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SL(n) Invariant Valuations on
Super-Coercive Convex Functions

Fabian Mussnig

Abstract. All non-negative, continuous, SL(n), and translation invariant valuations on the space of
super-coercive, convex functions on Rn are classiûed. Furthermore, using the invariance of the func-
tion space under the Legendre transform, a classiûcation of non-negative, continuous, SL(n), and
dually translation invariant valuations is obtained. In both cases, diòerent functional analogs of the
Euler characteristic, volume, and polar volume are characterized.

1 Introduction and Main Results

At the Paris ICM in 1900, David Hilbert asked the following question: Given two
polytopes with equal volume, can one of them be cut into ûnitely many pieces that
can be used to yield the other? It was already known that this is possible in the
2-dimensional case, but the higher dimensional cases were still open. In the same
year, Max Dehn was able to construct two polytopes that have the same volume but
cannot be cut and reassembled to yield each other. hus, the answer to Hilbert’s ques-
tion is no for dimensions greater than or equal to 3. In his proof, Dehn used the so-
called Dehn invariant and made substantial use of its valuation property. To be more
precise, let Kn denote the space of convex bodies, i.e., compact, convex sets, in Rn .
A map µ ∶ Qn ⊆Kn → R is called a valuation whenever

µ(K) + µ(L) = µ(K ∪ L) + µ(K ∩ L)

for every K , L ∈ Qn such that K ∪ L,K ∩ L ∈ Qn . Since Dehn’s proof, valuations have
been studied extensively in convex and discrete geometry, and a ûrst classiûcation re-
sult was established by Blaschke in the 1930s [11]. He proved that linear combinations
of the Euler characteristic and the n-dimensional volume are the only continuous,
SL(n), and translation invariant valuations on Kn . Here, continuity is understood
with respect to the Hausdorò metric.

Important generalizations of Blaschke’s result have been obtained since then
[1, 30, 35, 36]. Recently, Haberl and Parapatits generalized Blaschke’s result to valua-
tions deûned on Kn

(o), the set of convex bodies in Rn that contain the origin
in their interiors. Note that by restricting to a smaller space, it is possible that more
valuations appear in a classiûcation result. In this case, not only the n-dimensional
volume, Vn , and the Euler characteristic, V0, were characterized, but also the
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polar volume V∗

n (K) ∶= Vn(K∗). Here, K∗ = {x ∈ Rn ∶ x ⋅ y ≤ 1 ∀y ∈ K} is the
polar body of K ∈Kn

(o), where x ⋅ y denotes the inner product of x , y ∈ Rn .

heorem 1.1 ([27]) For n ≥ 2, a map µ ∶ Kn
(o) → R is a continuous and SL(n)

invariant valuation if and only if there exist constants c0 , c1 , c2 ∈ R such that
(1.1) µ(K) = c0V0(K) + c1Vn(K) + c2V∗

n (K)
for every K ∈Kn

(o).

Here, a valuation µ ∶ Kn
(o) → R is said to be SL(n) invariant if µ(ϕK) = µ(K) for

every ϕ ∈ SL(n) and K ∈Kn
(o).

In recent years, the notion of valuation was extended to function spaces. Let S be
a space of (extended) real-valued functions on Rn . We say that a map Z ∶ S → R is a
valuation whenever

Z(u) + Z(v) = Z(u ∨ v) + Z(u ∧ v)
for every u, v ∈ S such that also u ∨ v , u ∧ v ∈ S. Here, u ∨ v and u ∧ v denote the
pointwise maximum and minimum of the functions u, v ∈ S, respectively. In partic-
ular, valuations on Sobolev spaces [31, 33, 37], Lp spaces [34, 42, 52, 53], on deûnable
functions [8] and on quasi-concave functions [12,14–16,40] were studied and charac-
terized. See also [2, 17, 18, 32, 50, 51, 54, 55].
For convex functions, an analog of Blaschke’s characterization of continuous,

SL(n), and translation invariant valuations was established in [19]. More recently,
this result was improved, and a functional analog of heorem 1.1 was found in [41].
hereby, functional versions of the Euler characteristic and volume together with a
new analog of the polar volume were characterized. In order to state this result, let
Convc(Rn ,R) denote the space of all convex, coercive functions u ∶ Rn → R. Here, a
function u is said to be coercive if

lim
∣x ∣→∞

u(x) = +∞.

We equip Convc(Rn ,R) with the topology associated with pointwise convergence
(see also Section 2). If S is closed under translations, that is, u ○ τ−1 ∈ S for every
u ∈ S and translation τ on Rn , then a map Z ∶ S → R is called translation invariant if
Z(u ○ τ−1) = Z(u) for every u ∈ S and translation τ onRn . Furthermore, if S is closed
under SL(n) transforms, then Z is said to be SL(n) invariant if Z(u ○ϕ−1) = Z(u) for
every u ∈ S and ϕ ∈ SL(n).

heorem 1.2 ([41]) For n ≥ 2, a map Z ∶ Convc(Rn ,R) → [0,∞) is a continuous,
SL(n) and translation invariant valuation if and only if there exist continuous functions
ζ0 , ζ1 , ζ2 ∶ R → [0,∞) where ζ1 has ûnite moment of order n − 1 and ζ2(t) = 0 for all
t ≥ T with some T ∈ R such that

(1.2) Z(u) = ζ0(min
x∈Rn

u(x)) + ∫
Rn

ζ1(u(x))dx

+ ∫
dom u∗

ζ2(∇u∗(x) ⋅ x − u∗(x))dx

for every u ∈ Convc(Rn ,R).
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Here, a function ζ ∶ R→ [0,∞) has ûnite moment of order n − 1 if

∫
∞

0
tn−1ζ(t)dt < +∞.

Note that for functions u ∈ Convc(Rn ,R), the minimum is attained and hence ûnite.
For a convex function u on Rn ,

u∗(x) = sup
y∈Rn

(x ⋅ y − u(y)), x ∈ Rn

denotes the Legendre transform or convex conjugate of u. Moreover, domu∗ ={x ∈Rn ∶
u∗(x) < +∞} denotes the domain of u∗, which is needed, since u∗ might attain
the value +∞. Lastly, ∇u∗ denotes the gradient of u∗. Note that it follows from
Rademacher’s theorem (see for example [21,heorem 3.1.6]) that the convex function
u∗ is diòerentiable almost everywhere on the interior of its domain.

Remark Observe, that (1.1) can be retrieved from (1.2) if u is chosen to be ∥ ⋅ ∥K ,
the norm with unit ball K ∈Kn

(o).

We will show that the statement of heorem 1.2 is still true on the space
Convsc(Rn ,R) ∶= {u ∶ Rn → R ∶ u is convex and super-coercive},

where we say that a function u, deûned on Rn , is super-coercive if

lim
∣x ∣→∞

u(x)
∣x∣ = +∞.

It is a priori not clear that no new valuations appear on Convsc(Rn ,R). Note that the
proof ofheorem 1.2 made extensive use of functions that are coercive but not super-
coercive. Furthermore, to the best of the author’s knowledge, there does not seem to
be an easy way to generalize the proof to the setting of super-coercive functions.

Moreover, we want to point out that the spaceKn
(o) is invariant under the polarity

transform, that is, {K∗ ∶ K ∈ Kn
(o)} = Kn

(o). Results of Artstein-Avidan and Milman
[4] show that the Legendre transform is the only natural functional analog of the
polarity transform on the space of proper, lower semicontinuous convex functions
on Rn . In contrast to the space Convc(Rn ,R), the space Convsc(Rn ,R) is invariant
under the Legendre transform, that is,

{u∗ ∶ u ∈ Convc(Rn ,R)} ≠ Convc(Rn ,R),
{u∗ ∶ u ∈ Convsc(Rn ,R)} = Convsc(Rn ,R).

