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Abstract. We study minimal homeomorphisms (all orbits are dense) of the tori T n , n ≤ 4.
The linear part of a homeomorphism ϕ of T n is the linear mapping L induced by ϕ on
the first homology group of T n . It follows from the Lefschetz fixed point theorem that
1 is an eigenvalue of L if ϕ minimal. We show that if ϕ is minimal and n ≤ 4, then L
is quasi-unipontent, that is, all of the eigenvalues of L are roots of unity and conversely
if L ∈ GL(n, Z) is quasi-unipotent and 1 is an eigenvalue of L , then there exists a C∞

minimal skew-product diffeomorphism ϕ of T n whose linear part is precisely L . We do
not know whether these results are true for n ≥ 5. We give a sufficient condition for a
smooth skew-product diffeomorphism of a torus of arbitrary dimension to be smoothly
conjugate to an affine transformation.

1. Introduction
We first prove the following.

PROPOSITION 1.1. Let ϕ be a minimal homeomorphism of a torus T n and L be the
induced mapping on H1(T n, Z). Then the minimal polynomial p(x) of L cannot be
decomposed over Q[x], as p(x)= q(x)r(x) where all of the roots of q(x) are roots of
unity and r(x) is not constant with no roots in the unit circle.

Proof. Assume that p(x) has such a decomposition. Then by the Primary Decomposition
theorem we have an invariant direct sum decomposition over Q

Rn
= E ⊕ V, (1)
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where the restriction B of L to V is hyperbolic. Now 0 = V ∩ Zn is a discrete cocompact
subgroup of V and M = V/0 is homeomorphic to a torus T k , k < n.

Let b be the hyperbolic diffeomorphism of M induced by B and ϕ be given on the
covering by L + F , where F : Rn

→ Rn is continuous and F(x + `)= F(x) for all x ∈ Rn

and ` ∈ Zn . We claim that b is a factor of ϕ. Consider the continuous surjective mapping
h : T n

→ M given on the covering Rn by

h(x)= P(x)+ H(x), (2)

where P : Rn
→ V is the projection associated to the decomposition (1) and H : T n

→ V
is a continuous solution of the cohomological equation

B H(x)− H(ϕ(x))= P(F(x)). (3)

Now since B is hyperbolic, a continuous solution of (3) exists see [1, Theorem 2.9.2] and
since P ◦ L = B ◦ P , then h ◦ ϕ = b ◦ h. Observing that h ◦ ϕ` = b` ◦ h for all ` ∈ Z and
since h is surjective we see that ϕ cannot be minimal because the lift of a periodic orbit of
b defines a closed invariant set for ϕ which contradictions minimality. 2

THEOREM 1. Any minimal homeomorphism ϕ of a torus T n , n ≤ 4, is quasi-unipotent on
the homology and 1 is an eigenvalue of its linear part.

Proof. Minimality of ϕ and the Lefschetz fixed point theorem shows that 1 is a root of
the minimal polynomial p(x) of the linear part L of ϕ. Thus, p(x)= (x − 1)s(x) where
deg s(x)≤ 3, since deg p ≤ 4.

If deg s(x)= 3, then s(x) factors over Z[x] as (x ± 1)q(x) and by Proposition 1.1 all
of the roots of q are roots of unity. If deg s(x)≤ 2 again by Proposition 1.1 all of the roots
of s(x) are roots of unity. 2

We do not know whether the above theorem is true if n ≥ 5. There are irreducible
polynomials in Q[x] with roots of absolute value 1 and roots of absolute value different
from 1.

Example 1.2. Eisenstein’s criterion shows that the polynomial p(x)= x4
+ 4x3

− 6x2

+ 4x + 1 is irreducible over Q[x] and as

p(x)= (x2
+ 2(1−

√
3)x + 1)(x2

+ 2(1+
√

3)x + 1)

we can see that

(
√

3− 1)± iλ, λ=

√
(1− (

√
3− 1)2)

are roots of absolute value 1 and they are not roots of unity and the other two roots of p(x)
have absolute value different from 1.

