Minimal homeomorphisms on low-dimensional tori

N. M. DOS SANTOS[†]§ and R. URZÚA-LUZ[‡]

 † Universidade Federal Fluminense, 24020-005 Niteroi, R.J., Brazil (e-mail: santosnathan@bol.com.br)
 ‡ Universidad Católica de Norte, Casilla 1280, Antofagasta, Chile (e-mail: rurzua@ucn.cl)

(Received 12 December 2007 and accepted in revised form 21 August 2008)

Abstract. We study minimal homeomorphisms (all orbits are dense) of the tori T^n , $n \le 4$. The linear part of a homeomorphism φ of T^n is the linear mapping L induced by φ on the first homology group of T^n . It follows from the Lefschetz fixed point theorem that 1 is an eigenvalue of L if φ minimal. We show that if φ is minimal and $n \le 4$, then L is quasi-unipotent, that is, all of the eigenvalues of L are roots of unity and conversely if $L \in GL(n, \mathbb{Z})$ is quasi-unipotent and 1 is an eigenvalue of L, then there exists a C^{∞} minimal skew-product diffeomorphism φ of T^n whose linear part is precisely L. We do not know whether these results are true for $n \ge 5$. We give a sufficient condition for a smooth skew-product diffeomorphism of a torus of arbitrary dimension to be smoothly conjugate to an affine transformation.

Introduction
 We first prove the following.

PROPOSITION 1.1. Let φ be a minimal homeomorphism of a torus T^n and L be the induced mapping on $H_1(T^n, \mathbb{Z})$. Then the minimal polynomial p(x) of L cannot be decomposed over $\mathbb{Q}[x]$, as p(x) = q(x)r(x) where all of the roots of q(x) are roots of unity and r(x) is not constant with no roots in the unit circle.

Proof. Assume that p(x) has such a decomposition. Then by the Primary Decomposition theorem we have an invariant direct sum decomposition over \mathbb{Q}

$$\mathbb{R}^n = E \oplus V,\tag{1}$$

§ Corresponding address: Rua Lopes Quintas, 225 ap. 401-A, Jardim Botânico, Rio de Janeiro, Cep 22460-010, Brazil. where the restriction *B* of *L* to *V* is hyperbolic. Now $\Gamma = V \cap \mathbb{Z}^n$ is a discrete cocompact subgroup of *V* and $M = V/\Gamma$ is homeomorphic to a torus T^k , k < n.

Let *b* be the hyperbolic diffeomorphism of *M* induced by *B* and φ be given on the covering by L + F, where $F : \mathbb{R}^n \to \mathbb{R}^n$ is continuous and $F(x + \ell) = F(x)$ for all $x \in \mathbb{R}^n$ and $\ell \in \mathbb{Z}^n$. We claim that *b* is a factor of φ . Consider the continuous surjective mapping $h: T^n \to M$ given on the covering \mathbb{R}^n by

$$h(x) = P(x) + H(x),$$
(2)

where $P : \mathbb{R}^n \to V$ is the projection associated to the decomposition (1) and $H : T^n \to V$ is a continuous solution of the cohomological equation

$$BH(x) - H(\varphi(x)) = P(F(x)).$$
(3)

Now since *B* is hyperbolic, a continuous solution of (3) exists see [1, Theorem 2.9.2] and since $P \circ L = B \circ P$, then $h \circ \varphi = b \circ h$. Observing that $h \circ \varphi^{\ell} = b^{\ell} \circ h$ for all $\ell \in \mathbb{Z}$ and since *h* is surjective we see that φ cannot be minimal because the lift of a periodic orbit of *b* defines a closed invariant set for φ which contradictions minimality. \Box

THEOREM 1. Any minimal homeomorphism φ of a torus T^n , $n \le 4$, is quasi-unipotent on the homology and 1 is an eigenvalue of its linear part.

Proof. Minimality of φ and the Lefschetz fixed point theorem shows that 1 is a root of the minimal polynomial p(x) of the linear part L of φ . Thus, p(x) = (x - 1)s(x) where deg $s(x) \le 3$, since deg $p \le 4$.

If deg s(x) = 3, then s(x) factors over $\mathbb{Z}[x]$ as $(x \pm 1)q(x)$ and by Proposition 1.1 all of the roots of q are roots of unity. If deg $s(x) \le 2$ again by Proposition 1.1 all of the roots of s(x) are roots of unity.

We do not know whether the above theorem is true if $n \ge 5$. There are irreducible polynomials in $\mathbb{Q}[x]$ with roots of absolute value 1 and roots of absolute value different from 1.

Example 1.2. Eisenstein's criterion shows that the polynomial $p(x) = x^4 + 4x^3 - 6x^2 + 4x + 1$ is irreducible over $\mathbb{Q}[x]$ and as

$$p(x) = (x^2 + 2(1 - \sqrt{3})x + 1)(x^2 + 2(1 + \sqrt{3})x + 1)$$

we can see that

$$(\sqrt{3} - 1) \pm i\lambda, \quad \lambda = \sqrt{(1 - (\sqrt{3} - 1)^2)}$$

are roots of absolute value 1 and they are not roots of unity and the other two roots of p(x) have absolute value different from 1.

2. Minimal skew-product transformations of the torus

In this section we show that every quasi-unipotent matrix $L \in GL(n, \mathbb{Z})$, $n \leq 4$ with 1 as eigenvalue is the linear part of a smooth minimal skew-product transformation of the torus T^n . Actually the skew-products are of the particular type given in (5). Note that T^{n-p} acts freely on $T^p \times T^{n-p}$ by translation on the second factor. Thus, if a homeomorphism

 ψ of T^n commutes with this action it induces a homeomorphism ψ_0 of the orbit space T^n/T^{n-p} which is homeomorphic to the torus T^p and we say that (T^n, ψ) is a free T^{n-p} -extension of (T^p, ψ_0) (see [5]).

