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THE ZERO LOWER BOUND AND
CRUDE OIL AND FINANCIAL
MARKETS SPILLOVERS
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We investigate mean and volatility spillovers between the crude oil market and the debt,
stock, and foreign exchange markets. In doing so, we estimate a four-variable
VARMA–GARCH model with a BEKK representation and also examine the possible
effects of monetary policy at the zero lower bound by including a dummy variable in both
the conditional mean and variance equations. We find that the crude oil market and the
financial markets are tightly interconnected and that monetary policy at the zero lower
bound has strengthened their linkages.
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1. INTRODUCTION

In this paper, we take a financial market perspective and examine the relationship
between the price of oil and three financial variables—the interest rate, stock
price, and exchange rate—building on a growing literature that analyzes the link
between the oil market and markets for financial assets. We are motivated by the
fact that over the past decade there has been a closer link between oil prices and
asset prices, raising the question of whether oil has itself become a financial asset,
with its price reacting to and influencing other assets in financial markets.

The link between oil prices and stock prices has already been analyzed in the
literature—see, for example, Jones and Kaul (1996), Park and Ratti (2008), and
Sadorsky (1999, 2001, 2012). More recently, Kilian and Park (2009) estimate
the global crude oil market model of Kilian (2009), augmented with a stock
market variable, and report that the response of stock prices to oil price shocks
depends on the nature of the oil price shocks. They treat the price of crude oil as
endogenous and model changes in the real price of crude oil as arising from three
different sources: shocks to the global supply of crude oil, shocks to the global
demand for all industrial commodities (including crude oil) that are driven by the
global business cycle, and oil-market specific demand shocks (also referred to as

We would like to thank Lutz Kilian for comments that greatly improved the paper. Address correspondence to:
Apostolos Serletis, Department of Economics, University of Calgary, Calgary, Alberta T2N 1N4, Canada; e-mail:
Serletis@ucalgary.ca; Web: http://econ.ucalgary.ca/serletis.htm.

c© 2016 Cambridge University Press 1365-1005/16 654

https://doi.org/10.1017/S1365100516000365 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog/?doi=10.1017/S1365100516000365&domain=pdf
https://doi.org/10.1017/S1365100516000365


ZERO LOWER BOUND AND MARKET SPILLOVERS 655

precautionary demand shocks). They show that demand and supply shocks driving
the global crude oil market jointly account for 22% of the long-run variation in
U.S. real stock returns.

There is also a growing literature analyzing the relationship between oil prices
and exchange rates. See, for example, Amano and van Norden (1998), Sadorsky
(2000), Chen and Chen (2007), and Chen et al. (2010), with the latter showing that
the floating exchange rates of small commodity exporters, including Australia,
Canada, New Zealand, South Africa, and Chile, with respect to the U.S. dollar in
some cases have surprisingly robust power in forecasing the global prices of their
commodity exports. In contrast, Alquist et al. (2013), find that the trade-weighted
nominal U.S. exchange rate lacks predictive power with respect to the price of oil.

Finally, there is a large literature that investigates whether the economic effects
of oil price changes also depend on how monetary policy responds. See, for
example, Herrera and Pesavento (2009) and Kilian and Lewis (2011). In this
regard, in the past, when oil prices rose prior to recessions so did interest rates,
and as has been argued by Bernanke et al. (1997) it was the increase in the
interest rate that led to the downturn. However, this view has been challenged
by Hamilton and Herrera (2004), who argue that contractionary monetary policy
plays only a secondary role in generating the contractions in real output and that it
is the increase in the oil price that directly leads to contractions. Moreover, recent
work by Kilian and Vigfusson (2011) shows that the original estimates presented
in Bernanke et al. (1997) in support of a feedback from monetary policy are
inconsistent and were constructed in a way that exaggerates the effects of oil price
shocks. Moreover, the link to interest rates need not rely only on monetary policy,
as Barsky and Kilian (2002) argue that interest rates affect storage behavior in oil
markets, and Bodenstein et al. (2012), in the context of a global dynamic stochastic
general equilibrium model with endogenous oil markets, show that U.S. monetary
policy responses depend on the source of the observed oil price fluctuations.

