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SUMMARY
This paper presents a method for synthesising the joint
profiles for a planar five-link biped walking on flat ground.
Both single support and double support phases are con-
sidered. The joint profiles have been determined based on
constraint equations cast in terms of step length, step period,
maximum step height and so on. A special constraint
equation is developed to eliminate the destabilising effect of
the impact (heel strike) occurring in the system. Other
advantages of our joint profiles include system stability
during the double support phase and repeatability of gait.
The method of formulating compatible trajectories of
the hip and swing limb is employed. We demonstrate the
advantages of this method over the one of direct formulation
of the joint profiles in that it not only significantly simplifies
the problem by de-coupling the biped into three subsystems
(a trunk and two lower limbs), but also allows the
incorporation of certain constraints without drastically
increasing the complexity of the constraint equations. The
effectiveness of the proposed method is demonstrated using
computer simulations. We believe that this research can
provide a valuable tool for generating motion patterns of
bipedal gait.

KEYWORDS: Biped robot; Gait cycle; Single and double support
phases; Joint profile generation; Hip trajectory; Swing limb
trajectory; Stability and repeatability of walking.

1. INTRODUCTION
Bipedal robots are a class of walking robots that imitate
human locomotion. They have greater mobility than con-
ventional movable robots, especially when climbing stairs,
stepping over obstacles or walking on uneven surfaces. The
design of joint profiles is a crucial step in the development
of bipedal robots; however, there is a lack of systematic
methods for synthesizing the joint profiles and most of the
previous work has been based on trial and error.1–3

Vukobratovic et al.4 and Zerrugh5 have studied locomotion
by using human walking data to prescribe the motion of the
lower limbs. Two immediate problems arise when using
human walking data directly. Firstly, a complex dynamic
model is required. Secondly, the designer has no freedom to
synthesize the joint profiles based on tangible gait character-
istics such as walking speed, step length and step elevation.

None of the aforementioned approaches give a well-defined
method for the design of joint profiles. Hurmuzlu6 devel-
oped a parametric formulation that ties together the
constraint functions and joint profiles. The constraint
functions are cast in terms of coherent physical character-
istics of gait; these functions have been used to generate the
joint profiles of a 5-link biped during a single support phase.
In light of prevailing locomotion literature, Hurmuzlu’s
method6 fills the gap in the design of walking machines
regarding the specification of constraint functions. However,
to have continuous and repeatable gait, the postures at the
beginning and end of each step have to be identical. This
requires the selection of specific initial conditions, con-
straint functions and their associated gait parameters. This
selection can be extremely challenging, if not impossible.
This issue has not been addressed in Hurmuzlu’s work.6 Ma
and Wu7 developed a general necessary and sufficient
condition for repeatable gait where the highest order of the
differential equations among the constraint equations is one.
This condition provides a guideline for selecting constraint
functions and their associated gait parameters in the context
of producing repeatable gait based on Hurmuzlu’s method.6

However, finding repeatable gait when the constraint
equations involve higher order differential equations still
remained unsolved. The restriction of creating repeatable
gait and the lack of rules for selecting proper initial angles,
constraint functions and their gait parameters have severely
limited the applications of Hurmuzlu’s method.6

The above problem of selecting proper initial conditions
to generate repeatable gait can be remedied by using
numerical methods by approximating the joint angles by
Fourier series expansion,8 time polynomial functions9, 10 or
periodic spline interpolation.11, 12 One advantage of this
technique is that extra constraints, such as repeatability of
gait, can be easily included by adding the coefficients to
the polynomials. Disadvantages include the facts that the
computing load is high for large bipedal systems and
the selection of the polynomials may impose undesirable
features to the joint profiles.