THEOREM 2. Let $L \in GL(n, \mathbb{Z})$, $n \leq 4$, be quasi-unipotent having 1 as an eigenvalue. Then there exists a minimal smooth skew-product diffeomorphism φ of the torus T^n whose linear part is L.

Proof. We may assume that using the work of Newman [3]

$$L = \begin{pmatrix} A & \mathbf{0} \\ C & B \end{pmatrix},\tag{4}$$

where $A \in GL(p, \mathbb{Z})$, $A = I + N_1$ and $B \in GL(n - p, \mathbb{Z})$ such that $B^m = I + N_2$, $m \in \mathbb{Z}^+$, where N_1 and N_2 are nilpotent.

Let φ be diffeomorphism of T^n given on the covering \mathbb{R}^n by

$$\varphi(X, Y) = (AX + \alpha, CX + BY + F(X)), \tag{5}$$

where $a(X) = AX + \alpha$ gives an affine minimal transformation of T^p (see [2]) and F: $\mathbb{R}^p \to \mathbb{R}^{n-p}$ is a smooth \mathbb{Z}^p -periodic function, that is, $F(X + \ell) = F(X)$ for all $\ell \in \mathbb{Z}^p$.

The iterates of φ are given by

$$\varphi^{m}(X, Y) = (a^{m}(X), C_{m}X + B^{m}Y + \alpha(m) + F_{m}(X)),$$
(6)

where

$$C_{l}X = \sum_{j=1}^{l} B^{k-j} C A^{j-1},$$

$$\alpha(m) = \left(\sum_{j=1}^{m} C_{m-j}\right) \alpha,$$

$$F_{m}(X) = \sum_{j=1}^{m} B^{m-j} F(a^{j-1}(X)).$$
(7)

Recall that an action is *simple* if for each character $\gamma \in \hat{T}^{n-p}$ there exist a continuous function $f_{\gamma}: T^n \to S^1$ and $g: T^p \to S^1$ such that

$$f_{\gamma}(z, w) = g(z)\gamma(w) \tag{8}$$

for every $z \in T^p$ and $w \in T^{n-p}$.

Let v be the endomorphism of T^{n-p} given on the covering \mathbb{R}^{n-p} by the nilpotent matrix N_2 and consider the subgroup $H = \ker v$ of T^{n-p} . Note that $\psi = \varphi^m$ is invariant under the restriction of the action of T^{n-p} to the subgroup H, that is,

$$\psi(z, w+h) = \psi(z, w) + (0, h)$$
(9)

for all $h \in H$.

From now on we assume that the diffeomorphism ψ_0 of T^n/H induced by ψ is either minimal or uniquely ergodic.

Let $\pi : T^n \to T^n/H$ be the projection. By [5, Theorem 1] ψ is minimal(uniquely ergodic) if only if the equation

$$\frac{f(\psi_0(\pi(z,w)))}{f(z,w)} = \frac{f_{\gamma}(\psi(z,w))}{f_{\gamma}(z,w)}$$
(10)

has no continuous (measurable) solution for each character $\gamma \in \hat{H}$, $\gamma \neq 1$. Observe that the condition in (10) does not depend on the choice of the particular function f_{γ} . Note that the functions $f: T^n/H \to T^1$ are given by the *H*-invariant functions $f: T^n \to T^1$, that is, f(z, hw) = f(z, w) for all $h \in H$.

If L is unipotent, then there exists a minimal affine diffeomorphism of T^n (see [2]). Thus, it suffices to consider L quasi-unipotent but not unipotent.

Suppose that n = 2. We may assume [3]

$$L = \begin{pmatrix} 1 & 0\\ s & -1 \end{pmatrix}.$$
 (11)

Let $\varphi(x, y) = (x + \alpha, sx - y + F(x))$. Thus,

$$\psi(x, y) = \varphi^2(x, y) = (x + 2\alpha, s\alpha + y - F(x) + F(x + \alpha))$$

It is easy to see that (T^2, ψ) is simple free T^1 -extension of the translation of T^1 given on the covering \mathbb{R}^1 by

$$\psi_0(x) = x + 2\alpha.$$

We choose a Liouville number α and a sequence $\{k_i\}_{i \in N}$ so that

$$|e^{2\pi i k_j \alpha} + 1| < \frac{4\pi}{(k_j)^j}$$

(see Appendix A) and $F: T^1 \to \mathbb{R}$ given by the Fourier transform

$$\hat{F}(k) = \begin{cases} 0 & \text{if } k \neq \pm k_j, \\ 1 + e^{\pm 2\pi i k_j \alpha} & \text{if } k = \pm k_j. \end{cases}$$
(12)

By (10) it suffices to show that the cohomological equation

$$\frac{f(\psi_0(x))}{f(x)} = \frac{f_{\gamma}(\psi(x, y))}{f_{\gamma}(x, y)},$$
(13)

where f is given on the covering \mathbb{R}^1 by $f(x) = \ell x + G(x)$ and f_{γ} is given on the covering \mathbb{R}^2 by $f_{\gamma}(x, y) = \ell_{\gamma} y$, ℓ and ℓ_{γ} in \mathbb{Z} , has no continuous solution $f: T^1 \to \mathbb{R}^1$. This is equivalent to show that the equation

$$\ell\alpha + G(x+2\alpha) - G(x) = \ell_{\gamma}s\alpha + \ell_{\gamma}[F(x+\alpha) - F(x)]$$
(14)

has no continuous solution G. If $\ell \neq \ell_{\gamma}$, then one sees that (14) has no continuous solution G. If $\ell = s\ell_{\gamma}$, (14) becomes

$$G(x+2\alpha) - G(x) = \ell_{\gamma} [F(x+\alpha) - F(x)]$$

and gives the Fourier coefficient equations

$$\hat{G}(k) = \begin{cases} 0 & \text{if } k \neq \pm k_j, \\ \ell_{\gamma} & \text{if } k = \pm k_j, \end{cases}$$
(15)

which by the choice of F does not give a L^1 -solution G.

