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We analyse in detail the weakly nonlinear stability of electrohydrodynamic (EHD)
flow of insulating fluids subject to strong unipolar injection, with and without
cross-flow. We first consider the hydrostatic electroconvetion induced by a Coulomb
force confined between two infinite flat electrodes, taking into account the charge
diffusion effect. The effects of various non-dimensionalized parameters are examined
in order to depict in detail and to understand better the subcritical bifurcation of
hydrostatic electroconvetion. In addition, electrohydrodynamics with low- or high-Re
cross-flow is also considered for investigating the combined effect of inertia and the
electric field. It is found that the base cross-flow is modified by the electric effect
and that, even when the inertia is dominating, the electric field can still strengthen
effectively the subcritical characteristics of canonical channel flow. In this process,
however, the electric field does not contribute directly to the subcriticality of the
resultant flow and the intensified subcritical feature of such flow is thus entirely
due to the modified hydrodynamic field as a result of the imposed electric field.
This finding might be important for flow control strategies involving an electric
field. Theoretically, the above results are obtained from a multiple-scale expansion
method, which gives rise to the Ginzburg–Landau equation governing the amplitude
of the first-order perturbation. The conclusions are deduced by probing the changes
of value of the coefficients in this equation. In particular, the sign of the first
Landau coefficient indicates the type of bifurcation, being subcritical or supercritical.
Moreover, as a quintic-order Ginzburg–Landau equation is derived, the effects of
higher-order nonlinear terms in EHD flow are also discussed.

Key words: bifurcation, MHD and electrohydrodynamics, nonlinear dynamical systems

1. Introduction

In this paper, we deal with electrohydrodynamic flow (EHD), which studies the
flow dynamics of fluids subject to an electric field, cf. Castellanos (1998). The flow
configuration of EHD resembles Rayleigh–Bénard convection (RBC) except that,
instead of a thermal gradient, it is potential difference that is imposed across two
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FIGURE 1. Illustration of flow configuration for 2-D EHD flow. Black dots represent fluid
particles. Circles with a positive sign are unipolarly charged ions subject to an electric
field E as a result of an imposed potential difference. Dashed grey curves with arrows
denote the convection formed in hydrostatic EHD flow due to the electric Coulomb force.

infinite plates, see figure 1 for an illustration of EHD. Unipolarly charged ions are
issued from the injector towards the collector. Electric Coulomb force, as a result of
the imposed potential difference, acting on the charged ions can potentially destabilize
the flow and lead to flow motion; the latter in turn affects the charge distribution. As
the interaction between flow field and electric field is nonlinear, problems in EHD
are notoriously difficult to elucidate. On the other hand, the application potential of
EHD is immense in mechanical and biological engineering, including electrostatic
precipitators, microscale EHD pumps, EHD drag reduction, heat transfer enhancement
by means of EHD and drug delivery systems, to name a few. It is thus interesting
and important to study EHD.

In this work, a fundamental EHD problem of a simple geometry is considered;
specifically, we study the weakly nonlinear stability of convective motions induced by
unipolar charge injection into an insulating dielectric liquid between two parallel rigid
plane electrodes, with and without cross-flow. This important problem is yet to be well
explored. Moreover, as the flow setting is simple, the essential nonlinear mechanism
in EHD can be better untangled, which will be important in understanding the more
complicated EHD-related phenomena or designing the more sophisticated EHD-driven
devices. In the following sections, stability of EHD flow is discussed.

1.1. Instability and bifurcation of electrohydrodynamic flow
The linear stability analysis of electrohydrodynamic flow of dielectric liquids subject
to unipolar charge injection has been first studied by Schneider & Watson (1970)
and Atten & Moreau (1972). The linear stability criterion of the stability parameter
T , the electric Rayleigh number, was established to be TcC2 ≈ 220.7 in the case
of the weak-injection limit (C � 1, C is charge injection level, defined in (2.2)
with T) and Tc ≈ 160.75 when C →∞ in the space-charge-limited (SCL) regime.
However, the experimentally determined linear stability criterion Tc was found to
be approximately 100 for SCL (Atten & Lacroix 1979), significantly lower than the
theoretical prediction, suggesting a subcritical nature of the transition to turbulence
in EHD. This discrepancy between the theory and the experiment in the SCL regime
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has recently been examined by Zhang et al. (2015) using modal and non-modal
linear stability analysis tools (Farrell & Ioannou 1996; Schmid 2007) with the charge
diffusion effect included. However, the authors find that the perturbation energy
growth is limited in the whole linear phase; therefore, the transient growth transition
mechanism is probably not the main bifurcation route for the subcritical transition in
EHD flow without cross-flow.

The nonlinear stability analysis of EHD flow started with the work by Félici
(1971). Even though the author only solved a one-way coupling system with the
assumption of a two-dimensional, a priori hydraulic model for the velocity field
in the weak-injection case, the subcritical feature of nonlinear EHD flow has been
successfully deduced in that there exist two solutions below the linear critical criterion
Tc, a stable state and a finite-amplitude state. This result was further collaborated by
the results in Atten & Lacroix (1974), who established the (Tc− T)1/2 relationship of
the vertical velocity maximum Vm near the criticality Tc and suggested the existence
of a hysteresis loop in the transition of EHD to turbulence. Further development in
the nonlinear stability analysis of EHD flow, for example, the pattern formation, was
then discussed in Lacroix, Atten & Hopfinger (1975), in which the authors found the
formation of hexagonal cells as the main convective pattern in the electroconvetion
and also briefly discussed the occurrence of nonlinear instability phenomena. The
theoretical explanation of such pattern selection was postponed until Atten & Lacroix
(1979), who performed a nonlinear stability analysis of Félici’s hydraulic model in
the weak-injection case and a weakly nonlinear stability analysis of EHD flow in
the SCL regime using the modal equation approximation method, arriving at the
conclusions that the hexagonal cells are more stable than the 2-D rolls and that the
flow inside the cells flows towards the injection electrode. The authors also reported
the nonlinear stability criterion Tnl for 3-D, hexagonal cells to be Tnl ≈ 90 in the
experiments, in contrast to the theoretical results Tnl ≈ 110.

The bifurcation of EHD flow near the linear criticality Tc has also been studied
using the direct numerical simulation (DNS) method, for example, in Chicón,
Castellanos & Martin (1997), Wu et al. (2013). In Wu et al. (2013), the authors
investigated the EHD flow bifurcating at criticality in a 2-D finite container without
considering the charge diffusion effect. In their results, the reference calculation, in
which periodic boundary conditions are imposed on the vertical walls mimicking the
infinite electrodes, yields the classical results of the linear stability theory and its
subcritical bifurcation; whereas, in a confined container, the bifurcation might switch
to a supercritical route in some parameter subspace partially owing to the dissipative
effect of the vertical walls. This DNS method for bifurcation analysis is useful and
convenient when a DNS solver is ready. In this regard, the more general method of
performing bifurcation analysis using DNS, the time stepper method, is discussed
thoroughly in Tuckerman & Barkley (1999).

1.2. Weakly nonlinear stability analysis
As the amplitude of the linear modes grows to some point, it is not valid any more to
neglect the nonlinearity. In the research of nonlinear phenomena, much attention has
been devoted to the weakly nonlinear phase around the linear criticality, as analytical
modelling of the weak nonlinearity is possible. One of the well-developed theoretical
tools for the study of weak nonlinearity is multiple scale analysis, which is the main
mathematical tool to be employed in the present work.

In weakly nonlinear stability analysis, expansion of the disturbance terms in the
Navier–Stokes (NS) equation leads to the famous Ginzburg–Landau equation (GLE),
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first proposed by Landau (1944) in the discussion of the origin of turbulence, as a
universal governing equation for the disturbance amplitude around the first bifurcation.
In the community of fluid mechanics, the first rigorous derivation of GLE was given
by Stuart (1960) for plane Poiseuille flow (PPF); at the same time, Watson (1960)
reached the same equation using the amplitude expansion method. The multiple-scale
analysis, a more general derivation scheme extending the expansion method in Stuart
(1960), was then proposed by Stewartson & Stuart (1971). The ambiguity in the
values of the Landau coefficients (the coefficients in GLE) obtained in the weakly
nonlinear analysis was clarified by Herbert (1983), Sen & Venkateswarlu (1983),
who proposed to fix the amplitude of the disturbance eigenfunction to be unit at
the channel centreline, for example, for PPF. These two methods, the amplitude
expansion method and multiple-scale analysis, are proved to be equivalent in the
work by Fujimura (1989). A third alternative, the centre manifold reduction method,
has also been shown to be able to arrive at the same GLE by Fujimura (1991, 1997).

Other than the simplest flow configuration PPF, the weakly nonlinear stability
analysis has also been applied to other complex fluids. Here, we discuss some of
them which are most relevant to EHD flow. The RBC, mentioned above, has been
shown to be an excellent model for the derivation of GLE as in this case, analytical
expression of the Landau coefficients can be obtained when the boundary conditions
are assumed to be free surfaces (also known as Bénard–Marangoni convection), see
Cross (1980). The similar geometries and configurations between RBC and EHD
tempt one to compare the two flows; however, it is well-known that the bifurcation
of RBC, under the linear Oberbeck–Boussinesq approximation, is of a supercritical
nature (Cross & Hohenberg 1993), which is different from the subcritical bifurcation
of EHD, as discussed above. This makes the bifurcation in EHD flow interesting since
the nonlinear terms in EHD flow should behave in a quite different manner than those
in RBC, resulting in a different bifurcation route. Another type of fluid subject to
electric field, closely related to EHD, is that of nematic liquid crystals. The amplitude
equation and the pattern formation for nematic liquid crystals have been discussed by
Pesch & Kramer (1986), Kramer & Pesch (1995) and more recently by Plaut et al.
(1997). The main dissimilar feature between the two fluids lies in the difference that
the nematic liquid crystals are anisotropic with a preferred axis while the EHD flow
of non-polar liquids, the working fluids that we are considering, is isotropic in all
the wall-parallel directions when a constant potential difference is imposed across
the infinite electrodes. Therefore, the pattern formation in nematic liquid crystals
adopts more likely the form of normal rolls which is parallel or perpendicular to
the preferred axis. Besides the two flow configurations just discussed, electro-thermal
hydrodynamics (ETHD) is perhaps the most relevant flow related to EHD. ETHD
studies the flow dynamics of fluids subject to at the same time the potential difference
and a heat gradient; this combined effect is interesting because proper manipulation
of the electric field can lead to increased efficiency of heat transfer, and thus imply
various industrial applications. In fact, the weakly nonlinear analysis of ETHD has
been performed by Worraker & Richardson (1981) following the linear stability
analyses of Turnbull (1968). By deriving the Ginzburg–Landau equation until the
third order, Worraker & Richardson (1981) successfully described the flow transition
of ETHD from a supercritical bifurcation to a subcritical one when an electric
potential of increasing strength is imposed across two differentially heated plates.
This result has also been recently obtained and discussed in Traoré et al. (2010). On
the other hand, in the presence of cross-flow, the weakly nonlinear analysis and the
pattern selection of a heated fluid with through flow have been studied by Fujimura
& Kelly (1995), Kato & Fujimura (2000). However, there seems to be no study in
the literature on weakly nonlinear EHD with cross-flow.
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1.3. Present work
To further distil the flow transition and bifurcation mechanism in EHD, it is important
to study in detail its nonlinear stability. On one hand, for hydrostatic EHD flow, the
weakly nonlinear stability analysis by Atten & Lacroix (1979) only considered the
limit of infinite M (M is the ratio between hydrodynamic mobility and ion mobility,
introduced in (2.2) below) and the inertial terms are thus neglected following this
assumption. No detailed parametric study was presented in their article. In the ETHD
work by Worraker & Richardson (1981), the pure EHD flow in a weakly nonlinear
phase is marginally discussed as a special case when the thermal difference k1 across
two plates is zero. On the other hand, EHD with cross-flow was rarely studied in
the past. Linear stability of such flow has been documented in Castellanos & Agrait
(1992), Lara, Castellanos & Pontiga (1997), Zhang et al. (2015), but, to the best of
our knowledge, weakly nonlinear stability analysis of EHD-Poiseuille flow has never
been reported in the literature.