In this paper, we use a multivariate volatility model to investigate mean and
volatility spillovers between the crude oil market and the three financial markets—
the debt, stock, and foreign exchange markets. Multivariate volatility models, first
proposed by Bollerslev et al. (1988), are becoming standard in economics and
finance, because they allow for rich dynamics in the variance-covariance structure
of time series, making it possible to model spillovers in both the values and the
conditional variances of the series under study. They can be used to investigate a
large number of issues in economics and finance. For example, as Bauwens et al.
(2006, p. 79) put it, “is the volatility of a market leading the volatility of other
markets? Is the volatility of an asset transmitted to another asset directly (through
its conditional variance) or indirectly (through its conditional covariances)? Does
a shock on a market increase the volatility on another market, and by how much?
Is the impact the same for negative and positive shocks of the same amplitude?”

Our methodological approach represents an original contributions to the litera-
ture; to the best of our knowledge, no study has considered the modeling of the oil
price, interest rate, stock price, and exchange rate in a systems context, with a focus
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on both first (mean) and second (volatility) moment linkages. We also contribute
to the literature by examining the effects of unconventional monetary policy in
the aftermath of the global financial crisis. In this regard, in the aftermath of the
global financial crisis, conventional monetary policy has been ineffective, because
the policy rate has reached the zero lower bound and cannot be driven below
zero. The Federal Reserve and many other central banks around the world have
resorted to unconventional monetary policy (quantitative easing, long-term bond
purchases, and managing expectations) in order to lower long-term interest rates
and stimulate their economies. We examine the possible effects of monetary policy
at the zero lower bound by including a dummy variable in both the conditional
mean and variance equations of our four-variable VARMA–GARCH model with a
BEKK representation to allow for possible parameter shifts and capture the effects
of monetary policy when the policy rate hits the zero lower bound.

The paper is organized as follows. Section 2 discusses the data and investigates
their time series properties. Sections 3 and 4 describe the empirical method and
present the results. The final section concludes the paper.

2. DATA AND BASIC FACTS

We use monthly data for the United States over the period from January 1979
to February 2015. For the oil price series (ot ), we use the composite refiners’
acquisition cost of crude oil (RAC), as compiled by the U.S. Department of Energy.
This price index is a weighted average of domestic and imported crude oil costs,
including transportation and other fees paid by refiners, and therefore measures
the price of crude oil as an input to production. For the interest rate series (it ), we
use the 3-month Treasury bill rate, obtained from the Federal Reserve Economic
Database (FRED) maintained by the Federal Reserve Bank of St. Louis. The S&P
500 index (st ) is obtained from Yahoo Finance and the series for the nominal
effective exchange rate (et ) from the IMF International Financial Statistics.

Table 1 presents summary statistics for the log levels of the series (ln ot , ln it ,
ln st , and ln et ) as well as for the first differences of the logs (� ln ot , � ln it ,
� ln st , and � ln et ). In general, the p-values for skewness and kurtosis point to
significant deviations from symmetry and normality with both the logged series
and the first logged differenced series. In fact, the Jarque and Bera (1980) test
statistic, distributed as a χ2(2) under the null hypothesis of normality, rejects the
null hypothesis.

One interesting feature of the data is the contemporaneous correlation between
the different series. These correlations are reported in Table 2 for the log levels
(in panel A) and the first differences of the log levels (in panel B). To determine
whether these correlations are statistically significant, we follow Pindyck and
Rotemberg (1990) and perform a likelihood ratio test of the hypothesis that the
correlation matrix is equal to the identity matrix. The test statistic is

−2 ln
(|R|N/2

)
,
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TABLE 1. Summary statistics

p-values

Series Mean Variance Skewness Kurtosis Normality

A. Log levels
Oil price 3.418 0.429 0.000 0.001 0.000
T-bill rate 0.826 3.164 0.000 0.000 0.000
S&P 500 index 6.330 0.802 0.000 0.000 0.000
Exchange rate 4.427 0.127 0.000 0.069 0.000

B. First differences of log levels
Oil price 0.003 0.005 0.000 0.000 0.000
T-bill rate −0.014 0.046 0.000 0.000 0.000
S&P 500 index 0.007 0.002 0.000 0.000 0.000
Exchange rate 0.003 0.0002 0.132 0.003 0.004

Note: Sample period, monthly observations, 1979:1–2015:2.