Suppose now that n = 3. There are two possibilities for the characteristic polynomial p(x) of L, p(x) = (x - 1)q(x) or $p(x) = (x - 1)^2(x + 1)$ where $q(1) \neq 0$.

If p(x) = (x - 1)q(x), then we assume that [3]

$$L = \begin{pmatrix} 1 & 0 \\ C & B \end{pmatrix},$$

where $B \in GL(2, \mathbb{Z})$ is quasi-unipotent and 1 is not an eigenvalue of *B*. Thus, *B* is either periodic with period m = 3, 4, 6 or *B* is conjugate to the matrix

$$B = \begin{pmatrix} -1 & 0\\ s & -1 \end{pmatrix}, \quad s \in \mathbb{Z}.$$

To see this note that the characteristic polynomial of *B* is $p(x) = x^2 - \text{tr } Bx + \det B$, then if *B* is quasi-unipotent the only possibilities are tr B = -2, -1, 0, 1, 2 for det B = 1 and tr B = 0 for det B = -1. The det B = -1 case and the det B = 1, tr B = 2 case can be ignored since they have 1 as eigenvalue. The remaining cases for det B = 1 give periods 3, 4, 6, and eigenvalue -1.

By (5) the diffeomorphism φ is given by

$$\varphi(x, Y) = (x + \alpha, Cx + BY + F(x)), \tag{16}$$

where Y = (y, z) and $F : \mathbb{R} \to \mathbb{R}^2$ is a \mathbb{Z} -periodic function.

If B is periodic, then by (6)

$$\psi(x, Y) = \varphi^m(x, Y) = (x + m\alpha, Y + \alpha(m) + F_m(x))$$

since $C_m = 0$.

Hence, (T^3, ψ) is a simple free T^2 -extension of the translation of T^1 given on the covering \mathbb{R}^1 by

$$\psi_0(x) = x + \alpha.$$

Using Appendix A choose a Liouville number α and a sequence of integers $\{k_j\}_{j \in N}$ such that

$$|e^{2\pi i k_j \alpha} - e^{2\pi i/m}| < \frac{4\pi}{(k_j)^j}.$$
(17)

By [5] ψ is a minimal diffeomorphism if (10) has no continuous solution $f(x) = e^{2\pi i [\ell x + G(x)]}$, where $f_{\gamma}(x, y, z) = e^{2\pi i \langle \ell_{\gamma}, (y, z) \rangle}$ or, equivalently, the equation

$$m\ell\alpha + G(x+\alpha) - G(x) = \langle \ell_{\gamma}, \alpha(m) + F_m(x) \rangle$$
(18)

has no continuous solution G. If $m\ell\alpha \neq \langle \ell_{\gamma}, \alpha(m) \rangle$, then one sees that (18) has no continuous solutions G. If $m\ell\alpha = \langle \ell_{\gamma}, \alpha(m) \rangle$, equation (18) becomes

$$G(x + m\alpha) - G(x) = \langle \ell_{\gamma}, F_m(x) \rangle$$
⁽¹⁹⁾

or, in Fourier coefficients,

$$\hat{G}(k) = \langle \ell_{\gamma}, (e^{2\pi i k \alpha} I - B)^{-1} \hat{F}(k) \rangle.$$
(20)

Consider $F: T^1 \to \mathbb{R}^2$ the smooth function given by the Fourier transform

$$\hat{F}(k) = \begin{cases} 0, & k \neq \pm k_j, \\ (e^{2\pi i k_j \alpha} - e^{2\pi i / m}) V, & k = k_j, \\ (e^{-2\pi i k_j \alpha} - e^{-2\pi i / m}) \overline{V}, & k = -k_j, \end{cases}$$
(21)

where V is the eigenvector of B associate to the eigenvalue $e^{((2\pi i)/m)}$. Then

$$\hat{G}(k_j) = \langle \ell_{\gamma}, (e^{2\pi i k_j \alpha} I - B)^{-1} \hat{F}(k_j) \rangle = \langle \ell_{\gamma}, V \rangle,$$
$$\hat{G}(-k_j) = \langle \ell_{\gamma}, (e^{-2\pi i k_j \alpha} I - B)^{-1} \hat{F}(-k_j) \rangle = \langle \ell_{\gamma}, \overline{V} \rangle.$$

As the period of *B* is $m \ge 3$, then $\langle \ell_{\gamma}, V \rangle \ne 0$ for all $\ell_{\gamma} \in \mathbb{Z}^2 - \{0\}$. Thus, by choice of *F*, (19) has no L^1 -solution.

