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Abstract Let G be a simple simply connected algebraic group over an algebraically closed field k
of characteristic p > 0 with g = Lie(G). We discuss various properties of nilpotent orbits in g, which

have previously only been considered over C. Using computational methods, we extend to positive
characteristic various calculations of de Graaf with nilpotent orbits in exceptional Lie algebras. In

particular, we classify those orbits which are reachable as well as those which satisfy a certain related

condition due to Panyushev, and determine the codimension of the derived subalgebra [ge, ge] in the
centraliser ge of any nilpotent element e ∈ g. Some of these calculations are used to show that the

list of rigid nilpotent orbits in g, the classification of sheets of g and the distribution of the nilpotent

orbits amongst them are independent of good characteristic, remaining the same as in the characteristic
zero case. We also give a comprehensive account of the theory of sheets in reductive Lie algebras over

algebraically closed fields of good characteristic.
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1. Introduction

Let G be a reductive algebraic group over an algebraically closed field k of characteristic

p > 0 with g = Lie(G). We consider various properties of a nilpotent element e ∈ g and

its centraliser ge. The element e is called reachable if e ∈ [ge, ge]. It is called strongly

reachable if [ge, ge] = ge, i.e., the subalgebra ge is perfect. If p is a good prime for G,

it is said to satisfy Panyushev property if in the associated grading ge =
⊕

i>0 ge(i),
the Lie subalgebra

⊕
i>1 ge(i) is generated by ge(1). For the case p = 0, in [7] the

author applies various routines in the SLA package of GAP in order to confirm and

finish the classification of nilpotent elements which are reachable, strongly reachable or

satisfy the Panyushev property. In particular, he confirms that in characteristic 0, all

reachable elements are Panyushev. For G classical and p = 0 each of three properties

above characterises the class of rigid (i.e., non-induced) nilpotent orbits in g. This was

established by Yakimova in [34].
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One of the goals of this article is to record extensions to de Graaf’s results to deal with

the case where p > 0. For G exceptional and simply connected (and for any prime p)

we compute the number c(e) := dim ge/[ge, ge] for any nilpotent element e ∈ g. This data

is recorded in Tables 2 and 3. It turns out that c(e) is independent of p provided that

p is good for G. Our computations agree with those in [7] made in the characteristic

zero case.1 We also consider another property, which is relevant in the theory of finite

W -algebras. Let us call a nilpotent element almost reachable if it is not reachable, but

ge = ke⊕[ge, ge].

If G is SOn or Spn and p 6= 2 then [26, Theorem 3(i)] provides a general formula for

c(e) in terms of the partition of n attached to e. We mention for completeness that

for G = SLn or GLn the value of c(e) is also known for all e ∈ g (and all p) thanks to

the explicit description of ge given in [34]; see [26, Remark 1] for more detail. So in

our paper we mostly deal with the groups of exceptional types. The main results of the

computational part of our paper are as follows:

Theorem 1.1. Let G be a simple, simply connected algebraic group of exceptional type

over an algebraically closed field of characteristic p > 0 and let e be a nilpotent element

in g = Lie(G). Then e is reachable or almost reachable in characteristic p if and only if

the orbit of e is listed in the first column of Table 1. If, moreover, the equality ge = [ge, ge]

holds for e in characteristic p then this is indicated in the third column of Table 1.

Table 1 show that many new nilpotent orbits become reachable in bad characteristic

and on the three occasions this happens when p is good for G. In this case, the new

orbits are as follows:

(A) p = 5, G is of type E7 and e is of type A3+A2+A1;

(B) p = 7, G is of type E7 and e is of type A2+ 3A1;

(C) p = 7, G is of type E8 and e is of type A4+A2+A1.

It is interesting that these three orbits are responsible for the existence of new maximal

Lie subalgebras in g = Lie(G) which have no analogues in characteristic 0. This will be

explained in detail in a forthcoming paper by the authors.

We have also checked the validity of Panyushev property in good characteristic; see § 4.5

for more detail on our computations. This property will play an important role in proving

Humphreys’ conjecture on the existence of Uχ (g)-modules of dimension p(dim G·χ)/2 (here

Uχ (g) stands for the reduced enveloping algebra of g associated with a linear function

χ ∈ g∗). We denote by GC the complex simple algebraic group of the same type as G
and let gC = Lie(GC). Recall that if p is good for G then the nilpotent orbits in g have

the same labels as those in gC; see [6, pp. 401–407], for example.

Theorem 1.2. Let G be as in Theorem 1.1 and suppose p is a good prime for G. Then

an element e in a nilpotent orbit O satisfies the Panyushev condition if and only if the

nilpotent orbit in gC which has the same label as O consists of reachable elements. In

1According to the usual notation one should replace Ã1 by A1 in [7, Table 5].
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g e p Strong Almost

G2 Ã(3)1 3

Ã1 2, 3 3 p > 5
A1 Any p > 5

F4 F4 3

C3 2

C3(a1) 2

A1+ Ã2 2, 3 p > 5
B2 p > 3
A2+ Ã1 p > 3 p > 5
Ã2 2 2 p > 3
A2 p > 3
A1+ Ã1 Any p > 3
Ã(2)1 2

Ã1 Any Any

A1 Any p > 3

E6 E6 3

A5 2

A4+ A1 2, 3

A3+ A1 2

2A2+ A1 Any p > 5
A2+ 2A1 Any

2A2 2

A2+ A1 Any

A2 Any

3A1 Any p > 3
2A1 Any

A1 Any Any

E7 E7 3
E6 3
A6 2
A5+ A1 3 p > 5
(A5)

′ 2 p > 3
A4+ A2 2, 3 p > 5
A4+ A1 Any

D4+ A1 p > 3
A3+ A2+ A1 3, 5 p > 7
A3+ A2 2
A3+ 2A1 3 p > 5
(A3+ A1)

′ 2 p > 3
2A2+ A1 Any p > 5

Table 1: continued
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g e p Strong Almost

A2+ 3A1 7 p 6= 2, 7
2A2 2 p > 3
A3 p > 3
A2+ 2A1 Any p > 3
A2+ A1 Any

4A1 p > 3 p > 3
A2 Any

(3A1)
′ Any p > 3

(3A1)
′′ 3 p > 5

2A1 Any p > 3
A1 Any Any

E8 E8 3, 5
E8(a1) 3
E7 3
D7 2
E6+ A1 3
D7(a1) 2
E8(b6) 3
(A7)

(3) 3
A7 2, 3 p > 5
D7(a2) 2
E6 3
A6+ A1 3, 5 p > 7
A6 2
D6(a2) 2
D5(a1)+ A2 2 p > 5
A5+ A1 2, 3 p > 5
A4+ A3 Any p > 7
D4+ A2 2
A4+ A2+ A1 7 p 6= 2, 5, 7
D5(a1)+ A1 p > 3
A5 2 p > 3
A4+ A2 2, 3 p > 5
A4+ 2A1 Any

2A3 Any p > 3
A4+ A1 Any

D4(a1)+ A2 2 p > 5
D4+ A1 p > 3

Table 1: continued
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g e p Strong Almost

A3+ A2+ A1 p > 3 p > 3
A3+ A2 2
D4(a1)+ A1 p > 3 p > 3
A3+ 2A1 Any p > 3
2A2+ 2A1 Any p > 5
A3+ A1 2 p > 3
2A2+ A1 Any p > 5
2A2 2 p > 3
A2+ 3A1 Any p > 3
A3 Any

A2+ 2A1 Any p > 3
A2+ A1 Any Any

4A1 Any p > 3
A2 Any

3A1 Any p > 3
2A1 Any Any

A1 Any Any

Table 1. Strongly reachable and almost reachable orbits for Strongly reachable and almost reachable
orbits for G2, F4, E6, E7 and E8.

other words, e satisfies the Panyushev condition if and only if it is reachable and not

listed in cases (A), (B) or (C) above.

It follows from Theorems 1.1 and 1.2 that the Panyushev and strong reachability

conditions are independent of good characteristic.

A nilpotent element e ∈ g is called rigid if it cannot be obtained by Lusztig–Spaltenstein

induction from a proper Levi subalgebra of g. Arguing as in [25, 3.2] one can reduce

proving Humphreys’ conjecture to the case where χ ∈ g∗ corresponds to a rigid nilpotent

element of g under a G-equivariant isomorphism g ∼= g∗. In the characteristic zero case,

all rigid nilpotent orbits in exceptional Lie algebras are classified by Elashvili [10] and his

computations are recently double-checked in [8] by using GAP. Since the way this is done

in [8] relies heavily on the characteristic 0 hypothesis, we present in § 2 a classification of

rigid nilpotent orbits in exceptional Lie algebras valid over any algebraically closed field

of good characteristic (at some point we have to rely on GAP as well).

Theorem 1.3. Let G be as in Theorem 1.1 and suppose p is a good prime for G. Then a

nilpotent orbit O is rigid in g if and only if so is the nilpotent orbit in gC which has the

same label as O.

Given m ∈ N we let g(m) denote the set of all elements of g whose adjoint G-orbit

has codimension m in g. A subset S ⊂ g is called a sheet of g if it coincides with an

irreducible component of one of the quasi-affine varieties g(m). According to a classical
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Orbit in E8 dim(ge/[ge, ge]) Orbit in E8 dim(ge/[ge, ge])

p = 2, 3, 5,> 7 p = 2, 3, 5,> 7
E8 12, 6, 3, 8 D5(a1)+ A2 5, 3, 1, 1
E8(a1) 12, 6, 9, 7 A5+ A1 5, 2, 1, 1
E8(a2) 12, 10, 8, 6 A4+ A3 5, 2, 2, 0
E8(a3) 12, 5, 7, 7 D5 4, 3, 3, 3
E8(a4) 14, 8, 6, 6 E6(a3) 4, 3, 3, 3
E7 11, 3, 4, 4 (D4+ A2)

(2) 3,−,−,−
E8(b4) 11, 6, 5, 5 D4+ A2 9, 2, 2, 2
E8(a5) 11, 6, 5, 5 A4+ A2+ A1 3, 1, 3, 1
E7(a1) 11, 5, 5, 5 D5(a1)+ A1 4, 1, 1, 1
E8(b5) 11, 7, 7, 7 A5 3, 1, 1, 1
(D7)

(2) 11,−,−,− A4+ A2 4, 1, 1, 1
D7 10, 2, 2, 2 A4+ 2A1 1, 1, 1, 1
E8(a6) 11, 6, 6, 6 D5(a1) 2, 2, 2, 2
E7(a2) 6, 6, 4, 4 2A3 9, 0, 0, 0
E6+ A1 6, 5, 2, 2 A4+ A1 1, 1, 1, 1
(D7(a1))

(2) 6,−,−,− D4(a1)+ A2 9, 2, 1, 1
D7(a1) 10, 4, 4, 4 D4+ A1 9, 1, 1, 1
E8(b6) 7, 5, 5, 5 (A3+ A2)

(2) 9,−,−,−
E7(a3) 8, 4, 4, 4 A3+ A2+ A1 9, 0, 0, 0
E6(a1)+ A1 3, 7, 3, 3 A4 2, 2, 2, 2
(A7)

(3)
−, 6,−,− A3+ A2 4, 2, 2, 2

A7 10, 3, 1, 1 D4(a1)+ A1 9, 0, 0, 0
D7(a2) 11, 3, 3, 3 A3+ 2A1 4, 0, 0, 0
E6 5, 3, 4, 4 2A2+ 2A1 4, 4, 0, 0
D6 10, 2, 2, 2 D4 3, 2, 2, 2
(D5+ A2)