TABLE 2. Contemporaneous correlations

A. Log levels B. First differences of log levels

Oil T-bill S&P Exchange Oil T-bill S&P Exchange
price rate 500 rate price rate 500 rate

Oil price 1 0.292 0.985 0.982 1 0.165 −0.008 −0.213
T-bill rate 0.292 1 0.337 0.388 0.165 1 0.039 0.035
S&P 500 0.985 0.337 1 0.997 −0.008 0.039 1 −0.126
Exchange rate 0.982 0.388 0.997 1 −0.213 0.035 −0.126 1

χ 2(6) → +∞ χ 2(6) = 43.009

Note: Sample period, monthly data, 1979:1–2015:2.

where |R| is the determinant of the correlation matrix and N is the number of
observations. This test statistic is distributed as χ2 with 0.5q(q − 1) degrees of
freedom, where q is the number of series. The test statistic is very large with a
p-value of 0.000 for the logged values and 43.009 with a p-value of 0.000 for
the first differences of the logs. Clearly, the hypothesis that these data series are
uncorrelated is rejected. The correlation patterns documented in Table 2 manifest
in the graphical representation of the logged levels of the series in Figure 1; the
shaded area represents the period over which the zero lower bound constraint on
the policy rate is binding.

We also conduct a battery of unit root and stationary tests in panel A of Table
3 in the natural log of each of the series. In particular, we use the Augmented
Dickey–Fuller (ADF) test [see Dickey and Fuller (1981)] and the Dickey–Fuller
GLS test [see Elliot et al., (1996)], assuming both a constant and trend, to determine
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FIGURE 1. Logs of oil price, T-bill rate, S&P 500 index, and exchange rate.

TABLE 3. Unit root and stationary tests

Test

Series ADF DF-GLS KPSS Decision

A. Logged levels
Oil price −2.472 −2.238 1.685 I (1)

T-bill rate −1.533 −1.479 1.183 I (1)

S&P 500 index −1.698 −1.482 1.551 I (1)

Exchange rate −1.932 −0.510 1.897 I (1)

B. Logged first differences
Oil price −11.718 −9.277 0.065 I (0)

T-bill rate −17.046 −9.509 0.036 I (0)

S&P 500 index −19.673 −5.552 0.058 I (0)

Exchange rate −14.052 −7.963 0.087 I (0)

Notes: Sample period, monthly observations, 1979:1–2015:2. The 1% and 5% critical
values are −4.023 and −3.441 for the ADF test, −3.529 and −2.988 for the DF-GLS
test, and 0.216 and 0.146 for the KPSS test, respectively.

whether the series have a unit root. The optimal lag length is taken to be the order
selected by the Bayesian information criterion (BIC), after we assume a maximum
lag length of 4 for each series. Moreover, given that unit root tests have low power
against trend stationary alternatives, we also use the KPSS test [see Kwiatkowski
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et al. (1992)] to test the null hypothesis of stationarity around a trend. As shown
in panel A of Table 3, the null hypothesis of a unit root is rejected at conventional
significance levels by both the ADF and DF-GLS test statistics. Moreover, the null
hypothesis of trend stationarity can be rejected at conventional significance levels
by the η̂τ KPSS test. We thus conclude that each of the series is nonstationary,
or integrated of order one, I (1). In panel B of Table 3, we repeat the unit root
and stationarity tests using the first differences of the logarithms of the series. The
null hypotheses of the ADF and DF-GLS tests are in general rejected and the null
hypothesis of the KPSS test cannot be rejected, suggesting that the first differences
of the logarithms of the series are stationary, or integrated of order zero, I (0).