If

$$B = \begin{pmatrix} -1 & 0\\ s & -1 \end{pmatrix}, \quad s \in \mathbb{Z}$$

then by (16)

$$\varphi(x, Y) = (x + \alpha, Cx + BY + F(x)).$$
(22)

Thus,

$$\psi(x, y, z) = \varphi^2(x, y, z) = (x + 2\alpha, C_2 x + \alpha(2) + B^2 Y + F_2(x)).$$

If s = 0, (T^3, ψ) is a simple free T^2 -extension of the translation (T_1, ψ_0) , given in covering \mathbb{R}^1 by $\psi_0(x) = x + 2\alpha$.

By [5] ψ is a minimal diffeomorphism if (10) has no continuous solution $f(x) = e^{2\pi i [\ell x + G(x)]}$, where $f_{\gamma}(x, y, z) = e^{2\pi i \langle \ell_{\gamma}, (y, z) \rangle}$ or, equivalently, the equation

$$m\ell\alpha + G(x+2\alpha) - G(x) = \langle \ell_{\gamma}, \alpha(2) + F_2(x) \rangle$$
(23)

has no continuous solution G.

If $2\ell \alpha \neq \langle \ell_{\gamma}, \alpha(2) \rangle$, then one sees that (23) has no continuous solutions *G*. If $2\ell \alpha = \langle \ell_{\gamma}, \alpha(2) \rangle$ the equation becomes

$$G(x+2\alpha) - G(x) = \langle \ell_{\gamma}, F_2(x) \rangle$$

or, in Fourier coefficients,

$$\hat{G}(k) = \langle \ell_{\gamma}, (e^{2\pi i k \alpha} + 1)^{-1} \hat{F}(k) \rangle$$

Consider $F: T^1 \to \mathbb{R}^2$ the smooth function given by the Fourier transform

$$\hat{F}(k) = \begin{cases} \mathbf{0}, & k \neq \pm k_j, \\ (e^{\pm 2\pi i k_j \alpha} + 1)V, & k = \pm k_j. \end{cases}$$

If the vector $V = (a, b) \in \mathbb{R}^2$ and *a* and *b* are linearly independent over the rational numbers, then by the choice of *F*, (23) has no L^1 -solution.

If $s \neq 0$, consider the diffeomorphism

$$\varphi(x, y, z) = (x + \alpha, px - y + F_1(x), qx + sy - z)$$

such that $\varphi_0(x, y) = (x + \alpha, px - y + F_1(x))$ is minimal. Hence, $(T^3, \psi = \varphi^2)$ is a simple free T^1 -extension of the diffeomorphism (T^2, ψ_0) , given on covering \mathbb{R}^2 by $\varphi_0^2(x, y) = \psi_0(x, y) = (x + 2\alpha, y + p\alpha - F_1(x) + F_1(x + \alpha))$. By [5] ψ is a minimal diffeomorphism if (10) has no continuous solution $f(x, y) = e^{2\pi i [\langle \ell, (x, y) \rangle + G(x, y)]}$, where $f_{\gamma}(x, y, z) = e^{2\pi i \ell_{\gamma}, z}$ or, equivalently, the equation

$$\langle \ell, (2\alpha, p\alpha + F_1(x + \alpha) - F_1(x)) \rangle + G(\psi_0(x, y)) - G(x, y)$$

= $\ell_{\gamma} [spx - 2sy + q\alpha + sF_1(x)]$

has no continuous solution G. This is because the right-hand side of the above equation is not a periodic function for ℓ_{γ} since $s \neq 0$.

If $p(x) = (x - 1)^2(x + 1)$, then we assume that [3]

$$L = \begin{pmatrix} A & 0 \\ C & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ p & 1 & 0 \\ q & s & -1 \end{pmatrix}$$

by (5) the diffeomorphism φ is given by

$$\varphi(X, z) = (AX + \delta, CX - z + F(x)) = (a(X), CX - z + F(x)),$$

where X = (x, y) and $\delta = (\alpha, \beta)$ and F a periodic smooth function, then

$$\psi(X, z) = \varphi^2(X, z) = (a^2(X), C_2X + z + \alpha(2) + F_2(x)).$$

Hence, (T^3, ψ) is a simple free T^1 -extension of the minimal affine transformation (T^2, ψ_0) , given on covering \mathbb{R}^2 by $\psi_0(X) = a^2(X)$. Again, by [5] ψ is a minimal diffeomorphism if (10) has no continuous solution $f(X) = e^{2\pi i [\langle \ell, X \rangle + G(X)]}$, where $f_{\gamma}(X, z) = e^{2\pi i \ell_{\gamma} z}$ or, equivalently, the equation

$$\langle \ell, a^2(X) - X \rangle + G(\psi_0(X)) - G(X) = \ell_{\gamma} [C_2 X + \alpha(2) + F_2(x)]$$
(24)

has no continuous solution G. If $\langle \ell, a^2(X) - X \rangle \neq \ell_{\gamma}[C_2X + \alpha(2)]$, then one sees that (24) has no continuous solutions G.

If $\langle \ell, a^2(X) - X \rangle = \ell_{\gamma} [C_2 X + \alpha(2)]$, equation (24) becomes

$$G(\psi_0(X)) - G(X) = \ell_{\gamma} F_2(x).$$
(25)

If $F: T^1 \to \mathbb{R}$ is given in Fourier coefficients as in (12), then (25) has no continuous solution *G*.

Finally suppose that n = 4. There are three possibilities for the characteristic polynomial p(x) of L, $p(x) = (x - 1)q_1(x)$, $p(x) = (x - 1)^2q_2(x)$ or $p(x) = (x - 1)^3$ (x + 1), where q_1 and q_2 are irreducible over $\mathbb{Q}(x)$.