2. Minimal skew-product transformations of the torus
In this section we show that every quasi-unipotent matrix L ∈ GL(n, Z), n ≤ 4 with 1
as eigenvalue is the linear part of a smooth minimal skew-product transformation of the
torus T n . Actually the skew-products are of the particular type given in (5). Note that T n−p

acts freely on T p
× T n−p by translation on the second factor. Thus, if a homeomorphism
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ψ of T n commutes with this action it induces a homeomorphism ψ0 of the orbit space
T n/T n−p which is homeomorphic to the torus T p and we say that (T n, ψ) is a free T n−p-
extension of (T p, ψ0) (see [5]).

THEOREM 2. Let L ∈ GL(n, Z), n ≤ 4, be quasi-unipotent having 1 as an eigenvalue.
Then there exists a minimal smooth skew-product diffeomorphism ϕ of the torus T n whose
linear part is L.

Proof. We may assume that using the work of Newman [3]

L =

(
A 0
C B

)
, (4)

where A ∈ GL(p, Z), A = I + N1 and B ∈ GL(n − p, Z) such that Bm
= I + N2,

m ∈ Z+, where N1 and N2 are nilpotent.
Let ϕ be diffeomorphism of T n given on the covering Rn by

ϕ(X, Y )= (AX + α, C X + BY + F(X)), (5)

where a(X)= AX + α gives an affine minimal transformation of T p (see [2]) and F :
Rp
→ Rn−p is a smooth Zp-periodic function, that is, F(X + `)= F(X) for all ` ∈ Zp.

The iterates of ϕ are given by

ϕm(X, Y )= (am(X), Cm X + BmY + α(m)+ Fm(X)), (6)

where

Cl X =
l∑

j=1

Bk− j C A j−1,

α(m)=

( m∑
j=1

Cm− j

)
α, (7)

Fm(X)=
m∑

j=1

Bm− j F(a j−1(X)).

Recall that an action is simple if for each character γ ∈ T̂ n−p there exist a continuous
function fγ : T n

→ S1 and g : T p
→ S1 such that

fγ (z, w)= g(z)γ (w) (8)

for every z ∈ T p and w ∈ T n−p.
Let ν be the endomorphism of T n−p given on the covering Rn−p by the nilpotent matrix

N2 and consider the subgroup H = ker ν of T n−p. Note that ψ = ϕm is invariant under
the restriction of the action of T n−p to the subgroup H , that is,

ψ(z, w + h)= ψ(z, w)+ (0, h) (9)

for all h ∈ H .
From now on we assume that the diffeomorphism ψ0 of T n/H induced by ψ is either

minimal or uniquely ergodic.
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Let π : T n
→ T n/H be the projection. By [5, Theorem 1] ψ is minimal(uniquely

ergodic) if only if the equation

f (ψ0(π(z, w)))

f (z, w)
=

fγ (ψ(z, w))

fγ (z, w)
(10)

has no continuous (measurable) solution for each character γ ∈ Ĥ , γ 6= 1. Observe that
the condition in (10) does not depend on the choice of the particular function fγ . Note that
the functions f : T n/H → T 1 are given by the H -invariant functions f : T n

→ T 1, that
is, f (z, hw)= f (z, w) for all h ∈ H .

If L is unipotent, then there exists a minimal affine diffeomorphism of T n (see [2]).
Thus, it suffices to consider L quasi-unipotent but not unipotent.

Suppose that n = 2. We may assume [3]

L =

(
1 0
s −1

)
. (11)

Let ϕ(x, y)= (x + α, sx − y + F(x)). Thus,

ψ(x, y)= ϕ2(x, y)= (x + 2α, sα + y − F(x)+ F(x + α)).

It is easy to see that (T 2, ψ) is simple free T 1-extension of the translation of T 1 given on
the covering R1 by

ψ0(x)= x + 2α.