3. THE ECONOMETRIC MODEL

Normally, the presence of unit roots would suggest logarithmic first differences as
the correct data representation in our model. However, we find evidence of coin-
tegration among the four series, using Johansen’s (1988) maximum likelihood
method. Vector error correction (VEC) models are often used with cointegrated
series, because they allow for an explicit analysis of cointegrating relations. How-
ever, a vector autoregression (VAR) in levels is sufficient if the cointegrating
relations are not the focus of study, as in our case. In fact, VAR and VEC are
equivalent, as demonstrated by Lütkepohl (2004).

One issue in applied VAR analysis is that finite-lag order VAR models are
usually fitted to data generated by VAR processes of possibly infinite-lag order.
As noted by Inoue and Kilian (2002, p. 322), “the existence of finite-lag order
VAR models is highly implausible in practice and often inconsistent with the
assumptions of the macroeconomic model underlying the empirical analysis” —
see also Braun and Mittnik (1993) and Lütkepohl (2005). However, infinite-lag
order VAR models often can be represented by an invertible finite-order vector
autoregressive moving-average (VARMA) structure, although such a structure
could be very difficult to estimate using numerical methods.

In this paper, we use a VARMA(1,1) formulation in log-levels (multiplied by
100) for the mean equation, thus capturing features of the data generating process in
a more parsimonious way, without adding a large number of parameters (or lagged
variables). We also use the Baba, Engle, Kraft, and Kroner (BEKK) specification
for the variance equation. In particular, our empirical model is a VARMA(1,1)–
BEKK(1,1,1) model with break in coefficients since December 2008 when the
zero lower is reached:

zt = � + (� + �̃×D)zt−1 + (� + �̃×D)εt−1 + εt , (1)

where

εt | 	t−1 ∼ tv (0, H t ) ; H t =

⎡
⎢⎢⎣

hoo,t hoi,t hos,t hoe,t

hio,t hii,t his,t hie,t

hso,t hsi,t hss,t hse,t

heo,t hei,t hes,t hee,t

⎤
⎥⎥⎦ ,
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and

zt =

⎡
⎢⎢⎣

ln ot

ln it
ln st

ln et

⎤
⎥⎥⎦ ; εt =

⎡
⎢⎢⎣

εo,t

εi,t

εs,t

εe,t

⎤
⎥⎥⎦ ; � =

⎡
⎢⎢⎣

γ11 γ12 γ13 γ14

γ21 γ22 γ23 γ24

γ31 γ32 γ33 γ34

γ41 γ42 γ43 γ44

⎤
⎥⎥⎦ ;

� =

⎡
⎢⎢⎣

ψ11 ψ12 ψ13 ψ14

ψ21 ψ22 ψ23 ψ24

ψ31 ψ32 ψ33 ψ34

ψ41 ψ42 ψ43 ψ44

⎤
⎥⎥⎦ ;

�̃ =

⎡
⎢⎢⎣

γ̃11 γ̃12 γ̃13 γ̃14

γ̃21 γ̃22 γ̃23 γ̃24

γ̃31 γ̃32 γ̃33 γ̃34

γ̃41 γ̃42 γ̃43 γ̃44

⎤
⎥⎥⎦ ; �̃ =

⎡
⎢⎢⎣

ψ̃11 ψ̃12 ψ̃13 ψ̃14

ψ̃21 ψ̃22 ψ̃23 ψ̃24

ψ̃31 ψ̃32 ψ̃33 ψ̃34

ψ̃41 ψ̃42 ψ̃43 ψ̃44

⎤
⎥⎥⎦ ,

with 	t−1 being the information set available in period t −1, υ a parameter which
characterizes the shape of the Student’s t distribution, and D a dummy variable
taking the value of zero before December 2008 and the value of 1 since December
2008 when the zero lower bound constraint on the policy rate is binding. That is,

D =
{

0 before December 2008,
1 since December 2008.