If $p(x) = (x - 1)q_1(x)$, then we assume that [3]

$$L = \begin{pmatrix} 1 & 0 \\ C & B \end{pmatrix}$$

where $B \in GL(3, \mathbb{Z})$ is quasi-unipotent and 1 is not an eigenvalue of B. Thus,

$$B = \begin{pmatrix} -1 & 0 \\ C_0 & B_0 \end{pmatrix}$$

where $B_0 \in GL(2, \mathbb{Z})$ is quasi-unipotent by (5) the diffeomorphism φ is given by

$$\varphi(x, Y) = (x + \alpha, Cx + BY + F(x)))$$
(26)

where Y = (y, z, w) and $F : \mathbb{R} \to \mathbb{R}^3$, $F(x) = (F_1(x), F_2(x), F_3(x))$ is \mathbb{Z} -periodic smooth function.

If -1 is not an eigenvalue of B_0 then B_0 is periodic with period m = 3, 4 and 6, thus $B^{2m} = I$, then by (6) we have

$$\psi(x, Y) = \varphi^{2m}(x, y, Y) = (x + 2m\alpha, C_{2m}x + \alpha(2m) + Y + F_{2m}(x)).$$
(27)

Choose by (Appendix A) a Liouville number α and two sequences of integers $\{k_j\}_{j \in N}$ and $\{k'_i\}_{j \in N}$ such that

$$|e^{2\pi i k_j \alpha} - e^{2\pi i / m}| < \frac{4\pi}{(k_j)^j}$$
 and $|e^{2\pi i k'_j \alpha} + 1| < \frac{4\pi}{(k'_j)^j}$.

Again, by [3]. It is easy to see that (T^4, ψ) is simple free T^3 -extension of the translation of T^1 given on the covering \mathbb{R}^1 by

$$\psi_0(x) = x + 2m\alpha.$$

Now ψ is a minimal diffeomorphism if (10) has no continuous solution $f(x) = e^{2\pi i [\ell x + G(x)]}$, where $f_{\gamma}(x, Y) = e^{2\pi i \langle \ell_{\gamma}, (y, Y) \rangle}$ or, equivalently, the following equation has no continuous solution G:

$$2m\ell\alpha + G(x + 2m\alpha) - G(x) = \langle \ell_{\gamma}, C_{2m}x + \alpha(2m) + F_{2m}(x) \rangle.$$
(28)

If $2m\ell\alpha \neq \langle \ell_{\gamma}, \alpha(2m) + C_{2m}x \rangle$, then one sees that (28) has no continuous solutions G. If $2m\ell\alpha = \langle \ell_{\gamma}, \alpha(2m) + C_{2m}x \rangle$ becomes

$$G(x + 2m\alpha) - G(x) = \langle \ell_{\gamma}, F_{2m}(x) \rangle$$
⁽²⁹⁾

or, in Fourier coefficients,

$$\hat{G}(k) = \langle \ell_{\gamma}, (e^{2\pi i k \alpha} I - B)^{-1} \hat{F}(k) \rangle.$$

Consider a smooth function $F_1 : \mathbb{R}^1 \to \mathbb{R}^1$ given by the Fourier transform

$$\hat{F}_{1}(k) = \begin{cases} 0, & k \neq \pm k'_{j}, \\ (e^{\pm 2\pi i k'_{j} \alpha} + 1), & k = \pm k'_{j}, \end{cases}$$

as in (12) and the smooth function $F : \mathbb{R}^1 \to \mathbb{R}^2$, $F(x) = (F_2(x), F_3(x))$ given by the Fourier transform

$$\hat{F}(k) = \begin{cases} 0, & k \neq \pm k_j, \\ (e^{2\pi i k_j \alpha} - e^{2\pi i / m}) V, & k = k_j, \\ (e^{-2\pi i k_j \alpha} - e^{-2\pi i / m}) \overline{V}, & k = -k_j, \end{cases}$$

as in (21), then (29) has no continuous solution G.

Now if

$$B_0 = \begin{pmatrix} -1 & 0\\ s & -1 \end{pmatrix}$$

then

$$L = \begin{pmatrix} A & \mathbf{0} \\ C_0 & B_0 \end{pmatrix},$$

where

$$A = \begin{pmatrix} 1 & 0 \\ p & -1 \end{pmatrix}$$

and the diffeomorphism given in (26) we can written as

$$\varphi(X, Y) = (AX + F, C_0X + B_0Y + H(x)),$$

where X = (x, y), Y = (z, w), $F(x) = (\alpha, F_1(x))$ and $H(x) = (F_2(x), F_3(x))$ are smooth \mathbb{Z} -periodic functions. These functions are determined by the Fourier transforms

$$\hat{F}_{1}(k) = \begin{cases} 0 & \text{if } k \neq \pm k_{j}, \\ 1 + e^{\pm 2\pi i k_{j} \alpha} & \text{if } k = \pm k_{j}, \end{cases}$$
(30)

and

$$\hat{H}(k) = \begin{cases} 0 & \text{if } k \neq \pm k_j, \\ (1 + e^{\pm 2\pi i k_j \alpha}) V & \text{if } k = \pm k_j, \end{cases}$$
(31)

