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This work proposes a feedback-loop strategy to suppress intrinsic oscillations of
resonating flows in the fully nonlinear regime. The frequency response of the
flow is obtained from the resolvent operator about the mean flow, extending the
framework initially introduced by McKeon & Sharma (J. Fluid Mech., vol. 658,
2010, pp. 336–382) to study receptivity mechanisms in turbulent flows. Using this
linear time-invariant model of the nonlinear flow, modern control methods such
as structured H∞-synthesis can be used to design a controller. The approach is
successful in damping self-sustained oscillations associated with specific eigenmodes
of the mean-flow spectrum. Despite excellent performance, the linear controller is
however unable to completely suppress flow oscillations, and the controlled flow
is effectively attracted towards a new dynamical equilibrium. This new attractor is
characterized by a different mean flow, which can in turn be used to design a second
controller. The method can then be iterated on subsequent mean flows, until the
coupled system eventually converges to the base flow. An intuitive parallel can be
drawn with Newton’s iteration: at each step, a linearized model of the flow response to
a perturbation of the input is sought, and a new linear controller is designed, aiming
at further reducing the fluctuations. The method is illustrated on the well-known case
of two-dimensional incompressible open-cavity flow at Reynolds number Re = 7500,
where the fully developed flow is initially quasiperiodic (2-torus state). The base
flow is reached after five iterations. The present work demonstrates that nonlinear
control problems may be solved without resorting to nonlinear reduced-order models.
It also shows that physically relevant linear models can be systematically derived
for nonlinear flows, without resorting to black-box identification from input–output
data; the key ingredient being frequency-domain models based on the linearized
Navier–Stokes equations about the mean flow. Applicability to amplifier flows and
turbulent dynamics has, however, yet to be investigated.
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1. Introduction
Despite significant progress over the past decades, taming flow instabilities and

turbulence remains an area of fundamental investigation (Kim & Bewley 2007;
Brunton & Noack 2015; Sipp & Schmid 2016). The potential impact of flow
control is however tremendous: drag reduction, lift increase, mixing enhancement,
noise reduction, lean combustion to name a few industrial applications. Control
strategies fall into two broad categories: active or passive, depending whether energy
is expended to drive an actuator or not. Actuation may be used in an open-loop
framework, in order to drive the system away from its natural state by exciting its
nonlinearities. For this strategy to be effective, a large power input may be required.
On the other hand, closing the loop has a direct impact on the intrinsic dynamics of a
linear system, hence the actuation amplitude may be significantly reduced (Cattafesta
III et al. 2008). However, uncertainties in the form of noise or modelling errors may
cause instabilities or performance loss of the closed loop, which in turn render the
approach ineffective.

1.1. On the relevance of linear methods for closed-loop control of nonlinear flows
In the particular case of fluid flows, modelling issues arise from the dimensionality
of the system and the strong nonlinearity of the governing equations. Dimensionality
reduction is often achieved by projecting the dynamics onto a set of well-chosen
modal structures, and well-established techniques exist to systematically find such
bases, e.g. global modes, proper orthogonal decomposition (POD) modes, balanced
modes (BPOD), dynamic modes (DMD), etc. (Bagheri, Brandt & Henningson 2009;
Barbagallo, Sipp & Schmid 2009; Semeraro et al. 2011; Rowley & Dawson 2017 for
a comprehensive review). Alternatively, if system identification is used to derive a
reduced-order model (ROM) directly from input–output data (Cattafesta et al. 1999;
Kegerise, Cattafesta III & Ha 2002; Illingworth, Morgans & Rowley 2011; Dahan,
Morgans & Lardeau 2012; Hervé et al. 2012; Dalla Longa, Morgans & Dahan 2017),
the resulting models will typically be of manageable dimension. Suitable ROMs
for closed-loop control may also be obtained by gradually increasing the spatial
discretization from a coarse mesh (Jones et al. 2015).

Nonlinearity, on the other hand, remains a major issue as the standard control tool
set relies extensively on the hypothesis of a linear time-invariant (LTI) plant. Early
studies therefore focussed on the linear dynamics of small perturbations around a base
flow, i.e. a fixed point of the Navier–Stokes equations. Techniques were successfully
developed to suppress intrinsic instabilities or prevent extrinsic noise amplification:
oscillator flows may be controlled by damping their unstable modes using a feedback
controller, while amplifier flows may be controlled by rejecting incoming perturbations
using an upstream sensor (see Sipp & Schmid 2016, for a review). In some cases, the
designed controllers may also be robust to nonlinearities; for instance if the Reynolds
number is weakly supercritical, in the case of an unstable base flow (Flinois &
Morgans 2016), or if incoming perturbations are large, in the case of a stable base
flow (Hervé et al. 2012). However, for strong enough nonlinearity, linearization about
the base flow becomes irrelevant and control fails (Schmid & Sipp 2016).

In the case of self-sustained oscillations, which are of interest in this paper, there
are indeed (at least) two distinct dynamical equilibria: the steady fixed point, and the
unsteady attractor. In the uncontrolled flow, the fixed point is linearly unstable and the
attractor lies at a finite distance from it in phase space. In this situation, the goal of
a controller is not just to locally stabilize the base flow but to ensure that any initial
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condition on the attractor is within the basin of attraction of the base flow. If the
attractor is not too far away from the base flow, then a robust LTI controller based
on some mean LTI model may suffice (Li & Morgans 2016). But again, for strong
enough nonlinearity, modelling the plant as a single LTI operator may be too crude
an approximation, and even robust control methods based on it may fail.

Significant efforts were therefore directed towards nonlinear reduced-order modelling.
Physics-based nonlinear ROMs usually rely on Galerkin projection of the full
Navier–Stokes equations (as opposed to the linearized version around the fixed
point), most often using POD modes. However, such models typically require fine
tuning and calibration because of instabilities stemming from the structure of the
expansion and its truncation (Noack et al. 2011). While designing nonlinear ROMs is
a challenge of fundamental interest by itself, it is however not immediately clear that
their enhanced fidelity can be made profitable for closed-loop control applications.
Indeed, optimal control based on such ROMs represent an enormous computational
load (Bergmann, Cordier & Brancher 2005) for realistic application in experiments.
Besides, adjoint looping only yields a specific control command optimized over a
given time horizon for a given initial condition of the system.

An alternative to nonlinear Galerkin models is nonlinear identification from
input–output data (second-order Volterra and bilinear filters, Pillarisetti & Cattafesta
III (2001); NARX, Dandois, Garnier & Pamart (2013); NARMAX, Semeraro et al.
(2017), cluster-based ROM, Kaiser et al. (2014); SINDy, Loiseau & Brunton (2018),
etc.) but the resulting models are usually not used for feedback control. Artificial
neural networks have been trained to learn complex input–output relations (Lee et al.
1997; Efe et al. 2005), but a controller design simply based on inversion of the neural
net does not bring any improvement compared to existing LTI controllers. Another
novel approach to tackle nonlinearity is machine-learning control (Duriez et al. 2014;
Gautier et al. 2015): a model-free approach which seeks a nonlinear control law
through trial and error. Although promising, the approach is not amenable to physical
analysis and interpretation, which may hinder further improvements in case of failure.

