
)

=
∑

t∈T (n)\{o}
Ii(X1t

)Iα(ξ1t
)Q(i, α; j, β)

= M
∑

t∈T (n−1)

Ii(Xt)Iα(ξt)Q(i, α; j, β)

= MSn−1(i, α)Q(i, α; j, β). (4.18)

Obviously {gt(X1t
, ξ1t

;Xt, ξt), t ∈ T} are a collection of uniformly bounded functions. We
have by Lemma 3.2,

lim
n→∞

Sn(i, α; j, β) − MSn−1(i, α)Q(i, α; j, β)
|T (n)| = 0, a.e. (4.19)

By (4.4) and (4.19), (4.5) follows easily. �

5. SHANNON–MCMILLAN THEOREMS

Let T be a Cayley tree, and {Xt, t ∈ T} a Markov chain indexed by tree T in a Markov
environment {ξt, t ∈ T}. Since {(Xt, ξt), t ∈ T} is a Markov bichain indexed by a Cayley
tree T , now we denote

fn(ω) = − 1
|T (n)| ln P (XT (n)

, ξT (n)
)

= − 1
|T (n)| [ln q(Xo, ξo) +

∑
t∈T (n)\{o}

ln P (Xt, ξt | X1t
, ξ1t

). (5.1)

The convergence of fn(ω) to a constant in a sense (L1 convergence, convergence in prob-
ability, a.e. convergence) is called the Shannon–McMillan theorem, or the entropy theorem
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or the AEP in information theory. Shannon [26] first proved the AEP for convergence in
probability for stationary ergodic information sources with finite alphabet. McMillan [27]
and Breiman [28] proved the AEP in L1 and a.e. convergence, respectively, for stationary
ergodic information sources. Chung [29] considered the case of countable alphabet. The AEP
for general stochastic processes can be found, for example, in Barron [30] and Algoet and
Cover [31]. Liu and Yang [32] have proved the AEP for a class of nonhomogeneous Markov
information sources. Recently, Yang and Liu [33] have studied the asymptotic equiparti-
tion property for mth-order nonhomogeneous Markov information source. Yang and Ye [9]
have studied the strong law of large numbers and Shannon-McMillan theorem for nonho-
mogeneous Markov chains indexed by a homogeneous tree. Dang et al. [13] have studied
the entropy ergodic theorem for nonhomogeneous bifurcating Markov chains indexed by a
binary tree with finite state space. Here we will give the Shannon–McMillan theorem with
a.e. convergence for a Markov chain indexed by a Cayley tree in a Markov environment.

Theorem 5.1: Let {Xt, t ∈ T} be a Markov chain indexed by a Cayley tree T in a Markov
environment {ξt, t ∈ T}, and fn(ω) be defined as (5.1). Suppose Q be strongly ergodic, and
π be the unique stationary distribution determined by Q. Assume that

sup
(i,α)∈χ×Θ

∑
(j,β)∈χ×Θ

Q(i, α; j, β)| ln Q(i, α; j, β)| < ∞, (5.2)

sup
(i,α)∈χ×Θ

∑
(j,β)∈χ×Θ

Q
1
2 (i, α; j, β) ln Q2(i, α; j, β) < ∞, (5.3)

then
lim

n→∞ fn(ω) = −
∑

(i,α)∈χ×Θ

∑
(j,β)∈χ×Θ

π(i, α)Q(i, α; j, β) ln Q(i, α; j, β). (5.4)

Proof: Let gt(X1t
, ξ1t

;Xt, ξt) = − ln P (Xt, ξt | X1t
, ξ1t

) and b = 1
2 in Lemma 3.2, by (5.3)

we have, for any (i, α) ∈ χ × Θ,

E[ln2 P (Xt, ξt | X1t
, ξ1t

)e
1
2 | ln P (Xt,ξt|X1t ,ξ1t )| | X1t

= i, ξ1t
= α]

=
∑

(j,β)∈χ×Θ

ln2 Q(i, α; j, β)e
1
2 | ln Q(i,α;j,β)|Q(i, α; j, β)

< sup
(i,α)∈χ×Θ

∑
(j,β)∈χ×Θ

Q
1
2 (i, α; j, β) ln Q2(i, α; j, β) < ∞, (5.5)

then

lim sup
n→∞

1
|T (n)|

∑
t∈T (n)\{o}

E[g2
t (X1t

, ξ1t
;Xt, ξt)eb|gt(X1t ,ξ1t ;Xt,ξt)| | X1t

, ξ1t
] < ∞. (5.6)

so we obtain that gt(X1t
, ξ1t

;Xt, ξt) meet the conditions of Lemma 3.2. Since

Hn(ω)
|T (n)| =

1
|T (n)|

∑
t∈T (n)\{o}

gt(X1t
, ξ1t

;Xt, ξt)

= − 1
|T (n)|

∑
t∈T (n)\{o}

ln P (Xt, ξt | X1t
, ξ1t

)

= fn(ω) +
ln q(Xo, ξo)

|T (n)| , (5.7)
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and

Gn(ω)
|T (n)| =

1
|T (n)|

∑
t∈T (n)\{o}

E[gt(X1t
, ξ1t

;Xt, ξt) | X1t
, ξ1t

]

= − 1
|T (n)|

∑
t∈T (n)\{o}

E[lnP (X1t
, ξ1t

;Xt, ξt) | X1t
, ξ1t

]

= − 1
|T (n)|

∑
t∈T (n)\{o}

∑
(j,β)∈χ×Θ

ln P (Xt = j, ξt = β | X1t
, ξ1t

)

· P (Xt = j, ξt = β | X1t
, ξ1t

)

= − 1
|T (n)|

∑
t∈T (n)\{o}

∑
(j,β)∈χ×Θ

∑
(i,α)∈χ×Θ

Ii(X1t
)Iα(ξ1t

) ln Q(i, α; j, β) · Q(i, α; j, β).

(5.8)

By Lemma 3.2, we have

lim
n→∞

⎡
⎢⎣fn(ω) +

∑
t∈T (n)\{o}

∑
(j,β)∈χ×Θ

∑
(i,α)∈χ×Θ

Ii(X1t
)Iα(ξ1t

) ln Q(i, α; j, β) · Q(i, α; j, β)

|T (n)|

⎤
⎥⎦

= 0.a.e. (5.9)

Since

∣∣∣∣∣∣∣
∑

t∈T (n)\{o}

∑
(j,β)∈χ×Θ

∑
(i,α)∈χ×Θ

Ii(X1t
)Iα(ξ1t

) ln Q(i, α; j, β) · Q(i, α; j, β)

|T (n)|

−
∑

(i,α)∈χ×Θ

∑
(j,β)∈χ×Θ

π(i, α)Q(i, α; j, β) ln Q(i, α; j, β)

∣∣∣∣∣∣
=

∑
(i,α)∈χ×Θ

|MSn−1(i, α)
|T (n)| − π(i, α)| · |

∑
(j,β)∈χ×Θ

Q(i, α; j, β) ln Q(i, α; j, β)|

≤
∑

(i,α)∈χ×Θ

|MSn−1(i, α)
|T (n)| − π(i, α)| · sup

(i,α)∈χ×Θ

∑
(j,β)∈χ×Θ

Q(i, α; j, β)| ln Q(i, α; j, β)|.

(5.10)

By (4.4), (5.2), (5.9) and (5.10), (5.4) follows easily. �
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