We choose a Liouville number α and a sequence {k j } j∈N so that

|e2π ik jα + 1|<
4π
(k j ) j

(see Appendix A) and F : T 1
→ R given by the Fourier transform

F̂(k)=

{
0 if k 6= ±k j ,

1+ e±2π ik jα if k =±k j .
(12)

By (10) it suffices to show that the cohomological equation

f (ψ0(x))

f (x)
=

fγ (ψ(x, y))

fγ (x, y)
, (13)

where f is given on the covering R1 by f (x)= `x + G(x) and fγ is given on the covering
R2 by fγ (x, y)= `γ y, ` and `γ in Z, has no continuous solution f : T 1

→ R1. This is
equivalent to show that the equation

`α + G(x + 2α)− G(x)= `γ sα + `γ [F(x + α)− F(x)] (14)

has no continuous solution G. If ` 6= `γ , then one sees that (14) has no continuous
solution G. If `= s`γ , (14) becomes

G(x + 2α)− G(x)= `γ [F(x + α)− F(x)]
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and gives the Fourier coefficient equations

Ĝ(k)=

{
0 if k 6= ±k j ,

`γ if k =±k j ,
(15)

which by the choice of F does not give a L1-solution G.
Suppose now that n = 3. There are two possibilities for the characteristic polynomial

p(x) of L , p(x)= (x − 1)q(x) or p(x)= (x − 1)2(x + 1) where q(1) 6= 0.
If p(x)= (x − 1)q(x), then we assume that [3]

L =

(
1 0
C B

)
,

where B ∈ GL(2, Z) is quasi-unipotent and 1 is not an eigenvalue of B. Thus, B is either
periodic with period m = 3, 4, 6 or B is conjugate to the matrix

B =

(
−1 0
s −1

)
, s ∈ Z.

To see this note that the characteristic polynomial of B is p(x)= x2
− tr Bx + det B, then

if B is quasi-unipotent the only possibilities are tr B =−2,−1, 0, 1, 2 for det B = 1 and
tr B = 0 for det B =−1. The det B =−1 case and the det B = 1, tr B = 2 case can be
ignored since they have 1 as eigenvalue. The remaining cases for det B = 1 give periods
3, 4, 6, and eigenvalue −1.

By (5) the diffeomorphism ϕ is given by

ϕ(x, Y )= (x + α, Cx + BY + F(x)), (16)

where Y = (y, z) and F : R→ R2 is a Z-periodic function.
If B is periodic, then by (6)

ψ(x, Y )= ϕm(x, Y )= (x + mα, Y + α(m)+ Fm(x))

since Cm = 0.
Hence, (T 3, ψ) is a simple free T 2-extension of the translation of T 1 given on the

covering R1 by
ψ0(x)= x + α.

Using Appendix A choose a Liouville number α and a sequence of integers {k j } j∈N such
that

|e2π ik jα − e2π i/m
|<

4π
(k j ) j . (17)

By [5] ψ is a minimal diffeomorphism if (10) has no continuous solution f (x)
= e2π i[`x+G(x)], where fγ (x, y, z)= e2π i〈`γ ,(y,z)〉 or, equivalently, the equation

m`α + G(x + α)− G(x)= 〈`γ , α(m)+ Fm(x)〉 (18)

has no continuous solution G. If m`α 6= 〈`γ , α(m)〉, then one sees that (18) has no
continuous solutions G. If m`α = 〈`γ , α(m)〉, equation (18) becomes

G(x + mα)− G(x)= 〈`γ , Fm(x)〉 (19)
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or, in Fourier coefficients,

Ĝ(k)= 〈`γ , (e
2π ikα I − B)−1 F̂(k)〉. (20)

Consider F : T 1
→ R2 the smooth function given by the Fourier transform

F̂(k)=


0, k 6= ±k j ,

(e2π ik jα − e2π i/m)V, k = k j ,

(e−2π ik jα − e−2π i/m)V , k =−k j ,

(21)

where V is the eigenvector of B associate to the eigenvalue e((2π i)/m). Then

Ĝ(k j )= 〈`γ , (e
2π ik jα I − B)−1 F̂(k j )〉 = 〈`γ , V 〉,

Ĝ(−k j )= 〈`γ , (e
−2π ik jα I − B)−1 F̂(−k j )〉 = 〈`γ , V 〉.