where V = (a, b). Let us consider the diffeomorphism

$$\psi(X, Y) = \varphi^2(X, Y) = (X + AF(x) + F(x + \alpha)),$$

$$C_0(2)X + B_0^2 Y + C_0 F(x) + B_0 H(x) + H(x + \alpha))$$

and suppose that $\varphi_0(x, y) = (x + \alpha, px - y + F_1(x))$ is minimal. Hence, $(T^4, \psi = \varphi^2)$ is a simple free T^2 -extension of the minimal diffeomorphism (T^2, ψ_0) , given on covering \mathbb{R}^2 by $\varphi_0^2(x, y) = \psi_0(x, y) = (x + 2\alpha, y + p\alpha - F_1(x) + F_1(x + \alpha))$. By [5] ψ is a minimal diffeomorphism if (10) has no continuous solution $f(X) = e^{2\pi i [\langle \ell, X \rangle + G(X)]}$, where $f_{\gamma}(X, Y) = e^{2\pi i \langle \ell_{\gamma}, Y \rangle}$. This is equivalent to the equation

$$\langle \ell, AF(x+\alpha) + F(x) \rangle + G(\psi_0(X)) - G(X) = \langle \ell_{\gamma}, C_0(2)X + [B_0^2 - I]Y + C_0F(x) + B_0H(x) + H(x+\alpha) \rangle.$$
 (32)

If $\langle \ell_{\gamma}, C_0(2)X + [B_0^2 - I]Y \rangle \neq 0$, then one sees that (32) has no continuous solution *G*. If $\langle \ell_{\gamma}, C_0(2)X + [B_0^2 - I]Y \rangle = 0$, them (32) becomes

$$\langle \ell, AF(x) + F(x+\alpha) \rangle + G(\psi_0(X)) - G(X)$$

= $\langle \ell_{\gamma}, C_0F(x) + B_0H(x) + H(x+\alpha) \rangle.$ (33)

Integrating (33) along the fibres of the bundle $(x, y) \rightarrow y$ we obtain

$$\langle \ell, AF(x) + F(x+\alpha) \rangle + g(x+\alpha) - g(x) = \langle \ell_{\gamma}, C_0 F(x) + B_0 H(x) + H(x+\alpha) \rangle,$$
 (34)

where $g(x) = \int_{T^1} G(x, y) \, dy$, note that $g(x + \alpha) = \int_{T^1} G(\psi(x, y)) \, dy$. Hence, (34) becomes in Fourier coefficients $k \neq 0$

$$\langle \ell, (0, \hat{F}_1(k))(e^{2\pi i k\alpha} - 1) \rangle + \hat{g}(k)(e^{2\pi i k2\alpha} - 1) = \langle \ell_{\gamma}, C_0(0, \hat{F}_1(k)) + [B_0 + e^{2\pi i k\alpha}I]\hat{H}(k) \rangle.$$
 (35)

A simple computation using (30) and (31) gives

$$\ell_1 + \hat{g}(k) = \langle \ell_{\gamma}, C_0(e^{2\pi i k\alpha} - 1)^{-1} e_2 + V + a(e^{2\pi i k\alpha} - 1)^{-1} s e_2 \rangle.$$
(36)

Hence, (34) has no continuous solution g by the Riemann Lebesgue lemma. This implies necessarily that (33) has no continuous solution G. This finishes this case.

Now let $p(x) = (x - 1)^2 q_2(x)$. We may assume that [3]

$$L = \begin{pmatrix} A & 0 \\ C & B \end{pmatrix},$$

where 1 is not an eigenvalue of B,

$$A = \begin{pmatrix} 1 & 0 \\ n & 1 \end{pmatrix} \text{ and } C \in M(2, \mathbb{Z})$$

The diffeomorphism φ is given by

$$\varphi(X, Y) = (AX + \delta, CX + BY + F(x)), \tag{37}$$

where X = (x, y), Y = (z, w), $F(x) = (F_1(x), F_2(x))$ and $\delta = (\alpha, \beta)$. Denote by $a(X) = AX + \delta$ the minimal affine transformation.

Suppose that B is periodic with period m. Then

$$\varphi^{m}(X, Y) = (a^{m}(X), Y + C(m)X + \sum_{j=1}^{m} C(m - j - 1)(\alpha, \beta) + \sum_{j=1}^{m} B^{m-j-1}F(x + (j - 1)\alpha)).$$

Hence, $(T^4, \varphi^m = \psi)$ is a simple free T^2 -extension of the diffeomorphism $(T^2, a^m = \psi_0)$, given on covering \mathbb{R}^2 by $\psi_0(X) = a^m(X)$. By [5] ψ is a minimal diffeomorphism if (10) has no continuous solution $f(X) = e^{2\pi i [\langle \ell, X \rangle + G(X)]}$, where $f_{\gamma}(X, Y) = e^{2\pi i \langle \ell_{\gamma}, Y \rangle}$ or, equivalently, the equation

$$\langle \ell, a^{m}(X) - X \rangle + G(a^{m}(X)) - G(X) = \left\langle \ell_{\gamma}, C(m)X + \sum_{j=1}^{m} C(m-j-1)\delta + \sum_{j=1}^{m} B^{m-j-1}F(x+(j-1)\alpha) \right\rangle$$
(38)

has no continuous solution G. If

$$\langle \ell, a^m(X) - X \rangle \neq \left\langle \ell_{\gamma}, C(m)X + \sum_{j=1}^m C(m-j-1)\delta \right\rangle,$$

then one sees that (38) has no continuous solution G. If

$$\langle \ell, a^m(X) - X \rangle = \left\{ \ell_{\gamma}, C(m)X + \sum_{j=1}^m C(m-j-1)\delta \right\},\$$

then (38) becomes

$$G(a^{m}(X)) - G(X) = \left\langle \ell_{\gamma}, \sum_{j=1}^{m} B^{m-j-1} F(x+(j-1)\alpha) \right\rangle$$
(39)

or, in Fourier coefficients,

$$\hat{G}(k_1 + nk_2, k_2)e^{2\pi i \langle a^m(0,0), (k_1, k_2) \rangle} - \hat{G}(k_1, k_2) = \left\langle \ell_{\gamma}, \sum_{j=1}^m B^{m-j-1} \hat{F}(k_1)e^{2\pi i k\alpha} \right\rangle.$$
(40)

If $k_2 \neq 0$, then by the Riemann Lebesgue lemma $\hat{G}(k_1, k_2) = 0$ then (40) becomes

$$\hat{G}(k_1, 0) = \langle \ell_{\gamma}, (e^{2\pi i k \alpha} I - B)^{-1} \hat{F}(k_1) \rangle$$
(41)

take F as in (31) then (38) has no continuous solution G.