The BEKK(1,1,1) specification for the variance equation is a multivariate ex-
tension of the GARCH(1,1) process, and is as follows:

H t = C ′C + (B + B̃×D)′H t−1(B + B̃×D)

+ (
A + Ã×D

)′
εt−1ε

′
t−1

(
A + Ã×D

)
, (2)

A =

⎡
⎢⎢⎣

α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44

⎤
⎥⎥⎦ ; Ã =

⎡
⎢⎢⎣

α̃11 α̃12 α̃13 α̃14

α̃21 α̃22 α̃23 α̃24

α̃31 α̃32 α̃33 α̃34

α̃41 α̃42 α̃43 α̃44

⎤
⎥⎥⎦ ;

B =

⎡
⎢⎢⎣

β11 β12 β13 β14

β21 β22 β23 β24

β31 β32 β33 β34

β41 β42 β43 β44

⎤
⎥⎥⎦ ; B̃ =

⎡
⎢⎢⎣

β̃11 β̃12 β̃13 β̃14

β̃21 β̃22 β̃23 β̃24

β̃31 β̃32 β̃33 β̃34

β̃41 β̃42 β̃43 β̃44

⎤
⎥⎥⎦ ,

where C, B, B̃, A, and Ã are 4 × 4 matrices with C being a triangular matrix to
ensure positive definiteness of H . This specification allows past volatilities, H t−1,
as well as lagged values of εt−1ε

′
t−1 to show up in estimating the current volatility

of the T-bill rate, the stock price, the oil price and the exchange rate. Since the
H matrix is symmetric, equation (2) produces 10 unique equations modeling the
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dynamic variances of the oil price, the T-bill rate, the stock price, and the exchange
rate, as well as the covariances between them.

We refrain from adding additional explanatory variables, since our model al-
ready contains 68 mean equation parameters, 74 variance equation parameters,
and the distribution shape parameter, υ, for a total of 143 free parameters. It is to
be noted that we do not impose any restriction on υ, but we estimate it together
with the other parameters, thus capturing the fat tails in the distribution of the
errors (as υ → ∞, the distribution becomes the normal distribution and the fat
tails disappear). However, we impose the restriction γ̃11 = ψ̃11 = α̃11 = β̃11 = 0,
thus not allowing the crude oil data generating process to be affected by the zero
lower bound constraint.

To address our research question, we capture the dynamics of the system by the
�, �, A, and B coefficient matrices before the zero lower bound was reached,
and by � + �̃, � + �̃, A + Ã, and B + B̃ during the zero lower bound period.

4. EMPIRICAL EVIDENCE

The four-variable VARMA(1,1)–BEKK(1,1,1) specification with a structural
break in December 2008, consisting of equations (1) and (2), is estimated in Estima
RATS 9.0 using the Maximum Likelihood method. We use the BFGS (Broyden,
Fletcher, Goldfarb, and Shanno) estimation algorithm, which is recommended
for GARCH models, combined with the derivative-free Simplex preestimation
method. Table 4 reports the coefficients estimates obtained (with p-values in
parentheses), the estimate of the Student’s t distribution shape parameter, υ, and
key diagnostics for the standardized residuals

zjt = εjt√
hjt

,

for j = ln o, ln i, ln s and ln e.
We discuss the estimation results of the mean equation first and only focus on

those coefficients which are statistically significant at the 95% level. It is to be
noted that our discussion is only in terms of predictability, and not about causal
relationships, since our model is nonstructural. Moreover, we are not addressing
the identification of shocks, given the scope of our research questions. The autore-
gressive coefficients in the � matrix are all significant and close to one along the
main diagonal, suggesting that for each of the four markets, today’s performance
is a useful predictor of tomorrow’s performance. In addition, we find significant
spillover effects to the crude oil, bond, and stock markets, but there is no evidence
of spillovers from the crude oil, bond, and stock markets to the foreign exchange
market. In particular, the current price of crude oil is affected by last period’s stock
price and exchange rate; a higher S&P 500 index leads to an increase in the price
of oil (γ13 = 0.025 with a p-value of 0.002) whereas a stronger U.S. dollar leads
to a decline in the price of oil (γ14 = −0.052 with a p-value of 0.000).
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TABLE 4. The four variables VARMA–BEKK model with oil price, T-bill rate, S&P 500 index, and exchange rate