Chow and Jacobson13 studied optimal biped locomotion
and first drew attention to the hip motion and suggested that
the hip trajectory be synthesized prior to joint profiles. The
advantage of this method is the de-coupling of the biped
into three sub-systems – a torso and two lower limbs.
Although this method has been used to synthesize walking
patterns for bipeds,12 it has not attracted much attention.
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Since a biped robot tips over easily, it is important to
consider stability during the design of joint profiles.
Methods have been proposed12, 14, 15 for synthesizing walking
patterns based on the concept of the zero moment point
(ZMP).4 The ZMP is defined as the point on the ground
about which the sum of the moments of all the active forces
equals zero. If the ZMP is within the convex hull of all
contact points between the feet and the ground, the bipedal
robot can walk. In previous work,14, 15 the ZMP trajectory
was first designed and joint profiles were then derived. The
advantage of this technique is that the stability can be
guaranteed. However, not all desired ZMP can be achieved
due to limited hip motion and, even if it can be achieved,
large hip acceleration often results from the desired ZMP,
which makes the control task difficult. Another problem is
that the ZMP method cannot be used for the single support
phase unless the supporting foot is modeled as a separate
link.

From prevailing locomotion literature on joint profile
generation for bipedal walking, it has been noted that
several important issues need to be investigated further.
Firstly, most studies have focused on motion generation
during a single support phase, while the double support
phase has received less attention. The double support phase
plays an important role in keeping a biped stable walking at
a wide range of speeds, and thus cannot be neglected.
Secondly, impact, occurring at the transition between the
single support and double support phases, has a significant
effect on the stability of the bipedal system. Thus, it is
important to synthesize gait patterns that minimize the
effects of the impact on the joint profiles. Other important
issues, which need to be considered in gait design, include
system stability and repeatability of gait.

The objective of this paper is to propose a method for
synthesizing joint profiles. The important issues, which have
not been previously investigated properly, will be con-
sidered. We will revisit the method of designing compatible
hip and swing limb trajectories, which has the advantage of
simplifying the problem by de-coupling the biped into three
subsystems. The joint profiles for a full gait cycle including
both single support and double support phases will be
designed. A special constraint is imposed on the hip and
swing limb motion such that smooth joint profiles will be
generated at all times, including the transition between the
single and double support phases to eliminate the destabiliz-
ing effects caused by the impact. The constraint functions
and gait parameters are to be chosen to generate repeatable
gait and, furthermore, certain gait parameters will be
selected such that the largest stability region during the
double support phase will be obtained. The paper is
organized as follows. In Section 2, we formulate the
constraints for the hip and swing limb trajectories for both
the single support and double support phases, and solve
these trajectories using time polynomials. The explicit
relationship among the joint angles and the hip and swing
tip trajectories is also given in this section. Simulation
results are presented in Section 3 to demonstrate the
proposed method. Conclusions and further extensions are
given in Section 4.

2. DESIGN OF JOINT PROFILES
2.1. Walking cycle
The bipedal system studied in this work has five rigid links
connected by pin joints as shown in Figure 1. One link
represents the upper body and two links are used for each
lower limb, representing a thigh and shank, where li

(i=1, 2, . . ., 5) are the link lengths that l4 = l2 and l5 = li, and
�i (t) (i=1, 2, . . ., 5) is the absolute angle between the ith link
and the vertical plane. The biped moves steadily in the
sagittal plane; that is, the joint profile is continuous and
repeatable. There is an actuator located at each joint.
Although the feet are not included in the model, we assume
that a torque can be applied at each ankle.

A complete step cycle can be divided into a single
support phase and a double support phase. The single
support phase is characterized by one limb (the swing limb)
moving in the forward direction while another limb (the
stance limb) is pivoted on the ground. This phase begins
with the swing limb tip leaving the ground and terminates
with the swing limb touching the ground. Its time period is
denoted as TS. In the double support phase, both lower limbs
are in contact with the ground while the body moves
forward slightly. The time period of this phase is denoted as
TD. In the following step, the roles of the swing and stance
limbs are exchanged.

It has been noted that the joint profiles can be determined
if compatible trajectories for the hip and the tip of the swing
limb can be prescribed. The compatible hip and swing limb
trajectories should satisfy the condition that the distance
between the hip and each tip of the lower limb is less than
the length of the whole limb and greater than the difference
between the lengths of the shank and thigh at any time. This
condition guarantees the existence of the joint profiles
during the whole walking period. If we further assume that
both knees can only bend in one direction, the joint profile
will be uniquely determined by the trajectories of the hip
and swing limb.