Systematic methods for deriving nonlinear control laws, i.e. relations from outputs
to inputs applicable at any time, although more useful, are in fact rarely implemented
in practice. It has only been done so far with analytically tractable ‘mean-field’ ROMs
of order 4 at most, for flows dominated by at most two frequencies, i.e. a single
one for the unforced flow plus one for the actuator (King et al. 2005; Aleksić et al.
2010; Luchtenburg et al. 2010; Aleksić-Roessner et al. 2014). Furthermore, although
superior in some cases (Aleksić-Roessner et al. 2014), nonlinear controllers do not
systematically show obvious improvements compared to their linear counterparts.
More complex nonlinear ROMs are in fact generally linearized about their fixed
point, in order to design traditional LTI controllers (Samimy et al. 2007; Nagarajan,
Cordier & Airiau 2013). While this procedure removes a lot of information from the
initial model, the physical meaning of the fixed point is unclear, as it is not directly
related to either the mean flow or the base flow of the true system.

Finally, passivity-based methods are suited to finite-amplitude perturbations of the
base flow and, therefore, hold great promise for the problem of nonlinear flow control
(Sharma 2009; Sharma et al. 2011; Heins, Jones & Sharma 2016). The key idea is
to see the fluid flow as a Lur’e system (Khalil 2002), i.e. the nonlinearity of the
governing equations is a feedback forcing to the linearized dynamics about the base
flow (more details will be given in §§ 2.1 and 2.2). Since nonlinearity in the Navier–
Stokes equations arises from conservative processes, it cannot contribute to the energy
growth of external perturbations; i.e. it is passive. Therefore, one is only concerned
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with energy growth arising from the linear processes. Methods are available to design
LTI controllers preventing linear energy growth altogether (Sharma et al. 2011) or, if
impossible, at least minimizing it (Heins et al. 2016), but these methods have only
been applied to linearly stable flows so far.

This brief overview of available nonlinear flow control methods explains why, to
date, the vast majority of successful studies rely on LTI models and controllers, even
though the underlying plant is nonlinear.

1.2. A physics-based linear framework relevant to nonlinear flows: mean-flow
perturbation analysis

In the following, we distinguish the base flow, defined as a fixed point of the
Navier–Stokes equations, and the mean flow, which is the temporal average of a fully
developed flow.

1.2.1. Modal analysis
Since Hammond & Redekopp (1997), many authors have considered mean-flow

stability analysis as a means to retrieve both the nonlinear oscillation frequency of
globally unstable base flows and the coherent structure oscillating at that fundamental
frequency. Most studies were concerned with wake flows (Hammond & Redekopp
1997; Pier 2002; Barkley 2006; Mittal 2007; Sipp & Lebedev 2007; Leontini,
Thompson & Hourigan 2010; Meliga, Pujals & Serre 2012; Camarri, Fallenius &
Fransson 2013; Mettot, Sipp & Bézard 2014b; Mantič-Lugo & Gallaire 2016; Carini
et al. 2017), where mean-flow distortion leads to a significant reduction of the
length of the recirculation region behind the solid body, compared to the base flow.
Other configurations have been considered as well, among which open-cavity flow
(Sipp & Lebedev 2007; Meliga 2017), gas turbine fuel injectors (Juniper 2012) and
thermosolutal convection (Turton, Tuckerman & Barkley 2015). We note that in
resonant flows, coherent structures are rigorously described by Koopman modes, and
the oscillation frequencies correspond to Koopman eigenfrequencies (Arbabi & Mezić
2017).

1.2.2. Resolvent analysis
For globally stable flows, the temporal instability framework does not properly

account for the noise amplifier dynamics. In parallel flows, spatial stability analysis
may be used to predict the response to localized harmonic forcing. In non-parallel
flows, the resolvent operator may be used instead to predict the linear response of
the flow to any spatially distributed forcing. Connections between local and global
analyses obviously exist for weakly non-parallel flows. Global spatial modes obtained
from solving parabolized stability equations may approximate optimal response
modes obtained by singular value decomposition (SVD) of the resolvent operator
(Beneddine et al. 2016). But the resolvent operator is more than a mere extension of
spatial stability analysis to the global framework. It fully describes the input–output
behaviour of the flow. In particular, SVD of the resolvent operator not only yields
a set of optimal response modes approximated by spatial instability modes, it also
provides the associated set of optimal forcing modes and optimal gains giving insight
into the receptivity mechanisms at play in the flow.

When high-amplitude noise excites the nonlinearities in amplifier flows, coherent
motions seem to extract energy from the mean flow, rather than the base flow
(Butler & Farrell 1993; Chomaz 2005; Del Álamo & Jimenez 2006; Cossu, Pujals &
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Depardon 2009; Pujals et al. 2009). And just like mean-flow temporal modes capture
the dominant coherent structures of resonator flows, mean-flow spatial modes or
optimal response modes (often called resolvent modes) seem to capture the dominant
coherent structures of amplifier flows. In that context, the coherent structures may
be rigorously defined as spectral POD modes (Gudmundsson & Colonius 2011;
Beneddine et al. 2016; Towne, Schmidt & Colonius 2018), i.e. the set of orthogonal
modes optimally correlated in both space and time (Towne et al. 2018).

Resolvent analysis has been extensively used for investigating noise sources in
turbulent jets (Garnaud et al. 2013; Jeun, Nichols & Jovanović 2016; Semeraro et al.
2016; Schmidt et al. 2017; Tissot et al. 2017). The method, initially introduced
in the context of pipe flow (McKeon & Sharma 2010; Sharma & McKeon 2013;
Luhar, Sharma & McKeon 2014), has also been applied to channel flow (Moarref
et al. 2014; Luhar, Sharma & McKeon 2015; Nakashima, Fukagata & Luhar 2017),
backward-facing step flow (Beneddine et al. 2016) and the shock-wave boundary
layer over a bump (Sartor et al. 2015a) among other flows. Resolvent analysis of
convectively unstable flows has also been used in order to identify the physical
mechanisms underlying existing passive and open-loop control strategies for drag
reduction. Jacobi & McKeon (2011) and McKeon, Sharma & Jacobi (2013) considered
the effect of dynamic roughness actuation on a zero-pressure gradient turbulent
boundary layer in the resolvent framework. Luhar et al. (2014) considered the case
of opposition control in pipe flow while Luhar et al. (2015) and Nakashima et al.
(2017) respectively studied the effect of compliant walls and suboptimal control by
blowing and suction in channel flow.

Interestingly, the resolvent operator about the mean flow also appears to be relevant
to globally unstable flows. Resolvent analysis has been applied to lid-driven cavity
flow (Gómez et al. 2016), open-cavity flow (Liu et al. 2018), the buffeting transonic
flow over an airfoil (Sartor, Mettot & Sipp 2015b) (although in that case the perturbed
flow is the fixed point of a Reynolds-averaged Navier–Stokes (RANS) model, not the
time average of an unsteady RANS simulation) or the flow past a square cylinder
(Gómez & Blackburn 2017). In the latter paper, the authors analysed the structure of
the optimal forcing modes in order to design passive control devices able to optimally
disrupt the self-sustaining process of wake oscillation. More recently, Liu et al. (2018)
also used resolvent analysis to guide the design of an open-loop control strategy in
open-cavity flow. In essence, the resolvent operator about the mean flow seems to
characterize the input–output behaviour of many fully developed flows, regardless of
their amplifier or resonator character. But despite compelling evidence of the relevance
of this operator to control problems, this tool does not seem to have been included
in the framework of closed-loop control yet (McKeon et al. 2013).