As the period of B is m ≥ 3, then 〈`γ , V 〉 6= 0 for all `γ ∈ Z2
− {0}. Thus, by choice of F ,

(19) has no L1-solution.
If

B =

(
−1 0
s −1

)
, s ∈ Z

then by (16)
ϕ(x, Y )= (x + α, Cx + BY + F(x)). (22)

Thus,
ψ(x, y, z)= ϕ2(x, y, z)= (x + 2α, C2x + α(2)+ B2Y + F2(x)).

If s = 0, (T 3, ψ) is a simple free T 2-extension of the translation (T1, ψ0), given in
covering R1 by ψ0(x)= x + 2α.

By [5] ψ is a minimal diffeomorphism if (10) has no continuous solution f (x)=
e2π i[`x+G(x)], where fγ (x, y, z)= e2π i〈`γ ,(y,z)〉 or, equivalently, the equation

m`α + G(x + 2α)− G(x)= 〈`γ , α(2)+ F2(x)〉 (23)

has no continuous solution G.
If 2`α 6= 〈`γ , α(2)〉, then one sees that (23) has no continuous solutions G. If 2`α =

〈`γ , α(2)〉 the equation becomes

G(x + 2α)− G(x)= 〈`γ , F2(x)〉

or, in Fourier coefficients,

Ĝ(k)= 〈`γ , (e
2π ikα

+ 1)−1 F̂(k)〉.

Consider F : T 1
→ R2 the smooth function given by the Fourier transform

F̂(k)=

{
0, k 6= ±k j ,

(e±2π ik jα + 1)V, k =±k j .

If the vector V = (a, b) ∈ R2 and a and b are linearly independent over the rational
numbers, then by the choice of F , (23) has no L1-solution.
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If s 6= 0, consider the diffeomorphism

ϕ(x, y, z)= (x + α, px − y + F1(x), qx + sy − z)

such that ϕ0(x, y)= (x + α, px − y + F1(x)) is minimal. Hence, (T 3, ψ = ϕ2) is a
simple free T 1-extension of the diffeomorphism (T 2, ψ0), given on covering R2 by
ϕ2

0(x, y)= ψ0(x, y)= (x + 2α, y + pα − F1(x)+ F1(x + α)). By [5] ψ is a minimal
diffeomorphism if (10) has no continuous solution f (x, y)= e2π i[〈`,(x,y)〉+G(x,y)], where
fγ (x, y, z)= e2π i`γ ,z or, equivalently, the equation

〈`, (2α, pα + F1(x + α)− F1(x))〉 + G(ψ0(x, y))− G(x, y)

= `γ [spx − 2sy + qα + s F1(x)]

has no continuous solution G. This is because the right-hand side of the above equation is
not a periodic function for `γ since s 6= 0.

If p(x)= (x − 1)2(x + 1), then we assume that [3]

L =

(
A 0
C −1

)
=

1 0 0
p 1 0
q s −1


by (5) the diffeomorphism ϕ is given by

ϕ(X, z)= (AX + δ, C X − z + F(x))= (a(X), C X − z + F(x)),

where X = (x, y) and δ = (α, β) and F a periodic smooth function, then

ψ(X, z)= ϕ2(X, z)= (a2(X), C2 X + z + α(2)+ F2(x)).

Hence, (T 3, ψ) is a simple free T 1-extension of the minimal affine transformation
(T 2, ψ0), given on covering R2 by ψ0(X)= a2(X). Again, by [5] ψ is a minimal
diffeomorphism if (10) has no continuous solution f (X)= e2π i[〈`,X〉+G(X)], where
fγ (X, z)= e2π i`γ z or, equivalently, the equation

〈`, a2(X)− X〉 + G(ψ0(X))− G(X)= `γ [C2 X + α(2)+ F2(x)] (24)

has no continuous solution G. If 〈`, a2(X)− X〉 6= `γ [C2 X + α(2)], then one sees that
(24) has no continuous solutions G.