From the viewpoint of natural human walking, it is
desirable that the torso is kept directly upward. Giving the
trajectory �3(t)=0 in both single and double support phases,
our main task here is to synthesize the joint profiles of the
lower limbs. To satisfy bipedal walking under various
ground conditions, it is appropriate to design the trajectory
for the tip of the swing limb first, followed by the
compatible hip trajectory. Note that the solution is valid

Fig. 1. Five-link biped model.
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when the no-slip condition at the contact point is satisfied,

i.e. �Fy

Fx

� < �, where, � is the coefficient of friction between

the lower limb tip and the ground.

2.2. Trajectories of the swing limb
The trajectory of the tip of the swing limb during the single
support phase is a significant factor in bipedal walking. In
this section, we develop constrained equations that can be
used for solving the swing limb trajectory. This trajectory is
denoted by the vector Xa: (xa(t), ya(t)), where xa(t) and ya(t)
are the coordinates of the swing limb tip position with
the origin of the coordinate system located at the tip of the
supporting limb (see Figure 2). We use a third order
polynomial and a fifth order polynomial functions for xa and
ya, respectively. They are shown below:

Xa: �xa(t)=a0 +a1t+a2t
2 +a3t

3

ya(t)=b0 +b1t+b2t
2 +b3t

3 +b4t
4 +b5t

5 0 ≤ t ≤ TS (1)

We next develop constraint equations that can be used for
solving the coefficients, ai and bj (i=0, . . ., 3 and j=0, . . .,
5). We cast the gait patterns in terms of four basic quantities:
step length, SL, step period for the single support phase, TS,
maximum clearance of the swing limb, Hm, and its location
Sm. Other constraints used for designing the swing limb
motion are repeatable gait and the minimization of the effect
of impact. The constraint relations are described as
follows:

(1) Geometrical constraints: The swing limb has to be
lifted off the ground at the beginning of the step cycle
and has to be landed back at the end of it. We will
enforce this condition by the following equations:

ya(0)=0 (2)

ya(TS)=0 (3)

(2) Maximum clearance of the swing limb: During the
swing phase, the tip of the swing limb has to stay clear
off the ground to avoid accidental contact. In some
previous work6, 16 the parabolic relation between xa(t)
and ya(t) has been assumed. Although this relation is

the simplest form that allows prescription of the
desired step length and the tip maximum clearance
independently, it is unlikely to satisfy the requirement
of repeatable gait once the double support phase is
considered. In this work, we synthesize the swing limb
trajectory by setting the following relations:

xa(Tm)=Sm (4)

ya(Tm)=Hm (5)

ẏa(Tm)=0 (6)

where Hm is the maximum clearance of the swing
limb, Sm is the x-coordinate of the swing limb tip
corresponding to the maximum clearance, and Tm is
the time instant when the tip of the swing limb reaches
to the maximum clearance. Note that Tm is not
prescribed.

(3) Repeatability of the gait: The requirement for repeat-
able gait demands that the initial posture and velocities
be identical to those at the end of the step. Based on
the necessary and sufficient condition for repeatable
gait developed in our previous work7 we have �A1B1O
to be identical to �A3OB2, which guarantees that
B1O=OB2 =SL/2 (see Figure 2). Furthermore, since
during the double support phase both tips remain
stationary, the initial velocities in both horizontal and
vertical direction must be zero. Subsequently, the
following relations must hold:

xa(0)=�
SL

2
(7)

xa(Ts)=
SL

2
(8)

ẋa(0)=0 (9)

ẏa(0)=0 (10)

(4) Minimization of the effect of impact: During locomo-
tion, when the swing limb contacts the ground (heel
strike), impact occurs, which causes sudden changes in
the joint angular velocities. The effect of the impact
on the joint angular velocities is shown by equation A3
in the Appendix for the case where the impact is
perfectly plastic (i.e. the tip of the swing limb has zero
velocity after impact). Thus, by keeping the velocity of
the swing limb tip zero before the impact, the sudden
jump in the joint angular velocities can be eliminated.
The above conditions lead to:

ẋa(TS)=0 (11)

ẏa(TS)=0 (12)

Equations (2) through (12) can be used for solving ten
polynomial coefficients ai, bj (i=0, . . . , 3 and j=0, . . . , 5)
and Tm. The trajectory of the swing limb with the above
coeff cients satisfies the requirements of repeatable gait with
no destabilizing effect from the impact and with prescribed
gait parameters.