1.3. Using the resolvent operator to control open-cavity flow in a closed-loop
framework

In the present paper, we propose to control the fully developed flow over a globally
unstable open cavity, using the resolvent operator about the mean flow and a
feedback-loop set-up (see figure 1 and §§3.1–3.2 for a comprehensive description
of the model). The configuration under study has a unique fixed point, the base flow,
which is unstable at the operating Reynolds number of Re = 7500. As we shall see
in this paper, the system naturally evolves towards a quasiperiodic regime with two
fundamental incommensurate frequencies (2-torus). Our aim is to bring the system
back to the base flow, using sole knowledge of the mean flow, a single probe, a
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x2

D

B (C, Y)
U

L
x1

FIGURE 1. (Colour online) Numerical model of open-cavity flow, with upstream (volume
force) actuator B (in yellow) and downstream (shear-stress) sensor (C, Y) (in blue). The
shear-layer instability and cavity recirculation are symbolized with red lines. There are
three x2-velocity probes in the shear layer at x2 = 0 and respectively x1 = 1/4, 1/2, 3/4.
Grey thick lines indicate no-slip boundary conditions.

single actuator and linear methods only. The resolvent operator about the mean flow
will be used to model the transfer function of the fully developed flow, while modal
analysis will be used to interpret the results and guide the design of a robust linear
controller, in the framework of structured H∞ synthesis (Apkarian & Noll 2006).
As the controlled flow latches onto a new dynamical equilibrium, which is not the
expected base flow, we will iterate the method on the new mean flow, and so on
with subsequent mean states, until convergence. The choice of open-cavity flow is
motivated by its frequent occurrence in the literature, as a convenient test-bed for
validating new ideas; the cavity flow model used in this paper, in particular, has been
used in many past studies (Rowley et al. 2006; Sipp & Lebedev 2007; Barbagallo
et al. 2009; Barbagallo, Sipp & Schmid 2011; Dergham et al. 2011; Illingworth,
Morgans & Rowley 2012; Poussot-Vassal & Sipp 2015; Schmid & Sipp 2016; Sipp
& Schmid 2016). Open-cavity flow also has many practical applications, in particular
in the aerospace field: weapon bays, wheel wells and fuselage openings for telescopes
and sensors, etc. (Rowley & Williams 2006; Cattafesta III et al. 2008).

The plan of the paper is as follows. In § 2, we introduce the theoretical framework
for our iterative control strategy. In § 3, we present the cavity flow set-up and describe
the uncontrolled dynamics. The design methodology for the first controller is then
explained in § 4. The controlled flow is analysed in § 5 and a short discussion section
follows in § 6. Finally, the main results are recalled in the conclusion § 7.

2. Theoretical framework
In this section, we cast the governing laws of motion in an input–output form

convenient for feedback control. We then introduce a novel iterative method for
stabilizing linearly unstable flows with a sequence of linear models and controllers.
The methodology for designing robust controllers is explained later in § 4.

2.1. The Navier–Stokes equations as a Lur’e system
We start by considering the non-dimensional, incompressible, Navier–Stokes equations
governing the velocity and pressure fields u and p

∂tu+ (u · ∇)u=−∇p+ Re−1
∇

2u, ∇ · u= 0, (2.1)
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¥Q

rQ(s)bq�
t=0 q�+

FIGURE 2. The Navier–Stokes equations as a Lur’e system.

without external forcing. The Reynolds number Re :=UL/ν is based on characteristic
velocity and length scales U and L of the problem, and on the kinematic viscosity
ν of the fluid. Equations (2.1) are, of course, supplemented by appropriate boundary
conditions and an initial condition. Next, we decompose the unknown field q := (u,p)T
(T denoting the transpose) into an arbitrary steady incompressible reference field Q :=
(U, P)T satisfying the boundary conditions and a perturbation q′ := (u′, p′)T with zero
boundary conditions, such that q= Q+ q′. The unsteady perturbation q′ is governed
by the following time-evolution equation

B∂tq′ = [AQ +ΨQ]q′, (2.2)

where

Bq′ :=
(
∂tu′
0

)
, (2.3)

AQq′ :=
(
−(U · ∇)u′ − (u′ · ∇)U+ Re−1

∇
2u′ −∇p′

∇ · u′
)
, (2.4)

ΨQq′ :=
(
−(U · ∇)U−∇P+ Re−1

∇
2U− (u′ · ∇)u′

0

)
. (2.5)

The Jacobian AQ and the operator ΨQ respectively account for the linear and nonlinear
parts of the evolution operator associated with the flow. Since Q is assumed to be time
independent, the dynamical system is autonomous; AQ is a linear time-invariant (LTI)
operator and ΨQ is a static nonlinearity. Taking the Laplace transform of (2.2) leads
to the relation

q′(s)=RQ(s)[ΨQq′(s)+Bq′t=0], (2.6)
where s is the Laplace variable, q′t=0 is the initial condition on the perturbation and

RQ(s) := (sB−AQ)
−1 (2.7)

is called the resolvent operator about the reference field Q. Such interconnection of
an LTI operator RQ with a static nonlinearity ΨQ, illustrated in figure 2, is called
a Lur’e system in nonlinear control theory (Khalil 2002; Sharma 2009; McKeon &
Sharma 2010).

The resolvent operator is defined for any s which is not an eigenvalue of the
Jacobian operator, i.e. a solution of

(sB−AQ)q′ = 0, (2.8)

with non-zero q′. Interestingly, the output q′ remains bounded even if AQ has unstable
eigenvalues, thanks to the presence of the nonlinear feedback operator. Moreover, we
stress that the resolvent operator itself is well defined along the imaginary axis as long
as AQ has no marginally unstable eigenvalues. The choice of the arbitrary reference
field Q is discussed in the next paragraph.
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FIGURE 3. Block diagram of the forced Navier–Stokes equations in the (a) open-loop case
and the (c) closed-loop case. Equivalent representation with an open-loop transfer function
GQ from n to y and an output disturbance w in (b) the open loop and (d) the closed loop.