(2) 10,−,−,− D4(a1) 3, 3, 3, 3
D5+ A2 10, 3, 3, 3 A3+ A1 2, 1, 1, 1
E6(a1) 6, 5, 4, 4 2A2+ A1 2, 2, 0, 0
E7(a4) 10, 4, 3, 3 2A2 1, 1, 1, 1
A6+ A1 10, 3, 1, 1 A2+ 3A1 2, 0, 0, 0
D6(a1) 10, 3, 3, 3 A3 1, 1, 1, 1
(A6)

(2) 10,−,−,− A2+ 2A1 1, 0, 0, 0
A6 5, 2, 2, 2 A2+ A1 0, 0, 0, 0
E8(a7) 10, 10, 10, 10 4A1 8, 0, 0, 0
D5+ A1 5, 2, 2, 2 A2 1, 1, 1, 1
E7(a5) 5, 6, 6, 6 3A1 2, 0, 0, 0
E6(a3)+ A1 5, 3, 3, 3 2A1 0, 0, 0, 0
D6(a2) 5, 3, 3, 3 A1 0, 0, 0, 0

Table 2: continued
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Orbit in E7 dim(ge/[ge, ge]) Orbit in E7 dim(ge/[ge, ge])

p = 2, 3,> 5 p = 2, 3,> 5

E7 10, 4, 7 (A5)
′′ 4, 3, 3

E7(a1) 10, 8, 6 A3+ A2+ A1 8, 1, 1
E7(a2) 11, 7, 5 A4 5, 3, 3
E7(a3) 13, 6, 6 (A3+ A2)

(2) 8,−,−
E6 11, 3, 4 A3+ A2 9, 2, 2
E6(a1) 13, 6, 5 D4(a1)+ A1 9, 2, 2
D6 9, 3, 3 D4 9, 2, 2
E7(a4) 9, 5, 4 A3+ 2A1 4, 1, 1
D6(a1) 9, 4, 4 D4(a1) 9, 3, 3
D5+ A1 10, 3, 3 (A3+ A1)

′ 4, 1, 1
(A6)

(2) 9,−,− 2A2+ A1 4, 2, 0
A6 10, 2, 2 (A3+ A1)

′′ 3, 2, 2
E7(a5) 10, 6, 6 A2+ 3A1 2, 1, 1
D5 10, 3, 3 2A2 3, 1, 1
E6(a3) 10, 3, 3 A3 3, 1, 1
D6(a2) 5, 3, 3 A2+ 2A1 3, 0, 0
D5(a1)+ A1 6, 2, 2 A2+ A1 1, 1, 1
A5+ A1 5, 3, 1 4A1 7, 0, 0
(A5)

′ 5, 1, 1 A2 1, 1, 1
A4+ A2 6, 4, 1 (3A1)

′ 8, 0, 0
D5(a1) 7, 3, 3 (3A1)

′′ 2, 1, 1
A4+ A1 2, 2, 2 2A1 2, 0, 0
D4+ A1 8, 1, 1 A1 0, 0, 0

Table 2. Codimension of [ge, ge] in ge for E7 and E8.

result of Borho [3] the sheets of gC are parametrised by the GC-conjugacy classes of pairs

(lC,O0) where lC is a Levi subalgebra of gC and O0 is a rigid nilpotent orbit in l. In § 2, we

give a comprehensive account of the theory of sheets in reductive Lie algebras g = Lie(G)
which satisfy the standard hypotheses (when G is simple and not of type Ar p−1 this is

equivalent to saying that p is a good prime for G). In particular, we show that every

sheet of g contains a unique nilpotent orbit and Borho’s classification of sheets remains

valid under our assumptions on G.

For any sheet S of a complex exceptional Lie algebra gC = Lie(GC), de Graaf and

Elashvili determine the weighted Dynkin diagram of the unique nilpotent orbit N (gC)∩S
and give a very nice representative e0 =

∑
γ∈0 eγ in N (gC)∩S compatible with the

combinatorial data that defines S. Here 0 = 0(S) is a subset in the root system 8 of gC
and eγ is a root vector of gC corresponding to γ ∈ 8. Each set 0 is linearly independent

in the vector space Q8 and the GC-orbit of e0 is independent of the choices of root

vectors eγ ∈ (gC)γ . There is a natural way to attach to 0 a graph D(0), and it turned
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Orbit in E6 dim(ge/[ge, ge]) Orbit in E6 dim(ge/[ge, ge])

p = 2, 3,> 5 p = 2, 3,> 5
E6 5, 4, 6 D4(a1) 5, 5, 5
E6(a1) 7, 8, 5 A3+ A1 3, 4, 2
D5 4, 8, 4 2A2+ A1 3, 3, 0
E6(a3) 6, 6, 5 A3 2, 2, 2
D5(a1) 3, 5, 3 A2+ 2A1 1, 5, 1
A5 4, 3, 2 2A2 2, 3, 2
A4+ A1 5, 4, 2 A2+ A1 1, 3, 1
D4 3, 2, 2 A2 1, 1, 1
A4 3, 3, 3 3A1 2, 0, 0

2A1 1, 1, 1
A1 0, 0, 0

Orbit in F4 dim(ge/[ge, ge]) Orbit in F4 dim(ge/[ge, ge])

p = 2, 3,> 5 p = 2, 3,> 5
F4 5, 3, 4 Ã2+ A1 4, 2, 1
F4(a1) 5, 5, 4 (B2)

(2) 7,−,−
F4(a2) 7, 4, 3 B2 6, 1, 1
(C3)

(2) 8,−,− A2+ Ã1 7, 2, 0
C3 4, 2, 2 Ã2 0, 1, 1
B3 5, 2, 2 (A2)

(2) 7,−,−
F4(a3) 7, 6, 6 A2 7, 1, 1
C3(a1)

(2) 8,−,− A1+ Ã1 4, 0, 0
C3(a1) 4, 3, 3 ( Ã1)

(2) 6,−,−
( Ã2+ A1)

(2) 8,−,− Ã1 0, 0, 0
A1 6, 0, 0

Orbit in G2 dim(ge/[ge, ge])

p = 2, 3,> 5
G2 3, 3, 2
G2(a1) 3, 3, 3
( Ã1)

(3)
−, 3,−

Ã1 2, 0, 1
A1 2, 2, 0

Table 3. Codimension of [ge, ge] in ge for G2, F4 and E6.

out (not surprisingly) that in many cases the graphs thus obtained are admissible in the

sense of Carter; cf. [5] and the last column of the tables in [8].

Since we have a natural analogue of e0 in g = Lie(G), where G is a simple algebraic

k-group of the same type as GC, and the discussion above indicates that there is a natural

bijection between the sheets of g and gC, one wonders whether a k-analogue of e0 still

belongs to the sheet of g given by the same data as S. We verify that for exceptional

groups this is indeed the case and from the validity of the representatives of [8] in good
characteristic we then deduce the following:
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Theorem 1.4. If G is an exceptional algebraic k-group and p = char(k) is a good prime

for G, then the distribution of nilpotent orbits amongst the sheets of g agrees with that

of gC and can be read off from the tables in [8].

For many elements e0 our proof of Theorem 1.4 is computer-free. For example, this

is the case when D(0) is a disjoint union of Dynkin graphs. However, at the end of the

day we do rely on GAP (as did de Graaf and Elashvili) and we have decided to run

our programme on all elements e0 in order to obtain an independent confirmation of the

computations in [8]. At some point in the proof we have to show that the adjoint orbits of

e0 ∈ g and of its counterpart e0,C ∈ gC have the same Dynkin labels. We deduce this by

asking GAP to determine the Jordan block structure of each element ad e0 and a chosen

representative of each nilpotent orbit in ad g. Since it turned out, for G exceptional, that

the Jordan block decomposition of ad e identifies the orbit of e almost uniquely (except

when p = 7 where the Jordan block decompositions of nilpotent elements of type B3 and

C3 in Lie algebras of type F4 are the same), this enabled us to determine the Dynkin

label of e0 and finish the proof of Theorem 1.4.

2. Sheets and induced nilpotent orbits in good characteristic

2.1. The standard hypotheses

Let G be a connected reductive group over an algebraically closed field k of characteristic

p > 0 and g = Lie(G). Being the Lie algebra of an algebraic k-group, g carries a canonical

pth power map x 7→ x [p] equivariant under the adjoint action of G. Given x ∈ g we denote

by gx (respectively, Gx ), the centraliser of x in g (respectively, G). In order to apply [23,

Theorem A] to all Levi subalgebras of g we shall assume, unless otherwise specified, that

p is a good prime for G, the derived subgroup of G is simply connected and g admits an

(Ad G)-invariant non-degenerate symmetric bilinear form. We fix such a form and call it κ.

The above conditions on G are often referred as the standard hypotheses. If they hold

then for any x ∈ G we have the equality gx = Lie(Gx ) (the latter is sometimes expressed

by saying that the scheme-theoretic centraliser of e in G is smooth). One also knows that

if G satisfies the standard hypotheses then the centraliser of any semi-simple element

of the restricted Lie algebra g is a Levi subalgebra of g. It is worth remarking that any

simple, simply connected algebraic k-group of type other than Ar p−1, where p = char(k),
satisfies the standard hypotheses if and only if p is a good prime for G.

If G satisfies the standard hypotheses then so does any Levi subgroup L of G. It is

well known that up to conjugacy any such subgroup is associated with a subset of a

chosen basis of simple roots of G. Let 8 be root system of G with respect to a maximal

torus T of G and let 5 be a basis of simple roots in 8. Let t = Lie(T ). If L is the

standard Levi subgroup of G associated with a subset 50 of 5 and l = Lie(L) then t0 :=

[l, l] ∩ t has dimension equal to dim t− |50| (this follows from the fact that the derived

subgroup of L is simply connected). On the other hand, the orthogonal complement

t⊥0 := {t ∈ t | κ(t, t0) = 0} contains z(l) which forces dim z(l) 6 dim t⊥0 = dim t− |50|. Since

Lie(Z(L)) ⊆ z(l) has dimension equal to dim t− |50| this shows that z(l) = Lie(Z(L)) for

any Levi subgroup L of G. Furthermore, if 50 has no components of type Ar p−1 then

the structure theory of reductive Lie algebras yields z([l, l]) = 0 implying l = [l, l]⊕ z(l).
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Let G1, . . . ,Gs be the simple components of G and gi = Lie(Gi ). Let Ti = T ∩Gi and

ti = Lie(Ti ). If Gi is not of type Ar p−1 then it is well known that gi is a simple Lie algebra

and the restriction of κ to gi is non-degenerate. If Gl has type Am(l) with p|(m(l)+ 1)
then gl ∼= slm(l)+1 as restricted Lie algebras and the restriction of κ to gl coincides with

a non-zero scalar multiple of the trace form, κ ′, of the standard (vector) representation

of Gl . Let α1, . . . , αm(l) be a basis of simple roots of the root system of type Am(l) in

Bourbaki’s numbering. Then tl has basis h1, . . . , hm(l) such that αi (hi ) = 2 = κ ′(hi , hi )

for all i and we also have that κ ′(hi , hi+1) = −1 for 1 6 i 6 m(l)− 1, κ ′(hi , h j ) = 0 for j 6∈
{i − 1, j, i + 1}, and hi = [eαi , e−αi ] for some root vectors e±αi ∈ gl with κ ′(eαi , e−αi ) = 1.

Suppose κ|gl = b · κ ′ where b = b(l) ∈ k×. Since the restriction of κ to t is non-degenerate,

there exists an element h0 ∈ t orthogonal to all gi with i 6= m(l) and such that κ(h0, h1) =

b and κ(h0, hi ) = 0 for 2 6 i 6 m(l). In general, h0 is not unique and we only know that

κ(h0, h0) = a for some a = a(l) ∈ k.