If 〈`, a2(X)− X〉 = `γ [C2 X + α(2)], equation (24) becomes

G(ψ0(X))− G(X)= `γ F2(x). (25)

If F : T 1
→ R is given in Fourier coefficients as in (12), then (25) has no continuous

solution G.
Finally suppose that n = 4. There are three possibilities for the characteristic

polynomial p(x) of L , p(x)= (x − 1)q1(x), p(x)= (x − 1)2q2(x) or p(x)= (x − 1)3

(x + 1), where q1 and q2 are irreducible over Q(x).
If p(x)= (x − 1)q1(x), then we assume that [3]

L =

(
1 0
C B

)
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where B ∈ GL(3, Z) is quasi-unipotent and 1 is not an eigenvalue of B. Thus,

B =

(
−1 0
C0 B0

)
where B0 ∈ GL(2, Z) is quasi-unipotent by (5) the diffeomorphism ϕ is given by

ϕ(x, Y )= (x + α, Cx + BY + F(x))) (26)

where Y = (y, z, w) and F : R→ R3, F(x)= (F1(x), F2(x), F3(x)) is Z-periodic
smooth function.

If −1 is not an eigenvalue of B0 then B0 is periodic with period m = 3, 4 and 6, thus
B2m
= I , then by (6) we have

ψ(x, Y )= ϕ2m(x, y, Y )= (x + 2mα, C2m x + α(2m)+ Y + F2m(x)). (27)

Choose by (Appendix A) a Liouville number α and two sequences of integers {k j } j∈N

and {k′j } j∈N such that

|e2π ik jα − e2π i/m
|<

4π
(k j ) j and |e2π ik′jα + 1|<

4π
(k′j )

j .

Again, by [3]. It is easy to see that (T 4, ψ) is simple free T 3-extension of the translation
of T 1 given on the covering R1 by

ψ0(x)= x + 2mα.

Now ψ is a minimal diffeomorphism if (10) has no continuous solution f (x)
= e2π i[`x+G(x)], where fγ (x, Y )= e2π i〈`γ ,(y,Y )〉 or, equivalently, the following equation
has no continuous solution G:

2m`α + G(x + 2mα)− G(x)= 〈`γ , C2m x + α(2m)+ F2m(x)〉. (28)

If 2m`α 6= 〈`γ , α(2m)+ C2m x〉, then one sees that (28) has no continuous solutions G. If
2m`α = 〈`γ , α(2m)+ C2m x〉 becomes

G(x + 2mα)− G(x)= 〈`γ , F2m(x)〉 (29)

or, in Fourier coefficients,

Ĝ(k)= 〈`γ , (e
2π ikα I − B)−1 F̂(k)〉.

Consider a smooth function F1 : R1
→ R1 given by the Fourier transform

F̂1(k)=

{
0, k 6= ±k′j ,

(e±2π ik′jα + 1), k =±k′j ,

as in (12) and the smooth function F : R1
→ R2, F(x)= (F2(x), F3(x)) given by the

Fourier transform

F̂(k)=


0, k 6= ±k j ,

(e2π ik jα − e2π i/m)V, k = k j ,

(e−2π ik jα − e−2π i/m)V , k =−k j ,

as in (21), then (29) has no continuous solution G.
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Now if

B0 =

(
−1 0
s −1

)
,

then

L =

(
A 0

C0 B0

)
,

where

A =

(
1 0
p −1

)
and the diffeomorphism given in (26) we can written as

ϕ(X, Y )= (AX + F, C0 X + B0Y + H(x)),

where X = (x, y), Y = (z, w), F(x)= (α, F1(x)) and H(x)= (F2(x), F3(x)) are smooth
Z-periodic functions. These functions are determined by the Fourier transforms

F̂1(k)=

{
0 if k 6= ±k j ,

1+ e±2π ik jα if k =±k j ,
(30)

and

Ĥ(k)=

{
0 if k 6= ±k j ,

(1+ e±2π ik jα)V if k =±k j ,
(31)

where V = (a, b). Let us consider the diffeomorphism

ψ(X, Y )= ϕ2(X, Y )= (X + AF(x)+ F(x + α),

C0(2)X + B2
0 Y + C0 F(x)+ B0 H(x)+ H(x + α))

and suppose that ϕ0(x, y)= (x + α, px − y + F1(x)) is minimal. Hence, (T 4, ψ = ϕ2)

is a simple free T 2-extension of the minimal diffeomorphism (T 2, ψ0), given on covering
R2 by ϕ2