In that sense, Convsc(Rn ,R) seems to be a better functional analog of the spaceKn
(o).

For further details, see Section 2.

heorem 1.3 For n ≥ 2, a map Z ∶ Convsc(Rn ,R) → [0,∞) is a continuous,
SL(n) and translation invariant valuation if and only if there exist continuous func-
tions ζ0 , ζ1 , ζ2 ∶ R→ [0,∞) where ζ1 has ûnite moment of order n − 1 and ζ2(t) = 0 for
all t ≥ T with some T ∈ R such that

(1.3) Z(u) = ζ0(min
x∈Rn

u(x)) + ∫
Rn

ζ1(u(x))dx + ∫
Rn

ζ2(∇u∗(x) ⋅ x − u∗(x))dx

for every u ∈ Convsc(Rn ,R).
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By using the invariance of Convsc(Rn ,R) under the Legendre transform, we also
obtain the following equivalent result. Let S be a space of (extended) real-valued func-
tions on Rn such that u + l ∈ S for every u ∈ S and linear functional l on Rn . A map
Z ∶ S → R is said to be dually translation invariant if Z(u + l) = Z(u) for every u ∈ S
and every linear functional l on Rn . Equivalently, Z is dually translation invariant if
and only if u ↦ Z(u∗) is translation invariant, where u is such that u∗ ∈ S. Note
that for u ∈ Convsc(Rn ,R), also u + l ∈ Convsc(Rn ,R) for every linear functional l
on Rn .

heorem 1.3* For n ≥ 2, a map Z ∶ Convsc(Rn ,R) → [0,∞) is a continuous, SL(n)
and dually translation invariant valuation if and only if there exist continuous functions
ζ0 , ζ1 , ζ2 ∶ R → [0,∞) where ζ1 has ûnite moment of order n − 1 and ζ2(t) = 0 for all
t ≥ T with some T ∈ R such that

(1.4) Z(u) = ζ0(u(0)) + ∫
Rn

ζ1(u∗(x))dx + ∫
Rn

ζ2(∇u(x) ⋅ x − u(x))dx

for every u ∈ Convsc(Rn ,R).

heoutline of the paper is as follows. A�er collecting backgroundmaterial on con-
vex functions in Section 2, we will discuss the operators that appear in heorem 1.3
andheorem 1.3* in Section 3. In Section 4, we will introduce the embedding that will
be needed in order to prove the main results, which happens in Section 5. A discus-
sion concerning future research on functional inequalities can be found in Section 6.
Lastly, the Appendix contains the proof of Lemma 4.2.

2 Convex Functions

We will work in n-dimensional Euclidean space,Rn . Let Conv(Rn) denote the space
of all convex, proper, lower semicontinuous functions u ∶ Rn → (−∞,∞], where we
call a function u on Rn proper if u /≡ +∞. We will consider the following subsets of
Conv(Rn):

Convc(Rn) = {u ∈ Conv(Rn) ∶ u is coercive},
Convsc(Rn) = {u ∈ Conv(Rn) ∶ u is super-coercive},
Conv(o)(Rn) = {u ∈ Conv(Rn) ∶ 0 ∈ int domu},

where intA denotes the interior of the set A ⊆ Rn . Furthermore, Convc(Rn ,R) and
Convsc(Rn ,R) will denote the sets of functions in Convc(Rn) and Convsc(Rn), re-
spectively, that only take values in R, i.e., functions that do not attain the value +∞.
For u ∈ Conv(Rn) and t ∈ R, we will write

{u ≤ t} = {x ∈ Rn ∶ u(x) ≤ t}

for the sublevel sets of u. Since u is convex and lower semicontinuous, the sets {u ≤ t}
are convex and closed. Moreover, sinceu is proper, there exists t ∈ R such {u ≤ t} ≠ ∅.
If, in addition, u is coercive, then all sublevel sets of u are bounded. In particular
{u ≤ t} ∈Kn for all t ≥ minx∈Rn u(x).
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For K ∈Kn , we will denote by

IK(x) =
⎧⎪⎪⎨⎪⎪⎩

0, x ∈ K ,
+∞, x ∉ K ,

the (convex) indicator function of K. Observe that {IK ≤ t} = K for all t ≥ 0 and
IK ∈ Convsc(Rn) for all K ∈Kn .

he space Conv(Rn) and its subspaces will be equipped with the topology asso-
ciated with epi-convergence. Here, we say that a sequence uk ∈ Conv(Rn), k ∈ N is
epi-convergent to u ∈ Conv(Rn) if the following two conditions hold for all x ∈ Rn :

(a) For every sequence xk that converges to x,

u(x) ≤ lim inf
k→∞

uk(xk).

(b) here exists a sequence xk that converges to x such that

u(x) = lim
k→∞

uk(xk).

If a sequence uk is epi-convergent to u, we will write

u = epi-limk→∞ uk and uk
e piÐ→ u.

As the next result shows, on the space Conv(Rn) epi-convergence coincides with
local uniform convergence a.e. he only exceptions occur at the boundary of the do-
main of the limit function.

heorem 2.1 ([46], heorem 7.17) For any epi-convergent sequence of convex func-
tions uk ∶ Rn → (−∞,∞] the limit function u = epi-limk→∞ uk is convex. Moreover,
under the assumption that u ∶ Rn → (−∞,∞] is convex and lower semicontinuous such
that domu has nonempty interior, the following are equivalent:
(i) u = epi-limk→∞ uk ;
(ii) uk(x) → u(x) for all x ∈ D, where D is a dense subset of Rn ;
(iii) uk converges uniformly to u on every compact set C ⊂ Rn that does not contain a

boundary point of domu.

Remark 2.2 It is a consequence of heorem 2.1 that epi-convergence coincides
with pointwise convergence on Convc(Rn ,R) and Convsc(Rn ,R). See also [20,
Example 5.13].

For functions in Convc(Rn), epi-convergence also corresponds to Hausdorò con-
vergence of sublevel sets. In the following, we say that {uk ≤ t} → ∅ as k → ∞ if
there exists k0 ∈ N such that {uk ≤ t} = ∅ for all k ≥ k0.

Lemma 2.3 ([19, Lemma 5] and [9, heorem 3.1]) Let uk , u ∈ Convc(Rn). If
uk

e piÐ→u, then {uk ≤ t} → {u ≤ t} as k → +∞ for every t ∈ R with t ≠ minx∈Rn u(x).
Furthermore, if for every t ∈ R there exists a sequence tk → t such that {uk ≤ tk} →
{u ≤ t}, then uk

e piÐ→u.
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Next, we want to recall some results about the convex conjugate or Legendre trans-
form

u∗(x) = sup
y∈Rn

(x ⋅ y − u(y))

for every x ∈ Rn and u ∈ Conv(Rn).

Lemma 2.4 ([49, heorem 1.6.13]) If u ∈ Conv(Rn), then also u∗ ∈ Conv(Rn) and
u∗∗ = u.

he following is easy to see and follows directly from the deûnition of the convex
conjugate. See also [41, Section 3]

Lemma 2.5 Let Z ∶ S → R, with S ⊆ Conv(Rn). If S is closed under translations,
then Z is translation invariant if and only if u ↦ Z(u∗) is dually translation invariant,
where u is such that u∗ ∈ S. Furthermore, if S is closed under SL(n) transforms, then
Z is SL(n) invariant if and only if u ↦ Z(u∗) is SL(n) invariant, where u is such that
u∗ ∈ S.

he next lemma shows that the Legendre transform is compatible with the valua-
tion property.