Let Cn denote the Cartan matrix of the root system of type An with entries reduced

modulo p, so that det(Cn) = n+ 1(mod p). Then the restriction of κ to the k-span of

h0, h1, . . . , hm(l) is represented by the matrix

A =



a b 0 · · · 0 0
b 2b −b · · · 0 0
0 −b 2b · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 2b −b
0 0 0 · · · −b 2b


of order m(l)+ 1 which is non-singular because det(A) = abm(l) det(Cm(l))− bm(l)+1

det(Cm(l)−1) = bm(l)+1
6= 0 by the first row Laplace expansion. In particular, this shows

that h0, h1, . . . , hm(l) are linearly independent. The g-invariance of κ yields

b = κ(h0, h1) = κ([h0, eα1 ], e−α1) = (dα1)e(h0)κ(eα1 , e−α1) = b · (dα1)e(h0),

0 = κ(h0, hi ) = κ([h0, eαi ], e−αi ) = (dαi )e(h0)κ(eα1 , e−α1), 2 6 i 6 m(l).

It follows that [h0, e±α1 ] = ±eα1 and [h0, e±αi ] = 0 for 2 6 i 6 m(l).
We now set g̃l := kh0⊕ gl if Gl is of type Ar p−1 and g̃l := gl otherwise. It is immediate

from above discussion that if Gl is of type Ar p−1 then g̃l is an (Ad G)-stable ideal

of g isomorphic to glr p as an abstract Lie algebra and the restriction of κ to g̃l is

non-degenerate. Moreover, the adjoint action of Gl on g̃l is induced by that of GLr p. Since

κ|g̃l is non-degenerate for all l we can attach h0’s to different components of type Ar p−1 in

such a way that they form an orthogonal set. Note also that the condition κ(h0, gi ) = 0
forces [h0, gi ] = 0 due to the g-invariance of κ. We thus deduce that g = g̃1⊕ · · ·⊕ g̃s ⊕ z

where z is a central subalgebra of g contained in t and all direct summands in this

decomposition are (Ad G)-stable (in [13, 2.9] this result is mentioned without a proof).

Of course, the above has bearing on the description of the sheets of g which turns out

to be the same as in the characteristic 0 case. Since we shall require some rather detailed

results on sheets of g and they are hard to find in the literature under our assumption

on G, some short proofs will be given below.
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2.2. Sheets and decomposition classes

Given m ∈ Z>0 we denote by g(m) the set of all x ∈ g for which dim Gx = m. Each subset

g(m) is locally closed in the Zariski topology of g and the irreducible components of the

g(m)’s are called the sheets of g.

Remark 2.1. In prime characteristic there are two meaningful ways to define sheets of g

and g∗. Given m ∈ Z>0 we let g[m] (respectively, g∗
[m]) denote the subset of g (respectively,

g∗) consisting of all elements whose stabiliser in g has dimension m. We call the irreducible

components of the quasi-affine varieties g[m] (respectively, g∗
[m]) the infinitesimal sheets

of g (respectively, g∗). All infinitesimal sheets are G-stable, quasi-affine varieties. If G
satisfies the standard hypotheses all these notions coincide, but in general there will be

some subtle differences well worth investigating. We call a G-orbit g (respectively, g∗)

infinitesimally isolated if it forms a single infinitesimal sheet in g (respectively, g∗). The

problem of classifying all infinitesimally isolated nilpotent orbits in reductive Lie algebras

is interesting and wide open at the moment. As an example, if k has characteristic p and

g = pglp then the regular nilpotent orbit Oreg in g coincides with g[p] and therefore forms a

single infinitesimal sheet of g. This can be deduced from the following elementary result of

linear algebra: if X, Y ∈ glp and [X, Y ] = Ip then both X and Y have a single Jordan block

of size p and hence are mapped by the canonical homomorphism glp → g to a commuting

pair of elements in Oreg. So, in contrast with the classical case the regular nilpotent orbit

in pglp is infinitesimally isolated. On the other hand, if g = slp then g[p] consists of all

traceless p× p matrices X for which k p is an indecomposable k[X ]-module. From this it

follows that g[p] is a single infinitesimal sheet of g, but Oreg ⊂ g[p] is not infinitesimally

isolated in g. In fact, there are no infinitesimally isolated orbits in g = slp at all, because

Ip ∈ g and all sheets of g are invariant under the affine translations x 7→ x +α Ip where

α ∈ k. Finally, we mention that the study of infinitesimal sheets in g∗ finds interesting

applications in the modular representation theory of reductive Lie algebras; see [24,

Remark 5.6].

Remark 2.1 indicates that one cannot expect a uniform behaviour of sheets for all

reductive Lie algebras over algebraically closed fields (even in good characteristic) and

partially justifies the assumptions we imposed on g.

If l is a Levi subalgebra of g then its centre z(l) is a toral subalgebra of g and l = cg(z(l)).

We denote by z(l)reg the set of all t ∈ z(l) such that l = cg(t). This is a non-empty Zariski

open subset of z(l). Given a nilpotent element e0 ∈ l we set

D(l, e0) := (Ad G) · (e0+ z(l)reg)

and we call D(l, e) the decomposition class of g associated with the pair (l, e0). If

x = xs + xn is the Jordan decomposition of x ∈ D(l, e0) then xs (respectively, xn) is

G-conjugate to an element of z(l)reg (respectively, e0). It follows that dim gx = dim le0

for every such x . Since there are finitely many nilpotent L-orbits in l = Lie(L) and the

number of G-conjugacy classes of Levi subalgebras of g is finite, g contains finitely many

decomposition classes. Each of them is an irreducible, locally closed subset of g contained

in one of the g(r)’s and hence lies in a sheet of g. As the sheets are irreducible and their

union is the whole of g, there can be only finitely many, and so every sheet contains a

unique open decomposition class of g.
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Remark 2.2. Since the number of nilpotent orbits is finite in all characteristics, the above

discussion is essentially valid for all reductive Lie algebras over algebraically closed fields.

However, in bad characteristic the notion of a decomposition class in g will involve the

centraliser in G of a semi-simple element of g which is not always a Levi subgroup of G.

In general, the connected component of that group is G-conjugate to a subgroup of G
obtained by base change from some standard pseudo-Levi subgroup of GC.

2.3. The Zariski closure of a decomposition class

Borho’s classification of sheets of g is based on an important result of Borho–Kraft which

provides a description of the Zariski closure of a decomposition class in g; see [1, Theorem

5.4]. Since a modular version of this result valid under our assumptions on G seems to

be missing in the literature, a short proof will be given below.

Let D(l, e0) be a decomposition class of g and let λ ∈ X∗(L) be an optimal cocharacter

for e0 ∈ l as defined in [23, 2.2]. We adopt the notation of [23] and write l(λ, i) for

the i-weight space of the 1-dimensional torus λ(k×) acting on l. By construction, e0 ∈

l(λ, 2). Given k ∈ Z we set l(λ,> k) :=
⊕

i>k l(λ, i). Then pl(λ) := l(λ,> 0) is the optimal

parabolic subalgebra of e0 ∈ l. We write PL(λ) for the corresponding parabolic subgroup

of L. Note that PL(λ) = ZL(λ)Ru(PL) where Lie(ZL(λ)) = l(λ, 0) and Lie(Ru(PL(λ))) =

l(λ,> 1). As explained in [23, p. 346], there exists a non-zero regular function ϕ on l(λ, 2)
semi-invariant under the adjoint action of ZL(λ) and such that the orbit (Ad ZL(λ)) · e0
coincides with the principal open subset l(λ, 2)ϕ = {x ∈ l(λ, 2) | ϕ(x) 6= 0} of l(λ, 2).

Let g = n−⊕ l⊕ n+ be a parabolic decomposition of g associated with the Levi

subalgebra l. Then there exists a parabolic subgroup P = L N+ such that N+ = Ru(P)
and n+ = Lie(N+). We set P(l, e0) := PL(λ)N+, a parabolic subgroup of G contained in

P. It is easy to see that Lie(P(l, e0)) = pl(λ)⊕ n+ and

r(l, e0) := z(l)⊕ l(λ,> 2)⊕ n+

is a solvable ideal of Lie(P(l, e0)) invariant under the adjoint action of P(λ, e0). Identifying

direct sums with direct products we put

r(l, e0)reg := z(l)reg⊕ l(λ, 2)ϕ ⊕ l(λ,> 3)⊕ n+.

By construction, r(l, e0)reg is a Zariski open subset of r(l, e0) invariant under the adjoint

action of P(l, e0). We mention for further references that z(l) = Lie(ZG(L)) and there

exists a connected algebraic subgroup R(l, e0) of G with a maximal torus ZG(L)◦ such

that r(l, e0) = Lie(R(l, e0)).

Theorem 2.3. In the above notation, D(l, e0) = (Ad G) · r(l, e0)reg and the Zariski closure

of D(l, e0) in g coincides with (Ad G) · r(l, e0).

Proof. Let z ∈ z(l)reg. Then (Ad PL(λ)) · (z+ e0) = z+ (Ad PL(λ)) · e0. Since [pl(λ), e0] =

l(λ,> 2) by [23, Theorem 2.3(iv)] and the orbit (Ad Ru(PL(λ))) · e0 ⊆ e0+ l(λ,> 3) is

Zariski closed by Rosenlicht’s theorem [27, Theorem 2], the equality (Ad Ru(PL(λ))) · e0 =

e0+ l(λ,> 3) must hold. It implies that

(Ad PL(λ)) · (z+ e0) = z+ (Ad ZL(λ)) · (e0+ l(λ,> 3)) = z+ l(λ, 2)ϕ + l(λ,> 3).

https://doi.org/10.1017/S1474748016000086 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748016000086


Rigid orbits and sheets in reductive Lie algebras over fields of prime characteristic 595

As z ∈ z(l)reg and e0 is a nilpotent element of l, it must be the endomorphism

ad(z+ e0) acts invertibly on n+. As (Ad N+) · (z+ e0) ⊆ z+ e0+ n+, another application

of Rosenlicht’s theorem yields (Ad N+) · (z+ e0) = z+ e0+ n+. It follows that

(Ad P(l, e0)) · (z+ e0) = (Ad PL(λ)) · ((Ad N+) · (z+ e0))

= (Ad PL(λ)) · (z+ e0+ n+) = n++ (Ad PL(λ)) · (z+ e0)

= z+ l(λ, 2)ϕ + l(λ,> 3)+ n+. (1)

As this holds for all z ∈ z(l)reg we now deduce that (Ad P(l, e0)) · (z(l)reg+ e0) = r(l, e0)reg
and D(l, e0) = (Ad G) · r(l, e0)reg. As r(l, e0)reg is Zariski open in r(l, e0), the Zariski closure

of D(l, e0) contains (Ad G) · r(l, e0). Since the latter set is the image of the action morphism

G×P(l,e0) r(l, e0) −→ g, (g, r) 7→ (Ad g) · r,

and P(l, e0) is a parabolic subgroup of G, the set (Ad G) · r(l, e0) is Zariski closed in g; see

[13, Lemma 8.7(c)], for example. Since (Ad G) · r(l, e0)reg is Zariski dense in (Ad G) · r(l, e0)

we conclude that D(l, e0) = (Ad G) · r(l, e0), thereby completing the proof.

Remark 2.4. Since λ ∈ X∗(T ) is an optimal cocharacter for e0 ∈ N (l) in the sense of

the Kempf–Rousseau theory, it follows from the proof of Theorem 2.3 that for any x ∈
r(l, e0)reg the inclusion Gx ⊂ P(l, e0) holds. In the case where char(k) = 0, this was first

observed in [1, Zuzatz 5.5(e)].