2.2. Open-loop and closed-loop transfer functions of fully developed flows
In figure 3(a,c), we now consider the effect of external forcing due to an actuator and
modelled by a time-independent spatial field B multiplied by a time-varying scalar
amplitude n switched on at t = 0. We also introduce a sensor characterized by the
time-independent pair (C, Y) providing the local measurement

y(t) := 〈C, q′(t)〉 + Y, (2.9)

where
〈q1, q2〉 :=

∫
D

q∗1 · q2 dD (2.10)

defines an inner product over the domain D and ∗ denotes complex conjugation. The
output y is linear with respect to the fluctuation q′ and the constant Y represents an
arbitrary offset. Panel (a) represents the case of open-loop forcing, while panel (c)
represents a feedback-loop configuration with a total actuation amplitude u+ n, where

u :=Ky (2.11)

is due to an LTI controller of transfer function K(s). With external forcing, the output
q′ is respectively given by

q′ =RQ[ΨQq′ +Bq′t=0 +Bn] (2.12)

in the open-loop case, and

q′ = (I −RQBK〈C, ·〉)−1RQ

[
ΨQq′ +Bq′t=0 +Bn+BK

Y
s

]
(2.13)
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in the closed-loop case. The latter expression can be rewritten as

q′ =RK
Q

[
ΨQq′ +Bq′t=0 +Bn+BK

Y
s

]
, (2.14)

where
RK

Q(s) := (sB−AK
Q(s))

−1 (2.15)

is the resolvent operator associated with the Jacobian operator

AK
Q(s) :=AQ +K(s)B〈C, .〉 (2.16)

of the coupled system fluid/controller. Because of the nonlinear feedback term, the
concept of a transfer function from n to q′ is ill defined. However, using the resolvent
operators introduced above and lumping all the terms independent of n in an output
disturbance term w, we can recast the governing equations (2.12) and (2.14) in a form
that resembles input–output relations:

q′ =RQBn+w and q′ =RK
QBn+w (2.17a,b)

in the open-loop and closed-loop cases respectively. Similar to the unforced case, the
output q′ is bounded despite the potential presence of unstable eigenvalues in AQ or
AK

Q, thanks to the nonlinear feedback term (included in w) ensuring saturation.
An important point to note at this point is that the definition of the Lur’e system

associated with the flow depends on the arbitrary choice of a steady reference field
Q. The passivity theorem states that if the two interconnected blocks RK

Q and ΨQ
are passive, i.e. can only store or dissipate energy, then the fixed point of the closed
loop is stable with respect to perturbations of any amplitude. For Q = qb, the static
nonlinearity

Ψqb
q′ =

(
−(u′ · ∇)u′

0

)
(2.18)

happens to be conservative, hence passive. Therefore, a possible strategy to reach the
base flow from the regime of fully developed oscillations consists in designing an
LTI feedback controller making the closed-loop linear dynamics about the base flow
passive. That means designing a controller K suppressing both modal growth and
transient growth arising from the non-normality of the Jacobian operator Aqb

. This
strategy has been pursued in recent works by Sharma et al. (2011) and Heins et al.
(2016), for globally stable flows (i.e. no modal growth). However, as discussed in
the introduction, the resolvent operator about the mean flow appears to be a better
choice for describing the behaviour of unforced flows in the fully developed regime.
McKeon & Sharma (2010) therefore proposed to consider the mean flow q as an
appropriate alternative choice of reference field Q in (2.6), in order to define the
unforced Navier–Stokes as a Lur’e system. In that case, the nonlinear output

Ψqq′ =
(
(u′ · ∇)u′ − (u′ · ∇)u′

0

)
(2.19)

was interpreted as an endogenous forcing term. We decide to follow the same
approach here and also choose

Q := q (2.20)

to model the flow receptivity to the exogenous forcing field B.
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In the case of unforced flows, the mean flow is unambiguously defined as the
temporal average of q in the fully developed regime. The case of externally forced
flow is not as straightforward, as starting the forcing at t= 0 (either u or n) triggers
nonlinear effects which lead to a change in the flow dynamics. Instead of one, we have
two relevant mean flows: (i) that associated with the initial attractor characterizing the
unforced system at t= 0, and (ii) that characterizing the final attractor of the forced
system as t→∞. During the transient, the mean flow is not defined. If we want to
extend the framework of McKeon & Sharma (2010) to externally forced flows, we
therefore need to be very careful about choosing the appropriate reference mean flow.
Using the resolvent operator about the mean flow, we can only derive input–output
models relevant at the initial and final times. In the open-loop case, we simply have

y=Gqn+w, (2.21)

where
Gq(s) := 〈C,Rq(s)B〉 (2.22)

models the transfer function from n to y and w collects the various remaining terms in
the form of an ‘output disturbance’. This simple relation is represented by the block
diagram in figure 3(b). In the closed-loop case, the transfer function model becomes

GK
q (s) := 〈C,RK

q (s)B〉 (2.23)

and depends on both q and the controller K. This pseudo-transfer function can also
be computed from the expression

GK
q =

Gq

1−GqK
, (2.24)

which corresponds to the linear plant Gq in the feedback loop with the controller K,
as can be seen in figure 3(d). The reference field q either characterizes the mean flow
of the initial attractor or the final attractor. The discrete evolution of the reference
mean flow, and therefore of the input–output model of the system as we add control
action, may be used to design an iterative control strategy as explained below.

2.3. Iterative control strategy
In this section, we introduce an iterative control strategy to reach the base flow
from the permanent regime of oscillation of an uncontrolled resonating flow. Assume
we know how to design a first controller K1 able to decrease the amplitude of
oscillation of the unforced flow, but unable to completely stabilize it, can we design
a controller correction K ′2 such that the total controller K2 := K1 + K ′2 is able to
damp the oscillations further? In general, from a sequence of m successive controller
corrections

Km :=

{
0, if m= 0,
K ′1 +K ′2 + · · · +K ′m, if m> 0,

(2.25)

leading to a permanent oscillatory regime, how can we design the next controller
correction K ′m+1 such that Km+1 = Km + K ′m+1 leads to even smaller oscillation
amplitude?

The key idea is to consider an input–output model based on the mean flow qm
obtained in the presence of the controller Km. Indeed, as shown in the previous section,
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the response of the coupled system to a perturbation n of the forcing signal is given
by the resolvent operator RKm

qm
, involving both qm and Km. The corresponding transfer

function from n to y is then given by GKm
qm

. To simplify notations, we denote from
now on

Gj
i :=GKj

qi
. (2.26)

At each step m+ 1, the plant to control is therefore denoted Gm
m. The goal is to design

a controller correction K ′m+1 such that the target plant

Gm+1
m =

Gm
m

1−Gm
mK ′m+1

(2.27)

has some desired properties, leading to smaller oscillations of the output y. When the
additional controller K ′m+1 is added in the feedback loop, the flow transiently evolves
until a new dynamical equilibrium is reached, characterized by a new mean state qm+1.
Since the effective controller is now Km+1 = Km + K ′m+1, the transfer function of the
new plant is Gm+1

m+1. The iteration then proceeds until convergence, i.e. until some fixed
point is hopefully reached.

The momentum equation with feedback reads

∂tu+ (u · ∇)u=−∇p+ Re−1
∇

2u+Bu

∫ t

0
κm(τ )y(t− τ) dτ , (2.28)

where Bu is the component of B forcing the momentum equation and κm is the
impulse response of the controller Km. If a fixed point q

∞
:= (u∞, p∞) is reached in

the limit t→∞, then it must satisfy

(u∞ · ∇)u∞ =−∇p∞ + Re−1
∇

2u∞ +BuKm(0)(〈C, q
∞
−Q〉 + Y). (2.29)

In order to reach the base flow, i.e. q
∞
= qb, we must ensure that qb is a solution of

(2.29), and that it is the only one. This is the case if the controller has zero static
gain Km(0)= 0, and we therefore choose to impose

K ′j(0)= 0 (2.30)

at every step j. In the special case where the sensor measures a deviation with respect
to the base flow by satisfying

Y = 〈C,Q− qb〉, (2.31)

then qb remains a fixed point of (2.29) even if Km(0) 6= 0, but there may be alternative
fixed points q

∞
as well. It is therefore crucial to ‘disconnect’ the controller in the

steady regime by imposing (2.30); then qb is for sure the only fixed point for any
choice of sensor (C, Y).