Lemma 2.6 ([18, Lemma 3.4, Proposition 3.5]) Let u, v ∈ Conv(Rn). If u ∧ v is
convex, then so is u∗ ∧ v∗. Furthermore,

(u ∧ v)∗ = u∗ ∨ v∗ and (u ∨ v)∗ = u∗ ∧ v∗ .

he following result establishes a connection between coercivity properties of a
function and the domain of its conjugate.

Lemma 2.7 ([46, heorem 11.8]) For u ∈ Conv(Rn), the following hold true:
● u is coercive if and only if 0 ∈ int domu∗;
● u is super-coercive if and only if domu∗ = Rn .

We will also need the following theorem due to Wijsman, which shows that the
Legendre transform is a continuous operation (see, for example, [46,heorem 11.34]).

heorem 2.8 If uk , u ∈ Conv(Rn), then uk
e piÐ→ u if and only if u∗k

e piÐ→ u∗.

Let u ∈ Conv(Rn) and x ∈ Rn . We call a vector y ∈ Rn a subgradient of u at x if

u(z) ≥ u(x) + (z − x) ⋅ y
for every z ∈ Rn . he set of all subgradients of u at x is called the subdiòerential of
u at x and is denoted by ∂u(x). Note that ∂u(x) might be empty. Furthermore, if u
is diòerentiable at x, then the only possible subgradient of u at x is the gradient itself
and ∂u(x) = {∇u(x)}.

Lemma 2.9 ([45, heorem 23.5]) For u ∈ Conv(Rn) and x , y ∈ Rn , the following
are equivalent:
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● y ∈ ∂u(x),
● x ∈ ∂u∗(y),
● x ⋅ y = u(x) + u∗(y),
● x ∈ argmaxz∈Rn(y ⋅ z − u(z))
● y ∈ argmaxz∈Rn(x ⋅ z − u∗(z)).

Here, argmaxz∈V f (z) denotes the points in the set V at which the function values
of f are maximized on V .
For further results on convex functions as well as convex geometry in general we

refer to the books of Gruber [26], Rockafellar and Wets [46], and Schneider [49].

3 Valuations on Convex Functions

In this section we discuss the operators that appear in heorem 1.3 andheorem 1.3*.
Let S be a space of (extended) real-valued functions on Rn such that x ↦ uλ(x) =
u(x/λ) ∈ S for every u ∈ S and λ > 0. In the following, we say that a valuation
Z ∶ S → R is homogeneous of degree p ∈ R if Z(uλ) = λp Z(u) for every u ∈ S and
λ > 0.

he following operator is a functional analog of the Euler characteristic.

Lemma 3.1 ([19, Lemma 12]) For a continuous function ζ ∶ R→ R, the map

u z→ ζ(min
x∈Rn

u(x))

deûnes a continuous, SL(n), and translation invariant valuation on Convc(Rn) that is
homogeneous of degree 0.

By combining the last operator with the Legendre transform, we obtain a dually
translation invariant valuation.

Lemma 3.2 For a continuous function ζ ∶ R→ R, the map

(3.1) u z→ ζ(min
x∈Rn

u∗(x)) = ζ( − u(0))

deûnes a continuous, SL(n), and dually translation invariant valuation onConv(o)(Rn)
that is homogeneous of degree 0.

Proof By Lemma 2.7, u ∈ Conv(o)(Rn) if and only if u∗ ∈ Convc(Rn). Hence, by
Lemma 3.1, the map (3.1) is well deûned, and it is easy to see that it is homogeneous of
degree 0. he further properties are direct consequences of Lemmas 2.5 and 2.6 and
heorem 2.8. ∎

Remark 3.3 Note that u ↦ ζ( − u(0)) is also well deûned on

{u ∈ Conv(Rn) ∶ 0 ∈ domu} ⊃ Conv(o)(Rn),

and in [41, Lemma 4.9] it is wrongfully claimed that even on this larger space (3.1) still
deûnes a continuous, SL(n), and dually translation invariant valuation. To see that
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this valuation is not continuous anymore, let ℓK ∈ Convc(Rn) be the gauge function
associated with K, deûned via

{ℓK ≤ t} = tK
for every K ∈ Kn with 0 ∈ K and t ≥ 0. Let Pk ∶= [−1/k, 1] × [−1, 1]n−1 and let
uk = ℓPk ○ τ−1

k , where τk(x) = x + e1/k for x ∈ Rn and k ∈ N, where e1 denotes the
ûrst vector of the standard basis of Rn . Observe, that uk(0) = 1 for every k ∈ N. By
Lemma 2.3 it is easy to see that uk

e piÐ→ℓP as k → ∞, where P ∶= [0, 1] × [−1, 1]n−1 but
ℓP(0) = 0. In particular, 0 ∈ dom ℓP but ℓP ∉ Conv(o)(Rn).

Lemma 3.4 ([19, Lemma 16]) For a continuous function ζ ∶ R → [0,∞) with ûnite
moment of order n − 1, the map

u z→ ∫
dom u

ζ(u(x))dx

deûnes a non-negative, continuous, SL(n), and translation invariant valuation on
Convc(Rn) that is homogeneous of degree n.

he next lemma shows that the moment condition for the function ζ is necessary,
even if one restricts to super-coercive, convex functions.

Lemma 3.5 If ζ ∈ C(R) is non-negative such that ∫
∞

0 tn−1ζ(t)dt = ∞, then there
exists uζ ∈ Convsc(Rn ,R) such that

∫
Rn

ζ(uζ(x))dx = ∞.

Proof Let t0 = 0. By the assumption on ζ, there exists numbers tk > 0, k ∈ N such
that ∫

tk
tk−1

tn−1ζ(t)dt ≥ k and tk − tk−1 ≥ 1. Let r0 = 0 and let

rk =
tk − tk−1

k1/n + rk−1

for every k ≥ 1. We now set vζ(r) = k1/n(r − rk−1) + tk−1 for every rk−1 ≤ r < rk and
for every k ≥ 1. Note that by the choice of tk , we have limk→∞ rk = +∞, which shows
that vζ(r) is well deûned on [0,∞). Furthermore, it is easy to see that vζ(rk−1) = tk−1
and

lim
r→rk

vζ(r) = k1/n(( tk − tk−1

k1/n + rk−1) − rk−1) + tk−1 = tk .