If B is not periodic, then

$$B = \begin{pmatrix} -1 & \mathbf{0} \\ s & -1 \end{pmatrix}$$

with $s \neq 0$. Consider the diffeomorphism as in (37)

$$\varphi(x, y) = (AX + \delta, CX + BY + F(x))$$

= (AX + \delta, C_1X - z + F_1(x), C_2X + sz - w + F_2(x)) (42)

such that $\varphi_0(x, y, z) = (AX + \delta, C_1X - z + F_1(x))$ is minimal. Hence, $(T^4, \psi = \varphi^2)$ is a simple free T^1 -extension of the minimal diffeomorphism (T^3, ψ_0) , given on covering \mathbb{R}^3 by $\psi = \varphi_0^2$. By [**5**] ψ is a minimal diffeomorphism if (10) has no continuous solution $f(X) = e^{2\pi i [\langle \ell, X \rangle] + G(X)}$, where $f_{\gamma}(X, Y) = e^{2\pi i \ell_{\gamma} w}$ this equation is equivalent to the equation

$$\langle \ell, (a^2(X) - X, C_1(2)X + \delta(2) - F_1(x) + F_1(x + \alpha) \rangle + G(\psi_0(X)) - G(X) = \ell_{\gamma} [C_2(2)X - 2sz + sF_1(x) - F_2(x) + F_2(x + \alpha)].$$
(43)

The above equation has no continuous solution G because $s \neq 0$.

If $p(x) = (x - 1)^3(x + 1)$, then we assume that [3]

$$L = \begin{pmatrix} A & 0 \\ C & -1 \end{pmatrix},$$

where $A \in GL(3, \mathbb{Z})$ is unipotent, that is, A = I + N. Consider the diffeomorphism φ given by

$$\varphi(X, w) = (AX + \alpha, CX + -w + F(x)), \tag{44}$$

where X = (x, y, z), $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ and $F : \mathbb{R} \to \mathbb{R}$ is \mathbb{Z} -periodic smooth function. Then

$$\psi(X, w) = \varphi^{2}(X, w) = (A^{2}X + A\alpha + \alpha,$$

[CA - C]X + w + C\alpha - F(x) + F(x + \alpha_{1})). (45)

Thus, (T^4, ψ) is a simple free T^1 -extension of the minimal affine transformation (T^3, ψ_0) , given on covering \mathbb{R}^3 by $\psi_0(X) = A^2 X + A\alpha + \alpha$. Now by [5] ψ is minimal diffeomorphism if (10) has no continuous solution $f(X) = e^{2\pi i [\langle \ell, X \rangle + G(X)]}$, where $f_{\gamma}(X, w) = e^{2\pi i \ell_{\gamma} w}$ or, equivalently, the following equation has no continuous solution G:

$$\langle \ell, [A^2 - I]X + A\alpha + \alpha \rangle + G(\psi_0(X)) - G(X)$$

= $\ell_{\gamma}[[CA - C]X + C\alpha - F(x) + F(x + \alpha_1)].$ (46)

If $\langle \ell, [A^2 - I]X + A\alpha \neq \ell_{\gamma}[[CA - C]X + C\alpha]$, then one sees that (46) has no continuous solution G. If $\langle \ell, [A^2 - I]X + A\alpha = \ell_{\gamma}[[CA - C]X + C\alpha]$, then (46) becomes

$$G(\psi_0(X)) - G(X) = \ell_{\gamma} [-F(x) + F(x + \alpha_1)].$$
(47)

Now if α_1 is a Liouville number and *F* is a smooth function given by Fourier coefficients as in (12), then (47) has no continuous solution *G*.

We now give a sufficient condition for a smooth skew-product transformation of a torus to be smoothly conjugate to an affine transformation. We present in the Appendix A the definition of Diophantine vectors. We recall that we are restricted to smooth skew-product diffeomorphism φ of the torus $T^n = T^p \times T^{n-p}$ given on the covering \mathbb{R}^n by

$$\varphi(X, Y) = (X + \alpha, CX + BY + F(X)), \tag{48}$$

where $X \in \mathbb{R}^p$, $Y \in \mathbb{R}^{n-p}$ and $F : \mathbb{R}^p \longrightarrow \mathbb{R}^{n-p}$ is a smooth \mathbb{Z}^p -periodic function. We call $\alpha \in \mathbb{R}^p$ the translation vector of φ . To φ there naturally corresponds an affine transformation φ_0 given on the covering \mathbb{R}^n by

$$\varphi_0(X, Y) = (X + \alpha, CX + BY + \beta_1),$$

where $\beta_1 = \operatorname{Proj}(\beta)$, $\operatorname{Proj} : \mathbb{R}^n \longrightarrow \ker(I - B)^t$ and $\beta = \int_{T^p} F d\mu$, μ being the Haar measure of T^p .