We are prompted by the consideration that a more comprehensive and accurate
analysis of weakly nonlinear EHD is needed for a better understanding of such flow.
Therefore, in the present work, we conduct in detail the weakly nonlinear stability
analysis of 2-D EHD in the space charge limit, with and without cross-flow, by
performing a multiple-scale analysis around the linear critical condition. The effect of
charge diffusion, which has long been omitted since the work of Pérez & Castellanos
(1989), is taken into account for the completion of physical modelling. The EHD
with cross-flow, rarely studied in the literature, is considered as it is interesting to
see how the canonical channel flow can be modified due to the presence of an
electric field. This would be essential for the design of certain flow control strategies
employing an electric field as the manipulating agent; for example, the modification
to the wake flow in a developed Poiseuille flow using the electric field (Mccluskey
& Atten 1988) or turbulence modification using EHD (Soldati & Banerjee 1998). In
the end, compared to Worraker & Richardson (1981), who obtained the cubic GLE,
we derive the GLE until the fifth order; therefore, a stable solution to the GLE can
be obtained for the subcritical EHD when the fifth-order nonlinear term stabilizes the
flow.

The paper is organized as follows. In § 2, we present the governing equations
and the mathematical formulation of the multiple-scale analysis. In § 3, we briefly
present the numerical method. The validation and the results of weakly nonlinear
EHD with and without cross-flow are shown in § 4. The results are compared to
DNS and experiments whenever possible. Finally in § 5, we conclude the paper with
a discussion about the results.

2. Problem formulation
2.1. Non-dimensionalized governing equations

The details of the mathematical modelling of EHD flow can be found in the classical
books, such as Melcher (1981), Castellanos (1998) or in our previous work Zhang
et al. (2015). We present briefly the non-dimensionalized governing equations as
below.

We non-dimensionalize the full system with the characteristics of electric field, i.e.
L∗ (half distance between the electrodes), 1φ∗0 (voltage difference applied to the electr-
odes) and Q∗0 (injected charge density). Accordingly, time t∗ is non-dimensionalized
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by L∗2/(K∗1φ∗0), velocity U∗ by K∗1φ∗0/L
∗, pressure P∗ by ρ∗0 K∗21φ∗20 /L

∗2, electric
field E∗ by 1φ∗0/L

∗ and electric density Q∗ by Q∗0. Therefore, the non-dimensional
EHD-NS equations read

∇ ·U= 0, (2.1a)

∂U
∂t
+ (U · ∇)U=−∇P+ M2

T
∇2U+CM2QE, (2.1b)

∂Q
∂t
+∇ · [(E+U)Q] = 1

Fe
∇2Q, (2.1c)

∇2φ =−CQ, (2.1d)

E=−∇φ, (2.1e)

where

M = (ε
∗/ρ∗0 )

1/2

K∗
, T = ε

∗1φ∗0
K∗µ∗

, C= Q∗0L∗2

1φ∗0ε∗
, Fe= K∗1φ∗0

D∗ν
. (2.2a−d)

K∗ stands for ionic mobility, ε∗ represents fluid permittivity, D∗ν is the charge diffusion
coefficient and µ∗ denotes dynamic viscosity. In (2.2), M is the ratio between the
hydrodynamic mobility (ε∗/ρ∗0 )

1/2 and the true ion mobility K∗. T , the electric
Rayleigh number, as mentioned in the introduction section, represents the ratio of the
Coulomb force to the viscous force. C, also appearing in the introduction section,
measures the injection level. Fe is the reciprocal of the non-dimensionalized charge
diffusivity coefficient. Note that our C, defined with respect to half-channel distance
(the same as the C in Zhang et al. (2015)), is four times the one defined according
to full-channel distance, which is the usual definition of C in previous research
works on EHD (for example, our C = 12.5 is actually equivalent to C = 50 defined
with full-channel distance); this convention is not followed here since we will also
consider EHD-Poiseuille flow, and in the research of channel flow, the convention
is that half-channel distance is used as the reference length. In addition, the above
equations are complemented with the non-dimensionalized boundary conditions, which
are U(±1)= 0, φ(1)= 1, φ(−1)= 0, Q(1)=−1 and (∂Q/∂y)(−1)= 0.

The flow variables are decomposed into base states (Ū, Ē, φ̄, Q̄)T as a function of
y and the perturbations (u, e, ϕ, q)T as a function of t, x, y. Superscript T denotes
transpose. The base states satisfy the steady EHD-NS coupled system (2.1), which is,
though not mathematically rigorous, a common practice in stability theory (Cowley &
Wu 1994). We consider a base electric field only acting in the vertical direction y,
i.e. Ē = (0, Ē(y))T. The procedure to obtain base states follows Zhang et al. (2015).
Examples of φ̄, Ē, Q̄ at different C and Fe are shown in figure 2. It is seen that C has
a minor effect on the base profiles of φ̄ and Ē in the SCL regime, but a noticeable
influence on Q̄ and Q̄C; on the other hand, Fe, representing the charge diffusion effect,
apparently affects all the base profiles in the range of Fe ∈ [103, 105].

With the above decomposition, and after writing the electric variables in terms of
ϕ, we obtain the nonlinear governing equations for the perturbations
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FIGURE 2. (Colour online) Base states for φ̄, Ē, Q̄, Q̄C at C= 12.5, Fe= 105 (blue solid
line with dots), C = 100, Fe = 105 (red dash-dotted line) and C = 12.5, Fe = 103 (black
dashed line). Inset in each figure zooms in part of the figure.

∂ui

∂xi
= 0, (2.3a)

∂ui

∂t
= −Ū

∂ui

∂x
− vŪ′δi1 − ∂p

∂xi
+ M2

T
∂2ui

∂xj∂xj
+M2

(
φ̄′′
∂ϕ

∂xi
+ φ̄′ ∂

2ϕ

∂xj∂xj
δi2

)
− uj

∂ui

∂xj
+M2 ∂ϕ

∂xi

∂2ϕ

∂xj∂xj
, (2.3b)

∂∇2ϕ

∂t
= φ̄′′′

(
∂ϕ

∂y
− v
)
+
(
φ̄′
∂

∂y
− Ū

∂

∂x

)
∇2ϕ + 2φ̄′′∇2ϕ + 1

Fe
∇4ϕ

+
(
∂ϕ

∂xi
− ui

)
∂∇2ϕ

∂xi
+∇2ϕ∇2ϕ, (2.3c)

where ∇2 = (∂2/∂x2)+ (∂2/∂y2), prime denotes derivative with respect to y and δ is
the Kronecker delta. The Einstein summation convention is assumed in the form above.
Since a 2-D problem will be considered, it is possible to express the flow velocities
in terms of the streamfunciton ψ , i.e. u= (∂ψ/∂y), v=−(∂ψ/∂x). Consequently, the
continuity equation (2.3a) is automatically satisfied by ψ . Moreover, we can define the
transverse vorticity ω = (∂v/∂x)− (∂u/∂y) which is related to ψ by ω =−∇2ψ . By
these relations, it can be shown that the system as a function of (u, v)T can be recast
to one with respect to (ω, ψ)T. So the governing equations for the perturbations (2.3)
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can now be rewritten as a function of γ = (ψ, ϕ)T

∂∇2ψ

∂t
= −Ū

∂∇2ψ

∂x
+ Ū′′

∂ψ

∂x
+ M2

T
∇4ψ −M2

(
φ̄′
∂∇2ϕ

∂x
− φ̄′′′ ∂ϕ

∂x

)
−
(
∂ψ

∂y
∂∇2ψ

∂x
− ∂ψ
∂x
∂∇2ψ

∂y

)
−M2

(
∂ϕ

∂y
∂∇2ϕ

∂x
− ∂ϕ
∂x
∂∇2ϕ

∂y

)
, (2.4a)

∂∇2ϕ

∂t
= φ̄′′′

(
∂ϕ

∂y
+ ∂ψ
∂x

)
+
(
φ̄′
∂

∂y
− Ū

∂

∂x

)
∇2ϕ + 2φ̄′′∇2ϕ + 1

Fe
∇4ϕ

+
(
∂ϕ

∂x
− ∂ψ
∂y

)
∂∇2ϕ

∂x
+
(
∂ϕ

∂y
+ ∂ψ
∂x

)
∂∇2ϕ

∂y
+∇2ϕ∇2ϕ. (2.4b)

Note that the pressure terms are eliminated when manipulating the momentum
equations for incompressible flow. The boundary conditions for ψ and ϕ are
homogeneous

ψ(±1)=ψ ′(±1)= 0, (2.5a)
ϕ(±1)= ϕ′′(1)= ϕ′′′(−1)= 0. (2.5b)

In a matrix notation, we can write the above system compactly

M
∂γ

∂t
= Lγ + N or

(
M
∂

∂t
− L

)
γ = N, (2.6a,b)

where the operators M, L, N represent the weight matrix, the linear operator and the
nonlinear operator, respectively. Their expressions can be easily deduced according
to (2.4).

2.2. Weakly nonlinear stability analysis
To study the weakly nonlinear stability of EHD, we employ the multiple scale analysis
first introduced in Stewartson & Stuart (1971) for fluid dynamists. The procedures
begin with expanding the parameters and the disturbance variables in ascending
powers of a small dimensionless parameter ε (not to be confused with ε∗, the fluid
permittivity, introduced above). Firstly, we assume that the time and the space scales
can be expanded as

∂

∂t
= ∂

∂t0
+ ε ∂

∂t1
+ ε2 ∂

∂t2
+ ε4 ∂

∂t4
+O(ε5), (2.7a)

∂

∂x
= ∂

∂x0
+ ε ∂

∂x1
+O(ε2). (2.7b)

This expansion scheme is of a hybrid type of two previous works: the even-order
scales ε2i(i ∈ N) in the expansion of the time derivative follows Fujimura (1989)
and the ε scales in both equations are adopted from Stewartson & Stuart (1971) to
examine the group velocity of linear waves at first order.