A. Conditional mean equation

� =

⎡
⎢⎢⎣

0.961 (0.000) 0.005 (0.605) 0.025 (0.002) −0.052 (0.000)

−0.006 (0.397) 0.986 (0.000) 0.045 (0.000) −0.134 (0.000)

0.001 (0.839) 0.003 (0.512) 0.990 (0.000) 0.023 (0.016)

−0.001 (0.559) 0.001 (0.680) 0.003 (0.284) 0.987 (0.000)

⎤
⎥⎥⎦; �̃ =

⎡
⎢⎢⎣

0.000 0.050(0.001) −0.061 (0.060) 0.136 (0.005)

0.151 (0.409) −0.439 (0.000) −1.291 (0.000) 1.607 (0.000)

0.001 (0.961) −0.016 (0.003) −0.041 (0.009) 0.058 (0.003)

−0.012 (0.002) −0.007 (0.004) 0.012 (0.041) −0.012 (0.136)

⎤
⎥⎥⎦;

� =

⎡
⎢⎢⎣

0.565 (0.000) −0.025 (0.186) −0.030 (0.365) −0.033 (0.642)

0.019 (0.452) 0.445 (0.000) −0.084 (0.042) −0.180 (0.116)

−0.122 (0.000) −0.016 (0.459) −0.072 (0.166) −0.387 (0.006)

−0.010 (0.285) 0.003 (0.448) −0.022 (0.194) 0.361 (0.000)

⎤
⎥⎥⎦; �̃ =

⎡
⎢⎢⎣

0.000 −0.007(0.750) 0.557 (0.000) 0.094 (0.813)

0.564 (0.094) −0.003 (0.975) 1.080 (0.188) 8.852 (0.000)

0.169 (0.000) 0.024 (0.293) −0.048 (0.587) 0.388 (0.205)

−0.024 (0.037) 0.005 (0.347) −0.063 (0.028) 0.119 (0.103)

⎤
⎥⎥⎦.

B. Residual diagnostics
Mean Variance Q(4) Q2(4)

zot −0.054 1.160 (0.003) (0.863)
zit −0.128 1.003 (0.002) (0.360)

zst −0.047 1.015 (0.430) (0.160)

zet −0.037 0.919 (0.819) (0.420)

C. Student’s t distribution shape

v = 6.168 (0.000)

D. Conditional variance-covariance structure

A =

⎡
⎢⎢⎣

0.398 (0.000) 0.063 (0.081) 0.009 (0.685) −0.022 (0.002)

0.017 (0.490) 0.700 (0.000) 0.003 (0.883) 0.021 (0.001)

0.022 (0.622) −0.133 (0.007) 0.079 (0.011) −0.002 (0.881)

−0.093 (0.221) 0.302 (0.107) 0.022 (0.845) 0.064 (0.046)

⎤
⎥⎥⎦; Ã =

⎡
⎢⎢⎣

0.000 −1.373 (0.000) 0.126 (0.005) −0.025 (0.043)

−0.046 (0.115) −0.413 (0.000) 0.028 (0.157) −0.021 (0.003)

0.730 (0.000) −0.380 (0.659) 0.353 (0.001) 0.078 (0.008)

1.636 (0.008) −3.244 (0.384) 3.264 (0.000) 0.389 (0.002)

⎤
⎥⎥⎦;

B =

⎡
⎢⎢⎣

0.934 (0.000) −0.026 (0.069) 0.074 (0.000) −0.012 (0.078)

0.001 (0.892) 0.780 (0.000) −0.022 (0.153) 0.009 (0.060)

0.013 (0.475) −0.058 (0.064) 0.914 (0.000) −0.167 (0.000)

−0.085 (0.285) −0.160 (0.100) 1.588 (0.000) 0.793 (0.000)

⎤
⎥⎥⎦;B̃ =

⎡
⎢⎢⎣

0.000 −1.358 (0.000) −0.082 (0.047) −0.047 (0.000)

0.073 (0.000) −0.118 (0.080) 0.048 (0.006) −0.027 (0.000)

−0.341 (0.001) 0.799 (0.226) −0.262 (0.000) 0.158 (0.000)

2.151 (0.000) 13.291 (0.000) −1.663 (0.000) −0.377 (0.000)

⎤
⎥⎥⎦.