Fig. 2. Full gait cycle of a five-link biped walking in the sagittal
plane.
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2.3. Trajectories of the hip
Hip motion has a signifcant effect on the stability of the
bipedal system.13 Here, the trajectory of the hip is designed
for single support and double support phases separately. The
hip position is denoted as XhS: (xhS(t), yhS(t)) for the single
support phase and XhD: (xhD(t), yhD(t)) for the double support
phase. Third order polynomial functions are used for xhS and
XhD. Together with the general function of vertical hip
motion, they are shown below:

xhS(t) =c0 +c1t+c2t
2 +c3t

3 0 ≤ t ≤ TS

xhD =d0 +d1t+d2t
2 +d3t

3 0 ≤ t ≤ TD (13)
yhS(t) =yh(t) 0 ≤ t ≤ TS

yhD(t)=yh(t) 0 ≤ t ≤ TD

We next develop constraint equations, which include the
following additional quantities: positions of the hip at
the beginning of the single and double support phases, SS0

and SD0, step period for the double support phase, TD, and
the height of the hip, Hh. Aside from the constraints of
repeatable gait and minimization of the effect of impact, the
stability of bipedal walking during the double support phase
is also considered. The constraint relations are described as
follows:

(1) Vertical hip motion: One desirable feature of biped
gait is to keep the vertical motion of the gravity center
to a minimum, which requires minimal vertical motion
of the hip. For the sake of simplicity, we assume YhS

and YhD to be constant at any time during the whole
gait cycle, i.e.

yhS(t)=Hh (14)

yhD(t)=Hh (15)

(2) Repeatability of the gait: Based on the necessary and
sufficient condition for repeatable gait developed in
our previous work,7 �A1B1O must be identical to
�A3OB2, which guarantees that OC1 =B2C2 =SS0 (See
Figure 2). Furthermore, the hip velocities at the
beginning and the end of the step must be the same.
Thus, the following relations must hold:

xhS(0) = �SS0 (16)

xhD(TD) =
1
2

SL �SS0 (17)

ẋhS(0) = Vh1 (18)

ẋhS(TD) = Vh1 (19)

where Vh1 is the hip velocity at the beginning of each
step, which will be determined later.

(3) Continuity of the gait: The horizontal displacements
of the hip during the single and double support phases
must be continuous, which leads to:

xhS(TS) = SD0 (20)

xhD(0) = SD0 (21)

(4) Minimization of the effect of impact: As discussed
before, it is desirable to design the hip and swing limb
trajectory such that the effect of impact can be
removed. To satisfy this requirement, we set the hip
velocities at the end of the single support phase and the
beginning of the double support phase to be identical.
Thus, we have:

ẋhS(TS) = Vh2 (22)

ẋhD(0) = Vh2 (23)

Vh2 will be determined later.

(5) Stability of the gait during the double support phase:
The horizontal velocity of the hip is the main factor
that affects the stability of a bipedal robot walking in
a sagittal plane.12,13 Previous research focused on
deriving the hip trajectories to achieve a desired ZMP.
The disadvantages are that not all desired ZMP
trajectories can be attained and the hip acceleration
may be very large. In this work, we propose the
following procedure to determine optimal Vh1 and Vh2:

(i) generate a series of smooth xhS and xhD by
selecting various Vh1 and Vh2 and

(ii) determine the optimal Vh1 and Vh2 (xhS and xhD)
with the largest stability margin.