Secondly, the perturbations of flow variables are expanded as

γ = εγ1 + ε2γ2 + ε3γ3 + ε4γ4 + ε5γ5 +O(ε6), (2.8)

where γi (i ∈N) should satisfy the same boundary conditions as γ .
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Next, the controlling parameter T is perturbed around Tc, at which the growth rate
of the perturbation µr is small (µr is the real part of µ=−iω and ω is the complex-
valued angular frequency in the wave-like assumption (2.12), introduced below)

T = Tc − ε2 +O(ε4) or
1
T
= 1

Tc
+ 1

T2
c

ε2 +O(ε4). (2.9a,b)

These equations can also be seen as a definition of ε. The order ε2 is chosen following
Stuart (1960); alternatively, this ε2-scaling can be seen from neutral curves (e.g. Zhang
et al. (2015, figure 3a)), where around the critical Tc, the shape of the neutral curve
takes the form of a parabola. In this work, T is perturbed in the case of hydrostatic
EHD; for EHD with cross-flow, it is Re that is perturbed (Re= T/M2). In each case,
the other parameters are passive and not perturbed.

Finally, we also apply expansion to the operators

M =M0 + εM1 + ε2M2 +O(ε3), (2.10a)
L= L0 + εL1 + ε2L2 +O(ε3), (2.10b)

N = ε2N2 + ε3N3 + ε4N4 + ε5N5 +O(ε6). (2.10c)

The linear operators M and L contain spatial derivatives since their expansions result
from expansion of spatial derivatives (2.7), starting at order ε0. The nonlinear operator
N involves expansions of both spatial derivatives and flow variables, so its lowest
order is ε2, dictated by the form of expansion of γ in (2.8). The explicit expressions
of M , L and their sub-scales can be found in appendices A.1 and A.2, respectively.
The expressions of N and its sub-scales are too lengthy, and are thus not shown except
N3 in (4.9) below.

The weakly nonlinear analysis then follows by substituting the multiple scale
expansions of variables and operators in equations from (2.7) to (2.10) into the
governing equations (2.4) and equating the coefficients of various orders of ε. In the
following, we elaborate the first three orders: at ε, adjoint equations are formulated;
at ε2, the solvability condition is discussed; at ε3, the cubic GLE is derived. Due to
space limitations, only general formulae at fourth and fifth orders are given and the
quintic GLE is presented without detailed derivation.

2.2.1. Solution at order ε
At the first order of ε, we obtain the linearized problem(

M0
∂

∂t0
− L0

)
γ1 = 0, (2.11)

which has been solved in, for example, Zhang et al. (2015). We assume that the
solutions take the form of

γ1(x0, x1, y, t0, t1, t2, t4; T)= A1(x1, t1, t2, t4)γ̃1(y)eiαx0+µt0 + c.c., (2.12)

and then (2.11) can be transformed into an eigenvalue problem, in which A1 is
the amplitude of the linear waves and γ1, γ̃1 is the eigenvector, whose maximum
amplitude is normalized to be unit to avoid any ambiguity following Herbert (1980),
α and µ = −iω are wavenumber and angular frequency (also the eigenvalue) and
c.c. represents the complex conjugate of the preceding term (in the following, we
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will also use superscript ∗ to denote the complex conjugate transpose of a tensor).
Hereafter, we will denote Ew = ExEt = eiαx0eµt0 for convenience. It follows that the
shape of γ̃1 and µ can be obtained in the temporal linear stability analysis; however,
A1 cannot be determined from the linearized problem since (2.11) is a homogeneous
partial differential equation. Nevertheless, in the nonlinear theory we can derive a
governing equation for A1 from order ε3, i.e. the Ginzburg–Landau equation.

For the computations involving nonlinearity, an unambiguous definition of physical
norm should be put forward. We define the energy norm as follows

〈 f , g〉 =
∫
Ωx0

∫ 1

−1
f ·Mg dy dx0 = 〈 f̃ , g̃〉s + 〈 f̃ , g̃〉∗s , (2.13)

where Ωx0 is a periodic domain for the waves (2.12) in the x0 direction, M is a weight
function and 〈 f̃ , g̃〉s is the energy norm in spectral space. Physically, we define the
non-dimensionalized energy density of 2-D EHD as

E = Ek + Eϕ = 1
2(u

2 + v2)+ 1
2 M2e2. (2.14)

In the above, Ek is kinetic energy density and Eϕ is internal electric energy density.
The latter is defined to be equal to the electrical work required to bring charges in
a unit volume from infinity to the interested position. For fluids of constant mass
density and subject to quasistatic isothermal conditions (which is our case), it can be
shown that Eϕ= (M2e2)/2, see the derivation in Castellanos (1998). M is thus included
in (2.13) to account for the M2 scaling in Eϕ . Since we work with γ = (ψ, ϕ)T, we
consider M = ( I 0

0 κ2I ), where κ =M and I is the identity matrix.
To facilitate the computation, for example, of imposing a solvability condition at

higher orders, we resort to the adjoint of (2.11). Based on the norm introduced, the
adjoint variable γ † and the adjoint operators M†

0 and L†
0 follow (Luchini & Bottaro

2014) 〈(
M0

∂

∂t0
− L0

)
γ1, γ

†
1

〉
=
〈
γ1,

(
M†

0
∂

∂t0
− L†

0

)
γ

†
1

〉
. (2.15)

The adjoint problem could then be solved as(
M†

0
∂

∂t0
− L†

0

)
γ

†
1 = 0, (2.16)

and γ
†
1 will be used in imposing the solvability conditions at higher orders. The

expressions of the adjoint operators M†
0 and L†

0 as well as the boundary conditions
for γ †

1 are derived and shown in appendix A.3.

2.2.2. Solution at order ε2

Next, at ε2, we have(
M0

∂

∂t0
− L0

)
γ2 =−

(
M1

∂

∂t0
+M0

∂

∂t1

)
γ1 + L1γ1 + N2. (2.17)

For the non-homogeneous partial differential equation, attention should be payed to the
secular terms on the right-hand side of the equation since these resonant terms will
lead the solutions to blow up. Fredholm alternative should thus be applied to ensure
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that the secular terms are orthogonal to adjoint eigenvectors (Bender & Orszag 1999).
We denote the solution of γ2 as

γ2 = γ21 + γ22 + γ20 + c.c., (2.18)

which are the particular solutions forced by secular Ew (γ21) and non-secular terms
E2

w(γ22), E0
w(γ20), respectively. At the critical condition where the growth rate of the

disturbance is vanishing, one should apply a solvability condition to the right-hand
side of (2.17). This implies that (2.17) admits periodic solutions with the same
boundary conditions as γ1 if and only if the projections of right-hand side of (2.17)
on both γ̃1

†Ew and γ̃1
†∗E∗w are zero, that is,〈

−
(
µcM

◦
1
∂A1

∂x1
+M0

∂A1

∂t1

)
γ̃1Ew + L◦1γ̃1

∂A1

∂x1
Ew + c.c., γ̃1

†Ew

〉
= 0, (2.19a)〈

−
(
µcM

◦
1
∂A1

∂x1
+M0

∂A1

∂t1

)
γ̃1Ew + L◦1γ̃1

∂A1

∂x1
Ew + c.c., γ̃1

†∗E∗w

〉
= 0, (2.19b)

where only the secular terms are shown. Linear operator with a superscript circle
refers to the fact that the (∂/∂x1)-related derivatives are moved out from the operator;
for example, see (A 2) for M◦1. In solving the above equations, we find that

∂A1

∂t1
= cg

∂A1

∂x1
, where cg = 〈(L

◦
1 −µcM◦1)γ̃1, γ̃1

†〉s
〈M0γ̃1, γ̃1

†〉s
. (2.20)

Thus cg can be viewed as the group velocity of the wave train as discussed in
Stewartson & Stuart (1971). With the solvability condition applied, we now could
solve safely the equation for γ21

γ21 = γ̃21
∂A1

∂x1
Ew + c.c. (2.21)

The non-secular part of (2.17) admits the following forms of solution

γ2ns = γ̃22(y)A2
1E2

w + γ̃20(y)A∗1A1E∗wEw + c.c. (2.22)

The shape functions γ̃21, γ̃22, γ̃20 are not shown. So far, we have the particular
solution for γ2 from (2.21) and (2.22), which will be used in the next order to help
in constructing the forcing terms for γ3.

2.2.3. Solution at order ε3

At this order, we obtain the equation(
M0

∂

∂t0
− L0

)
γ3 = −

(
M2

∂

∂t0
+M1

∂

∂t1
+M0

∂

∂t2

)
γ1

−
(

M1
∂

∂t0
+M0

∂

∂t1

)
γ2 + L2γ1 + L1γ2 + N3. (2.23)

We apply the solvability condition to the right-hand side of above equation to
eliminate, for example, its projection on γ̃1

†∗E∗w
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−(µcM

◦
2 + cgM◦1)γ̃1

∂2A1

∂x2
1

Ew −M0γ̃1
∂A1

∂t2
Ew − (µcM

◦
1 + cgM0)γ̃21

∂2A1

∂x2
1

Ew

+ L◦2γ̃1
∂2A1

∂x2
1

Ew + L2MT γ̃1A1Ew + L◦1γ̃21
∂2A1

∂x2
1

Ew + N◦3A2
1A∗1Ew + c.c., γ̃1

†∗E∗w

〉
= 0.

(2.24)

Nonlinear operator with a circle (such as N◦3) means that the A1-related terms are
moved out from the original operator. By grouping the terms and arranging the above
equation, we finally arrive at the Ginzburg–Landau equation

∂A1

∂t2
= a1A1 + a2

∂2A1

∂x2
1
+ a3|A1|2A1, (2.25)

where

a1 = 〈L2MT γ̃1, γ̃1
†〉s

〈M0γ̃1, γ̃1
†〉s

, (2.26a)

a2 = 〈(−µcM◦2 − cgM◦1 + L◦2)γ̃1 + (−µcM◦1 − cgM0 + L◦1)γ̃21, γ̃1
†〉s

〈M0γ̃1, γ̃1
†〉s

, (2.26b)

a3 = 〈N◦3, γ̃1
†〉s

〈M0γ̃1, γ̃1
†〉s
. (2.26c)

The above procedure derives the GLE until third order. We will discuss a3, the first
Landau coefficient as mentioned in the abstract, shortly.