2.4. Restricting the adjoint quotient map to a decomposition class

Let t = Lie(T ) be a maximal toral subalgebra of g containing z(l) and let W = NG(T )/T
be the Weyl group of G. Let n = dim G and ` = rk G. Under our assumptions on G the

invariant ring k[g]G is freely generated by ` homogeneous regular functions f1, . . . , f`
and the restriction map k[g]� k[t] induces a natural isomorphism of invariant rings

j : k[g]G → k[t]W . Furthermore, the categorical quotient morphism F : g→ g//G ∼= t/W
sending any x ∈ g to

(
f1(x), . . . , fl(x)

)
∈ A` is flat, surjective, and all its fibres are

irreducible complete intersections of dimension n− ` in g consisting of finitely many

G-orbits. If x ∈ g then f (x) = f (xs) for every f ∈ k[g]G , and for every ξ ∈ A` there

is a unique orbit W · t ⊂ t such that the fibre F−1(ξ) consists of all x ∈ g such that

(Ad g) · xs = t for some g ∈ G. The special fibre F−1(0) coincides with the nilpotent cone

N (g) of g. All these results are well known and can be found in [13, § 7], for example.

In this subsection we are concerned with the restriction of the adjoint quotient

morphism F to the Zariski closure of a decomposition class.

Proposition 2.5. Let F̄ denote the restriction of the adjoint quotient morphism F : g→
t/W to D(l, e0). Then all irreducible components of the fibres of F̄ have dimension n−
dim le0 , the special fibre F̄−1(0) = D(l, e0)∩N (g) is irreducible, and dimD(l, e0) = n−
dim le0 + dim z(l).

Proof. To ease notation we put n(l, e0) = dimD(l, e0). Let X be a fibre of F̄ and

x ∈ X . By Theorem 2.3, we may assume without loss that x ∈ r(l, e0). Since r(l, e0) =

Lie(R(l, e0)) and ZG(L)◦ is a maximal torus of R(l, e0), the standard fact in the theory
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of algebraic groups that maximal tori are conjugate yields that the semi-simple part of

x is R(l, e0)-conjugate to an element of z(l) = Lie(ZG(L)◦); see [2, 11.8]. In view of the

discussion above this implies that

X =
⋃

t∈(W ·xs )∩z(l)

(Ad G) · (t + l(λ,> 2)+ n+ ∩ gt ). (2)

(As t ∈ z(l) we have l(λ,> 2) ⊂ gt .) As z(l) ⊂ D(l, e0) this implies that F̄ maps D(l, e0)

onto z(l)/W , the image of z(l) in t/W . Since W is a finite group the quotient morphism

t→ t/W is finite, hence closed and has finite fibres. So z(l)/W is a closed subset of t/W
of dimension d := dim z(l). It follows that the minimal dimension of the fibres of F̄ equals

n(l, e0)− d.

On the other hand, it follows from [9, Theorem 14.8(a)] that the union of those

irreducible components of the fibres of F̄ that have dimension > n(l, e0)− d is Zariski

closed in D(l, e0). That union cannot coincide with D(l, e0) by the preceding remark.

Since all irreducible components of the fibres of F̄ contain open G-orbits and D(l, e0)

is dense in D(l, e0), there exists z ∈ z(l)reg such that n− dim gz+e0 = n(l, e0)− d. Since z
is the semi-simple part of z+ e0 we have the equality gz+e0 = le0 . So dim gz+e0 = dim le0

implying n(l, e0) = n− dim le0 + d. This proves the last statement of the proposition.

If one of the fibres of F̄ has an irreducible component of dimension > n(l, e0)−

d = n− dim le0 , then by the same token it contains an open G-orbit of the same

dimension and hence an element v ∈ D(l, e0) such that dim gv < dim le0 . Since the set

{x ∈ D(l, e0) | dim gx > dim le0} is Zariski closed by Chevalley’s semi-continuity theorem

and dim gx = dim le0 for all x ∈ D(l, e0) it follows that dim gx > dim le0 for all x ∈ D(l, e0).

This contradiction shows that all irreducible components of the fibres of F̄ have the same

dimension.

If X is the special fibre of F̄ , then xs = 0 and (2) gives

D(l, e0)∩N (g) = (Ad G) · (l(λ,> 2)+ n+). (3)

Therefore, the variety D(l, e0)∩N (g) is irreducible which completes the proof.

Remark 2.6. If S is a sheet of g whose open decomposition class equals D(l, e0) then by

maximality S must coincide with the set of all G-orbits of maximal dimension contained
in D(l, e0). Therefore, Proposition 2.5 implies that every sheet of g contains a unique

nilpotent orbit. Since W is a finite group, the quotient morphism t→ t/W is open and

closed. As z(l)reg is open in z(l) ⊆ t, the set z(l)reg/W is open in z(l)/W , a closed subset of

t/W . So the proof of Proposition 2.5 also shows that any decomposition class D(l, e0) =

F̄−1(z(l)reg/W
)

of g is Zariski open in its closure. It is worth mentioning that all G-stable

pieces in the union (2) are Zariski closed in g. This follows from [13, Lemma 8.7(c)]

(see the end of the proof of Theorem 2.3 for a similar argument). If D(l, e0) is the open

decomposition class of a sheet S and O is the nilpotent orbit contained in S then it follows

from Proposition 2.5 that dim z(l) = dimS − dimO. This number is called the rank of S
and denoted rk(S). It is immediate from Proposition 2.5 that under our assumptions on
G a sheet S of g is a single nilpotent G-orbit if and only if rk(S) = 0.
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2.5. Induced nilpotent orbits and sheets

Given x ∈ g we denote by O(x) the adjoint G-orbit of x . If x lies in a Levi subalgebra

l = Lie(L) of g we set OL(x) := (Ad L) · x .

Combining Theorem 2.3 with Proposition 2.5, we observe that the unique open

G-orbit O(e) in D(l, e0)∩N (g) intersects densely with l(λ, 2)ϕ ⊕ l(λ,> 3)⊕ n+ and

has the property that dim ge = dim le0 . As l(λ, 2)ϕ ⊕ l(λ,> 3) = (Ad PL(λ)) · e0 by our

choice of λ we see that O(e) intersects densely with OL(e0)+ n+. In other words, the

orbit O(e) coincides with Indgl OL(e0), the nilpotent G-orbit obtained from OL(e0) by

Lusztig–Spaltenstein induction.

As in the characteristic zero case, induction of nilpotent orbits is transitive in the

following sense: if L , L ′ are Levi subgroups of G with L ⊂ L ′ and e0 is a nilpotent elements

of l = Lie(L) then

Indgl OL(e0) = Indgl′(Indl
′

l OL(e0)) (4)

where l′ = Lie(L ′). In order to see this it suffices to note that both orbits in (4) have the

same dimension, the Zariski closure of the decomposition class (Ad L ′) ·
(
e0+ z(l)reg

)
in l′

contains z(l′)reg+ e for some e ∈ Indl
′

l OL(e0), and z(l′) ⊂ z(l). The statement then follows

from Proposition 2.5.

Remark 2.7. Since the decomposition class D(l, e0) is evidently independent of the choice

of a triangular decomposition of g containing l, the above discussion implies that induction

of orbits is independent of the choice of a parabolic subalgebra of g containing l. This

was first observed by Lusztig–Spaltenstein for unipotent classes in reductive groups over

algebraically closed fields of arbitrary characteristic; see [17, Theorem 2.2]. The argument

in [17] relied on the theory of complex representations of finite groups of Lie type and

some results of Mizuno. More recently, Lusztig returned to this subject and found another

proof of the fact that induction is independent of the choice of a parabolic. His argument

is similar to ours but still works in the setting of a reductive group, possibly disconnected;

see [18, Lemma 10.3(a)]. In principle, one could use a Bardsley–Richardson projection

π : G → g from [4] to obtain a Lie algebra analogue of [17, Theorem 2.2]. Indeed, in our

situation π provides a nice G-equivariant isomorphism between the unipotent variety

of G and N (g). However, to the best of our knowledge this line of reasoning was never

carried out in the literature under our assumption on G and we felt that arguing in the
spirit of [1] was more relevant for our purposes (see e.g., Remark 2.4).

A nilpotent element e0 in a Levi subalgebra l = Lie(L) of g is called rigid if the

orbit OL(e0) cannot be obtained by Lusztig–Spaltenstein induction from a proper Levi

subalgebra of l.

Theorem 2.8. If S is a sheet of g and D(l, e0) is the open decomposition class of S,

then e0 is rigid in l and the unique nilpotent orbit in S has the form O = Indgl OL(e0).

Moreover, dim gx = dim le0 for any x ∈ O. Conversely, for any pair (l, e0), where l is a

Levi subalgebra of g and e0 is a rigid nilpotent element of l, there is a unique sheet of g

whose open decomposition class equals D(l, e0).
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Proof. Let D(l′, e′0) be the open decomposition class of S and suppose for a contradiction

that OL ′(e′0) = Indl
′

l OL(e0) for some proper Levi subalgebra l of l′ (here L , L ′ are

Levi subgroups of G with L ⊂ L ′ such that l′ = Lie(L ′) and l = Lie(L)). Note that

z(l′) ⊂ z(l) and (Ad L ′) · (e0+ z(l)reg) lies in D(l, e0). Let l′ = n′−⊕ l⊕ n′+ be a triangular

decomposition of l′. Replacing G and g, respectively, by L ′ and l′ in the proof of

Theorem 2.3 and applying (1) to any z ∈ z(l)reg, it is straightforward to see that D(l, e0)

contains z(l)reg+OL(e0)+ n′+ and hence z(l)reg+ e′0. But then D(l, e0) contains z(l)+ e′0.

As z(l′)reg ⊂ z(l) it follows that S = D(l′, e′0) lies in D(l, e0). Combining Proposition 2.5

with (4) and our discussion at the beginning of this subsection we see that D(l′, e′0) and

D(l, e0) share the same nilpotent orbit O = Indgl OL(e0). On the other hand, Proposition

2.5 gives

dimS = dimD(l′, e′0) = n− dim l′e′0
+ dim z(l′) = n− dim le0 + dim z(l′)

< n− dim le0 + dim z(l) = dimD(l, e0)

contrary to the fact that S is an irreducible component of g(m) where m = n− dim le0 .

This contradiction shows that l′ = l and e′0 = e0 is rigid in l.

If O is the nilpotent orbit of S then dimO = n− le0 by Proposition 2.5. Then dim gx =

dim le0 for all x ∈ O because gx = Lie(Gx ).

Finally, suppose e′0 is a rigid nilpotent element in a Levi subalgebra l′ of g and put

s = dim l′e′0
. Let S ′ be the union of all adjoint G-orbits of dimension n− s contained in

D(l′, e′0). It follows from Chevalley’s semi-continuity theorem that S ′ is a Zariski open

subset of D(l′, e′0) (see the end of the proof of Proposition 2.5 for a similar argument).

Since D(l′, e′0) is irreducible, so is the quasi-affine variety S ′. We claim that S ′ is a sheet

of g. Indeed, suppose the contrary. Then S ′ ( S̃ for some sheet S̃ of g contained in

g(n−s). Let D(l, e0) be the open decomposition class of S̃. We may assume without loss

of generality that both l′ and l are standard Levi subalgebras of g, so that the maximal

toral subalgebra t = Lie(T ) ⊆ l∩ l′ of g contains both z(l) and z(l′).