Although the iterative method bears resemblance to the gain scheduling approach
of Khalil (2002) and Högberg, Bewley & Henningson (2003), there are fundamental
differences which are emphasized later in the discussion, see § 6.2. We stress again
that the concept of a transfer function from n to y is ill defined in the context of
nonlinear flows. Our method relies on the assumption that the system responds to
external forcing in a LTI fashion when it is close to a state of dynamical equilibrium.
The quantity that we will call ‘transfer function’, and that we will denote G in
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FIGURE 4. (Colour online) Evolution of the block diagram representation of the system
during the iterative procedure: (a) t = t+1 , K ′1 has just been added so the flow alone is
still characterized by the plant G0

0; (b) t = t−2 the feedback loop between the fluid and
the controller K1 := K ′1 has converged to a new mean state; (c) t = t+2 , K ′2 has just been
added so the flow alone is still characterized by the plant G0

1; (d) t= t−2 the feedback loop
between the fluid and the controller K2 :=K ′1 +K ′2 has converged to a new mean state.

general, is therefore only defined in two limit cases: either (i) the system is in
a dynamical equilibrium characterized by qm and Km, or (ii) the system is out of
equilibrium because a controller correction K ′m+1 has just been added, but the flow
has not yet evolved so the mean flow qm remains relevant over some period of time.
Denoting tm+1 the instant when the controller correction K ′m+1 is added, we have
G=Gm

m at t= t−m+1 and G=Gm+1
m at t= t+m+1. And then we reach G=Gm+1

m+1 at t= t−m+2.
But between the two instants tm+1 and tm+2, the transfer function model G cannot be
defined as there is no mean state relevant to the transiently evolving flow.

Finally, according to (2.24) and (2.25), each transfer function Gj
i can be seen as the

interconnection

Gj
i =

G0
i

1−G0
i (K ′1 + · · · +K ′j)

(2.32)

between the plant G0
i characterizing the mean flow alone (even though it cannot be

sustained without controllers for i 6=0), and the controller corrections K ′1 to K ′j plugged
in parallel. The block diagrams at times t= t+1 , t±2 and t−3 are shown in figure 4.
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2.4. Relation between poles of the transfer operators Gj
i and instability modes

In the present context, modal analysis of the Jacobian operator Aj
i is used to find the

pole singularities of the resolvent operator Rj
i (with obvious notations), and therefore

of the transfer function Gj
i. We are concerned with the solutions of the generalized

eigenvalue problem
(slB−Aj

i(sl))q′l = 0, (2.33)

with complex eigenvalues sl= iωl+σl of growth rate σl, frequency ωl and eigenmodes
q′l (the method used to obtain approximate solutions of (2.33) will be explained in
§ 4.1). In our case, resonant frequencies will be associated with specific eigenmodes
of the mean flow qi, coupled with controller Kj. These modes cannot be directly
interpreted as instability modes if the mean flow is different from the base flow.
However, the Jacobian operator Aj

i may be seen as a perturbation of operator A0
i

with a correction term proportional to Kj according to (2.16), i.e.

Aj
i =A0

i +KjB〈C, ·〉. (2.34)

A continuous connection can therefore be established between the eigenvalues of the
two operators. The Jacobian operator A0

i may in turn be seen as a perturbation of the
Jacobian operator about the base flow A0

qb
, with a correction term due to mean-flow

distortion 1qi, where
1q := q− qb. (2.35)

Therefore, all instability modes of the base flow may be unambiguously identified
with some poles of Gj

i, thereby providing the latter with a physical meaning. This
key advantage of our resolvent-based model will be illustrated in § 3.5.

3. Unforced flow
3.1. Numerical model and methods

The control strategy is implemented on a well-known open-cavity flow configuration,
which was considered in a series of past papers (Barbagallo et al. 2009, 2011;
Dergham et al. 2011; Poussot-Vassal & Sipp 2015; Schmid & Sipp 2016; Sipp
& Schmid 2016) following Sipp & Lebedev (2007). The reader is referred to this
initial paper for a comprehensive description of the numerical set-up. The cavity of
length L= 1 and depth D has an aspect ratio L/D= 1, as shown in figure 1. In the
Cartesian coordinate system (x1, x2), the velocity components are denoted u= (u1, u2).
With the upstream edge of the cavity defining the origin (0, 0) and the incoming
flow aligned with the x1-direction, the upstream boundary layer starts forming at
x1 =−0.4 by switching the lower-wall boundary condition from stress free ∂2u1 = 0
to no slip u1 = 0 (in both cases, the walls are impermeable, i.e. u2 = 0). The inlet
velocity (U = 1, 0) at x1 = −1.2 is uniform and a standard outflow condition is
prescribed at the outlet, which is located at x1= 2.5. A stress-free boundary condition
is implemented on the upper wall at x2= 0.5 and at the downstream end of the lower
wall, from x1 = 1.75 to x1 = 2.5. The two-dimensional incompressible Navier–Stokes
equations are solved using the freely available finite-element software FreeFem++
(www.freefem.org). The primitive variables (u1, u2, p) are discretized on a mesh
of ∼200 000 (P1b, P1b, P1) Taylor–Hood elements, yielding a total of ∼700 000
degrees of freedom. The time-stepping code, which was made available online
(https://github.com/denissipp/AMR_Sipp_Schmid_2016) as complementary material to
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the review article by Sipp & Schmid (2016), is semi-implicit, with the nonlinear
terms extrapolated with a second-order Adams–Bashforth scheme.

We consider the nonlinear dynamics of the linearly unstable flow at a Reynolds
number of Re = 7500. The dynamical equilibrium that we consider for our control
problem is obtained by initializing the simulation with the base flow qb – which was
computed using Newton’s iteration (Sipp & Schmid 2016) – plus a small contribution
from the most unstable linear mode. After a long transient, characterized in § 3.3, the
flow reaches a quasiperiodic attractor, characterized in § 3.4.

Modal analyses were carried out using the ARPACK implementation of Arnoldi’s
method (Lehoucq, Sorensen & Yang 1997), coupled with the multifrontal sparse LU
solver MUMPS (Amestoy et al. 2001, 2006). The shift-invert mode was used to find
eigenvalues of the Jacobian operator in the vicinity of a given shift.

3.2. Actuator and flow measurements
The upstream-edge actuator is modelled by a Gaussian-shaped volume force term

B=
[

0, η exp
(
−
(x1 − x0

1)
2
+ (x2 − x0

2)
2

2σ 2

)
, 0
]T

, (3.1)

centred around (x0
1, x0

2)= (−0.1, 0.02), with a scalar η such that 〈B,B〉 = 1. With the
choice of spatial variance σ = 0.0849, the volume force reaches 50 % of its maximum
value at a radial distance of ≈0.1 from (x0

1, x0
2), and 1 % at ≈0.26.