Hence, vζ is continuous, and furthermore, v′ζ(r) = k1/n for rk−1 < r < rk and every
k ≥ 1. In particular, v′ζ is unbounded, and therefore x ↦ uζ(x) ∶= vζ(∣x∣) deûnes a
super-coercive, convex function on Rn . his gives

∫
Rn

ζ(uζ(x))dx = nvn ∫
+∞

0
rn−1ζ(vζ(r))dr

= nvn

+∞

∑
k=1
∫

rk

rk−1
rn−1ζ(vζ(r))dr = ∣ t = vζ(r)

dt/dr = k1/n∣

= nvn

+∞

∑
k=1
∫

tk

tk−1
(t 1

k1/n + rk−1 −
tk−1

k1/n )
n−1

ζ(t) 1
k1/n dt,
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where vn is the volume of the n-dimensional unit ball. If

(3.2) rk−1 −
tk−1

k1/n ≥ 0,

then the expression above diverges, since

∫
Rn

ζ(uζ(x))dx = nvn

+∞

∑
k=1
∫

tk

tk−1
(t 1

k1/n + rk−1 −
tk−1

k1/n )
n−1

ζ(t) 1
k1/n dt

(3.2)
≥ nvn

+∞

∑
k=1

1
k ∫

tk

tk−1
tn−1ζ(t)dt

≥ nvn

+∞

∑
k=1

1,

where the last inequality follows from the deûnition of tk . Hence, it remains to prove
(3.2), which we will do by induction on k. he statement is obviously true for k = 1,
since r0 = t0 = 0. Furthermore, it is easy to see that r1 = t1 and hence the statement
also holds true for k = 2. Assume now that the statement holds for a k ∈ N, that is,
rk−1 − tk−1

k1/n ≥ 0. By deûnition of rk , we have

rk −
tk

(k + 1)1/n = tk − tk−1

k1/n + rk−1 −
tk

(k + 1)1/n

= tk(
1

k1/n −
1

(k + 1)1/n ) + rk−1 −
tk−1

k1/n ,

which is positive by the induction hypothesis. ∎

To complete this section, we shall list the following lemmas that address the prop-
erties of the remaining operators from heorems 1.3 and 1.3*.

Lemma 3.6 ([41, Lemma 4.3]) For a continuous function ζ ∶ R→ [0,∞) with ûnite
moment of order n − 1, the map

u z→ ∫
dom u∗

ζ(u∗(x))dx

deûnes a non-negative, continuous, SL(n), and dually translation invariant valuation
on Conv(o)(Rn) that is homogeneous of degree −n.

Lemma 3.7 ([41, Lemma 4.6]) For a continuous function ζ ∶ R → R such that
ζ(t) = 0 for all t ≥ T with some T ∈ R, the map

u ↦ ∫
dom u∗

ζ(∇u∗(x) ⋅ x − u∗(x))dx

deûnes a continuous, SL(n), and translation invariant valuation onConvc(Rn ,R) that
is homogeneous of degree −n.

Lemma 3.8 ([41, Lemma 4.12]) For a continuous function ζ ∶ R → R such that
ζ(t) = 0 for all t ≥ T with some T ∈ R, the map

u ↦ ∫
dom u

ζ(∇u(x) ⋅ x − u(x))dx
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deûnes a continuous, SL(n), and dually translation invariant valuation onConvsc(Rn)
∩Conv(o)(Rn) that is homogeneous of degree n.

4 Super-Coercive Approximations

hemain idea of the proof ofheorem 1.3 is to utilize a sequence of real-valued func-
tions that can be used to embed Convc(Rn) into Convsc(Rn). We will deûne and
study this sequence in the sequel.
For k ∈ N, let sf k = ∑k

i=1 i! be the sum of the ûrst k factorials and let gk ∶ R→ R be
deûned as

gk(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r, r ≤ sf k ,
sf k + (k + 1)(r − sf k), sf k < r ≤ sf k + k!,
sf k+ j + (k + j + 1)(r − sf k+ j−1 − k!), sf k+ j−1 + k! < r ≤ sf k+ j + k!, j ∈ N,

or equivalently

gk(r) =
⎧⎪⎪⎨⎪⎪⎩

r, r ≤ sf k
sf k+ j + (k + j + 1)(r − sf k+ j−1 − k!), sf k+ j−1 + k! < r ≤ sf k+ j + k!, j ∈ N0 .

We will need the following properties of the sequence gk .

Lemma 4.1 For the sequence gk ∶ R→ R, the following properties hold true for every
k ∈ N:

(i) gk(sf k+ j−1 + k!) = sf k+ j for every j ∈ N0.
(ii) gk is continuous.
(iii) gk is strictly increasing and convex.
(iv) gk(r) → r as k → +∞ for every r ∈ R.
(v) If u ∈ Convc(Rn), then gk(u) ∈ Convsc(Rn), and furthermore, if u ∈ Convc

(Rn ,R), then gk(u) ∈ Convsc(Rn ,R).
(vi) gk(u(x)) ≥ u(x) for every u ∈ Convc(Rn) and x ∈ Rn .
(vii) For u ∈ Convc(Rn) and s ≤ sf k we have {gk(u) ≤ s} = {u ≤ s} and for

sf k+ j−1 + k! < s ≤ sf k+ j + k!, j ∈ N0 we have

{gk(u) ≤ s} = {u ≤
s − sf k+ j

k + j + 1
+ sf k+ j−1 + k!}.

(viii) gk(u)
e piÐ→ u as k → +∞ for every u ∈ Convc(Rn).

(ix) For every translation τ on Rn , ϕ ∈ SL(n) and u ∈ Convc(Rn), gk ○ (u ○ τ−1) =
(gk ○ u) ○ τ−1 and gk ○ (u ○ ϕ−1) = (gk ○ u) ○ ϕ−1.

(x) gk(u ∨ v) = gk(u) ∨ gk(v) and gk(u ∧ v) = gk(u) ∧ gk(v) for every u,
v ∈ Convc(Rn).

(xi) If u j
e piÐ→ u in Convc(Rn), then gk(u j)

e piÐ→ gk(u) as j → +∞.
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Proof (i) his follows directly from the deûnition of gk , since

gk(sf k+ j−1 + k!) = sf k+ j−1 + (k + j)(sf k+ j−1 + k! − sf k+ j−2 − k!)
= sf k+ j−1 + (k + j)((k + j − 1)!)
= sf k+ j−1 + (k + j)!
= sf k+ j .

(ii) Since∑∞

i=0 i! = ∞, it follows that for every k ∈ N and r ∈ R, either r ≤ sf k + k!
or there exists j ∈ N such that sf k+ j−1 + k! < r ≤ sf k+ j + k!. Furthermore, it is
easy to check that for j ∈ N,

lim
r→sf k+ j−1+k!

gk(r) = sf k+ j .

Hence, gk is continuous, since gk(sf k+ j−1 + k!) = sf k+ j .
(iii) his is easy to see, since gk is a continuous, piecewise linear function with

positive and non-decreasing slope.
(iv) his property is immediate, since for every r ∈ R, there exists k0 ∈ N such that

r ≤ sf k for every k ≥ k0, and therefore gk(r) = r.
(v) Since gk is increasing and convex,

(gk ○ u)(λx + (1 − λ)y) ≤ gk(λu(x) + (1 − λ)u(y))
≤ λgk(u(x)) + (1 − λ)gk(u(y)),

for every x , y ∈ Rn and 0 ≤ λ ≤ 1, which shows that gk(u) is a convex function.
Furthermore, since limr→+∞ (gk(r))/r = +∞ for every k ∈ N, the function
gk(u) is super-coercive. he claim now follows, since dom gk(u) = domu.

(vi) his can be easily seen, since gk(r) = r for every r ≤ sf k and gk is a strictly
increasing, convex function.

(vii) his follows directly from the deûnition of gk .
(viii) his follows from the last property together with Lemma 2.3.
(ix) his is immediate.
(x) his is a direct consequence of the monotonicity of gk .
(xi) his follows from (vii) together with Lemma 2.3. ∎

By property (iii) of the last lemma, the function gk is strictly increasing. Hence,
there exists an inverse function g−1

k ∶ R → R. Furthermore, the particular choice of
gk allows us to construct a function v t

l as in the next lemma. We shall make use of it
in Lemma 5.3, where we need to ûnd a sequence of functions uk , l ∈ Convsc(Rn ,R),
k, l ∈ N, such that (among other properties) gk ○ uk , l is independent of k and uk , l is
epi-convergent as l →∞.