THEOREM 3. Every smooth skew-product diffeomorphism φ of T^n of type (48) quasiunipotent on homology whose translation vector is Diophantine is smoothly conjugate to its corresponding affine transformation. Moreover, if φ is minimal, then 1 is only eigenvalue of its linear part.

Proof. Since the translation vector α is Diophantine and *B* is quasi-unipotent then the cohomological equation

$$F(x) = \beta_1 + G(x + \alpha) - BG(x)$$

has a smooth solution G (see [4, Theorem 2.6]). Thus, the diffeomorphism $h: T^n \longrightarrow T^n$ given on the covering \mathbb{R}^n by

$$h(X, Y) = (x, Y + G(X))$$

conjugate φ with the affine transformation φ_0 . If φ is minimal, then so is φ_0 and 1 is the only eigenvalue of *B* (see [2]).

Acknowledgement. The second author was partially supported by Fondecyt Grant 1060977.

A. Appendix

In this appendix we recall the definition of Diophantine and Liouville numbers and we show that for every *n*th root of unity there exists a 'fast approximation' by iterations of a Liouville rotation of the circle.

Definition A.1. Given C > 0 and $r \ge 0$, we say that $\alpha \in \mathbb{R} - \mathbb{Q}$ verifies a Diophantine condition of exponent r and constant C if and only if for all $q \in \mathbb{Z}$, one has $||q\alpha|| \ge C|q|^{-1-r}$.

We have $||x|| = \inf\{|x - p| \mid p \in \mathbb{Z}\}$. Note that the inequality

$$4s \le |e^{2\pi i s} - 1| \le 2\pi s \tag{49}$$

with $s \in [0, 1]$ implies that the orbit of 1 by the rotation R_{α} is a bad approximation of number 1 in the sense that

$$|e^{2\pi i q\alpha} - 1| \ge 4C|q|^{-1-r} \tag{50}$$

for all $q \in \mathbb{Z}$.

The irrational algebraic numbers are examples of Diophantine numbers.

More generally we say that a vector $\alpha \in \mathbb{R}^n$, n > 1 is a Diophantine vector if there are constants r > 0 and C > 0 such that

$$\|\langle k, \alpha \rangle\| \ge C|k|^{-r} \tag{51}$$

for every $k \in \mathbb{Z}^n$.

We say that an irrational number is Liouville if it is not Diophantine. In this case the orbit of 1 by the rotation R_{α} has a good approximation of the number 1 in the sense that there exists a sequence $\{q_j\}_{j \in \mathbb{N}} \subset \mathbb{Z}$ such that $|\alpha - (p_j/q_j)| < C|q_j|^{-(j+1)}$ by (49).

The number $\alpha = \sum_{k=1}^{\infty} q^{-k!}$ is a Liouville number.

The following proposition shows that for every root of unity ξ_n there exists a rotation R_{α} whose orbit by 1 has fast approximation to ξ_n .

PROPOSITION A.2. Given a family $\{e^{2\pi i (p_s/q_s)}\}_{s=1}^m$ of roots of unity there exits a Liouville number α and a family $\{\{k_j^s\}_{j\in\mathbb{N}}\}_{s=1}^m$ of sequences such that

$$\left\|k_j^s \alpha - \frac{p_s}{q_s}\right\| < \frac{2}{(k_j^s)^j} \tag{52}$$

for all $j \in \mathbb{N}$ and $s \in \{1, 2, \ldots, m\}$.

Proof. We may assume that $q_s > 0$ and $0 < p_s < q_s$. We consider the following Liouville number

$$\alpha = \sum_{k=1}^{\infty} \frac{1}{q^{k!}}$$

where $q = q_1q_2 \dots q_m$. Now consider the sequence $k_j^s = p_s q_1^{j!} \dots (q_s)^{j!-1} \dots q_m^{j!}$, with $j \in \mathbb{N}$ and $s \in \{1, 2, \dots, m\}$. We show that this sequence satisfies (52). In fact, it is easy to see that

$$\left\|k_j^s \alpha - \frac{p_s}{q_s}\right\| = \inf_{\ell \in \mathbb{Z}} \left|k_j^s \alpha - \frac{p_s}{q_s} + \ell\right| \le \sum_{k=j+1}^{\infty} \frac{k_j^s}{q^{k!}}$$

Thus,

$$\left\| k_{j}^{s} \alpha - \frac{p_{s}}{q_{s}} \right\| \leq \frac{1}{(k_{j}^{s})^{j}} \sum_{k=j+1}^{\infty} \frac{(k_{j}^{s})^{j+1}}{q^{k!}}$$

$$\leq \frac{1}{(k_{j}^{s})^{j}} \sum_{k=j+1}^{\infty} \frac{q^{(j+1)!}}{q^{k!}} < \frac{1}{(k_{j}^{s})^{j}} \sum_{k=0}^{\infty} \frac{1}{q^{k}} \leq \frac{2}{(k_{j}^{s})^{j}}.$$

$$(53)$$

REFERENCES

- A. Katok and B. Hasselblat. Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge, 1995.
- [2] F. J. Hahn. On affine transformations of compact abelian groups. Amer. J. Math. 85 (1963), 428-446.
- M. Newman. Integral Matrices (Pure and Applied Mathematics, 45). Academic Press, New York, 1972, xvii+224 pp.
- [4] N. M. dos Santos. Cohomologically rigid Z^p-action on low-dimension tori. Ergod. Th. & Dynam. Sys. 24 (2004), 1041–1050.
- [5] W. Parry. Compact Abelian group extensions of discrete dynamical systems. Z. Wahrsch. Verw. Gebiete 13 (1969), 95–113.