0(x, y)= ψ0(x, y)= (x + 2α, y + pα − F1(x)+ F1(x + α)). By [5] ψ is a
minimal diffeomorphism if (10) has no continuous solution f (X)= e2π i[〈`,X〉+G(X)],
where fγ (X, Y )= e2π i〈`γ ,Y 〉. This is equivalent to the equation

〈`, AF(x + α)+ F(x)〉 + G(ψ0(X))− G(X)

= 〈`γ , C0(2)X + [B2
0 − I ]Y + C0 F(x)+ B0 H(x)+ H(x + α)〉. (32)

If 〈`γ , C0(2)X + [B2
0 − I ]Y 〉 6= 0, then one sees that (32) has no continuous solution G.

If 〈`γ , C0(2)X + [B2
0 − I ]Y 〉 = 0, them (32) becomes

〈`, AF(x)+ F(x + α)〉 + G(ψ0(X))− G(X)

= 〈`γ , C0 F(x)+ B0 H(x)+ H(x + α)〉. (33)

Integrating (33) along the fibres of the bundle (x, y)→ y we obtain

〈`, AF(x)+ F(x + α)〉 + g(x + α)− g(x)

= 〈`γ , C0 F(x)+ B0 H(x)+ H(x + α)〉, (34)
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where g(x)=
∫

T 1 G(x, y) dy, note that g(x + α)=
∫

T 1 G(ψ(x, y)) dy. Hence, (34)
becomes in Fourier coefficients k 6= 0

〈`, (0, F̂1(k))(e
2π ikα

− 1)〉 + ĝ(k)(e2π ik2α
− 1)

= 〈`γ , C0(0, F̂1(k))+ [B0 + e2π ikα I ]Ĥ(k)〉. (35)

A simple computation using (30) and (31) gives

`1 + ĝ(k)= 〈`γ , C0(e
2π ikα

− 1)−1e2 + V + a(e2π ikα
− 1)−1se2〉. (36)

Hence, (34) has no continuous solution g by the Riemann Lebesgue lemma. This implies
necessarily that (33) has no continuous solution G. This finishes this case.

Now let p(x)= (x − 1)2q2(x). We may assume that [3]

L =

(
A 0
C B

)
,

where 1 is not an eigenvalue of B,

A =

(
1 0
n 1

)
and C ∈ M(2, Z).

The diffeomorphism ϕ is given by

ϕ(X, Y )= (AX + δ, C X + BY + F(x)), (37)

where X = (x, y), Y = (z, w), F(x)= (F1(x), F2(x)) and δ = (α, β). Denote by
a(X)= AX + δ the minimal affine transformation.

Suppose that B is periodic with period m. Then

ϕm(X, Y ) = (am(X), Y + C(m)X +
m∑

j=1

C(m − j − 1)(α, β)

+

m∑
j=1

Bm− j−1 F(x + ( j − 1)α)).

Hence, (T 4, ϕm
= ψ) is a simple free T 2-extension of the diffeomorphism (T 2, am

= ψ0),
given on covering R2 by ψ0(X)= am(X). By [5] ψ is a minimal diffeomorphism if
(10) has no continuous solution f (X)= e2π i[〈`,X〉+G(X)], where fγ (X, Y )= e2π i〈`γ ,Y 〉 or,
equivalently, the equation

〈`, am(X)− X〉 + G(am(X))− G(X)

=

〈
`γ , C(m)X +

m∑
j=1

C(m − j − 1)δ +
m∑

j=1

Bm− j−1 F(x + ( j − 1)α)
〉

(38)

has no continuous solution G. If

〈`, am(X)− X〉 6=

〈
`γ , C(m)X +

m∑
j=1

C(m − j − 1)δ
〉
,
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then one sees that (38) has no continuous solution G. If