2.2.4. Solutions at higher orders ε4 and ε5

Seeking solutions to the higher-order equations will be straightforward but quite
tedious. Due to space limitations, we only present the general formula(

M0
∂

∂t0
− L0

)
γl =

l−2∑
k=0

(
−

l−k−1∑
i=0

M l−k−1−i
∂

∂ti
+ Ll−k−1

)
γk+1 + N l, (2.27)

in which l is the order index in ε l. Setting l= 4, 5 will yield the sought equations at
these two orders (the formula at l= 1, 2, 3 also holds for these orders). The quintic
GLE can be derived in the same spirit as above. We thus omit the lengthy presentation
of derivation and explicit expression of higher-order Landau coefficients. The resultant
GLE in our expansion scheme is given directly as below

∂A1

∂t4
+ ∂A2

∂t2
= a1A1 + a(1)1 A2 + a3|A1|2A1 + a(1)3 A2

1A∗2 + a(2)3 |A1|2A2 + a5|A1|4A1

+ a2
∂2A1

∂x2
1
+ a(1)2

∂2A2

∂x2
1
+ a(2)2

∂4A1

∂x4
1
+ a4A∗1

(
∂A1

∂x1

)2

+ a(1)4 A1
∂A1

∂x1

∂A∗1
∂x1
+ a(2)4 A1A∗1

∂2A1

∂x2
1
+ a(3)4 A2

1
∂2A∗1
∂x2

1
, (2.28)

where A2 is the amplitude of the wave γ̃1Ew introduced in the solution to γ3, see
Fujimura (1989). In fact, the above equation extends (2.20) in Fujimura (1989) with
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FIGURE 3. Supercritical bifurcation (a) and subcritical bifurcation (b). The solid lines
are the stable solutions and the dashed lines unstable solutions. The arrows indicate
that the unstable solution will eventually become stable. The grey dotted circle is the
neighbourhood of the critical condition. (a) Re(a3) < 0, (b) Re(a3) > 0.

the additional spatial derivative terms. This equation might be interesting and relevant
for the generic study of GLE in the context of EHD flow. Nevertheless, in this work,
we are particularly interested in, among these Landau coefficients, the values of a3 and
a5 (because their real parts are directly related to the flow bifurcation) and will present
and discuss them in the result section (the other parameters will not be mentioned
hereafter).

In particular, the real part of the first Landau coefficient a3 dictates the bifurcation
type of a system, as illustrated in figure 3, see Guckenheimer & Holmes (1983). The
solid lines represent stable solutions and the dashed lines unstable solutions. The grey
dotted circle is the neighbourhood of the critical condition, where our computation is
carried out. If we have Re(a3) < 0 (where Re represents the real part), the bifurcation
is called supercritical; otherwise if Re(a3) > 0, it is subcritical. The arrows indicate
that unstable solutions will eventually become stable, but via different bifurcation
routes. Routes 1 to 4 represent stable spiral, supercritical bifurcation, subcritical
bifurcation and finally stable spiral, respectively. For a subcritically bifurcating
system, finite-amplitude perturbations are needed to drive the system to a more stable
solution, whereas for a system of supercritical bifurcation, infinitesimal perturbations
are sufficient. Furthermore, since our calculation is performed around the critical
condition, the expansion series (2.28) should converge rapidly (see Herbert 1980; Sen
& Venkateswarlu 1983), and thus we will not discuss its validity range.

3. Numerical methods
A spectral collocation method (Trefethen 2000; Weideman & Reddy 2000) is used

to obtain the values of the Landau coefficients. When imposing boundary conditions,
we employ the boundary boarding technique (Boyd 2001), in which selected rows of
the linear matrices are replaced directly by the boundary conditions. Specifically, when
imposing the Dirichlet boundary conditions of ϕ†

1 (A 13a), the first rows of M†
0 and

L†
0 are replaced by the first rows of I and χ I , respectively, where χ is a constant

not coinciding with the spectrum. Thus, according to (2.16), we should have at the
boundary, for instance, y= 1

µγ
†
1 (1)= χγ †

1 (1) or (µ− χ)γ †
1 (1)= 0, (3.1a,b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

89
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.89


Weakly nonlinear stability analysis of electrohydrodynamic flow 341

Davey et al. (1974) Fujimura (1989) Present implementation

Re 5772.22 5772.2218 5772.2218
α 1.02055 1.0205474 1.0205474
cg 0.383 — −0.3830990− 0.0000000i
a1 (0.168+ 0.811i)× 10−5 56.058672+ 270.30590i (56.0586721+ 270.3059040i)× Re−2

a2 0.187+ 0.0275i — 0.1867144+ 0.0274815i
a3 30.8− 173i 30.956162− 172.83348i 30.9561625− 172.8334820i
a5 — −300294.54+ 1133920.2i −300294.5379+ 1088520.346i

TABLE 1. Comparison of present calculation of the Landau coefficients for Poiseuille
channel flow with Davey, Hocking & Stewartson (1974) and Fujimura (1989). N = 201.
The notions for the Landau coefficients are different in their works, but can be easily
identified. In Davey et al. (1974), there is no data for a5 and there is a difference of
sign convention in cg. In Fujimura (1989), there is no data for cg and a2. We deliberately
show more significant figures than Fujimura (1989) to facilitate the comparison.

in which that µ−χ 6= 0 would imply γ †
1 (1)= 0. For the boundary conditions of Robin

type (A 13b,c) the idea is the same. When imposing, for example, (A 13b) at y = 1,
we replace the second rows of M†

0 and L†
0 with the first rows of the resultant matrices

of D1 − (D2/Feφ̄′(1)) and χ(D1 − (D2/Feφ̄′(1))), respectively. D1 and D2 are the
discretized differential matrices with respect to y direction in the spectral method.

The integration is performed using Clenshaw–Curtis quadrature as it is more
suitable for the collocation method (Trefethen 2000). When inversing a matrix, such
as the almost singular M0(∂/∂t0) − L0 in (2.17) at the linear criticality, we use the
backslash operator in MATLAB.

4. Validation and results
4.1. Validation and assessment of the results

Calculation in stability analysis of EHD poses a great challenge as it seems very hard
to obtain accurate results, thus we first present the validation of our calculations.

As the Ginzburg–Landau equation has not been studied extensively for EHD flow
subject to unipolar injection, there are no immediate results of the Landau coefficients
that we can compare with; therefore, we first partially validate our implementation
by computing the Landau coefficients for channel flow Ū = 1 − y2. Our results at
Re = 5772.2218, α = 1.0205474, which is the critical condition for Poiseuille flow,
compared to the results of Davey et al. (1974) and Fujimura (1989), are shown in
table 1. Note that when perturbing the channel flow, the expansion of the controlling
parameter should be pertaining to Re = T/M2, rather than T . As can be seen in
table 1, the agreement between our results and the two references is excellent (there
is a difference of sign convention in cg compared to Davey et al. (1974)). In particular,
when scaled where necessary (e.g. a1 multiplied by Re2) and truncated to have the
same significant figures, our results of a1, a3 and the real part of a5 are exactly
the same as those in Fujimura (1989); only the imaginary part of a5 is deviating
(unfortunately, the reason for this is unclear). Since we are interested in the trend of
the change of the Landau coefficients when varying the parameters, not in the exact
value of these coefficients, and also only Re(a5) (the real part) will be discussed
extensively in the results, this difference in the imaginary part of a5 will not be
problematic.
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N cg a1 a2 a3 a5

51 0.0007883i 0.0097465 0.2846790 17.0553430 −1062.0083596
101 0.0000262i 0.0096719 0.2824788 17.1846912 −1097.6071802
151 0.0000282i 0.0096718 0.2824799 17.1866599 −1097.8576741
201 0.0000282i 0.0096718 0.2824802 17.1896027 −1098.2339665

TABLE 2. Convergence check for hydrostatic EHD flow at
C= 50,M = 100, Fe= 103, T = 140.41884, α = 2.58674.

Besides, we also check the convergence of the results with increasing grid number
N in table 2 at C= 50,M= 100,Fe= 103, T = 140.41884, α= 2.58674 for hydrostatic
EHD. The value of Fe= 103 is chosen because for real fluids, the value of Fe falls
within the range of 103–104 (Pérez & Castellanos 1989). The growth rate under this
condition is ωi∼O(10−8), close to the critical condition. Table 2 shows that the results
of a1 and a2 are converging easily, while a3 and a5 are slightly more difficult to
converge, which is reasonable as the computation of higher-order Landau coefficients
is more involved and thus more prone to numerical error. Note that a1, a2, a3 and a5

are almost real (with negligible imaginary part, therefore not shown). We also see that
a3> 0 and a5< 0, which are consistent with the previous result that the bifurcation of
hydrostatic EHD is subcritical (Atten & Lacroix 1979). It can be said that the results
at N=201 are well converged and thus throughout the paper, we set N=201. It is not
clear why there is a 10−5 residue in the imaginary part of cg, which is probably due
to the discretization error. In Kolyshkin & Ghidaoui (2003) the authors found a 10−7

residue in the imaginary part of cg in a weakly nonlinear analysis for a shallow wake
flow and in Gao et al. (2013) they reported a 10−5 residue for the group velocity in a
weakly nonlinear analysis for natural convection between two infinite vertical plates.

Another a posteriori check for the computed coefficients involves examination
of the dispersion relation around the critical condition (Stewartson & Stuart 1971),
as done, for example, in Kolyshkin & Ghidaoui (2003). On one hand, we have the
Landau coefficients at critical condition C= 50,M= 100,Fe= 103,T= 140.41884, α=
2.58674, N = 201 for hydrostatic EHD flow in table 2. On the other hand, we can
derive the coefficients cg and a2 from the dispersion relation. According to Huerre &
Rossi (1998), the dispersion relation near the critical parameters can be approximated
by a parabola of α; and additionally, we have the following relation at αc

∂µr

∂α

∣∣∣∣
αc

= 0,
∂µi

∂α

∣∣∣∣
αc

= cg, (4.1a,b)

where µr=ωi is the growth rate and µi=−ωr is the minus angular frequency. We plot
the relations between µr (µi) and α in figure 4. µr indeed assumes a parabola shape
as a function of α and µi is zero in the hydrostatic EHD. The latter is consistent with
the real part of the calculated cg in table 2, i.e. Re(cg) = 0, according to the above
relation. Besides, we also have the following relation linking a2 with ur and ui as
implied by the dispersion relation near the critical condition (see Stewartson & Stuart
(1971, (2.18)))

a2 =−1
2
∂2µ

∂α2
=−1

2
∂2µr

∂α2
− i

1
2
∂2µi

∂α2
. (4.2)
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FIGURE 4. (Colour online) Dispersion relation for hydrostatic EHD flow at C= 50,M=
100, Fe= 103, T = 140.41884, α = 2.58674, N = 201. (a) µr and µrf , see (4.3), (b) µi, as
a function of α.

It is found that µr, as a discretized function of α, can be fitted by the following
parabola as the red curve in figure 4(a)

µrf =−0.2834202α2 + 1.4667256α − 1.8976092. (4.3)

Comparing a2 in table 2 with the coefficient of −α2 in the above relation, we find
that there is only a 0.33 % relative error. This small error might be due to either
the numerical error of µr or different possible fittings for µrf . A high value of such
relative error signals significant numerical error, and thus those parameters will be
avoided. The relative errors of all the results shown below have been checked to be
small (mostly <1 %, rarely <5 %), indicating that the linearized problem is reliably
solved.