In order to characterize the strength of the nonlinearity, we define different measures
of the distance between the instantaneous field q and the base flow qb, based on the
perturbation field 1q. The downstream-edge sensor is modelled by a pair (C, Y) such
that

y=
∫ 1.1

x1=1
∂21u1

∣∣∣∣
x2=0

dx1 (3.2)

measures the perturbation wall friction at the downstream edge of the cavity. Note
that this sensor satisfies (2.31), hence the base flow is a fixed point of the closed-loop
system, even if the controller has non-zero static gain. However, as discussed in § 2.3,
we will still need to impose K ′j(0) = 0 at every iteration, in order to guarantee that
there are no alternative fixed points.

In order to build phase portraits, we also consider three x2-perturbation velocity
probes located within the shear layer at x2 = 0 and x1 = 1/4, 1/2, 3/4. Finally, to
characterize the system globally, we consider the perturbation kinetic energy

E :=
〈1q,B1q〉
〈qb,Bqb〉

. (3.3)

3.3. Transient dynamics
Figure 5 shows time series of the global and local measures E and y of the
uncontrolled flow. We recall that the simulation is initialized with the base flow
plus a small perturbation parallel to the most unstable base-flow eigenmode. There is
a short initial phase of linear growth associated with that mode (see inset (a)), before
saturating effects of nonlinearity become active. This phase lasts a few convective
time units, after which the flow undergoes a long transient evolution of a few hundred
time units before a dynamical equilibrium is eventually reached, that we call state
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FIGURE 5. (Colour online) Time series of (a–c) perturbation kinetic energy E and (d–
f ) shear-stress measurement y of the unforced flow, with sliding mean shown as a black
dotted line. Zooms on the initial and final stages are shown in insets.

0. This state appears to contain multiple frequencies, as can be seen in insets (b)
and (e). Mean-flow distortion is caused by nonlinear interactions between these
finite-amplitude oscillatory modes. The deviation is significant since the mean value
of y is comparable with its oscillation amplitude, confirming strong nonlinearity. The
mean perturbation energy E is of the order of 2 % (see figure 5c), which corresponds
to perturbation velocities of the order of 0.1.

3.4. Attractor
The resulting mean flow is shown in figure 6(a), together with the base flow in (b), for
comparison. We display streamfunction contours on top of filled contours of the total
velocity norm. The growth of a boundary layer at the lower wall is apparent from
x1 = −0.4. This boundary layer becomes a shear layer on top of the cavity, which
thickens as it is convected towards the downstream edge. The flow recirculates at low
speeds within the cavity, as the incoming flow impacts the downstream wall of the
cavity. We note two main differences between mean and base flows: (a) the spreading
of the shear layer is more pronounced for the mean flow, (b) from inspection of the
streamlines, the recirculating flow rate is also stronger in that case. The enhanced flow
rate is caused by stronger entrainment due to the unsteady shear layer.
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FIGURE 6. (Colour online) Comparison between (a,c) state 0 and (b,d) the base flow.
(a,b) Velocity 2-norm of (a) uncontrolled mean flow u0 (computed by averaging over
200 time units, after the transient) and (b) base flow ub, with associated contours of the
streamfunction ψ . The streamfunction is defined by the relations ∂2ψ = v1, ∂1ψ =−v2 and
ψ = 0 on the lower wall (solid contours for positive increments δψ = 0.05 from ψ = 0;
dashed contours for negative increments δψ =−0.01 from ψ = 0). (c,d) Vorticity fields:
(c) snapshot at a time of maximum shear stress y at the downstream sensor and (d) base
flow.

Figure 6(c) shows a vorticity snapshot of state 0 yielding maximal instantaneous
shear stress y, compared to the steady vorticity field of the base flow in (d). We notice
the spatial development of the Kelvin–Helmholtz instability on top of the shear layer,
which is responsible for its enhanced spreading in figure 6(a). The maximum shear
stress is caused by the impact of a vortical structure at the downstream corner of the
cavity. Another vorticity sheet of opposite sign is visible within the cavity, and marks
the border of the recirculating zone. The vorticity levels within that sheet are higher
in state 0 than in the base flow, which is consistent with the stronger recirculation
in the former case. Finally, the average distance between the mean flow and any
instantaneous snapshot measured as 〈q′, q′〉/〈q0, q0〉 ≈ 1.1× 10−3 is very low, so the
mean flow can be considered as a good approximation of the full flow at any instant.

The dynamical state may be further characterized in the frequency domain by
considering the spectrum of Koopman modes. For fully developed flows, these can
be computed using harmonic averages

q̂′(ω) := lim
T→∞

1
T

∫ T

0
q′(t)e−iωt dt (3.4)

(Arbabi & Mezić 2017). The limit is non-zero for Koopman eigenfrequencies only,
and yields the associated Koopman modes of the observable q′. In practice, the
spectrum of amplitude of the Koopman modes may be approximated using discrete
Fourier transform (DFT) on a finite time series of perturbation fields. The discrete
set of peaks in the DFT spectrum of y correspond to Koopman eigenfrequencies,
visible in figure 7(a). There is no continuous spectrum in the signal and the non-zero
values between the peaks correspond to noise arising from the estimation by DFT.
The precise nature of the attractor is made clear by embedding the dynamics in a
three-dimensional phase space, using the three x2-velocity probes in the shear layer.
The resulting attractor has a toroidal topology, as can be seen in figure 7(b). Slicing
the attractor when trajectories cross the plane 1u2(1/2, 0) = 0 from below yields
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FIGURE 7. (Colour online) Characterization of the attractor without actuation:
(a) spectrum of amplitude of the Koopman modes of y, estimated using DFT over
a finite time series of 300 time units (no windowing), with frequency resolution
1ω ≈ 2 × 10−2; (b) phase portrait using three x2-velocity probes in the shear layer at
x2= 0 and x1= 1/4, 1/2, 3/4 (see figure 1); (c) Poincaré section of (b) for u2(1/2, 0)= 0
(crossing from below); the section plane is also indicated in (b). The three plots indicate
quasiperiodic behaviour with two incommensurate frequencies (2-torus) ωl ≈ 2.89 and
ωh ≈ 11.74.

a Poincaré map in the [1u2(1/4, 0), 1u2(3/4, 0)]-plane, shown in figure 7(c). The
resulting closed curve confirms the nature of the attractor as a 2-torus: a quasiperiodic
regime with 2 incommensurate ‘fundamental’ frequencies that we denote ωl and ωh

for low frequency and high frequency respectively. The discrete set of peaks in the
spectrum is generated by all the nonlinear interactions between these two modes:

{ωk} := {klωl + khωh | k := (kl, kh) ∈Z2
}. (3.5)

Note that the choice of the ‘fundamental’ frequencies is somewhat arbitrary, as
any pair of incommensurate frequencies is appropriate to define the quasiperiodic
frequency set (3.5). However, the choice can be physically motivated by selecting
two frequencies associated with natural time scales occurring in the flow, as explained
below.