〈`, am(X)− X〉 =

〈
`γ , C(m)X +

m∑
j=1

C(m − j − 1)δ
〉
,

then (38) becomes

G(am(X))− G(X)=

〈
`γ ,

m∑
j=1

Bm− j−1 F(x + ( j − 1)α)
〉

(39)

or, in Fourier coefficients,

Ĝ(k1 + nk2, k2)e
2π i〈am (0,0),(k1,k2)〉 − Ĝ(k1, k2)=

〈
`γ ,

m∑
j=1

Bm− j−1 F̂(k1)e
2π ikα

〉
. (40)

If k2 6= 0, then by the Riemann Lebesgue lemma Ĝ(k1, k2)= 0 then (40) becomes

Ĝ(k1, 0)= 〈`γ , (e2π ikα I − B)−1 F̂(k1)〉 (41)

take F as in (31) then (38) has no continuous solution G.
If B is not periodic, then

B =

(
−1 0
s −1

)
with s 6= 0. Consider the diffeomorphism as in (37)

ϕ(x, y) = (AX + δ, C X + BY + F(x))

= (AX + δ, C1 X − z + F1(x), C2 X + sz − w + F2(x)) (42)

such that ϕ0(x, y, z)= (AX + δ, C1 X − z + F1(x)) is minimal. Hence, (T 4, ψ = ϕ2) is
a simple free T 1-extension of the minimal diffeomorphism (T 3, ψ0), given on covering
R3 by ψ = ϕ2

0 . By [5] ψ is a minimal diffeomorphism if (10) has no continuous solution
f (X)= e2π i[〈`,X〉]+G(X), where fγ (X, Y )= e2π i`γw this equation is equivalent to the
equation

〈`, (a2(X)− X, C1(2)X + δ(2)− F1(x)+ F1(x + α)〉 + G(ψ0(X))− G(X)

= `γ [C2(2)X − 2sz + s F1(x)− F2(x)+ F2(x + α)]. (43)

The above equation has no continuous solution G because s 6= 0.
If p(x)= (x − 1)3(x + 1), then we assume that [3]

L =

(
A 0
C −1

)
,

where A ∈ GL(3, Z) is unipotent, that is, A = I + N . Consider the diffeomorphism ϕ

given by
ϕ(X, w)= (AX + α, C X +−w + F(x)), (44)

where X = (x, y, z), α = (α1, α2, α3) and F : R→ R is Z-periodic smooth function.
Then

ψ(X, w)= ϕ2(X, w)= (A2 X + Aα + α,

[C A − C]X + w + Cα − F(x)+ F(x + α1)). (45)
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Thus, (T 4, ψ) is a simple free T 1-extension of the minimal affine transformation
(T 3, ψ0), given on covering R3 by ψ0(X)= A2 X + Aα + α. Now by [5] ψ is minimal
diffeomorphism if (10) has no continuous solution f (X)= e2π i[〈`,X〉+G(X)], where
fγ (X, w)= e2π i`γw or, equivalently, the following equation has no continuous solution G:

〈`, [A2
− I ]X + Aα + α〉 + G(ψ0(X))− G(X)

= `γ [[C A − C]X + Cα − F(x)+ F(x + α1)]. (46)

If 〈`, [A2
− I ]X + Aα 6= `γ [[C A − C]X + Cα], then one sees that (46) has no

continuous solution G. If 〈`, [A2
− I ]X + Aα = `γ [[C A − C]X + Cα], then (46)

becomes
G(ψ0(X))− G(X)= `γ [−F(x)+ F(x + α1)]. (47)

Now if α1 is a Liouville number and F is a smooth function given by Fourier coefficients
as in (12), then (47) has no continuous solution G. 2

We now give a sufficient condition for a smooth skew-product transformation of a torus
to be smoothly conjugate to an affine transformation. We present in the Appendix A the
definition of Diophantine vectors. We recall that we are restricted to smooth skew-product
diffeomorphism ϕ of the torus T n

= T p
× T n−p given on the covering Rn by

ϕ(X, Y )= (X + α, C X + BY + F(X)), (48)

where X ∈ Rp, Y ∈ Rn−p and F : Rp
−→ Rn−p is a smooth Zp-periodic function. We

call α ∈ Rp the translation vector of ϕ. To ϕ there naturally corresponds an affine
transformation ϕ0 given on the covering Rn by

ϕ0(X, Y )= (X + α, C X + BY + β1),

where β1 = Proj(β), Proj : Rn
−→ ker(I − B)t and β =

∫
T p F dµ, µ being the Haar

measure of T p.