Lemma 4.2 For every t ∈ R there exists a sequence of functions v t
l ∶ [0,∞) → R, l ∈ N

such that the functions x ↦ g−1
k (v t

l (∣x∣)) and x ↦ v t
l (∣x∣) are convex, super-coercive

and ûnite on Rn for every k ∈ N. Furthermore,

epi-liml→∞ g−1
k (v t

l (∣ ⋅ ∣)) = IBn + g−1
k (t),

where Bn denotes the Euclidean unit ball in Rn .
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he construction of v t
l together with the proof of Lemma 4.2 can be found in the

Appendix.

5 Classification of Valuations on Convsc(Rn ,R)
he basic idea of the proof of our main result is to embed Convc(Rn) into
Convsc(Rn ,R) by using the sequence gk that was introduced in the last section and
applying heorem 1.2.

Lemma 5.1 Let (tk)k∈N and (bk)k∈N be strictly monotone sequences of real num-
bers such that bk > 0 for all k ∈ N and limk→∞ tk = limk→∞ bk = ∞. Furthermore,
let v ∶ [0,∞) → [0,∞] be the strictly increasing piecewise linear function such that
v(r) = t1 if and only if r = 0 and v′(r) = bk if r > 0 is such that tk < v(r) < tk+1. If
u ∶ Rn → [0,∞] is deûned by u(y) ∶= v(∣y∣) for y ∈ Rn , then u ∈ Convsc(Rn), and
furthermore,

∇u∗(x) ⋅ x − u∗(x) =
⎧⎪⎪⎨⎪⎪⎩

t1 for a.e. x ∈ Rn s.t. ∣x∣ < b1 ,
tk for a.e. x ∈ Rn s.t. bk−1 < ∣x∣ < bk , k ≥ 2.

Proof Since limk→∞ bk =∞, the function v is convex, increasing, and super-coercive
on [0,∞). Hence, it is easy to see that u( ⋅ ) = v(∣ ⋅ ∣) ∈ Convsc(Rn). Since u∗ is a
convex function, it is diòerentiable almost everywhere on the interior of its domain
and since u is super-coercive, it follows fromLemma 2.7 that domu∗ = Rn . herefore,
without loss of generality, let x ∈ Rn be such that ∇u∗(x) exists. By Lemma 2.9,

∇u∗(x) ⋅ x − u∗(x) = u(∇u∗(x)),

and furthermore,

(5.1) x ∈ ∂u(∇u∗(x)).

Hence, it is enough to show that u(∇u∗(x)) = t1 if ∣x∣ < b1 and u(∇u∗(x)) = tk if
bk−1 < ∣x∣ < bk for k ≥ 2.

Since v is a piecewise linear function with slopes (bk)k∈N, it is easy to see that

(5.2) {∣x∣ ∶ x ∈ ∂u(y)} =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[0, b1] if y = 0,
{bk} if y ∈ Rn is s.t. tk < u(y) < tk+1,
[bk−1 , bk] if y ∈ Rn is s.t. u(y) = tk , k ≥ 2.

Hence, if ∣x∣ < b1, it follows from (5.1) and (5.2) that ∇u∗(x) = 0 and u(∇u∗(x))
= t1. Similarly, if bk−1 < ∣x∣ < bk with k ≥ 2, it follows that u(∇u∗(x)) = tk , which
concludes the proof. ∎

Lemma 5.2 For n ≥ 2, let Z ∶ Convsc(Rn ,R) → [0,∞) be a continuous, SL(n)
and translation invariant valuation. For k ∈ N, there exist continuous functions ζ k

0 , ζ k
1 ,

ζ k
2 ∶ R → [0,∞) such that ζ k

1 has ûnite moment of order n − 1 and ζ k
2 (t) = 0 for every
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t ≥ Tk with some Tk ∈ R such that

Z (gk(u)) = ζ k
0 (min

x∈Rn
u(x)) + ∫

Rn
ζ k
1 (u(x))dx

+ ∫
dom u∗

ζ k
2 (∇u∗(x) ⋅ x − u∗(x))dx

for every u ∈ Convc(Rn ,R). Furthermore, the limits

lim
k→∞

∫
Rn

ζ k
1 (u(x))dx and lim

k→∞
∫
Rn

ζ k
2 (∇u∗(x) ⋅ x − u∗(x))dx

exist and are ûnite for every u ∈ Convsc(Rn ,R). Moreover,

ζ k
0 (min

x∈Rn
u(x)) = ζ0(min

x∈Rn
gk(u(x)))

∫
Rn

ζ k
1 (u(x))dx = lim

m→∞∫Rn
ζm
1 (gk(u(x)))dx

∫
dom u∗

ζ k
2 (∇u∗(x) ⋅ x − u∗(x))dx =

lim
m→∞∫Rn

ζm
2 (∇(gk ○ u)∗(x) ⋅ x − (gk ○ u)∗(x))dx

for every k ∈ N and u ∈ Convc(Rn ,R), where ζ0 ∶ R→ [0,∞) is a continuous function
such that ζ k

0 (t) = ζ0(t) for every t ≤ ∑k
i=1 i!.

Proof By Lemma 4.1, the map

u z→ Z (gk(u))

deûnes a continuous, SL(n), and translation invariant valuation onConvc(Rn ,R) for
every k ∈ N. Hence, by heorem 1.2, there exist continuous functions ζ k

0 , ζ k
1 , ζ k

2 ∶ R→
[0,∞) such that ζ k

1 has ûnite moment of order n − 1 and ζ k
2 (t) = 0 for every t ≥ Tk

with some Tk ∈ R such that

Z (gk(u)) = ζ k
0 (min

x∈Rn
u(x)) +∫

Rn
ζ k
1 (u(x))dx +∫

dom u∗
ζ k
2 (∇u∗(x) ⋅ x − u∗(x))dx

for every u ∈ Convc(Rn ,R).
Next, ûx an arbitrary v ∈ Convsc(Rn ,R) and let t0 = minx∈Rn v(x). Furthermore,

for λ > 0 let vλ(x) = v(x/λ) for x ∈ Rn . Note that by Lemma 4.1 we have gk(vλ)
e piÐ→vλ

as k →∞. Hence, by the continuity of Z, Lemmas 3.4 and 3.7,

Z(vλ) = lim
k→∞

Z (gk(vλ))

= lim
k→∞

(ζ k
0 (t0) + ∫Rn

ζ k
1 (vλ(x))dx + ∫

Rn
ζ k
2 (∇v∗λ(x) ⋅ x − v∗λ(x))dx)

= lim
k→∞

(ζ k
0 (t0) + λn ∫

Rn
ζ k
1 (v(x))dx + λ−n ∫

Rn
ζ k
2 (∇v∗(x) ⋅ x − v∗(x))dx).

In particular, the limit on the right-hand side exists and is ûnite. Considering linear
combinations of the last equation with diòerent values of λ shows that

lim
k→∞

∫
Rn

ζ k
1 (v(x))dx and lim

k→∞
∫
Rn

ζ k
2 (∇v∗(x) ⋅ x − v∗(x))dx
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exist and are ûnite. Moreover, the limit limk→∞ ζ k
0 (t0) exists and is ûnite. Since

v ∈ Convsc(Rn ,R) and therefore also t0 ∈ R were arbitrary, there exists a function
ζ0 ∶ R → [0,∞) such that ζ k

0 → ζ0 pointwise as k → ∞. Since t ↦ Z(u + t) is
continuous for every u ∈ Convsc(Rn ,R), the function ζ0 must be continuous as well.