The stability margin is defined as the minimum distance
between the ZMP and the boundary of the stable region,
which is the line between the tips of the supporting limbs.
Equations (16) through (23) and the stability constraints can
be used to solve the coefficients, ci and di (i = 0, . . ., 3), and
the two velocities Vh1 and Vh2.

2.4. Biped joint profile
Using the hip and swing leg tip trajectories design, the joint
angle profile can be expressed as follows:

�1(t) = arcsin �a1C1 + B1�A2
1 + B2

1 �C2
1

A2
1 + B2

1
�

�2(t) = �1(t) + arcsin �A1 cos(�1(t))�B1 sin(�1(t))
l2

�
�3(t) = 0 (24)

�4(t) = arcsin �A4C4 + B4�A2
4 + B2

4 �C2
4

A2
4 + B2

4
�

�5(t) = �4(t) + arcsin �A4 cos(�4(t))�B4 sin(�4(t))
l5

�
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where for single support phase, we have:

A1 + xhS(t), B1 = yhS(t), c1 =
A2

1 + B2
1 + l2

1 � l2
2

2l1

A4 = xhS(t)�xaS(t), B4 = yhS(t)�yaS(t), C4 =
A2

4 + B2
4 + l2

4 � l2
5

2l4

For double support phase, we have:

A1 = xhD(t) B1 = yhD(t) C1 =
A2

1 + B2
1 + l2

1 � l2
2

2l1

A4 =
1
2

SL �xhD(t) B4 = yhD(t) C4 =
A2

4 + B2
4 + l2

4 � l2
5

2l4

3. SIMULATIONS
In this section, a joint profile for a five-link biped walking
on flat ground with both single and double support phases
are determined using the method discussed in Section 2.
The values of the parameters mi, Ii, li, and di, of the five-link
biped robot are listed in Table I and the walking speed is
chosen 1.06 m/s with step length SL = 0.72 m, TS = 0.6s,
TD = 0.1s, Hm = 0.05 m and Sm = 0 m.

Figure 3a shows the horizontal displacements of the hip
and the tips of both the swing and stance limbs versus time.
Figure 3b shows the trajectories of the tip of the swing limb.
All the trajectories are smooth; i.e., all the velocities are
continuous. Figure 4 shows the motion of the lower limb
joints for two steps. Figure 4a shows the profiles of the joint
angles and Figure 4b shows the angular velocities during the
single and double support phases. It can be seen that the
both joint angles and their angular velocities are repeatable,
the velocities are continuous at the instant of impact, and the
sudden changes in the angular velocities, often occurring in
other work, have been removed.

Figure 5 shows the horizontal displacements of the
gravity centre of the biped, hip and ZMP during the double
support phase. The grey area represents the stability region
with the top and bottom lines representing the locations of
the two feet. It can be seen that the gravity centre, the hip,
and especially the ZMP remain approximately at the centre
of the stability region, which ensures the largest stability
margin and greatest stability.

Figure 6 shows a stick diagram of the five-link bipedal
model walking on flat ground. From this diagram, one can
observe the overall motion of the biped during both the
single and double support phases. The solid lines represent
the single support phase while the dashed lines represent the
double support phase. The stance limb propels the upper

body forward while the upper body is maintained in the
upright position. The posture of the biped at the end of each
step is close to that at the beginning of each step, which
indicates that the repeatability condition is satisfied. Thus,
the joint profiles designed based on the method proposed in
this paper are acceptable.

4. CONCLUSIONS
In this paper, a systematic approach has been presented for
synthesizing joint profiles for a five-link biped walking in
the sagittal plane. Unlike most of the previous work

Table I. Parameters of the bipedal robot.