4.2. EHD without cross-flow
4.2.1. Linear waves and adjoint modes

Shapes of linear waves and adjoint modes are shown in figure 5. To obtain
the adjoint eigenvector γ̃1

† for hydrostatic EHD flow, we should solve the adjoint
eigenvalue problem (2.16) for Ū= 0. We can solve it directly using an eigenproblem
solver; alternatively, the problem can be solved iteratively, as in Zhang et al. (2015).
For the former, the eigenproblem solver may be prone to the numerical errors
owing to the high non-normality of the discretized adjoint operator. For the latter,
we can take advantage of the fact that the eigenvalues in the direct problem are
the complex conjugate of the eigenvalues in the adjoint problem. This is because
the spectrum of a matrix is the complex conjugate of the spectrum of its adjoint
matrix (Trefethen & Embree 2005). Following this, we can obtain the adjoint
eigenvector more accurately (provided that the eigenvalues in the direct problem
are computed accurately), so we employ the iterative method for solving the adjoint
problem. The normalized direct γ̃1 and adjoint eigenvectors γ̃1

† at the critical condition
C=50,M=100,Fe=103,T=140.41884, α=2.58674 are computed and shown in the
figure. As the least stable eigenvalue is real (stationary mode) for hydrostatic EHD,
it can be easily deduced from (2.11) that ψ̃1 is real, ϕ̃1 imaginary, ψ̃1

†
imaginary and

ϕ̃1
† real.
First-order linear waves and their nonlinear effects added to base flow modify

the total flow field. Their effects can be examined by considering the mean electric
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FIGURE 5. (Colour online) Shape of the direct and the adjoint eigenvectors at the critical

condition: (a) ψ̃1 (real), (b) ϕ̃1 (imaginary), (c) ψ̃1
†

(imaginary) and (d) ϕ̃1
† (real) at C=

50,M = 100, Fe= 103, T = 140.41884, α = 2.58674.

Nusselt number Ne= ¯̄I/¯̄I0, where ¯̄I is a spatially averaged electric current in a control
volume and ¯̄I0 is defined for flow without motion. The definition of electric current
density follows

J∗ =K∗E∗Q∗ +U∗Q∗ −D∗ν∇
∗Q∗ or J=EQ+UQ− 1

Fe
∇Q, (4.4a,b)

where in the second equation, all the terms are non-dimensionalized by (K∗1φ∗Q∗0)/L
∗.

As base electric field acts only in the wall-normal direction and periodicity is assumed
in the x direction for perturbations, the spatially averaged electric current only exists
in the y direction, defined as ¯̄I = (∫ 1

−1 Iy dy)/2, where Iy is the electric current in

the y direction, i.e. Iy = 1/(2π/α)
∫ 2π/α

0 Jy dx. For calculation of ¯̄I, we substitute
E = Ē + e1 + e2, Q = Q̄ + q1 + q2, U = Ū + u1 + u2, where the subscripts 1,2 denote
first- and second-order waves. In particular, we include the second-order waves to
account for the nonlinear interaction of two first-order linear waves Ew–E−1

w . By
substitution, we obtain

¯̄I = 1
2

∫ 1

−1
ĒQ̄− 1

Fe
∂Q̄
∂y
+ ε2|A1|2E∗t Et

(
e1
∗
yq1 + e1yq∗1

+ v∗q1 + vq∗1 + Ēq20 + e20Q̄+ v20Q̄− 1
Fe
∂q20

∂y

)
dy+O(ε4|A1|4), (4.5)

where q20, e20, v20 are base flow modifications solved in (2.22). Subsequently, after
neglecting higher-order corrections, we have
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Ne=
¯̄I
¯̄I0

≈ 1

+

∫ 1

−1
ε2|A1|2

(
e1
∗
yq1 + e1yq∗1 + v∗q1 + vq∗1 + Ēq20 + e20Q̄+ v20Q̄− 1

Fe
∂q20

∂y

)
dy∫ 1

−1
ĒQ̄− 1

Fe
∂Q̄
∂y

dy
,

(4.6)

where equation E∗t Et = 1 has been used since µ is vanishing at the critical condition.
Furthermore, we can define at the critical condition, following Worraker & Richardson
(1981)

rel = lim
εA1→0

Ne− 1
ε2|A1|2 . (4.7)

With these assumptions made, rel can be calculated and we find at C = 50, M =
100, Fe = 103, T = 140.41884, α = 2.58674 that rel = 0.7383 > 0, or equivalently
Ne > 1. It has been calculated that rel > 0 for a large portion of parameter space
M ∈ [5, 100], Fe ∈ [400, 105], C ∈ [3, 100]. Thus, it can be said that the first-order
waves and their nonlinear effect increase the value of Ne (which is 1 for base states).

We compare this result with the measurement made in Lacroix et al. (1975). Using
scaling arguments, Lacroix et al. (1975) derived theoretically that Ne is proportional
to T1/2 for small MRe. Their experiments also showed that in the nonlinearly saturated
phase, i.e. when steady turbulent convection is formed, Ne in the measurement indeed
varies as T1/2 for small T/Tc and is always greater than 1 once convection sets in.
When we vary T , however, the scaling Ne∼ T1/2 cannot be found from our data.

To properly interpret these result and comparison, the real physics in the
measurements and the assumptions made in our calculation should be stated clearly.
First, the definition of the electric Nusselt number is slightly different: in Lacroix
et al. (1975), Ne is defined at a horizontal plane since Ne is constant along y in a
statistically steady state as in experiments; for us, the weakly nonlinear flow is far
from such a state, thus the mean Nusselt number is used. Besides, the real flow in
experiments is 3-D while our calculation is 2-D. Most importantly, the measured
flow corresponds to a nonlinearly saturated state of a broadband spectrum, whereas
our modal expansion method is based on linear periodic waves of critical frequency
and wavenumber with their low-order nonlinear effects. Therefore, it is expected
that the more sophisticated scaling Ne ∼ T1/2, as it describes a highly nonlinear
3-D phenomenon, cannot be reproduced by our modal expansion method (using the
first-order waves). Thus, at most, only a qualitative comparison can be made between
our results and the measurements. Still, from our calculation Ne> 1, we can conclude
that the effect of first-order linear wave nonlinearly modifying the steady base flows is
to help establish a higher mean electric current. To facilitate the comparison between
real flow and weakly nonlinear flow, more spectral analysis of measured EHD flow
in future is needed.

4.2.2. Effect of M
The effect of the mobility parameter M in the weakly nonlinear phase of hydrostatic

EHD is presented as follows. In the linear phase, it has been shown and discussed
that changing M will not affect the linear stability criterion, even though the transient
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FIGURE 6. (Colour online) The effect of M at C = 50, Fe = 103, T = 140.41884,
α = 2.58674. (a) The growth rate ωi, (b) a3 and (c) a5.

growth is a function of M, see for example Zhang et al. (2015). In the weakly
nonlinear phase, the effect of M can be probed by examining the magnitudes of
Landau coefficients for different M. In Atten & Lacroix (1979), only infinite M is
considered.

Figure 6 shows the effect of M ∈ [5, 100] on the hydrostatic EHD at C= 50, Fe=
103,T = 140.41884, α= 2.58674 in the weakly nonlinear phase. It is first checked that
the growth rate Re(µ) = ωi for all the M considered here is very small ∼O(10−8),
see panel (a), therefore close to the critical condition. As we can see in panel (b), the
value of a3 is increasing with increasing M. This indicates that the subcritical feature
of hydrostatic EHD flow is more pronounced as M increases, or equivalently, the
third-order nonlinear term in GLE destabilizes the flow further when M is increased.
This increasing destabilization effect is most obvious in the region of M = 5–20.
Larger than 20, the destabilizing effect of increasing M is approaching constant.
At the higher order of nonlinearity, (c) shows that a5 is decreasing with increasing
M; that is, the fifth-order nonlinear term in GLE will stabilize the flow more if
M increases. Therefore, combining these two results, it can be said that, when M
is high in hydrostatic EHD, the disturbances will grow faster due to the low-order
nonlinearities in an earlier phase; whereas, when their amplitudes are large enough
to trigger the higher-order nonlinearities, the disturbances will be abated more by
these higher-order nonlinearities. On the other hand, when M is small, both the
destabilizing and the stabilizing effects will be more moderate.

Regarding the destabilizing effect of the leading-order nonlinearity with increasing
M as shown in (b), a similar conclusion has been drawn by Wu et al. (2015a,b), in
which the authors studied the relationship between Vmax (maximum vertical velocity
appearing in the flow) and M using a DNS method. Despite the fact that their T is
above the critical Tc, they reported the same trend of Vmax with respect to increasing
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M in the SCL case, especially the trends of the asymptotic constant effect at large M
and the drastic change of Vmax around M = 10–20, see the Wu et al. (2015b, figure
7b). Therefore, it is cogent to say that the leading-order nonlinear term in GLE of
hydrostatic EHD can predict correctly the nonlinear destabilizing effect of M in a
qualitative manner.

4.2.3. Effect of Fe
The role of charge diffusion has rarely been discussed in the stability analysis

of hydrostatic EHD flow. In the nonlinear stability analysis performed by Atten &
Lacroix (1979), the charge diffusion is completely neglected; in the weakly nonlinear
stability of ETHD flow by Worraker & Richardson (1981), they did not account for
the charge diffusion effect as well.

On one hand, several authors discussed this issue and focused on the cases when
the charge diffusion can be safely neglected and when not (Castellanos, Perez & Atten
1989; Pérez & Castellanos 1989). For example, Castellanos et al. (1989) discussed
the nonlinear motion of EHD subject to weak injection of ions in the limit of high
M with a predetermined self-similar velocity field. They concluded that, in the weak-
injection limit (small C), the parameter C

√
Fe is indicative of the importance of charge

diffusion, that is, higher C
√

Fe indicates negligible diffusion effect and vice versa. On
the other hand, few works discussed and defined clearly the effect of charge diffusion
on the flow transition of EHD, except a recent example by Zhang et al. (2015), in
which the authors found that the charge diffusion has a non-negligible effect on the
linear stability criterion and also affects the transient dynamics of the EHD flow in
the initial phase of perturbation development, even though the latter effect is small
(the transient growth in hydrostatic EHD flow is generally small). To the best of our
knowledge, the weakly nonlinear stability analysis of hydrostatic EHD flow taking into
account the charge diffusion effect has not been documented.