Next, let u ∈ Convc(Rn ,R) and let k ∈ N be arbitrary. By Lemma 4.1, we have
gk(u) ∈ Convsc(Rn ,R), and therefore

ζ k
0 (min

x∈Rn
u(x)) + ∫

Rn
ζ k
1 (u(x))dx + ∫

dom u∗
ζ k
2 (∇u∗(x) ⋅ x − u∗(x))dx

= Z (gk(u))
= lim

m→∞
Z (gm(gk(u)))

= lim
m→∞

ζm
0 (min

x∈Rn
gk(u(x))) + lim

m→∞∫Rn
ζm
1 (gk(u(x)))dx

+ lim
m→∞∫Rn

ζm
2 (∇(gk ○ u)∗(x) ⋅ x − (gk ○ u)∗(x))dx .

By homogeneity and the deûnition of ζ0, we therefore obtain

ζ k
0 (min

x∈Rn
(u(x))) = ζ0(min

x∈Rn
gk(u(x)))

∫
Rn

ζ k
1 (u(x))dx = lim

m→∞∫Rn
ζm
1 (gk(u(x)))dx

∫
dom u∗

ζ k
2 (∇u∗(x) ⋅ x − u∗(x))dx =

lim
m→∞∫Rn

ζm
2 (∇(gk ○ u)∗(x) ⋅ x − (gk ○ u)∗(x))dx . ∎

In the sequel we will call the sequence ζ k
1 that appears in Lemma 5.2 the volume

growth function sequence of the valuation Z. Furthermore, we will refer to the se-
quence ζ k

2 as the dual volume growth function sequence.

Lemma 5.3 For n ≥ 2, let Z ∶ Convsc(Rn ,R) → [0,∞) be a continuous, SL(n) and
translation invariant valuation with volume growth function sequence ζ k

1 , k ∈ N. here
exists a continuous function ζ1 ∶ R→ [0,∞) such that

ζ1(gk(t)) = ζ k
1 (t)

for every k ∈ N and t ∈ R.

Proof Let t ∈ R be arbitrary. Lemma 4.2 shows that x ↦ g−1
k (v t

l (∣x∣)) ∈ Convsc
(Rn ,R) for every k, l ∈ N, and by Lemma 5.2, we have

∫
Rn

ζ k
1 (g−1

k (v t
l (∣x∣)))dx = lim

m→∞∫Rn
ζm
1 (gk(g−1

k (v t
l (∣x∣))))dx

= lim
m→∞∫Rn

ζm
1 (v t

l (∣x∣))dx .
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Since g−1
k (v t

l (∣ ⋅ ∣))
e piÐ→ IBn + g−1

k (t) as l →∞, we therefore have by Lemma 3.4,

Vn(Bn)ζ k
1 (g−1

k (t)) = ∫
Rn

ζ k
1 (IBn(x) + g−1

k (t))dx

= lim
l→∞

∫
Rn

ζ k
1 (g−1

k (v t
l (∣x∣)))dx

= lim
l→∞

lim
m→∞∫Rn

ζm
1 (v t

l (∣x∣))dx .

Since the right-hand side of this equation is independent of k and only depends on
t, this deûnes a non-negative, continuous function ζ1 ∶ R → [0,∞) such that ζ1(t) =
ζ k
1 (g−1

k (t)) or equivalently ζ1(gk(t)) = ζ k
1 (t) for every t ∈ R. ∎

For a continuous, SL(n), and translation invariant valuation Z ∶ Convsc(Rn ,R) →
[0,∞), we call the function ζ1 from Lemma 5.3 the volume growth function of Z.

Lemma 5.4 For n ≥ 2, let Z ∶ Convsc(Rn ,R) → [0,∞) be a continuous, SL(n) and
translation invariant valuation. he volume growth function ζ1 has ûnite moment of
order n − 1, and furthermore,

lim
k→∞

∫
Rn

ζ k
1 (u(x))dx = ∫Rn

ζ1(u(x))dx

for every u ∈ Convsc(Rn ,R), where ζ k
1 denotes the volume growth function sequence.

Proof Assume that ζ1 does not have ûnite moment of order n − 1. By Lemma 3.5,
there exists uζ ∈ Convsc(Rn ,R) such that ∫Rn ζ1(uζ(x))dx = +∞. For k ∈ N let
Ak ∶= {uζ ≤ ∑k

i=1 k!}. Note that by the properties of uζ we have ⋃∞k=1 Ak = Rn .
Furthermore, by Lemmas 4.1 and 5.3, we have ζ k

1 (uζ(x)) = ζ1(gk(u(x))) = ζ1(u(x))
for every x ∈ Ak , and therefore

lim
k→∞

∫
Rn

ζ k
1 (uζ(x))dx = lim

k→∞
(∫

Ak

ζ1(uζ(x))dx + ∫
Rn/Ak

ζ k
1 (uζ(x))dx),

which must be ûnite by Lemma 5.2. Since both integrals on the right-hand side are
non-negative for every k ∈ N and ∫Ak

ζ1(uζ(x))dx is increasing in k, the limit

lim
k→∞

∫
Ak

ζ1(uζ(x))dx

exists and is ûnite, which contradicts the choice of uζ ∈ Convsc(Rn ,R). Hence, ζ1
must have ûnite moment of order n − 1.
By Lemma 3.4, the map

u z→ ∫
Rn

ζ1(u(x))dx

deûnes a continuous valuation on Convsc(Rn ,R), and therefore

lim
k→∞

∫
Rn

ζ k
1 (u(x))dx = lim

k→∞
∫
Rn

ζ1(gk(u(x))dx = ∫
Rn

ζ1(u(x))dx ,

since gk(u)
e piÐ→ u for every u ∈ Convsc(Rn ,R). ∎
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Lemma 5.5 For n ≥ 2, let Z ∶ Convsc(Rn ,R) → [0,∞) be a continuous, SL(n), and
translation invariant valuation with dual volume growth function sequence ζ k

2 , k ∈ N.
here exists T ∈ R such that ζ k

2 (t) = 0 for every k ∈ N and t ≥ T.

Proof We will prove the statement by contradiction and assume that there exists a
subsequence ζ k j

2 and monotone increasing numbers tk j ∈ R, j ∈ N with lim j→∞ tk j =
+∞ such that 0 < ζ k j

2 (tk j) < 1, which is possible by the properties of ζ k j
2 . By possibly

restricting to another subsequence, we can choose the numbers tk j as follows. Let
tk1 ∈ R be arbitrary and set ak1 = 0. If tk j and ak j are given, let

ak j+1 = n

¿
ÁÁÀ j

vnζ
k j
2 (tk j)

+ an
k j
,

where vn is the volume of the n-dimensional unit ball and choose tk j+1 large enough
such that

tk j+1 − tk j ≥ max{1, ak j+1}.
his implies that tk j and ak j are strictly monotone increasing sequences such that
lim j→∞ tk j = lim j→∞ ak j = ∞, and furthermore

(5.3)
tk j+1 − tk j

ak j+1
≥
ak j+1

ak j+1
= 1.