THEOREM 3. Every smooth skew-product diffeomorphism ϕ of T n of type (48) quasi-
unipotent on homology whose translation vector is Diophantine is smoothly conjugate to its
corresponding affine transformation. Moreover, if ϕ is minimal, then 1 is only eigenvalue
of its linear part.

Proof. Since the translation vector α is Diophantine and B is quasi-unipotent then the
cohomological equation

F(x)= β1 + G(x + α)− BG(x)

has a smooth solution G (see [4, Theorem 2.6]). Thus, the diffeomorphism h : T n
−→ T n

given on the covering Rn by

h(X, Y )= (x, Y + G(X))

conjugate ϕ with the affine transformation ϕ0. If ϕ is minimal, then so is ϕ0 and 1 is the
only eigenvalue of B (see [2]). 2
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A. Appendix
In this appendix we recall the definition of Diophantine and Liouville numbers and we
show that for every nth root of unity there exists a ‘fast approximation’ by iterations of a
Liouville rotation of the circle.

Definition A.1. Given C > 0 and r ≥ 0, we say that α ∈ R−Q verifies a Diophantine
condition of exponent r and constant C if and only if for all q ∈ Z, one has ‖qα‖ ≥
C |q|−1−r .

We have ‖x‖ = inf{|x − p| | p ∈ Z}. Note that the inequality

4s ≤ |e2π is
− 1| ≤ 2πs (49)

with s ∈ [0, 1] implies that the orbit of 1 by the rotation Rα is a bad approximation of
number 1 in the sense that

|e2π iqα
− 1| ≥ 4C |q|−1−r (50)

for all q ∈ Z.
The irrational algebraic numbers are examples of Diophantine numbers.
More generally we say that a vector α ∈ Rn , n > 1 is a Diophantine vector if there are

constants r > 0 and C > 0 such that

‖〈k, α〉‖ ≥ C |k|−r (51)

for every k ∈ Zn .
We say that an irrational number is Liouville if it is not Diophantine. In this case the

orbit of 1 by the rotation Rα has a good approximation of the number 1 in the sense that
there exists a sequence {q j } j∈N ⊂ Z such that |α − (p j/q j )|< C |q j |

−( j+1) by (49).
The number α =

∑
∞

k=1 q−k! is a Liouville number.
The following proposition shows that for every root of unity ξn there exists a rotation

Rα whose orbit by 1 has fast approximation to ξn .

PROPOSITION A.2. Given a family {e2π i(ps/qs )}
m
s=1 of roots of unity there exits a Liouville

number α and a family {{ks
j } j∈N}

m
s=1 of sequences such that∥∥∥∥ks

jα −
ps

qs

∥∥∥∥< 2
(ks

j )
j (52)

for all j ∈ N and s ∈ {1, 2, . . . , m}.

Proof. We may assume that qs > 0 and 0< ps < qs . We consider the following Liouville
number

α =

∞∑
k=1

1

qk!
,
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where q = q1q2 . . . qm . Now consider the sequence ks
j = psq j !

1 . . . (qs)
j !−1 . . . q j !

m , with
j ∈ N and s ∈ {1, 2, . . . , m}. We show that this sequence satisfies (52). In fact, it is easy
to see that ∥∥∥∥ks

jα −
ps

qs

∥∥∥∥= inf
`∈Z

∣∣∣∣ks
jα −

ps

qs
+ `

∣∣∣∣≤ ∞∑
k= j+1

ks
j

qk!
.

Thus, ∥∥∥∥ks
jα −

ps

qs

∥∥∥∥ ≤ 1
(ks

j )
j

∞∑
k= j+1

(ks
j )

j+1

qk!

≤
1

(ks
j )

j

∞∑
k= j+1

q( j+1)!

qk!
<

1
(ks

j )
j

∞∑
k=0

1
qk ≤

2
(ks

j )
j . (53)

2
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