In figure 7, we show the effect of Fe on the linear stability criterion Tc in (a), the
value of a3 in (b) and a5 in (c). The range of Fe considered is [400, 105], outside
of which significant relative error results in terms of the dispersion relation, so those
results are probably contaminated by numerical errors; nevertheless, the considered
values of Fe are representative, covering a large enough range to investigate the
effect of charge diffusion on the flow dynamics. And the physical value of Fe lies in
[103, 104]. As the critical condition around the first bifurcation is investigated here,
the critical Tc changes as Fe increases, presented in (a). Higher Fe (smaller charge
diffusion effect) leads to greater Tc, thus a more stable flow. In (b), we see that
when the charge diffusion effect is significant (smaller Fe), the value of a3 decreases,
indicating that the subcritical characteristics of EHD flow becomes smaller. In (c), it
shows that the value of a5 is increasing when Fe decreases. Thus, stronger charge
diffusion stabilizes the flow less at the fifth-order nonlinearity.

From these results, therefore, a conclusion can be drawn that the charge diffusion
destabilizes the linearized EHD flow, but stabilizes the flow in an early phase of
the nonlinear development of the disturbance (related to a3). This dual effect of
charge diffusion in the weakly nonlinear phase is consistent with the results obtained
by the DNS method in the earlier works, for example, Castellanos et al. (1989),
in which they have shown a similar trend in that when the charge diffusion effect
is intensified (smaller Fe), the linear stability criterion decreases and the nonlinear
stability criterion (Tf ) increases, resulting in a less subcritical flow. This decrease of
the subcritical feature with decreasing Fe can be interpreted together with the effect
of charge diffusion on the hysteresis loop (Castellanos, Atten & Perez 1987). Smaller
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FIGURE 7. (Colour online) The effect of Fe at C= 12.5,M= 100 at the critical condition.
(a) The critical Tc, (b) a3 and (c) a5.

Tf –Tc corresponds to a smaller hysteresis loop and a smaller area of charge void
region as pointed out by Pérez & Castellanos (1989). In their work, the authors also
discussed that the ‘separatrix’ delimiting the charge existing region from the charge
void region becomes blurred when the charge diffusion effect is taken into account
(this separatrix would be discontinuous if Fe→∞).

4.2.4. Effect of C
We also investigate the effect of C, the injection level, on the nonlinear subcritical

bifurcation of hydrostatic EHD flow in the weakly nonlinear phase. Note that, as
explained in the problem formulation section, there is a factor of four between our
C, defined with respect to the half-channel distance, and the C defined according to
the full-channel distance, which is the usual convention in the EHD community. Thus
the interpretation of the quantitative results relevant to C should be exercised with this
difference kept in mind.

In figure 8(a), the critical value of Tc solved from the linear stability problem is
shown to decrease with increasing C. In the linear phase of EHD subject to strong
injection level, higher C will give rise to a more destabilized flow in both modal
and non-modal stability analyses (Zhang et al. 2015), although the latter effect is not
significant. In (b), it describes how the value of a3 changes with different values of
C at the critical condition; that is, increasing C reduces the destabilizing effect of the
third-order nonlinearity in the hydrostatic EHD flow. At the fifth-order nonlinearity,
the stabilizing effect is also decreasing at higher C. Therefore, the effect of C on the
nonlinearity is in the opposite sense to that of increasing M or Fe, which is clear by
comparing figure 8 with figure 6 or 7.

4.2.5. Modification of base electric field
The term γ̃20= (ψ̃20, ϕ̃20)

T represents the leading-order modification of the base flow
state by the nonlinear interaction between the first-order linear waves Ew and E−1

w . The
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FIGURE 8. (Colour online) The effect of C at Fe= 103,M = 100 at the critical
condition. (a) The critical Tc, (b) a3 and (c) a5.

base flow modification ψ̃ ′20 (note the relation that u= ψ ′) has been discussed in the
context of, for example, Poiseuille flow (Plaut et al. 2008) and non-Newtonian channel
flow (Chekila et al. 2011). For hydrostatic EHD flow, the base flow modification
ψ̃ ′20 = 0 as Ū = 0, thus we will only discuss it below in the cross-flow case.

Here, we present the base potential modification ϕ̃20 due to the Ew–E−1
w wave

interaction. In figure 9(a), we see that the general modification of the base potential
is the decrease of its value around the centreline. When the charge injection level
increases in the SCL regime, this decrease is slightly amplified. In (b), it shows the
effect of nonlinear modification on the base charge distribution ϕ̃′′20/(−C) (see (2.1d)).
The result indicates that the charge distribution at the channel centreline decreases,
but increases dramatically close to the injector (y= 1). The former result is consistent
with the formation of charge void region in the finite-amplitude convection motion
usually obtained in the DNS results, in which there is almost zero charge density
around the centre of the channel, see, for example, Wu et al. (2013). For the latter
result, it is hard to connect it directly with the DNS outcome. However, as the
increase of charged ions in this region is quite steep, further nonlinearity might be
triggered and should be taken into account.

4.2.6. Nonlinear terms
In order to probe which terms are the most responsible for the subcritical bifurcation

of hydrostatic EHD, the contributions of different parts to the resultant value of a3 are
examined. We analyse the nonlinear effects by decomposing a3 as

a3 =
〈N◦31

, ψ̃1
†〉s + 〈N◦32

, ϕ̃1
†〉s

〈M0γ̃1, γ̃1
†〉s

= {N◦31
} + {N◦32

}, (4.8)
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FIGURE 9. (Colour online) Modification of base electric field in hydrostatic EHD. Fe=
103, M = 100. Blue solid lines: C = 50, T = 140.41884, α = 2.58674. Red dashed lines:
C = 10, T = 144.48175, α = 2.57780. Black lines with dots: C = 3, T = 152.62120, α =
2.5575. (a) Modification of base potential ϕ̃′20, (b) modification of base charge distribution
ϕ̃′′20/(−C).

where we have used {˙} to denote 〈˙, ψ̃1
†〉s/〈M0γ̃1, γ̃1

†〉s or 〈˙, ϕ̃1
†〉s/〈M0γ̃1, γ̃1

†〉s. The
terms of N3 = (N31, N32)

T are the nonlinear terms of the order of ε3 in (2.3b) and
(2.3c), respectively. Their expressions are listed below

N31 = −
[
∂ψ1

∂y

(
2
∂2

∂x2
0

∂ψ1

∂x1
+ ∂

∂x1
∇2

0ψ1 + ∂

∂x0
∇2

0ψ2

)
+ ∂ψ2

∂y
∂

∂x0
∇2

0ψ1

−
[
∂ψ1

∂x0

(
2
∂

∂y
∂

∂x0

∂ψ1

∂x1
+ ∂

∂y
∇2

0ψ2

)
+
(
∂ψ1

∂x1
+ ∂ψ2

∂x0

)
∂

∂y
∇2

0ψ1

]]
︸ ︷︷ ︸

N31A

−M2

[
∂ϕ1

∂y

(
2
∂2

∂x2
0

∂ϕ1

∂x1
+ ∂

∂x1
∇2

0ϕ1 + ∂

∂x0
∇2

0ϕ2

)
+ ∂ϕ2

∂y
∂

∂x0
∇2

0ϕ1

−
[
∂ϕ1

∂x0

(
2
∂

∂y
∂

∂x0

∂ϕ1

∂x1
+ ∂

∂y
∇2

0ϕ2

)
f +

(
∂ϕ1

∂x1
+ ∂ϕ2

∂x0

)
∂

∂y
∇2

0ϕ1

]]
︸ ︷︷ ︸

N31B

, (4.9a)
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N32 =
(
∂ϕ1

∂x0
− ∂ψ1

∂y

)(
2
∂2

∂x2
0

∂ϕ1

∂x1
+ ∂

∂x1
∇2

0ϕ1 + ∂

∂x0
∇2

0ϕ2

)
︸ ︷︷ ︸

N32A

+
(
∂ϕ1

∂x1
+ ∂ϕ2

∂x0
− ∂ψ2

∂y

)
∂

∂x0
∇2

0ϕ1︸ ︷︷ ︸
N32B

+
(
∂ϕ1

∂y
+ ∂ψ1

∂x0

)(
∂

∂y
∇2

0ϕ2 + 2
∂

∂y
∂

∂x0

∂ϕ1

∂x1

)
︸ ︷︷ ︸

N32C

+
(
∂ϕ2

∂y
+ ∂ψ1

∂x1
+ ∂ψ2

∂x0

)
∂

∂y
∇2

0ϕ1︸ ︷︷ ︸
N32D

+ 2
(

2
∂2ϕ1

∂x0∂x1
+∇2

0ϕ2

)
∇2

0ϕ1︸ ︷︷ ︸
N32E

, (4.9b)

where ∇2
0 = (∂2/∂x2

0)+ (∂2/∂y2).
The respective values of these two terms are calculated at the critical condition C=

50, M = 100, Fe = 103, T = 140.41884, α = 2.58674 with the value of a3 shown in
table 2, and we obtain

{N◦31
} = 0.09158, {N◦32

} = 17.09803. (4.10a,b)

This indicates that the subcritical nature of the hydrostatic EHD flow is mainly related
to the nonlinear terms in the governing equation for ϕ, the perturbed potential. We can
dig further by computing the respective terms N◦32A

, N◦32B
, N◦32C

, N◦32D
, N◦32E

of N◦32
. Our

calculation yields
{N◦32A
} =−0.35022, (4.11a)

{N◦32B
} = 0.53866, {N◦32C

} = 14.66630, (4.11b,c)

{N◦32D
} =−1.52122, {N◦32E

} = 3.76452. (4.11d,e)

From the results above, we see immediately that the terms in N◦32C
give the maximum

destabilizing effect. From (4.9b), N◦32C
is further decomposed as{

∂ϕ1

∂y

(
∂

∂y
∇2

0ϕ2 + 2
∂

∂y
∂

∂x0

∂ϕ1

∂x1

)}
= −1.19226, (4.12a){

∂ψ1

∂x0

(
∂

∂y
∇2

0ϕ2 + 2
∂

∂y
∂

∂x0

∂ϕ1

∂x1

)}
= 15.85856. (4.12b)

It is clear that the interaction between the first-order (∂ψ1/∂x0) and the second-order
(∂/∂y)∇2

0ϕ2 + 2(∂/∂y)(∂/∂x0)(∂ϕ1/∂x1) generates the most significant destabilizing
effect, helping to form the subcritical bifurcation of hydrostatic EHD.

As these results show that the terms involving the streamfunction perturbation ψ1
(see (4.12b)) are predominating in the determination of the nonlinear destabilizing
effect in hydrostatic EHD subject to strong injection (C= 50), this seems to indicate
that a dynamic and accurate model for the velocity field should be provided for
a rigorous and formal attempt of conducting weakly nonlinear stability analysis of
EHD flow, at least of the order of ε3. In fact, when assuming that the velocity
field be approximated by a predetermined self-similar roll structure in several
past works, for example, Atten & Lacroix (1979), one loses such a dynamic
description of the velocity field and therefore its dynamic interaction with the
electric field. This point of view has also been noted in Traoré & Wu (2013) in
the case of weak injection. Nevertheless, these results should not be interpreted
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to criticize the velocity-predetermined method. In fact, it is held that the merit of
the velocity-predetermined method should not be denied owing to its success in
predicting and revealing, for example, the subcritical bifurcation of hydrostatic EHD,
for an informal and quick check of the nonlinear effect.