Next, let w ∶ [0,∞) → R be the strictly increasing piecewise aõne function such that
w(0) = tk1 and w′(r) = ak j+1 for every r ∈ [0,∞) with tk j < w(r) < tk j+1 , j ∈ N. Note
that it follows from (5.3) that∑∞

j=1 (tk j+1 − tk j)/ak j+1 = ∞, which ensures thatw is well
deûned and ûnite. Furthermore, since ak j is strictly increasing with lim j→∞ ak j = ∞,
the function w is super-coercive. herefore, the function u ∶ Rn → R, deûned by
u(x) = w(∣x∣) for x ∈ Rn is also well deûned and ûnite. Furthermore, it follows from
Lemma 5.1 that u ∈ Convsc(Rn ,R) and

∇u∗(x) ⋅ x − u∗(x) = tk j

for almost everywhere x ∈ Rn such that ak j < ∣x∣ < ak j+1 , j ∈ N. Since the maps ζ k j
2

are non-negative, this gives

∫
Rn

ζ k j
2 (∇u∗(x) ⋅ x − u∗(x))dx ≥ ∫

ak j<∣x ∣<ak j+1
ζ k j
2 (tk j)dx

= vn(an
k j+1 − a

n
k j
)ζ k j

2 (tk j)

= vn(
j

vnζ
k j
2 (tk j)

+ an
k j
− an

k j
)ζ k j

2 (tk j)

= j

(5.4)

for every j ∈ N.
On the other hand, the limit

lim
k→∞

∫
Rn

ζ k
2 (∇u∗(x) ⋅ x − u∗(x))dx

exists and is ûnite by Lemma 5.2, which contradicts (5.4). Hence, the initial assump-
tion must be false. ∎
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Lemma 5.6 For n ≥ 2, let Z ∶ Convsc(Rn ,R) → [0,∞) be a continuous, SL(n), and
translation invariant valuation with dual volume growth function sequence ζ k

2 , k ∈ N.
here exists a continuous function ζ2 ∶ R → [0,∞) such that ζ2(t) = 0 for every t ≥ T
with some T ∈ R and

lim
k→∞

∫
Rn

ζ k
2 (∇u∗(x) ⋅ x − u∗(x))dx = ∫

Rn
ζ2(∇u∗(x) ⋅ x − u∗(x))dx

for every u ∈ Convsc(Rn ,R).

Proof Let T ∈ R be as in Lemma 5.5 and let k0 ∈ N be such that T + 1 ≤ sf k0 .
Furthermore, for t ≤ T , let ut(x) = ∣x∣+ t for x ∈ Rn . Note that u∗t = IB − t. Moreover,
by the deûnition of ut and gk , we can write gk(ut(x)) = w t

k(∣x∣) with a piecewise
linear function w t

k ∶ [0,∞) → R such that w t
k(0) = t, (w t

k)′(r) = 1 for every r > 0
such that t < w t

k(r) < sf k and (w t
k)′(r) ≥ k + 1 for almost everywhere every r such

thatw t
k(r) > sf k > T for every k ≥ k0. Hence, by Lemma 5.1 we have for every k ≥ k0,

∇(gk ○ ut)∗(x) ⋅ x − (gk ○ ut)∗(x) = t

for almost everywhere x ∈ Rn with ∣x∣ < 1, and furthermore,

∇(gk ○ ut)∗(x) ⋅ x − (gk ○ ut)∗(x) > T

for almost everywhere x ∈ Rn with ∣x∣ > 1. herefore, by Lemma 5.2,

Vn(Bn)ζ k
2 (t) = ∫

Bn
ζ k
2 (IBn(x) + t)dx

= ∫
dom u∗t

ζ k
2 (∇u∗t (x) ⋅ x − u∗t (x))dx

= lim
m→∞∫Rn

ζm
2 (∇(gk ○ ut)∗(x) ⋅ x − (gk ○ ut)∗(x))dx

= lim
m→∞

Vn(Bn)ζm
2 (t)

for every t ≤ T and every k ≥ k0. Since ζ k
2 (t) = 0 for every t > T and k ∈ N, this

shows that the sequence ζ k
2 does not change for k ≥ k0. Hence, there exists a function

ζ2 ∶ R→ [0,∞) such that

ζ2(t) = lim
m→∞

ζm
2 (t) = ζ k

2 (t)

for every k ≥ k0 and t ∈ R. In particular, ζ2 is continuous and ζ2(t) = 0 for every
t ≥ T . Furthermore,

lim
k→∞

∫
Rn

ζ k
2 (∇u∗(x) ⋅ x − u∗(x))dx = ∫

Rn
ζ2(∇u∗(x) ⋅ x − u∗(x))dx

for every u ∈ Convsc(Rn ,R). ∎

5.1 Proof of Theorem 1.3

Byheorem 1.2, equation (1.3) deûnes a continuous, SL(n), and translation invariant
valuation on Convsc(Rn ,R).
Conversely, let Z ∶ Convsc(Rn ,R) → [0,∞) be a continuous, SL(n) and trans-

lation invariant valuation. By Lemma 5.2, there exist continuous functions ζ k
0 , ζ k

1 ,
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ζ k
2 ∶ R → [0,∞) such that ζ k

1 has ûnite moment of order n − 1 and ζ k
2 (t) = 0 for

every t ≥ Tk with some Tk ∈ R such that

Z (gk(u)) = ζ k
0 (min

x∈Rn
u(x)) + ∫

Rn
ζ k
1 (u(x))dx

+ ∫
dom u∗

ζ k
2 (∇u∗(x) ⋅ x − u∗(x))dx

for every u ∈ Convc(Rn ,R) and k ∈ N. By continuity of Z and Lemma 4.1

Z(u) = lim
k→∞

Z (gk(u))

= lim
k→∞

(ζ k
0 (min

x∈Rn
u(x)) + ∫

Rn
ζ k
1 (u(x))dx

+ ∫
Rn

ζ k
2 (∇u∗(x) ⋅ x − u∗(x))dx)

for every u ∈ Convsc(Rn). By Lemma 5.2, there exists a continuous function ζ0 ∶ R→
[0,∞) such that

lim
k→∞

ζ k
0 (min

x∈Rn
u(x)) = ζ0(min

x∈Rn
u(x))

for every u ∈ Convsc(Rn ,R). By Lemma 5.4, there exists a continuous function
ζ1 ∶ R→ [0,∞) that has ûnite moment of order n − 1 such that

lim
k→∞

∫
Rn

ζ k
1 (u(x))dx = ∫Rn

ζ1(u(x))dx

for every u ∈ Convsc(Rn ,R). Furthermore, by Lemma 5.6,

lim
k→∞

∫
Rn

ζ k
2 (∇u∗(x) ⋅ x − u∗(x))dx = ∫

Rn
ζ2(∇u∗(x) ⋅ x − u∗(x))dx ,

where ζ2 ∶ R→ [0,∞) is a continuous function such that such that ζ2(t) = 0 for every
t ≥ T with some T ∈ R. Hence, Z must be as in (1.3). ∎

5.2 Proof of Theorem 1.3*

Lemmas 3.2, 3.6, and 3.8 show that (1.4) deûnes a continuous, SL(n) and dually trans-
lation invariant valuation on Convsc(Rn ,R).
Conversely, let Z ∶ Convsc(Rn ,R) → [0,∞) be a continuous, SL(n) and dually

translation invariant valuation. By Lemmas 2.5, 2.6, and 2.7, and heorem 2.8, the
map u ↦ Z∗(u) ∶= Z(u∗) deûnes a continuous, SL(n) and translation invariant val-
uation on Convsc(Rn ,R). Hence, by heorem 1.3 and Lemma 2.4,

Z(u) = Z ((u∗)∗)
= Z∗(u∗)