Mass Moment of Length Location of centre of
Link (kg) inertia (kgm2) (m) mass to lower joint (m)

Torso (3) 14.79 3.30�10�2 0.486 0.282
Thigh (2, 4) 5.28 3.30�10�2 0.302 0.236
Leg (1, 5) 2.23 3.30�10�2 0.332 0.189

Fig. 3. Designed movements of the hip and lower limb (a) x-t and
(b) y-x.
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focusing on the single support phase, our model includes
both single and double support phases, which gives the
biped a wider range of walking speeds and more stable
locomotion. The joint profiles have been determined based
on constraint equations cast in terms of step length, step
period, maximum step height, and so on. Due to the impact
(heel strike) occurring in the system, the angular velocities
are discontinuous in most of the previous work. We
developed a special constraint to eliminate the destabilising
effect of the impact on bipedal motion. Thus, our joint
profiles have continuous angular velocities throughout the
whole gait cycles. Other advantages of our designed joint
profiles included system stability during the double support
phase and repeatability of gait. Computer simulations were
carried out to demonstrate the effectiveness of the proposed
method.

The method of formulating the compatible trajectories for
the hip and the swing limb was revisited. This method has
the advantage of de-coupling the biped into three sub-
systems, namely a trunk and two lower limbs. As compared

with directly synthesizing the joint angles, this method not
only significantly simplified the problem, but also allowed
us to incorporate certain constraints directly to the hip and
swing limb trajectories without much increase in the
complexity of the constraint equations. For example, we
demonstrated that it is straight-forward to impose con-
straints on the hip and swing limb trajectories to eliminate
the destabilizing effect from the impact occurring at the heel
strike. We also showed the effectiveness of designing the hip
motion directly to enhance system stability, which is one of
the primary concerns in the development of bipedal robots.

We believe that this research can provide a valuable tool
for generating motion patterns of bipedal gait, and it is a
stepping stone for the use of more complicated constraint
functions. One limitation of the presented work is that a
rigorous stability analysis of the bipedal system during the
single support phase cannot be carried out. This is because
the ZMP method is not applicable to the models where both
feet are simplified as points. Furthermore, even for a bipedal
system where the feet are modelled as separate links,

Fig. 4. Designed joint angles and angular velocities, (a) joint
angles, (b) angular velocities.

Fig. 5. CG, hip and ZMP trajectories during the double support
phase.

Fig. 6. Stick diagram of bipedal walking.
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walking patterns generated based on ZMP trajectories are
often not natural and not desirable due to high accelerations
ofthe hip, which makes the control task difficult.12 Thus, an
immediate extension of the presented work is the develop-
ment of a proper stability criterion for bipeds regardless of
whether the feet are modeled as separate links or points, and
for generating more natural gait patterns. Research on this
subject is in progress.
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APPENDIX: DYNAMIC MODEL OF A PLANAR
FIVE-LINK BIPED
We will show the dynamic equations for a planar five-link
biped model during single support phase, double support
phase and impact. By applying Lagrange’s method, the
equation of motion during the single support phase can be
written in the following general form:

D(�)�̈ + H(�, �̇) + G(�) = T� (A1)

where D(�) is the 5�5 positive definite and symmetric
mass matrix, H(�, �̇) and G(�) are 5�1 matrices of
centrifugal and Coriolis terms and gravity terms, and �, �̇, �̈,
T� are the 5�1 vectors of generalized coordinates, veloci-
ties, accelerations and actuator torques, respectively. The
detailed terms can be found elsewhere1 and are not repeated
here.

The motion during the double support phase can be
derived based on the Lagrange dynamic equations with
constraint conditions in the following form:

D(�)�̈ + H(�, �̇) + G(�) = T� + JT �
� = � (JD�1 JT)�1 (JD�1 (T� �h�G) + J̇�̇) (A2)

where � is the Lagrangian multiplier and J is the Jacobian
matrix.

At the end of the single support phase, the swing limb
contacts the ground surface. The generalized velocities will
be subject to a sudden change resulting from the impact
event. During the impact, there will be impulsive forces
between the contact points of both lower limbs and the
ground. The velocities of the two contact points imme-
diately after impact are zero under the assumption of
perfectly plastic impact. This event is defined as double
impact. Using the time interval integration method,17 the
corresponding equations describing the new angular veloc-
ity after double impact can be written as:

�̇+
impact = �̇� + D�1 JT [JD�1 JT]�1 {� ẋ�

a � ẏ�
a }T (A3)

where �̇+
impact and �̇� are the 5�1 vectors of velocity

immediately after and before the impact, respectively.
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