4.3. EHD with cross-flow
The linear stability of EHD with cross-flow has been studied in Atten & Honda (1982),
Castellanos & Agrait (1992) and more recently Zhang et al. (2015). It is interesting
to see how the 2-D channel flow is influenced by the electric field in the weakly
nonlinear phase, which has not been reported in the literature. In this section, we first
show the base flow modification in the EHD flow with low-Re cross-flow and then
we present the various results for the high-Re EHD-Poiseuille flow.

4.3.1. Low Re cross-flow: base flow modification
We focus on how the base flow is modified by the electric field in this case. In

hydrostatic EHD, as Ū = 0, the modification of base flow is also zero, whereas for
low-Re EHD, Ū 6= 0, and thus the nonlinearity will modify the base flow. The base
flow modification ψ̃ ′20 is shown in figure 10 for two small different Re in (a) and
for three different C in (b) at the critical condition. From these results, the general
modifications of the base flow by the electric field are that the flow is decelerated
in the region from the injector electrode (y = 1) to around the channel centreline,
slightly decelerated close to the collector and between these two regions the flow
is accelerated. In (a), the effect of the flow rate is examined (base flow of the red
curve is Ū = 1− y2, whereas, that of the blue curve with circles is Ū = (1− y2)/2);
when the Re is doubled, the flow modification effect is also amplified. In (b), the
effect of the electric field is investigated; with increasing C, the base flow modification
is strengthened, but since we are in the strong injection limit, the difference among
C= 3, 10 and 50 is not so exaggerated.

4.3.2. High Re cross-flow: effect of T
For EHD with high-Re cross-flow, we concentrate on the effect of T primarily.

When Re ∈ [103, 104] and T ∈ [102, 103], M = √T/Re takes the value of [10−2, 1],
implying that the working fluid is a gas and that the weakly nonlinear effect is
examined pertaining to the 2-D Tollmien–Schlichting wave.

In figure 11, we present the change of the Landau coefficients when the electric
field is imposed at C = 50, Fe= 103,M =√T/Re compared to conventional channel
flow (T → 0). The constraint of M = √T/Re is to enforce the constant flow rate,
see Zhang et al. (2015). Since now there is a cross-flow, the Landau coefficients
are complex (travelling wave solutions); we, nevertheless only show the real part
in the results below. As we investigate the first bifurcation of the flows around the
critical condition, Rec and α are changing for increasing T; specifically, the critical
Rec as a function of T , shown in (a), decreases when T increases, indicating that
the flow inertia is smaller when the EHD-Poiseuille flow of the stronger electric
effect encounters the first bifurcation, which is consistent with the results obtained
in Zhang et al. (2015) where we have shown that EHD-Poiseuille flow may become
more unstable in terms of modal and non-modal linear stability theory compared to
canonical channel flow. In (b), with the current probing values of T , we can see
that with higher electric potential difference imposed, the subcritical characteristics
of the EHD-Poiseuille flow becomes more pronounced due to the nonlinear effect,
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FIGURE 10. (Colour online) Modification of base flow ψ̃ ′20 (real part) for EHD with low-
Re cross-flow. (a) C = 10,M = 100, Fe= 103. Blue line with circles: T = 143.5852, α =
2.5628, Re= T/(2M2)= 0.0071. Red solid line: T = 142.0188, α = 2.5015, Re= T/M2 =
0.0142; (b) M = 100, Fe= 103. Blue solid line: C = 50, T = 138.4069, α = 2.5108, Re=
T/M2 = 0.0138. Red dashed line: C= 10, T = 142.0188, α = 2.5015, Re= T/M2 = 0.0142.
Black line with circles: C= 3, T = 150.3564, α = 2.4765, Re= T/M2 = 0.0150.

as the real part of a3 is increasing with higher T . The change of the real part of
a5 is shown in (c), according to which we can say that the stabilizing effect of the
fifth-order nonlinearity is increasing as T increases.

4.3.3. High Re cross-flow: base flow modification
The base flow modification ψ̃ ′20 is presented in figure 12 for T = 0, 100, 500 in

the high-Re cross-flow case. Our result of the conventional Poiseuille flow (blue solid
curve in figure 12(a)) is in very good accordance with that shown in Plaut et al.
(2008) for Poiseuille flow with fixed flow rate. We see that ψ̃ ′20 for Poiseuille flow
is symmetric with respect to the channel centreline and that the nonlinearity mildly
accelerates the laminar flow near to the walls, drastically accelerates the flow around
the centre of the channel and decelerates the flow in between around y=±0.8.

With the imposed electric field, the distortion of the base flow due to the
nonlinearity is in general similar to that in canonical channel flow, as it is in the
inertia-dominated regime (high Re), but clearly reflects the influence from the electric
field. For T = 100, the parameters at the critical condition are Rec = 5557.2000, α =
1.0244, C = 50, Fe = 103, M = √T/Re = 0.13414 and for T = 500, the parameters
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FIGURE 11. (Colour online) The effect of T at the critical condition with C = 50, Fe=
103,M =√T/Re. (a) Rec as a function of T , (b) the real part of a3 as a function of T
and (c) the real part of a5 as a function of T .

are Rec = 4606.5458, α = 1.0443,M =√T/Re = 0.32946 and C, Fe are the same as
T = 100. It can be seen in (a) that with the electric field imposed, near the injector
y= 1 and the receptor y=−1, the flow is less accelerated than the plane channel flow;
this effect is stronger near the injector. When y is around 0.8, the Poiseuille flow
is decelerated most and the electric field reinforces this effect, while near y = −0.8,
the deceleration is mitigated owing to the presence of the electric field. Furthermore,
around the channel centre, the EHD-Poiseuille flow is accelerated further compared
to the Poiseuille flow with the highest value of ψ̃20 biased to the receptor. Besides, it
is interesting to show the difference between ψ̃20 in the EHD-Poiseuille system and
ψ̃20 in the Poiseuille flow, as in (b). Clearly, the general shape of the difference in
the base flow modifications is similar to those shown in figure 10 in which the base
flow modification almost solely results from the electric effect (Re is very small).
But, we can also see some influence from the cross-flow in the modification as the
profile becomes more wavy compared to that in figure 10.

4.3.4. High Re cross-flow: nonlinear terms
To study which part in the nonlinear terms contributes most to the subcritical

characteristics of the EHD-Poiseuille flow, we show the values of ε3 nonlinear terms
in (2.4). The terms are listed below

−
(
∂ψ

∂y
∂∇2ψ

∂x
− ∂ψ
∂x
∂∇2ψ

∂y

)
and −M2

(
∂ϕ

∂y
∂∇2ϕ

∂x
− ∂ϕ
∂x
∂∇2ϕ

∂y

)
. (4.13a,b)

The ε expansion of these two terms can also be found in (4.9a) denoted as N31A and
N31B , representing the nonlinearity due to the pure hydrodynamic part and the electric
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FIGURE 12. (Colour online) Base flow modification at the critical condition. (a) Real part
of ψ̃ ′20. Blue solid line: canonical Poiseuille flow at Re= 5772.2218, α = 1.0205474; red
dashed line: EHD-Poiseuille flow at T = 100, Re = 5557.2000, α = 1.0244, C = 50, Fe =
103, M = √T/Re = 0.13414; black lines with pluses: T = 500, Re = 4606.5458, α =
1.0443, C = 50, Fe = 103, M = √T/Re = 0.32946. (b) The difference between base flow
modifications of EHD-Poiseuille flow (real part of ψ̃ ′20,EHD-P) and canonical Poiseuille flow
(real part of ψ̃ ′20,Poiseuille). Red dashed line: T = 100, black line with pluses: T = 500 with
the other parameters the same as in (a).

part, respectively. Obviously, when T = 0, we have N31B = 0 and all the nonlinear
destabilizing effect of a3 (positive Re(a3)) comes from the hydrodynamic part. When
T = 100, Re= 5557.2000, α = 1.0244, we obtain the values below (the real part)

Re({N◦31
}) = 32.71339, (4.14a)

Re({N◦31A
}) = 32.71508, (4.14b)

Re({N◦31B
}) = −0.00169, (4.14c)

Re({N◦32
}) = −0.00286. (4.14d)

As the flow investigated lies in the regime of high inertia (Re is high), it appears
that the electric effect does not destabilize the flow directly, since the real parts of
N31B and N32 are negligible or, in fact, slightly negative. This indirect effect of the
electric field on the stability or instability of EHD-Poiseuille has also been seen in the
non-modal linear stability results where the transient energy amplification attributed to
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the electric field is minor, see the appendix in Zhang et al. (2015). On the other hand,
we see that the real part of N31A is higher than that of conventional channel flow (the
value is 30.95616 at Re = 5772.2218, α = 1.0205474), indicating that the subcritical
feature of the EHD-Poiseuille flow is stronger than that of canonical channel flow at
the linear criticality. Note that, in Sen & Venkateswarlu (1983), it is calculated that
Re(a3)= 28.88 at Re= 5774, α = 1.02 while Re(a3)= 27.31 at Re= 5500, α = 1.02
for Poiseuille flow of fixed pressure gradient using the Reynolds & Potter method
(Reynolds & Potter 1967); this indicates that, for canonical Poiseuille flow, Re(a3)

becomes smaller when Re decreases. From the results above, it is clear that the
intensified subcritical characteristics of EHD-Poiseuille flow result from the modified
flow field of channel flow owing to the imposed electric field, rather than directly
from the electric effect.

5. Discussion and conclusions

In this paper, we applied multiple-scale analysis to investigate in detail the weakly
nonlinear stability of 2-D EHD, with and without cross-flow, in the limit of strong
charge injection. This work follows closely our previous attempt (Zhang et al.
2015) to understand the flow transition mechanism in EHD using the modal and
non-modal linear stability tools. In the present work, we studied the effects of
different non-dimensional parameters M, Fe, C, T on the Landau coefficients in the
quintic Ginzburg–Landau equation and also investigated the base state modifications
due to the electric field. We additionally examined which nonlinear terms are the
most relevant to the subcritical bifurcation of EHD flow.

5.1. Hydrostatic EHD flow
In the results of hydrostatic EHD flow, its subcritical feature of bifurcation is
confirmed by the positive value of a3 in GLE and negative a5, stabilizing the flow.
In the parametric study, we find that varying M does not change the linear criterion
Tc, however, in the nonlinear phase, greater M destabilizes the flow more compared
to smaller M, when the perturbation amplitude is small and stabilizes the flow more
when the disturbance amplitude is large enough. This strengthened subcritical feature,
owing to increasing M, is consistent with the results obtained in Wu et al. (2015a,b)
using the DNS method.