Let z ∈ z(l′)reg. Since S̃ contains D(l′, e′0) and the Zariski closure of S̃ coincides with

D(l, e0) which, in turn, lies in g(n−s), the G-orbit O(z+ e′0) is open in one of the fibres

of the morphism F̄ : D(l, e0)→ t/W . In view of (2) it coincides with (Ad G) ·
(
t + V )

for some t ∈ (W · z)∩ z(l) and some large subset V of l(λ,> 2)+ n+ ∩ gt which we are

now going to describe. Since both l and n+ ∩ gt are centralised by t , combining (2) with

the inclusion D(l, e0) ⊆ g(n−s) one observes that V consists of all elements in l(λ,> 2)+
n+ ∩ gt whose centraliser in gt has dimension s. Furthermore, V is Zariski open in l(λ,>
2)+ n+ ∩ gt .

Write z+ e′0 = (Ad g) · (t + v) where g ∈ G and v ∈ V and choose nw ∈ NG(T ) such that

(Ad nw) · z = t . Since [t, v] = 0 = [z, e′0] we have that (Ad g) · t = z and (Ad g) · v = e′0.

Then gnw ∈ Gz . Since z ∈ z(l′)reg, and G satisfies the standard hypotheses, applying [31,

3.19, 4.2] yields Gz = L ′. Set v′ := (Ad n−1
w ) · v. Since e′0 = (Ad gnw) · v′, we now deduce

that v′ ∈ OL ′(e′0). On the other hand, the concluding remark of the preceding paragraph

in conjunction with (2) shows that v lies in the G t -orbit which intersects densely with
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l(λ,> 2)+ n+ ∩ gt ⊂ gt . Since L ′ = n−1
w G t nw, it follows that OL ′(e′0) intersects densely

with (Ad n−1
w ) ·

(
l(λ,> 2)+ n+ ∩ gt )

)
⊂ gz = l′.

Since the orbit OL ′(e′0) is rigid in l′ this yields n+ ∩ gt = 0 (otherwise OL ′(e′0) would

be induced from (Ad n−1
w )(l), a proper Levi subalgebra of l′). Since t ∈ z(l) and gt =

(n− ∩ gt )⊕ l⊕ (n+ ∩ gt ) we now obtain that t ∈ z(l)reg. Since t ∈ W · z and Gz = L ′ it

follows that dim z(l) = dim z(l′) and

dimS ′ = dimD(l′, e′0) = n− s+ dim z(l′) = n− s+ dim z(l) = dimD(l, e0) = dim S̃

by Proposition 2.5. This contradiction shows that S ′ = S̃ is a sheet of g thereby

completing the proof.

Remark 2.9. Theorem 2.8 implies that the sheets of g are in 1–1 correspondence with the

G-conjugacy classes of pairs (L ,OL) where L is a Levi subgroup of G and OL is a rigid

nilpotent L-orbit in Lie(L). In the characteristic zero case, this is a well-known result of

Borho; see [3].

3. Classifying the rigid orbits in exceptional Lie algebras

3.1. Some historical remarks

In order to complete the picture outlined in § 2 one needs to classify all rigid orbits in the

reductive Lie algebras g = Lie(G). Of course, the general case reduces quickly to the case

where the group G is simple, and here the problem has a long history. All rigid nilpotent

orbits in Lie algebras of classical groups are described by Kraft [15] in type A and by

Kempken [14] and Spaltenstein [28] in types B,C,D. If g = sln then {0} is the only rigid

orbit in g, whilst for g = son or spn the classification is given in terms of partitions of

n. More precisely, it is proved in [15] that a nilpotent element in gln corresponding to a

partition λ of n is Richardson in a parabolic subalgebra of gln associated with the dual

partition λt . The arguments in [14] rely on Kraft’s result in a crucial way.

Although the main theorems in [14] are stated under the assumption that the base field

has characteristic 0, the proofs are based on linear algebra and the same combinatorial

description is valid in any good characteristic, i.e., for p 6= 2. In characteristic 2, nilpotent

orbits and sheets in son and spn were studied by Hesselink [12] and by Spaltenstein

[29] who conjectured that every sheet in a reductive Lie algebra over an algebraically

closed field of arbitrary characteristic should contain a unique nilpotent orbit. Of course,

confirming this would imply that the number of nilpotent orbits in g is finite. The

main results of [29] show that the conjecture holds for G classical, but the general case

remains open in bad characteristic. We mention that Spaltenstein’s conjecture makes

sense in the context of infinitesimal sheets and their coadjoint analogues (see Remark 2.1)

and confirming it would enable one to prove a natural analogue of the Kac–Weisfeiler

conjecture in arbitrary characteristic; see [24, 5.6] for detail.

For G exceptional, the rigid orbits in N (g) were first classified by Elashvili [10] under

the assumption that char(k) = 0. Furthermore, for any orbit O ⊂ N (g), Elashvili lists all

sheets of g containing O. This important result is presented in [10] in the form of tables

which were recently double-checked in [8] by using computational methods.
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3.2. Odd nilpotent elements

It was first observed by Lusztig–Spaltenstein that if char(k) is 0 or large for G then many

nilpotent orbits in g can be induced in a very natural way; see [17, Proposition 1.9]. The

goal of this subsection it to show that this result is still valid under the assumption that

G satisfies the standard hypotheses.

Let 8 be the root system of G with respect to a maximal torus T of G and let 5 be

a basis of simple roots in 8. Each orbit O ⊂ N (g) is uniquely labelled by its weighted

Dynkin diagram D which assigns to each α ∈ 5 an integer D(α) ∈ {0, 1, 2}. According

to [23, 2.3, 2.4], each such D gives rise to a cocharacter λ = λD ∈ X∗(T ∩DG) which

is optimal in the sense of the Kempf–Rousseau theory for every element of a principal

Zariski open subset of g(λ, 2). The subset, denoted earlier by g(λ, 2)ϕ , coincides with the

intersection of O with g(λ, 2). A nilpotent orbit O = O(D) is said to be odd if D(α) ∈ {0, 1}
for all α ∈ 5.

Given a weighted Dynkin diagram D we let 5′ = 5′(D) be the set of all α ∈ 5 such

that D(α) ∈ {0, 1} and denote by L = L(D) the standard Levi subgroup of G generated by

T and all unipotent root subgroups Uα with α ∈ 5′. Given a non-empty subset 50 ⊆ 5

and a weighted Dynkin diagram D0 of the standard Levi subalgebra of g associated with

50, we define D̃0 : 5→ {0, 1, 2} by setting D̃0(α) = D0(α) for all α ∈ 50 and D̃0(α) = 2
for all α ∈ 5 \50.

Proposition 3.1. The following are true:

(i) If the orbit O = O(D) is not odd then l = Lie(L(D)) is a proper Levi subalgebra of

g and O(D) = Indgl OL(e0) for some nilpotent element e0 ∈ l.

(ii) Let L ′ be the standard Levi subgroup of G associated with a non-empty subset 50
of 5 and let D0 : 50 → {0, 1, 2} be the weighted Dynkin diagram of a nilpotent orbit in

l′ = Lie(L ′). If D̃0 is the weighted Dynkin diagram of a nilpotent orbit in g then O(D̃0) =

Indgl′ OL ′(D0).

Proof. It is clear that if D(α) = 2 for some α ∈ 5 then l is a proper Levi subalgebra

of g. Set 5( j) := {α ∈ 5 | D(α) = j} where j ∈ {0, 1, 2}. If 5 = {α1, . . . , α`} and β =∑`
i=1 miαi , where mi ∈ Z, then we put νi (β) := mi for all 1 6 i 6 `. From the definition

of λ = λD it follows that g(λ, i) = l(λ, i) for i = 0, 1 and g(λ,±2) = l(λ,±2)⊕m(λ,±2)
where m(λ,±2) is the k-span of all root vectors eβ ∈ Lie(Uβ) with νi (β) = 1 for i ∈ 5(2)
and ν(β) = 0 for i ∈ 5(1).

Let e ∈ g(2, λ)ϕ and write e = e0+ e1 with e0 ∈ l(λ, 2) and e1 ∈ m(λ, 2). Since ge ⊂

g(λ,> 0) and [e, g(λ,> 0)] = g(λ,> 2) by [23, Theorem 2.3], we have that

dim ge = dim g(λ, 0)+ dim g(λ, 1) = dim l(λ, 0)+ dim l(λ, 1).

Therefore, in order to prove the first part of the proposition it suffices to show

that dim le0 = dim l(λ, 0)+ dim l(λ, 1). Indeed, in that case the orbit Indgl OL(e0) would

intersect densely with g(λ,> 2) and hence coincide with O(D).
Since 8 = 8+(5)t8−(5) it is straightforward to see that

[
l(λ,−i),m(λ, 2)

]
= 0 for

all i ∈ Z>0. It follows that the restrictions of ad e and ad e0 to l(λ,−i) coincide for all

such i . Since ge ⊂ g(λ,> 0) by [23, Theorem A] this entails le0 ⊆ l(λ,> 0).
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It is well known (and easily seen) that the restriction of κ to l is non-degenerate and the

subspaces l(λ,±i) are dual to each other with respect to κ. Since le0 coincides with the

orthogonal complement of [e0, l] with respect to the restriction of κ to l and le0 ⊆ l(λ,> 0)
by the above, the map ad e0 : l(λ, i)→ l(λ, i + 2) must be surjective for all i ∈ Z>0. From

this it is immediate that dim le0 = dim l(λ, 0)+ dim l(λ, 1) proving (i).

To prove (ii), we let λ′ and λ be the cocharacters in X∗(T ) attached to D0 and

D̃0 at the beginning of this subsection. It is immediate from the definition of D̃0
that l′(λ′, 2) ⊆ g(λ, 2) and g(λ, i)∩ l′ = l′(λ′, i) for i = 1, 2. Let V be the T -stable

subspace of g(λ, 2) complementary to l′(λ′, 2). Being an open map the first projection

pr1 : g(λ, 2) = l′(λ′, 2)⊕ V � l′(λ′, 2) takes the Zariski open subset g(λ, 2)ϕ of g(λ, 2) onto

a dense subset of l′(λ′, 2). In view of [23, Theorem 2.3], this implies that there exists

e′ ∈ OL ′(D0)∩ l
′(λ′, 2) such that e′+ v ∈ g(λ, 2)ϕ for some v ∈ V . As D̃0 is a weighted

Dynkin diagram for g, [23] also shows that the cocharacter λ is optimal for e := e′+ v and

dim ge = dim g(λ, 0)+ dim g(λ, 1) = dim l′(λ′, 0)+ dim l′(λ′, 1) = dim l′e′ .

Since it is straightforward to see that there exists a standard parabolic subgroup P =
L ′Ru(P) of G such that V ⊆ Lie(Ru(P)), we now conclude that e = e′+ v ∈ Indgl′ OL ′(D0).

This finishes the proof.

Remark 3.2. For G exceptional, the second part of Proposition 3.1 is an immediate

consequence of [20, Theorem 3(i)] which was proved by computational methods.

3.3. A sufficient condition for rigidity

Given a nilpotent element e ∈ g we denote by ce the factor space ge/[ge, ge] and set

c(ge) := dim ce. Our next result is a generalisation of [34, Proposition 11].

Proposition 3.3. Assume, as before, that G satisfies the standard hypotheses and let l =

Lie(L) be a Levi subalgebra of g. If e ∈ Indgl OL(e0) for some e0 ∈ N (l) then c(ge) >
c(le0) and dim z(ge) > dim z(le0). Furthermore, if L has no simple components isomorphic

to SLr p, where p = char(k), then c(ge) > c
(
[l, l]e0

)
+ dim z(l) and dim z(ge) > dim z(l)+

dim z([l, l]e0).