= ζ̃0(min
x∈Rn

u∗(x)) + ∫
Rn

ζ1(u∗(x))dx

+ ∫
Rn

ζ2(∇(u∗)∗(x) ⋅ x − (u∗)∗(x))dx

= ζ̃0(−u(0)) + ∫
Rn

ζ1(u∗(x))dx + ∫
Rn

ζ2(∇u(x) ⋅ x − u(x))dx
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for every u ∈ Convsc(Rn ,R), where ζ̃0 , ζ1 , ζ2 ∶ R → [0,∞) are continuous functions
such that ζ1 has ûnite moment of order n − 1 and ζ2(t) = 0 for every t ≥ T with some
T ∈ R. he statement now follows by setting ζ0(t) = ζ̃0(−t) for t ∈ R. ∎

6 Discussion

For convex bodies K that contain the origin in their interiors, the volume product
Vn(K)Vn(K∗) is of signiûcant interest in convex geometric analysis. In particular,

(6.1) cnVn(Bn)2 ≤ Vn(K)Vn(K∗) ≤ Vn(Bn)2

for every origin symmetric K ∈ Kn
(o), i.e., K = −K, where Bn denotes the Euclidean

unit ball and c > 0 is an absolute constant. he right side of (6.1) is sharp with the
maximizers being ellipsoids [43] and is also known as the Blaschke–Santaló inequality
[10, 48]. he le� side is due to Bourgain and Milman [13], but the optimal constant
c is still not known. he famous Mahler conjecture states that the volume product
is minimized for aõne transforms of cubes (among others) and a proof for the two-
dimensional case is due to Mahler [38]. More recently, the conjecture was conûrmed
for the three-dimensional case [28], but the general case remains open. Furthermore,
the conjecture is known to be true for some special classes of convex bodies, e.g., a
proof for 1-unconditional bodies can be found in [47] and a characterization of the
corresponding equality cases in [39]; see also [7, 44].
Functional versions of (6.1) for log-concave functions were obtained in [3,5,6,29].

In particular, it was shown that

(6.2) (2π
c
)
n
≤ ∫

Rn
exp ( − u(x))dx ∫

Rn
exp ( − u∗(x))dx ≤ (2π)n

for suitable convex functions u on Rn , where c > 0 is again an absolute constant.
Furthermore, Fradelizi and Meyer [24, 25] could prove that the sharp lower bound
of this functional volume product is 4n in the case of 1-unconditional functions u,
that is, u(x1 , . . . , xn) = u(∣x1∣, . . . , ∣xn ∣), and the corresponding equality cases were
characterized in [22]. Moreover, in [23] Fradelizi andMeyer could also provide upper
bounds for similar inequalities where t ↦ e−t is replaced bymore general log-concave
functions.
Consideringheorems 1.3 and 1.3* aswell as the resultsmentioned above, the ques-

tion arises if an inequality similar to (6.2) can be achieved, where t ↦ e−t is replaced
by some continuous function ζ ∶ R → [0,∞) that has ûnite moment of order n − 1.
Furthermore, one can ask for inequalities using the quantities

u z→ ∫
dom u∗

ζ(∇u∗(x) ⋅ x − u∗(x))dx

and/or

u z→ ∫
dom u

ζ(∇u(x) ⋅ x − u(x))dx

for suitable functions ζ ∶ R→ [0,∞) and convex functions u on Rn .
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A Appendix

Wewill give the construction of the function v t
l from Lemma 4.2 and discuss its prop-

erties.
By deûnition of the function gk , k ∈ N, we can write its inverse function g−1

k as

(A.1) g−1
k (s) =

⎧⎪⎪⎨⎪⎪⎩

s, s ≤ sf k ,
sf k+ j−1 + k! + s−sf k+ j

k+ j+1 , sf k+ j < s ≤ sf k+ j+1 , j ∈ N0 .

Next, for t ∈ R, let mt = min{m ∈ N ∶ t ≤ sfm} and let

At
l ,m = 1 + sfm t − t + (m −mt)

l

for m ≥ mt . Note that At
l ,m − At

l ,m−1 = 1
l , and therefore limm→∞ At

l ,m = +∞. For
l ∈ N, we deûne the piecewise linear function v t

l ∶ [0,∞) → R as

(A.2) v t
l (r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t, 0 ≤ r ≤ 1
t + l(r − 1), 1 < r ≤ At

l ,m t

sfm + (m + 1)!l(r − At
l ,m), At

l ,m < r ≤ At
l ,m+1 , m ≥ mt .

Note that by this deûnition,

v t
l (At

l ,m) = sfm−1 +m!l(At
l ,m − At

l ,m−1)
= sfm = lim

r→(At
l ,m)

−
v t
l (r)

(A.3)

for every m ≥ mt , l ∈ N, and t ∈ R. Hence, v t
l is continuous. Moreover, it follows

immediately that v t
l is convex, increasing, super-coercive, and ûnite on [0,∞), and,

in particular, x ↦ v t
l (∣x∣) ∈ Convsc(Rn ,R). Furthermore, by Lemma 2.3 it is easy to

see that epi-liml→∞ v t
l (∣ ⋅ ∣) = IBn + t.

Next, we will consider the composition g−1
k ○ v t

l . herefore, ûx t ∈ R and k ∈ N.
If t ≤ sf k , we have by (A.2) and (A.3) that v t

l (r) ≤ sf k for every r ≤ At
l ,k . Hence,

by (A.1),

g−1
k (v t

l (r)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t, 0 ≤ r ≤ 1,
t + l(r − 1), 1 < r ≤ At

l ,m t
,

sfm + (m + 1)!l(r − At
l ,m), At

l ,m < r ≤ At
l ,m+1 , mt ≤ m < k.

Furthermore, if At
l ,m < r ≤ At

l ,m+1 , k ≤ m, we have by (A.3) that sfm < v t
l (r) ≤ sfm+1.

herefore, using (A.1) with k + j = m gives

g−1
k (v t

l (r)) = g−1
k (sfm + (m + 1)!l(r − At

l ,m))

= sfm−1 + k! +
sfm + (m + 1)!l(r − At

l ,m) − sfm
m + 1

= sfm−1 + k! +m!l(r − At
l ,m)
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for At
l ,m < r ≤ At

l ,m+1 and k ≤ m. In particular,

g−1
k (v t

l (At
l ,k)) = sf k−1 + k!l(At

l ,k − At
l ,k−1)

= sf k
= lim

r→(At
l ,k)

−
g−1
k (v t

l (r)),

which shows that g−1
k ○ v t

l is continuous. Furthermore,

d
dr

g−1
k (v t

l (r)) = k!l

for At
l ,k−1 < r < At

l ,k+1. In particular, the slope of g−1
k ○ v t

l is increasing, despite the
fact that the slope of g−1

k is decreasing. Hence, it is easy to see that g−1
k ○v t

l is a convex,
increasing, super-coercive, and ûnite function on [0,∞). Moreover, if follows from
Lemma 2.3 that epi-liml→∞ g−1

k (v t
l (∣ ⋅ ∣)) = IBn + t = IBn + g−1

k (t).
In the case t > sf k , there exists jt ∈ N0 such that sf k+ j t < t ≤ sf k+ j t+1 and therefore,

similarly to the case above,

g−1
k (v t

l (r)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sf k+ j t−1 + k! + t−sf k+ j t
k+ j t+1 , 0 ≤ r ≤ 1

sf k+ j t−1 + k! + t−sf k+ j t+l(r−1)
k+ j t+1 , 1 < r ≤ At

l ,m t

sfm−1 + k! +m!l(r − At
l ,m), At

l ,m < r ≤ At
l ,m+1 , mt ≤ m.

Again, this is a convex, increasing, super-coercive, and ûnite function on [0,∞)with
epi-liml→∞ g−1

k (v t
l (∣ ⋅ ∣)) = IBn + g−1

k (t).
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