Recall that the base flow was initially perturbed with a ‘drop’ of the leading
eigenmode, i.e. that of largest temporal growth rate. This shear-layer mode initially
has a natural frequency of ω = 10.9 (Barbagallo et al. 2009), as can be verified
from the spectrogram in figure 8 (the part of the figure for t > t1 will be discussed
later in § 5.2). As the instability develops, the frequency shifts to higher values,
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FIGURE 8. (Colour online) Spectrogram of the time series y(t), using short-time Fourier
analysis with Hamming windows of length T = 20 and 50 % overlap. In this section, we
focus on the unforced flow for t< t1, but further comments regarding the controlled flow
are provided in § 5.2. Resonant mean-flow modes α, β, γ , δ and b are indicated, according
to modal analysis reported in §§ 3.5 and 5.3. The start-up time tm of each controller
correction K ′m is shown with a dashed line.

reaching a value of 11.74 when the flow is fully developed. We use this value to
define a high-frequency scale ωh associated with shear-layer oscillations. During the
transient, we also observe the development of a low-frequency peak at ωl ≈ 2.89.
The flow structures associated with ωl and ωh are shown in figure 9(a,b). Panel (b)
confirms that the Koopman mode at ωh is associated with a shear-layer mode. On
the other hand, the low-frequency mode in (a) is localized within the cavity. The
frequency is low because the recirculating mean flow within the cavity is slow. The
two ‘fundamental’ frequencies ωh and ωl give rise to harmonics and interaction peaks
visible in the spectrogram and the spectrum of state 0 in figure 7(a).

3.5. Modal analysis
We illustrate in figure 10 the key property of our resolvent-based model explained in
§ 2.4, i.e. that eigenvalues of the mean flow q0 correspond to poles of the transfer
function G0

0, which can be related to instability modes of the base flow qb. On the
top panels, we plot the gain of the frequency response associated with the unforced
mean flow G0

0(iω) (a) and base flow Gb(iω) (b), the latter being defined as

Gb := 〈C,Rqb
B〉. (3.6)

In both cases, we notice the presence of peaks indicating strong receptivity to external
forcing on a discrete set of frequencies. In the case of (a), these peaks correspond to
the frequencies of the Koopman modes. Hence, the unforced flow is most receptive
to external forcing at its intrinsic oscillation frequencies, which is an indication
that the mean-flow model captures relevant properties of the nonlinear system. The
peaks of Gb, on the other hand, do not match with nonlinear frequencies. In the two
cases though, the peaks are associated with resonant poles of the respective model,
corresponding to mean-flow or base-flow eigenvalues. We therefore plot the spectra
of the associated Jacobian operators in (c,d), below the frequency responses. In order

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

11
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.112


44 C. Leclercq, F. Demourant, C. Poussot-Vassal and D. Sipp

0.01515(a) (b)

(c) (d)

0

−0.01418

0.01437

0

−0.01411

0.10380

0

−0.07414

0.10020

0

−0.09311

FIGURE 9. (Colour online) Comparison between real part of streamwise velocity
component of Koopman modes at (a) ω = ωl, (b) ω = ωh and eigenmodes (c) b, (d) α
of the uncontrolled mean flow. Koopman modes q̂′ were approximated using DFT on a
time series of 4013 snapshots equally sampled over a total duration of 128.416 time units.
The complex amplitude of the mean-flow eigenmodes was tuned to minimize the L2-error
with respect to the Koopman modes. The colour map spans from the minimum to the
maximum value in each plot, so bounds can be compared between Koopman modes and
eigenmodes.

to identify which eigenvalues are responsible for the receptivity peaks, we colour the
spectra by the criterion

Γj =
|〈C, q′j〉||〈p′j,B〉|

|σj|
, (3.7)

quantifying the contribution of each mode to the input–output relation (Antoulas 2005;
Bagheri et al. 2009; Barbagallo et al. 2009). The criterion takes into account the
distance 1/|σl| of each eigenvalue to the imaginary axis, the observability of the direct
mode |〈C, q′l〉| and the controllability of the adjoint mode |〈p′l, B〉|. We recall that
the adjoint modes (p′l) are solutions of the eigenvalue problem (µlB − Ãj

i(µl))p′l = 0,
where Ãj

i is the adjoint of Aj
i with respect to the inner product (2.10). Eigenvalues

of the adjoint operator are complex conjugate of the eigenvalues (sl) of the direct
operator, i.e. µl= s∗l , and adjoint modes satisfy the biorthogonality relation 〈p′k,q′l〉= δkl
with the normalized direct modes (q′l). Using the criterion (3.7), we find two families
of modes responsible for the resonance peaks of G0

0, and a single family of modes
responsible for the peaks of Gb. The modes are highlighted with grey lines in (c,d),
intended to guide the eye. Four poles, labelled α, β, γ , δ are responsible for the
peaks at ω> 5 in G0

0, corresponding to oscillations at ωh, ωh ±ωl and ωh + 2ωl. The
other family of mean-flow modes a, b, c, d, e, f are responsible for the low-frequency
peaks at ω < 5, among which the peak at ωl, coinciding with mode b. The five
resonance peaks of the base flow are generated by a single family of 5 poles. From
the time–frequency analysis, we know that the high frequency ωh is connected to the
most unstable mode of the base flow. Therefore, mode α is the mean-flow analogue
of that specific base-flow eigenmode. The other mean-flow modes β, γ , δ may then
be identified with the remaining unstable modes of the base flow, hence the labelling
in figure 10(c,d).

Conversely, the mean-flow mode b responsible for the receptivity peak at ωl in G0
0

does not have an obvious base-flow analogue. In fact, the emergence of mode b in the
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FIGURE 10. (Colour online) Frequency responses (a) G0
0 and (b) Gb of the mean and

base flows, and corresponding sets of poles (c,d) calculated by modal analysis. Eigenvalues
are coloured according to criterion (3.7) quantifying the relative contribution of each pole
to the input–output relation. The (almost) one-to-one relation between resonance peaks
and specific poles is highlighted with dashed vertical lines. These resonant poles can be
grouped into a single family for the base flow, highlighted with a grey line in (d). This
family contains the four unstable modes of the base flow, labelled with Greek characters
α, β, γ and δ in decreasing order of growth rate and encircled in black. This family of
resonant modes can also be identified, by continuity, in the mean-flow spectrum. A distinct
family of modes a–f , also highlighted with a grey line in (c), is responsible for the low-
frequency peaks present in |G0

0|.

mean-flow spectrum seems to arise from a purely nonlinear mechanism comparable
to ‘lock in’. Indeed, we notice that the frequency difference between each pair of
modes within the set {α, β, γ , δ} is a multiple of the frequency ωl associated with
mode b. Distortion of the base flow by the nonlinearities allows these four modes
to synchronize with the low-frequency mode b, resulting in a quasiperiodic attractor.
A similar observation has already been made regarding low-frequency oscillations of
large laminar separation bubbles behind a two-dimensional bump (Cherubini, Robinet
& De Palma 2010).

In figure 9, we compare the structure of the mean-flow eigenmodes α and b (c,d)
with the Koopman modes of the unforced flow at ωh and ωl (a,b). We notice striking
similarities between eigenmodes and Koopman modes, in line with observations from
past studies recalled in the introduction. In the literature though, the success of mean-
flow stability analysis is often associated with the presence of marginal eigenvalues
(Turton et al. 2015; Mantič-Lugo & Gallaire 2016), the so-called RZIF property (real-
zero imaginary-frequency) in Turton et al. (2015). We highlight the fact that the RZIF
property is not verified here: modes b, α, β, γ and δ have non-zero, positive growth
rates, yet they are associated with the correct frequencies and Koopman modes. This
was already noticed by Mettot, Renac & Sipp (2014a) and Meliga (2017) in open-
cavity flows (although in the former paper the mean flow was obtained as a fixed point
of a RANS model, not a temporal average of an unsteady RANS simulation). Here,
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the approximation works because the mean flow yields an excellent approximation of
the full flow at any instant (Mezić 2013), as previously said in § 3.4.