Proof. Put g[t] := g⊗k k[t] and g(t) := g⊗k k(t), where t is an indeterminate, and let

π : g[t] → g denote the canonical projection induced by the augmentation map k[t] → k.
Let P = L · Ru(P) be a parabolic subgroup of G containing L and n+ := Lie(Ru(P)). By

our assumption, dim ge = dim le0 and we may assume without loss of generality that

e = e0+ e1 for some e1 ∈ n+.

Let h ∈ z(l)reg and consider th+ e, an element of g[t]. Let G(t) be the group of

k(t)-rational points of G. The argument used in the proof of Theorem 2.3 then shows

that th+ e is G(t)-conjugate to th+ e0 (in fact, a conjugating element can be found

already in the group of k(t)-rational points of Ru(P)). From this it is immediate that

g(t)th+e ∼= le0 ⊗k k(t) as Lie algebras over k(t). It follows that

dimk(t)[g(t)th+e, g(t)th+e] = dim[le0 , le0 ],

dimk(t) z(g(t)th+e) = dim z(le0).
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Furthermore, if l has no components of type Ar p−1, our discussion in § 2.1 implies that

dim[le0 , le0 ] = dim[l, l]e0 and dim z(le0) = dim z(l)+ dim z([l, l]e0).

Put M1 := g(t)th+e ∩ g[t], M2 := [g(t)th+e, g(t)th+e] ∩ g[t] and M3 := z(g(t)th+e)∩ g[t].
Each of these is a k[t]-submodule of the free k[t]-module g[t], and it is not hard to check

that all factor modules g[t]/Mi are torsion-free. Since k[t] is a principal ideal domain

and the k[t]-module g[t] is finitely generated, it follows that all g[t]/Mi are free over k[t].
As a consequence, there exist free k[t]-submodules Ni of g[t] such that g[t] = Ni ⊕Mi
as k[t]-modules, where i = 1, 2, 3. This, in turn, shows that each Mi is free over k[t] and

rkk[t] Mi = dimk(t) Mi ⊗k[t] k(t).
It is straightforward to see that π : g[t] → g maps M1 into ge. Since e ∈ Indgl OL(e0)

we have that

dim ge = dim le0 = dimk(t) g(t)th+e = dimk(t) M1⊗k[t] k(t) = rkk[t] M1.

From this it follows that M1 has a free basis v1(t), . . . , vr (t) such that

π(v1(t)), . . . , π(vr (t)) form a k-basis of ge. For 1 6 i 6 r put vi := π(vi (t)) and observe

that

rkk[t] M2 = dim M2⊗k[t] k(t) = dimk(t)[g(t)th+e, g(t)th+e] = dim[le0 , le0 ].

Since [vi (t), v j (t)] ∈ M2 and π([vi (t), v j (t)]) = [vi , v j ] for 1 6 i, j 6 r ,

this gives dim[ge, ge] 6 dim[le0 , le0 ]. Therefore, c(ge) = dim ge− dim[ge, ge] > dim le0 −

dim[le0 , le0 ] = c(le0).

Finally, we observe that π(M3) ⊆ z(ge) and

rkk[t] M3 = dimk(t) M3⊗k[t] k(t) = dimk(t) z(g(t)th+e) = dim z(le0).

Consequently, dim z(ge) > dim z(le0). The second part of the proposition now follows from

our remarks earlier in the proof.

Proposition 3.3 gives us a useful sufficient condition for rigidity of nilpotent elements

in exceptional Lie algebras.

Corollary 3.4. Suppose G is simple and p is good for G. If e ∈ N (g) is such that ge =

[ge, ge] then e is rigid in g.

Proof. We may assume without loss that G is simply connected. For G classical

the statement follows by comparing [26, Theorem 3] with the Kempken–Spaltenstein

description of rigid nilpotent nilpotent orbits in g. (Of course, in the characteristic zero

case one can apply [34, Proposition 11] directly.)

So suppose from now that G is exceptional and p is a good prime for G. Since the Killing

form of g is non-degenerate, G satisfies the standard hypotheses. By rank considerations,

there are no Levi subgroups in G with components of type Ar p−1 for r > 2.

Suppose e ∈ Indgl OL(e0) where L is a proper Levi subgroup of G and e0 ∈ N (l). Since

c(ge) = 0 in the present case, Proposition 3.3 yields that L has a component of type

Ap−1. Then all components of L have type A. Let T be a maximal torus of L and

t = Lie(T ). We may assume that L is associated with a subset 50 of a basis of simple

roots 5 of the root system 8(G, T ). Since all components of L have type A we may
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also assume without loss that e0 =
∑
α∈51

eα for some subset 51 of 50 (possibly empty).

Let t0 := t∩ [l, l] and t1 :=
⋂
α∈51

ker (dα)e. Then t0 ∩ t1 consists of all x ∈ t0 such that

(dα)e(x) = 0 for all α ∈ 51. Since all simple components of L are simply connected,

looking at the p-ranks of the Cartan matrices associated with 5 and 50 one observes

that dim t0 = |50|, dim t1 = dim t− |51| and dim(t0 ∩ t1) = |50| − |51| unless one of the

components of 51 has type Ap−1 in which case dim(t0 ∩ t1) = |50| − |51| + 1.

If 51 does not contain components of type Ap−1 the above shows that dim t1 = |5| −

|51| > |50| − |51| = dim t0 ∩ t1. Hence, there exists h ∈ t such that h 6∈ [l, l] and [h, e0] =

0. But then le0 ) [le0 , le0 ], so that c(le0) > 1. Since this contradicts Proposition 3.3, we

see that 51 must have a component of type Ap−1. Since 50 has such a component too,

they must contain the same component of type Ap−1. Let L1 be the simple component

of L generated by the root subgroups U±α with α ∈ 51. Then L1 ∼= SLp as algebraic

groups. The Lie algebra l acts on its ideal l1 := Lie(L1) by derivations, giving a natural

Lie algebra homomorphism ψ : l→ Der(l1). Since l1 ∼= slp we may identify Der(l1) with

pglp. Our earlier remarks now imply that ψ(e0) is a regular nilpotent element in pglp and

hence has an abelian centraliser in pglp. As ψ maps le0 onto a non-zero subalgebra of the

centraliser of ψ(e0) in pglp, the Lie algebra le0 has a non-trivial abelian quotient. But

then le0 is not perfect, i.e., c(le0) > 1. Since this contradicts Proposition 3.3, the element

e is rigid in g.

3.4. Optimal cocharacters of nilpotent elements contained in regular

subalgebras

In this subsection, we assume that G is an arbitrary connected reductive group defined

over an algebraically closed field of good characteristic. A connected reductive subgroup

K of G is called regular if it contains a maximal torus of G. We denote by k the Lie

algebra of K . If T is a maximal torus of G contained in K then the root system 80 of

K with respect to T identifies with a root subsystem of the root system 8 = 8(G, T )
and k = t⊕

∑
α∈80

gα where t = Lie(T ). Since k is a restricted Lie subalgebra of g any

nilpotent element of k is contained in N (g), the nilpotent cone of g.

If char(k) = 0 then a standard argument involving sl2-triples shows that any non-zero

nilpotent element e ∈ k admits a rational cocharacter λ : k×→ G which is optimal for e
in the sense of the Kempf–Rousseau theory and has the property that λ(k×) ⊂ K . Our

next goal is to show that this result still holds under our assumption on k. Given a Zariski

closed subgroup H of G we write X∗(H) for the set of all rational cocharacters λ : k×→ H
and we denote by PH (λ) the parabolic subgroup of H associated with λ ∈ X∗(H). If e is a

non-zero nilpotent element of k then we denote by 3̂K (e) (respectively, 3̂G(e)) the set of

all λ ∈ X∗(K ) (respectively, λ ∈ X∗(G)) which are optimal for e regarded as a K -unstable

element of k (respectively, a G-unstable element of g).

Proposition 3.5. If K is a regular reductive subgroup of G and p = char(k) is a good prime

for G then for any non-zero nilpotent element of e ∈ k we have the inclusion 3̂K (e) ⊆
3̂G(e).
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Proof. In proving this proposition we may assume without loss of generality that K is

a maximal connected reductive subgroup of G. Thanks to [22, Lemma 14] we may also

assume that G is a semi-simple group of adjoint type. Let 8 be the root system of G
with respect to a maximal torus T contained in K and let 80 be the set of roots of K
with respect to T . The maximality of K then shows that 80 is a maximal root subsystem

of 8. Choose a basis of simple roots 5 in 8 and let α̃1, . . . , α̃s be all highest roots of 8

with respect to 5 (here s is the number of the simple components of G). For 1 6 i 6 s
write α̃i =

∑
α∈5 n(α, i)α. In view of the Borel–de Siebenthal theorem, no generality will

be lost by assuming that either K is a maximal standard Levi subgroup of G or there

exist α0 ∈ 5 and a prime number q dividing n(α0, i0), where i0 is the unique index j 6 s
for which n(α0, j) 6= 0, such that 80 = {γ =

∑
α∈5 rγ (α)α ∈ 8 | q divides rγ (α0)}.

It is well known that there is a canonical duality 〈· , ·〉 between X∗(T ) and the lattice

of rational characters X∗(T ). Let {$∨α | α ∈ 5} ⊂ X∗(T ) be the system of fundamental

coweights corresponding to 5 ⊂ X∗(T ). It has the property that 〈$∨α , β〉 = δα,β for all

α, β ∈ 5. Since G is a group of adjoint type, for every α ∈ 5 there is a 1-parameter

subgroup $∨α (k
×) in T such that

(Ad$∨α (t))(eγ ) = trγ (α)eγ (∀γ ∈ 8, ∀eγ ∈ gγ , ∀ t ∈ k×). (5)

Since p is a good prime for G we have that q 6= char(k). Hence, k× contains a qth primitive

root of 1. Thanks to (5) and the preceding discussion this implies that T contains an

element σ such that k coincides with gσ , the Lie algebra of the fixed point group Gσ .

Let λ0 ∈ 3̂K (e) and λ ∈ 3̂G(e). As k = gσ and Ge ⊂ PG(λ) by the optimality of PG(λ)

it must be that σ ∈ PG(λ). As T ⊂ K , the element σ lies in the centre of K . As K
is connected, the latter is contained in any parabolic subgroup of K . So σ ∈ PK (λ0) ⊂

PG(λ0). But then σ belongs to the connected group PG(λ)∩ PG(λ0) and therefore lies

in a maximal torus of PG(λ)∩ PG(λ0); we call it T ′. Note that T ′ ⊂ K because T ′ is a

connected group commuting with σ .

Since T ′ is a maximal torus of PG(λ), the set X∗(T ′)∩ 3̂G(e) is non-empty; see [23,

Theorem 2.1(iii)], for example. We claim that X∗(T ′)∩ 3̂G(e) ⊂ 3̂K (e). To prove this we

adopt the notation and conventions of [23, 2.2] and recall that there exists λ′ ∈ X∗(T ′)∩
3̂G(e) for which m(λ′, e) = 2; see [23, Theorems 2.3(i) and 2.7]. Since λ′ ∈ 3̂G(e) we have

that
m(λ′, e)
‖λ′‖

>
m(µ, e)
‖µ‖

(∀µ ∈ 3̂K (e)).

But it also follows from [23] that there is a µ′ ∈ 3̂K (e) for which m(µ′, e) = 2 (here we

regard e as an element of k). From this it is immediate that λ′ ∈ 3̂K (e). Since the quantity

m(µ, e)/‖µ‖ is independent of the choice of µ ∈ 3̂K (e) the claim follows and completes

the proof.