The charge diffusion effect has long been neglected due to its small value,
but we find that the disturbance wave in the weakly nonlinear phase of EHD is
significantly influenced by Fe, the reciprocal of the non-dimensionalized charge
diffusion coefficient. For example, our calculation in figure 7 shows that a3 decreases
from 24.74191 to 17.80560 when Fe changes from 105 to 103, the latter lying in
the range of the physical values of Fe for real fluids (Pérez & Castellanos 1989).
Therefore, the effect of charge diffusion is indeed non-negligible and even important
for the flow dynamics of weakly nonlinear EHD. This leads us to the suggestion
that charge diffusion not be excluded in flow modelling. Besides, as charge diffusion
was often neglected in the previous works, it can be deduced that the true nonlinear
criterion Tf should be higher than those values computed in the previous literature
excluding the modelling of charge diffusion, as the ε3-order nonlinear destabilizing
effect should be smaller if we take into account charge diffusion. Note that this is
only a reasonable deduction of our results of the charge diffusion effect, performed
around Tc, to Tf , probably outside of the validity range of the weakly nonlinear
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stability analysis near Tc; nevertheless, this deduction is consistent with the results in
Castellanos et al. (1989).

Besides, various effects of first-order linear waves are discussed in the linear and
weakly nonlinear phases. We calculate the mean Nusselt number Ne based on the
base states plus the first-order linear waves and their nonlinear effects. The results
compare favourably to measurements in a qualitative manner. Its value greater than
1 is consistent with the measured Ne in Lacroix et al. (1975) when convection
sets in, indicating that one of the effects of first-order linear waves is to help
establish a higher electric current. However, the more sophisticated scaling Ne∼ T1/2

cannot be reproduced from our results because of the limitation of the approach
to represent fully nonlinear phenomena. In addition, we also show how the base
electric field can be modified by the interaction between first-order linear waves. The
base potential profile around the channel centreline decreases most. The base charge
density distribution decreases at the channel centre as well, but increases dramatically
near the injector electrode. Another piece of information from our results is that the
accurate characterization of the subcritical feature of hydrostatic EHD also involves
the first-order wave of streamfunction disturbance (hydrodynamic part) and thus,
the assumption of predetermined self-similar velocity field should be avoided for
any serious attempt of nonlinear analysis in the SCL regime. We hope that these
results are interesting from the point of view of flow physics and flow transition to
turbulence mechanism for hydrostatic EHD flow.

5.2. EHD-Poiseuille flow
With the presence of cross-flow, we see that the base flow will be modified by the
electric field and the modification is generally similar for low- or high-Re cross-flow.
The base flow in the region from the injector to the channel centreline is greatly
decelerated, the flow close to the collector is decelerated very slightly and in between,
the flow is accelerated. In high-Re flow, we are in the range of high inertia, thus
the modification of the EHD base flow is similar to that in canonical channel flow.
Additionally, we also consider the effect of T on the bifurcation of EHD-Poiseuille
flow. The subcritical feature of Poiseuille flow is intensified by the stronger electric
field (greater T) as can be seen in figure 11(b). But by scrutinizing the quantitative
values of the different components of a3, we see that the part of a3 directly related to
the electric field is in fact slightly negative, indicating that the electric field does not
participate directly in strengthening the subcritical characteristics of EHD-Poiseuille
flow, but rather, it influences the hydrodynamic field to be more subcritical. When
applying EHD in flow control, this might provide a new way of thinking in that
the electric field needs not to be too intense to achieve the target of, for example,
producing a more subcritical flow, as the electric field can influence the flow inertia
and lead to a more subcritical flow in an indirect manner, at least in the range of
the parameters investigated. It is hoped that by presenting these results, some aspects
of the flow modification of channel flow by EHD can be better elucidated, which in
turn will help us to understand the more perplexing flow phenomena, such as turbulent
drag reduction by EHD.

The present work focuses on the parametric study of EHD flow in two dimensions;
therefore, the results shown above are only pertaining to the bifurcation of 2-D rolls,
with and without cross-flow. This is a necessary step for the future investigations
addressing the more involved questions, such as which 3-D pattern will be favoured
around the criticality and how the different patterns compete in certain regions of
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parameter space. Another powerful energy growth mechanism in the weakly nonlinear
phase, the resonant triads of a 2-D wave plus two symmetric oblique waves travelling
at the same phase speed (Craik 1971), remains to be examined in EHD-Poiseuille flow.
To answer these questions, a further analysis of 3-D EHD is needed.
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Appendix A. The operators and their sub-scales

From (2.4), one can easily deduce the expressions for M , L, N and their sub-scales,
which are necessary for the derivation of GLE. M , L and their sub-scales are shown
below in appendices A.1 and A.2, respectively. For brevity, the nonlinear operator and
its sub-scales are not presented here, except that N3 is shown in (4.9b). In addition, the
adjoint operators M†

0 and L†
0 are also shown below. We use the same matrix notation

for the physical space and the spectral space.

A.1. The operator M

M =
(∇2 0

0 ∇2

)
. (A 1)

The sub-scales of M are

M0 =
(∇2

0 0
0 ∇2

0

)
, M1 =

2
∂

∂x0

∂

∂x1
0

0 2
∂

∂x0

∂

∂x1

=M◦1
∂

∂x1
, (A 2a,b)

M2 =


∂2

∂x2
1

0

0
∂2

∂x2
1

=M◦2
∂2

∂x2
1
, (A 2c)

where ∇2
0 = (∂2/∂x2

0)+ (∂2/∂y2).

A.2. The operator L

L=


−Ū

∂

∂x
∇2 + Ū′′

∂

∂x
+ M2

T
∇4 −M2

(
φ̄′
∂

∂x
∇2 − φ̄′′′ ∂

∂x

)
φ̄′′′

∂

∂x
φ̄′′′

∂

∂y
+
(
φ̄′
∂

∂y
− Ū

∂

∂x

)
∇2 + 2φ̄′′∇2 + 1

Fe
∇4

 .
(A 3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

89
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.89


Weakly nonlinear stability analysis of electrohydrodynamic flow 359

The sub-scales for L are

L0 =


−Ū

∂

∂x0
∇2

0 + Ū′′
∂

∂x0
+ M2

Tc
∇4

0 −M2
(
φ̄′

∂

∂x0
∇2

0 − φ̄′′′
∂

∂x0

)
φ̄′′′

∂

∂x0
φ̄′′′

∂

∂y
+
(
φ̄′
∂

∂y
− Ū

∂

∂x0

)
∇2

0 + 2φ̄′′∇2
0 +

1
Fe
∇4

0

 ,
(A 4)

L1 =
(

L111 L112

L121 L122

)
= L◦1

∂

∂x1
, (A 5)

where

L111 =−Ū
(

2
∂2

∂x2
0

∂

∂x1
+ ∂

∂x1
∇2

0

)
+ Ū′′

∂

∂x1
+ M2

Tc
4
∂

∂x0

∂

∂x1
∇2

0 (A 6a)

L112 =−M2

(
φ̄′
∂

∂x1
∇2

0 + φ̄′2
∂2

∂x2
0

∂

∂x1
− φ̄′′′ ∂

∂x1

)
(A 6b)

L121 = φ̄′′′
∂

∂x1
(A 6c)

L122 =
(
φ̄′
∂

∂y
+ 2φ̄′′

)
2
∂

∂x0

∂

∂x1
− Ū

(
2
∂2

∂x2
0

∂

∂x1
+ ∂

∂x1
∇2

0

)
+ 1

Fe
4
∂

∂x0

∂

∂x1
∇2

0 (A 6d)

L2 =
(

L211 L212

L221 L222

)
= L◦2

∂2

∂x2
1
+ L2MT

=
(

L◦211
L◦212

L◦221
L◦222

)
∂2

∂x2
1
+

−M2

T2
c

∇4
0 0

0 0

 , (A 7a)

where

L211 = −Ū3
∂

∂x0

∂2

∂x2
1
+ M2

Tc

(
4
∂2

∂x2
0

∂2

∂x2
1
+ 2

∂2

∂x2
1
∇2

0

)
− M2

T2
c

∇4
0 (A 8a)

L212 = −M2φ̄′3
∂

∂x0

∂2

∂x2
1

(A 8b)

L221 = 0 (A 8c)

L222 =
(
φ̄′
∂

∂y
+ 2φ̄′′

)
∂2

∂x2
1
− Ū3

∂

∂x0

∂2

∂x2
1
+ 1

Fe

(
4
∂2

∂x2
0

∂2

∂x2
1
+ 2

∂2

∂x2
1
∇2

0

)
, (A 8d)

where ∇4
0 =∇2

0∇2
0 .
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A.3. Adjoint operators M†
0 and L†

0

The adjoint operator M†
0 is self-adjoint under the norm defined, so M†

0 = M0. The
adjoint operator L†

0 in the spectral space reads

L†
0 =
(

L†
011

L†
012

L†
021

L†
022

)
(A 9)

L†
011
= iαŪ∇2 + 2iαŪ′

∂

∂y
+ M2

T
∇4 (A 10a)

L†
012
=−κ2φ̄′′′iα (A 10b)

L†
021
= M2

κ2

[
iα
∂2

∂y2
(φ̄′·)− iα3φ̄′ − iαφ̄′′′

]
(A 10c)

L†
022
= iαŪ∇2 + iα

(
Ū′′ + 2Ū′

∂

∂y

)
− ∂

∂y
(φ̄′′′·)−∇2 ∂

∂y
(φ̄′·)+ 2∇2(φ̄′′·)+ 1

Fe
∇4,

(A 10d)

where · means that the variables that L†
0 acts upon should be plugged into the

parenthesis. Note that in the derivation of the adjoint system, we work in the spectral
space, thus the integration is performed only in the y direction, see (2.13). The
integration in the x direction can be taken into account by changing the sign of α
under the wave-like assumption. In fact, the wave Ew has its adjoint counterpart E∗w.
The boundary conditions for ψ†

1 can be easily determined

ψ
†
1 (±1)=ψ†

1
′
(±1)= 0. (A 11)

But this does not apply to ϕ†
1 , since the boundary conditions of ϕ (2.5b) are not simple

and are unsymmetric. We collect below the boundary condition terms related to ϕ
†
1

during the derivation of adjoint operators and equate them to zero

κ2

[
µϕ′1ϕ

†
1 − φ̄′ϕ†

1ϕ
′′
1 + (φ̄′ϕ†

1)
′ϕ′1 + iαŪϕ†

1ϕ
′
1 − 2φ̄′′ϕ†

1ϕ
′
1 −

1
Fe
ϕ

†
1ϕ
′′′
1

+ 1
Fe
ϕ

†
1
′
ϕ′′1 −

1
Fe
ϕ

†
1
′′
ϕ′1 +

2α2

Fe
ϕ

†
1ϕ
′
1

]∣∣∣∣1
−1

= 0. (A 12)

We choose

ϕ
†
1(±1)= 0, (A 13a)

ϕ
†
1
′
(1)= 1

Feφ̄′(1)
ϕ

†
1
′′
(1), (A 13b)

ϕ
†
1
′
(−1)= ϕ′1(−1)

Feφ̄′(−1)ϕ′1(−1)+ ϕ′′1 (−1)
ϕ

†
1
′′
(−1). (A 13c)
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