Note: Sample period, monthly data: 1979:01-2015:02. Numbers in parentheses are tail areas of tests.
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However, the spillover effects change after the policy rate hits the zero lower
bound in December 2008, as is indicated by the �̃ matrix. Regarding the oil price
equation, we find that a higher interest rate could lead to an increase in the price of
oil, since γ̃12 = 0.05 with a p value of 0.001. Also, the intertemporal correlation
between the oil price and the exchange rate changes when the zero lower bound
constraint on the policy rate is binding, since in that case an appreciation of the
U.S. dollar leads to a higher oil price (γ14 + γ̃14 = −0.052 + 0.136 = 0.084). We
also find a new spillover effect from the crude oil market to the foreign exchange
market, as γ̃41 = −0.012 with a p value of 0.002, implying that a higher oil
price will lead to a depreciation of the U.S. dollar. Overall, we find that spillovers
running from the financial variables to the price of oil are bigger when the zero
lower bound constraint is binding.

The moving average coefficients along the diagonal of the � matrix are mod-
erate and significant, except that for the stock price, suggesting that each of
the crude oil price, interest rate, and exchange rate series is consistent with a
typical ARMA process. The off-diagonal elements of the � matrix indicate the
spillover effects across the four markets. There is no evidence of shock spillovers
from each of the financial markets to the crude oil market, except in the case
of the stock market and when the zero lower bound occurs (as ψ̃13 = 0.557
with a p-value of 0.000). However, oil price shocks affect the stock market neg-
atively at normal times (ψ31 = −0.122 with a p-value of 0.000) and ambigu-
ously when the zero lower bound is reached (as ψ̃31 = 0.169 with a p-value of
0.000).

Regarding volatility linkages, all the “own-market” coefficients in the A, Ã,
B, and B̃ matrices are statistically significant and the estimates suggest a high
degree of persistence. There are no spillover ARCH effects from the oil mar-
ket to the bond and stock markets before December 2008, but we find statis-
tically significant spillover ARCH effects when the zero lower bound occurs.
In particular, an unexpected shock in the crude oil market increases the volatil-
ity of the bond and stock markets after the zero lower bound is reached, since
α̃12 = −1.373 (with a p-value of 0.000) and α̃13 = 0.126 (with a p-value of
0.005). Moreover, the spillover ARCH effect from the oil market on the for-
eign exchange market increases when the zero lower bound is reached, since
α̃14 = −0.025 (with a p-value of 0.043), implying an ARCH effect of (0.022 +
0.025)2.

We also find statistically significant spillover GARCH effects when the zero
lower bound occurs. There is evidence for volatility spillovers from the crude
oil market to the bond and foreign exchange markets, with β̃12 = −1.358 (with
a p-value of 0.000) and β̃14 = −0.047 (with a p-value of 0.005), respectively.
We also find volatility spillovers running from each of the financial markets to
the crude oil market. Overall, we find that the volatility spillovers across markets
are enhanced when the zero lower bound occurs than when it is not, suggesting
that unconventional monetary policy at the zero lower bound has strengthened the
linkages between the crude oil and financial markets.
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5. CONCLUSION

We have investigated mean and volatility spillovers between the crude oil market
and three financial markets—the debt, stock, and foreign exchange markets—by
estimating a VARMA model with a BEKK representation. We have also examined
the possible effects of monetary policy at the zero lower bound by including a
dummy variable in both the conditional mean and variance equations. The four-
variable VARMA–BEKK model analyzed, our focus on both first- and second-
moment linkages, and the incorporation of a structural break to capture the effects
of monetary policy when the policy rate hits the zero lower bound all represent
original contributions to the literature.

We find that the crude oil market and the financial markets are tightly intercon-
nected and that monetary policy at the zero lower bound has strengthened their
linkages.
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