Working over C, de Graaf and Elashvili determine the weighted Dynkin diagram of the

unique nilpotent orbit contained in a sheet S of an exceptional Lie algebra gC and give

a nice representative e0,C =
∑
γ∈0 eγ,C in that orbit. Here 0 = 0(S) is a subset of roots

of the root system 8 of gC and eγ,C is a root vector of gC corresponding to γ ∈ 8. Since

each set 0 consists of linearly independent roots, the GC-orbit of e0,C is independent of

the choices of root vectors eγ,C (in the sense that each of them can be rescaled). In [8],
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the roots in each set 0 are labelled by their positions in the ordering of positive roots

used in GAP4.2

To each set 0 de Graaf and Elashvili assign a diagram D(0). Specifically, the number

of nodes of D(0) equals the cardinality of 0 and the nodes depicting distinct γ, γ ′ ∈ 0

are linked by 〈γ, γ ′〉 · 〈γ ′, γ 〉 edges. The edges are solid (respectively dotted) if 〈γ, γ ′〉 is

negative (respectively positive). If 8 has roots of two different lengths then the nodes of

D(0) corresponding to long roots of 8 are coloured in black.

Since g = Lie(G) contains a natural analogue e0 of e0,C we wonder whether the

nilpotent orbits of e0 and e0,C have the same weighted Dynkin diagram. In the next

section, we give a positive answer to this question by computational methods, but our

next result indicates that in many cases such computations can be avoided.

Corollary 3.6. Suppose that p is a good prime for G, all roots in 8 have the same length,

and 0 is such that γ − γ ′ 6∈ 8 for all distinct γ, γ ′ ∈ 0. If D(0) is a disjoint union of

Dynkin graphs then the nilpotent orbits in g and gC containing e0 and e0,C, respectively,

have the same labels and dimensions.

Proof. We may assume that 8 is the root system of G with respect to a maximal torus

T of G and 0 is contained in the positive system 8+(5) associated with a basis of simple

roots 5 of 8. Let W0 be the subgroup of the Weyl group W (8) generated by all reflections

sγ with γ ∈ 0 and put 8(0) := {w(γ ) | w ∈ W0, γ ∈ 0}. Using our assumptions on 0 it

is straightforward to see that 8(0) = 8+(0)t−8+(0) where 8+(0) consists of roots in

8 which can be presented as linear combinations of elements in 0 with coefficients in

Z>0. If follows that 8(0) is a root system in the Q-span of 0 and 0 is a basis of simple

roots in 8(0).

Let K be the connected subgroup of G generated by T and all root

subgroups U±γ with γ ∈ 8(0). The preceding discussion shows that the quadruple(
X∗(T ),8(0),8(0)∨, X∗(T )

)
is a root datum for K . In particular, this implies that 8(0)

is the root system of K with respect to T . Since 0 is a basis of simple roots of8(0), we now

see that e0 is a regular nilpotent element of the Lie algebra k = Lie(K ). Proposition 3.5

shows that the set 3̂K (e0) consists of optimal cocharacters of e0 ∈ g. On the other hand,

it is well known that 3̂K (e0) contains a unique element λ =
∑
γ∈0 aγ γ ∨ ∈ X∗(T ) with

aγ ∈ Z which satisfies the conditions 〈λ, γ 〉 = 2 for all γ ∈ 0. Moreover, the coefficients

aγ are independent of p and λ lies in 3̂GC(e0,C) when regarded as an element of X∗(GC).
In view of [23, 2.4] this yields that the nilpotent orbits O(e0) ⊂ g and O(e0,C) ⊂ gC have

the same labels and dimensions.

3.5. Comparing rigid orbits in g and gC

From now on we assume that G is a simply connected algebraic group of type G2, F4, E6,

E7 or E8 and denote by GC the complex counterpart of G. We identify the root system

8 of G with that of GC and let 5 be a basis of simple roots. Since p is good for G,

the nilpotent orbits in g and gC = Lie(GC) are parametrised by their weighted Dynkin

2We are grateful to Simon Goodwin for bringing this to our attention.
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diagrams D : 5→ {0, 1, 2}. We let OC(D) be the nilpotent orbit in gC corresponding to

D. It follows from [23, Theorem 2.3], for example, that dimk O(D) = dimCOC(D). We

shall denote this number by N (D).
Combining [7] and [8] with the results of the previous subsection we obtain the

following:

Lemma 3.7. Let D : 5→ {0, 1, 2} be a weighted Dynkin diagram. If the orbit OC(D) is

rigid in gC then the orbit O(D) is rigid in g.

Proof. Suppose OC(D) is rigid in gC and pick e′ ∈ OC(D) and e ∈ O(D). It follows from

[7] that either the centraliser of e′ in gC is perfect or OC(D) has one of the following

types:

(a) Ã1 in type G2;

(b) Ã2+A1 in type F4;

(c) (A3+A1)
′ in type E7;

(d) A3+A1, A5+A1 or D5(a1)+A2 in type E8.

If the centraliser of e′ in gC is perfect then it follows from Table 1 that the same holds

for the centraliser of e in g. In that case the orbit O(D) is rigid in g by Corollary 3.4.

If O(D) is listed in parts (a), (c), (d) then analysing the tables in [6, pp. 401–407] one

finds that either O(D) is the only orbit of dimension N (D) in g or G is of type E8 and

O(D) is one of A5+A1 or D5(a1)+A2. If O(D) is the only orbit of dimension N (D) in

g then it cannot be induced from a proper Levi subalgebra, because otherwise the same

would be true for OC(D) by Theorem 2.8. In type E8, there are two nilpotent orbits of

dimension 202 and they have types A5+A1 and D5(a1)+A2. Moreover, both are rigid

in characteristic 0 by [8]. Therefore, their counterparts in N (g) cannot be induced from

proper Levi subalgebras by Theorem 2.8.

Finally, let O(D) be as in part (b). Then N (D) = 36 and c(ge) = 1 by Table 3. Suppose

for a contradiction that the orbit O(D) is induced from a nilpotent orbit O0 in a proper

Levi subalgebra l = Lie(L) of g. Since in the present case G has type F4 and p is good for

G, the Levi subgroup L cannot have components of type Ar p−1. Applying Proposition

3.3 we then get c([l, l]e0)+ dim z(l) 6 1 which implies that dim z(l) = 1 and c([le0 , le0 ]) = 0
for any e0 ∈ O0. Since L has no components of exceptional types, the orbit O0 must

be rigid in l by [26, Theorem 3(i)]. Combining Theorem 2.8 and Proposition 2.5 we

conclude that O(D) lies in a sheet of g of dimension N (D)+ dim z(l) = 37. But Theorem

2.8 also shows that there is a bijection S → SC between the sheets of g and gC such that

dimk S = dimC SC for all sheets S of g. By [8, Table 10], there exists only one sheet of

dimension 37 in gC and the nilpotent orbit contained in it has type B2. Using Proposition

3.1(ii) it is not hard to observe that the orbit of that type in g is induced from the minimal

nilpotent orbit in a Levi subalgebra of type C3. In view of Remark 2.6 this implies that

O(D) cannot lie in the unique sheet of dimension 37 in g. By contradiction the result

follows.

We are now in a position to prove one of the main results of this paper:
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Theorem 3.8. The orbit O(D) is rigid in g if and only if the orbit OC(D) is rigid in

gC.

Proof. Let D : 5→ {0, 1, 2} be a weighted Dynkin diagram such that the orbit O(D) is

rigid in g. In view of Lemma 3.7 we need to show that the orbit OC(D) is rigid in gC. So

suppose OC(D) is induced from a proper Levi subalgebra of gC. Then O(D) 6= {0} and

thanks to Proposition 3.1(i) we may assume that D(5) = {0, 1}. If OC(D) is the only

orbit of dimension N (D) in gC then Theorem 2.8 implies that the orbit O(D) must be

induced in g.

Thus, we may assume from now that the orbit OC(D) is odd, induced, and there are

at least two nilpotent orbits of dimension N (D) in gC. Looking at the tables in [6, pp.

401, 402] one finds out that this never happens in types G2, F4 and E6. In type E7, there

exist only two orbits fulfilling these conditions, namely, A3+ 2A1 and D4(a1)+A1. In

type E8 we have to examine more closely the following orbits: A4+A1, A4+A2+A1,

D6(a2), E6(a3)+A1, A6+A1, A7 and D7(a2).

If G is of type E8 and O(D) has type A4+A1 then there are two nilpotent orbits in

g (and gC) of dimension N (D) = 188. One of these orbits is rigid in gC and hence in g

by Lemma 3.7 (it has type 2A3). On the other hand, combining Theorem 2.8 with [8,

Table 8] one observes that g must have an induced orbit of dimension 188. This rules

out the case where O(D) has that type. Looking at the diagrams D(0) attached in [8]

to the orbits labelled A3+ 2A1 in type E7 and A4+A2+A1, E6(a3)+A1, A6+A1 and

A7 it type E8 one finds out that they satisfy the conditions of Corollary 3.6. In view of

Proposition 3.5 [8] this means that these orbits cannot be rigid in g.

Since there was no obvious way to deal with remaining three cases in types E7 and

E8 these have been checked through GAP. As our calculations in GAP in fact prove the

stronger result of Theorem 1.4 without the need to use the present result, we leave the

details of this calculation until § 4.2.

4. Further computations with nilpotent orbits

In this section, we describe routines performed in GAP which extend those of [7] and [8]

to positive characteristic, in particular, justifying the tables at the end of the document.

The basic problem in obtaining results in arbitrary characteristic is to reduce to a finite

list the prime characteristics which must be considered separately. For this, the idea is

always to produce an integral matrix such that it encodes this list via the prime divisors

of its elementary divisors.

4.1. Nilpotent orbit representatives

For our calculations we require (i) a list of nilpotent orbit representatives for bad primes;

(ii) a list of orbit representatives for good primes with associated cocharacters.

Those in (i) are provided by [19] or [30] (for F4). Regarding notation, particularly that

which appears in the tables at the end of the paper, the labels for the nilpotent elements
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used are now quite standard and consistent with [19]. A nilpotent orbit has type Xr if

it is regular in a Levi subalgebra whose root system has type Xr , using + to indicate a

union of irreducible root systems. Where there are short roots in the root system of g, we

use ˜ to indicate a Levi subalgebra with such roots. If a nilpotent orbit is distinguished

in a Levi subalgebra of the same type it is labelled Xr (ai ) or Xr (bi ) for some value i .
Occasionally in E7, there are two conjugacy classes of Levi subalgebras giving rise to two

regular nilpotent orbits and these are denoted, for example, as (A5)
′ and (A5)

′′. Finally,

there are extra orbits which appear over fields of characteristics 2 and 3 and have no

analogue over C. These are closely related to certain orbits of type Xr , for some X and

r , and are denoted X (p)r for p being 2 or 3.

(ii) For this we use [20] which provides all the data we require.

Since there are a number of errors in the literature related to nilpotent orbits, we have

made reasonable attempts to check the validity of the orbit representatives we use. For

example, we checked that they had the same Jordan blocks as found in [32, 33] (with

certain exceptions3) and [16] (in the group case). For the exceptional groups considered

by [32], the paper only deals with the elements of the restricted nullcone Np(g) = {x ∈
g | x [p] = 0}, but in [33] the authors refer to an unpublished result of Lawther which treats

the case of an arbitrary nilpotent element of g. Therefore, our computations provide an

independent verification of the Jordan block structure of those nilpotent elements x ∈ g

for which x [p] 6= 0 (of course, such elements exist only when p is less than or equal

to the Coxeter number of G). It turned out that as in the group case (investigated

in [16]) there are no coincidences in Jordan block decompositions of representatives of

different nilpotent orbits in g except when p = 7 where the Jordan block decompositions

of nilpotent elements of type B3 and C3 in Lie algebras of type F4 are the same. As this

result is likely to be useful in future work, we state it formally.

Theorem 4.1 (McNinch, Lawther). Let G be a connected reductive k-group satisfying

the standard hypotheses and g = Lie(G). Then the Jordan block structure of a nilpotent

element of g on the adjoint module coincides with that of a unipotent element of G with

the same Dynkin label.

Proof. Since G satisfies the standard hypotheses, p is a good prime for G. Our discussion

in § 2.1 shows that no generality will be lost by assuming that either G is a simple

exceptional algebraic group or G is a classical group of type other than Ar p−1 or G =
GLr p. In the first case the theorem follows from Lawther’s and our computer-aided

calculations whilst in the other two cases it was deduced by McNinch [21] from earlier

results of Fossum on formal group laws; see [11].

It would be interesting to find a non-computational and case-free proof of Theorem 4.1.

Finally, all our results recover those of De Graaf for generic prime characteristic.

3There are a number of errors in the representatives and associated Jordan blocks listed in [33]. Some of
these relate to the transcription of representatives from MAGMA into LaTeX; in addition, representatives
of type Dr (ai ) and E8(b6) are used which break down in certain low characteristics. This means that
there are a number of mistakes in the calculation of adjoint Jordan blocks of op. cit. for types E6, E7
and E8 for p = 2 and p = 3. Corrected Jordan blocks for these low characteristics are expected to appear
in a forthcoming publication by the second author.
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4.2. Induced nilpotent representatives

Here we show that the nilpotent orbit representatives given in the tables of [8] are still

valid in good characteristic and use the results of the previous section to prove this. Let

e ∈ gZ be a nilpotent orbit representative as given in the tables of [8]. We proceed by

having GAP compute the adjoint matrix of each representative over Q according to a

Chevalley basis of gZ. Then a routine computes the integral divisors of successive powers

of the matrix. For any prime dividing the integral divisors we know that the Jordan block

structure of ad e for e ∈ g = gZ⊗Z k differs from that in characteristic zero. Let this finite

list of primes be S. If p 6∈ S then since the Jordan block structure of ad e determines it

in good characteristic by [16], we are done in this case. For each good prime of S we

have GAP compute the Jordan block structure separately. We find in all cases that the

Jordan block structure is the same as that of a nilpotent element in gC = gZ⊗ZC with

the same label, as listed in [16].4

Proof of Theorem 1.4. Each nilpotent element of [8] is of the form e0 = e0+ e1 where

e0 ∈ l is a rigid nilpotent element of l and e1 ∈ n for n the nilradical of a parabolic

subalgebra p = l+ n of g. The orbit dimension dimOL(e0) = dim[l, e0] is given by taking

the rank of the matrix formed from the coefficients of the images under ad e0 of a

basis of l contained in gZ. Hence, after reduction modulo p, the orbit dimension can

only go down. Since by 2.8 the dimension of the orbit Indgl OL(e0) is given by the

formula dim g− dim ge = dim g− dim le0 we know that if dim ge is independent of good

characteristic then e is indeed in the nilpotent orbit which intersects densely with

OL(e0)+ n in good characteristic. But our calculation of the Jordan blocks of ad e0
(described in § 4.1) shows that this is the case for all 0’s listed in [8] and, moreover, the

orbit O(e0) always has the same label as its counterpart O(e0,C) ⊂ gC. The exceptional

case where p = 7 and g is of type F4 does not cause us serious problems because g contains

only two sheets of dimension 44 both of which have rank 2 (this is immediate from [8,

Table 10] and Remark 2.9). Proposition 3.1(ii) implies that one of them contains the

orbit of type B3. On the other hand, a closer look at [8, Table 10] reveals that the sheets

of dimension 6= 44 cannot contain nilpotent orbits of dimension 42. This yields that the

other sheet of dimension 44 contains the orbit of type C3 (as in the characteristic 0 case).

Next we observe that e0 = e00 and e1 = e01 for some full subgraphs 00 and 01 of 0.

Looking through the tables in [8] one finds out that if G is a group of type E then in all

cases except two 00 is a disjoint union of Dynkin graphs (possibly empty). Specifically,

the two exceptional cases occur when G has type E8 and e has type E7(a5) or D5(a1)+A1.

In both cases l contains a unique nilpotent orbit whose dimension equals that of OL(e0).

A close look at the tables in [8] shows the same holds for groups of type G2 and F4 in

all cases of interest. Thanks to Corollary 3.6 this implies that the L-orbit of e0 = e00 has

the same label as the LC-orbit of e00,C.

4Our calculation threw up a misprint in [8]. Specifically, the first nilpotent representative for the induced
nilpotent orbit E7(a4) in E8 has 27 over two different nodes of the Dynkin diagram. de Graaf kindly redid
the calculation and found that the right-most 27 should be a 44, and the 44 (just below the wrong 27)
should be a 14.
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Given a nilpotent orbit O ⊂ N (g) we define

d(O) := Card {S | S is a sheet of g containing O}

and denote by d(OC) the number of sheets of gC containing the nilpotent orbit having

the same Dynkin diagram as O. The preceding discussion in conjunction with [8] implies

that d(O) > d(OC) for any orbit O ⊂ N (g). Since every sheet of g contains a unique

nilpotent orbit (Remark 2.6) the total number of sheets of g equals
∑

O⊂N (g) d(O).
Since Theorem 2.8 established a bijection between the sheets of g and gC, we now deduce

that d(O) = d(OC) for any orbit O ⊂ N (g). This completes the proof of Theorem 1.4.

4.3. (Strong) reachability

We will reduce the problem of classifying the (strongly) reachable elements to a finite

calculation which can be performed in GAP. For this we will (i) exhibit a bound on the

number of characteristics where the result may differ from the situation in characteristic

zero established by de Graaf, then (ii) give a method to deal with any specific prime.

For (ii) we reduce to a calculation over the prime field Fp. Observe that the Lie algebras

we deal with are defined over Z. That is, there is a Lie algebra gZ over the integers with

a basis B, and associated structure constants, such that gp := gZ⊗Z Fp and g = gp ⊗Fp k
with g and gp obtaining a basis and associated structure constants by taking B together

with its structure constants reduced modulo p.

For this, B can be taken as a Chevalley basis {xα | α ∈ 8} ∪ {hα | α ∈ 5} of gZ. Then we

have give a complete set of nilpotent representatives over k in terms of linear combinations

of elements B. Since the coefficients are all over Z, these nilpotent elements are also

elements of gp by reduction mod p. Now since ge is defined over Fp, we may write

ge = (gp)e⊗Fp k. Then in order to establish reachability of a nilpotent element e, it

suffices to check whether we have e contained in the derived subalgebra of (gp)e.

This calculation can then be performed by GAP.

For (i), we assume that p is a good prime for g, any bad primes being dealt with in

case (ii). We work over the integers, i.e., with the admissible Z-form gZ (here we use our

assumption that the group G is simply connected). Fix a nilpotent element e. First, we

ask GAP to calculate a basis Be of (gC)e contained in gZ in terms of linear combinations

of elements of B. By the theory of nilpotent elements it is possible to take this basis such

that reduction of the coefficients modulo p also gives a basis of (gp)e.

Next we take the product of each pair of elements of Be and form a matrix M of the

B-coefficients of the resulting vectors. Then the dimension of [(gp)e, (gp)e] is the rank

of the reduction modulo p of the matrix M . Thus, if we take p bigger than any of the

elementary divisors of M the result will agree with that over Z. Similar remarks apply

to the subalgebra Fpe+ [(gp)e, (gp)e] of (gp)e whose dimension can be determined by

calculating the rank of the matrix M ′ which is formed by adjoining the row of coefficients

of e itself to M . Thus, for p bigger than any of the elementary divisors of M and M ′, we

have that e is reachable over k if and only if it is reachable over a field of characteristic

0. More precisely, we establish that the only exceptional primes are less than or

equal to 7.
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4.4. Almost perfect centralisers and c(ge) = dim(ge/[ge, ge])

For a given prime, identifying the orbits which have almost perfect centralisers (i.e.,

ge = [ge, ge] + ke) is a straightforward calculation in gp = gZ⊗Z Fp with GAP: we simply

ask GAP to list those nilpotent elements e for which

dim(gp)e = dim[(gp)e, (gp)e] + 1

and

dim(Fpe+ [ge, ge]) = dim(gp)e.

This process deals in particular with the bad primes. The other possible exceptional

primes were already calculated: if dim[(gp)e, (gp)e] or dim(Fpe+ [(gp)e, (gp)e]) differs

from the analogous dimension over characteristic zero, then we established in § 4.3 that

p 6 7.

Much the same applies to calculating c(ge). Again one need only look in characteristics

at most 7, where the calculation becomes finite, hence easily performed in GAP.

4.5. Panyushev property

Let gQ = gZ⊗ZQ, a Q-from of gC. A nilpotent elements e ∈ O(D) is said to satisfy

Panyushev’s property if the nilradical ge(λD,> 1) of ge is generated by ge(λD, 1) as a Lie

algebra. Since this definition relies on the so-called associated cocharacters which do not

exist for all nilpotent elements in bad characteristic, Panyushev’s property is particularly

interesting under our assumptions on G.

We assume that G is an exceptional group and p is a good prime for G. From [20] we

take a nilpotent element e ∈ g and associated cocharacter τ ∈ X∗(G). For e ∈ O(D) this

cocharacter coincides with λD and it is optimal for e in the sense of the Kempf–Rousseau

theory by one of the main results of [23]. Let 8 be the root system of G associated with

a maximal torus containing τ(k×). We start by working over rationals and ask GAP

to compute the root vectors in gQ(1) := gQ(τ, 1). Let B be a basis of gQ containing a

set of root vectors {eα |α ∈ 8}. Now we form a (dim gQ(τ, 1)× dim gQ)-matrix M of the

B-coefficients of [b, e] with b ∈ B∩ gQ(1). Then (gQ)e(1) coincides with the kernel of

ad e : gQ(1)→ gQ which for GAP is {v ∈ QdimgQ(τ,1) | v ·M = 0}. Since p is good for G,

we have that (gp)e = (gZ)e⊗Z Fp and (gp)e(1) = (gZ)e(1)⊗Z Fp. In particular, (gp)e(1)
is characteristic independent.

Next we generate a Lie subring m of gZ from a Q-basis of (gQ)e(1) contained in gZ
and take a basis Bm of the Q-span of m that lies in gZ. We then form the matrix of

B-coefficients of the elements of Bm and take elementary divisors again. If p is bigger

than any of these elementary divisors then the rank of this matrix will give the dimension

of the Lie subalgebra of gp generated by (gp)e(1). Since it turned out that all elementary

divisors appearing in these calculations involve bad primes only, we conclude that the

Panyushev property is independent of good characteristic.

Remark 4.2. There are six rigid nilpotent orbits in exceptional Lie algebras which do

not satisfy Panyushev’s property in good characteristic. These orbits are Ã1 in type G2,

Ã2+ A1 in type F4, (A3+A1)
′ in type E7, and A3+A1, A5+A1, D5(a1)+A2 in type E8.

The above routine was applied to these orbits too in order to determine the smallest
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number r for which
∑r

i=1 ge(τ, i) generates the Lie algebra ge(τ,> 1). It turned out that

r = 2 in type G2, r = 4 in type E8 when e has type A5+A1 and r = 3 in the other

four cases. All elementary divisors that we encountered in the process turned out to be

divisible by 2 and 3 only.
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