Finally, we observe in figure 10 receptivity peaks at low frequencies different
from ωl, due to the presence of poles c, a and f close to the imaginary axis. The
corresponding eigenmodes are localized within the cavity and resemble mode b.
Despite strong receptivity to external forcing, there is no signature of the associated
frequencies in the spectrum of the unforced flow. To understand this, we need to
consider the endogenous forcing term

f ′ :=Ψqq′ (3.8)

due to the nonlinear feedback operator. Since the operator Ψq is time invariant, its
output f ′ is quasiperiodic with the same discrete set of frequencies as its input q′,
i.e. {ωk} defined in (3.5). More precisely, we can introduce the sets of Koopman
modes

{q̂′k} := {q̂
′
(ωk)}, {f̂

′

k} := {f̂
′

(ωk)} (3.9a,b)

respectively associated with q′ and f ′. In the fully developed regime, the governing
equations (2.2) can be recast in the form of a harmonic balance relation (Khalil 2002)

q̂′k =Rq(iωk)f̂
′

k, (3.10)

between these two sets of Koopman modes (harmonic averages are zero otherwise).
Clearly, strong receptivity at frequencies outside the set {ωk} has no impact on the
intrinsic dynamics because the endogenous forcings are zero at these frequencies.
In short, the resolvent operator displays strong receptivity to external forcing at the
natural oscillation frequencies of the unforced flow, but not exclusively.

4. Designing controller K′1
We explain here the methodology used to synthesize controller K ′1, but all

subsequent controller corrections are designed using the same methodology. There
are two consecutive steps: first model reduction from frequency-domain data G0

0(iω),
then structured H∞-synthesis using the ROM.

4.1. Model reduction

We convert the frequency response G0
0 in the form of a state-space model (Ã, B̃, C̃, D̃).

Although many points O(100) are typically needed to capture the fine details of the
frequency response, we seek a state-space model approximating G0

0 with a lower
order O(10) to focus on the essential characteristics of the system that we would like
to manipulate. A strictly proper (i.e. D̃ = 0) reduced-order model (ROM) of order
16 is obtained using subspace identification methods (Liu, Jacques & Miller 1996;
McKelvey, Akcay & Ljung 1996). For subsequent iterations, the order of the ROM
varies between 16 and 32. The frequency response of the ROM is given by

G̃0
0(iω)= C̃(iωI− Ã)−1B̃ (4.1)

and the associated poles correspond to eigenvalues of Ã. In general, all quantities
related to ROMs will be denoted with a tilde. In figure 11(a,b), we check that the
frequency response G̃0

0(iω) (black dotted curve) coincides with the original model G0
0
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FIGURE 11. (Colour online) Comparison between resolvent-based model G0
0 (solid red

line/solid symbols) and the ROM G̃0
0 (dashed black line/open symbols) obtained by

subspace identification: frequency response (a) gain and (b) phase (the shaded region
corresponds to |arg(G)− arg(G0

0)|6π); (c) poles α, β, γ , δ.

(solid red curve) over the frequency range 5<ω < 20. This range contains the main
resonance peaks at ωh, ωh±ωl and ωh+ 2ωl, but not the low-frequency ones at ω< 5
which we choose to ignore in order to ensure sufficient order reduction. In (c), we
check that the poles α, β, γ and δ corresponding to the main resonance peaks are
correctly approximated by some eigenvalues of Ã.

We note in passing the monotonically decreasing phase (except for ‘upward jumps’
corresponding to unstable modes) with a nearly constant negative slope in (b), which
characterizes a time delay between the actuator and the sensor. This time delay
corresponds to advection of the perturbations over the cavity of length L = 1 at the
mean velocity κU in the shear layer. Fitting the data with a straight line in the range
56ω6 25 leads to a value of κ ≈ 0.73, consistent with the mean flow in figure 6(a).
This value of κ is larger than the value 0.53 obtained by Barbagallo et al. (2009) for
the advection of pressure perturbations by the base flow at x2 = 0 above the cavity.
This difference is mainly due to the fact that the forcing field B is localized within
the incoming boundary layer at x0

2 = 0.02> 0 and not directly at the wall.

4.2. Structured H∞-synthesis
After designing a ROM, we seek a controller K ′1 outputting the forcing signal

u′1 :=K ′1y (4.2)

from the measurement y. When the plant G̃0
0 is interconnected with K ′1, the closed

loop is characterized by four transfer functions[
y
u′1

]
=

[
G̃0

0S S
T K ′1S

] [
n
w

]
, (4.3)

linking the two inputs n and w to the two outputs y and u′1. These four transfers are
combinations of only two interconnected blocks G̃0

0 and K ′1, therefore they are not
independent of each other. In particular, the sensitivity function S and complementary
sensitivity function T , respectively defined as

S=
1

1− G̃0
0K ′1

and T =
G̃0

0K ′1
1− G̃0

0K ′1
, (4.4a,b)
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satisfy the relation S−T= 1. The controller K ′1 is designed in order to achieve desired
specifications on the four closed-loop transfer functions. But because the four transfer
functions are not independent of each other, we can only constrain each of them in a
limited frequency range. Four filters WS,WT,WGS,WK′S are therefore designed in order
to shape each closed-loop transfer function adequately and achieve specific design
goals to be listed in the next subsections. The procedure amounts to minimizing a
positive constant ρ bounding the H∞-norm of the four weighted transfer functions

‖WSS‖∞ 6 ρ, (4.5)
‖WTT‖∞ 6 ρ, (4.6)

‖WGSG̃0
0S‖∞ 6 ρ, (4.7)

‖WK′SK ′1S‖∞ 6 ρ, (4.8)

while simultaneously ensuring that the closed-loop transfers and the controller K ′1
remain stable. We recall that for a single-input single-output (SISO) system, the
H∞-norm of a stable transfer function H is given by the maximum of the modulus
of the frequency response

‖H‖∞ =max
ω∈R
|H(iω)|, (4.9)

hence, conditions (4.5)–(4.8) are equivalent to

|S(iω)|6 ρ/|WS(iω)|, (4.10)
|T(iω)|6 ρ/|WT(iω)|, (4.11)

|G̃0
0S(iω)|6 ρ/|WGS(iω)|, (4.12)
|K ′1S(iω)|6 ρ/|WKS(iω)|, (4.13)

for all real values of ω. The design of controller K ′1 therefore rests on the definition
of four inequality constraints on the closed-loop transfer functions. The constraints
are enforced by designing well-chosen frequency-domain templates 1/WS, 1/WT ,
1/WGS and 1/WKS. These are defined as filters depending on free parameters which
are calibrated manually before ρ is minimized. If one of the closed-loop constraints
is not met, the free parameters are adjusted and ρ optimized again, in an iterative
fashion until all constraints are satisfied.

The present approach targets the shaping of all four closed-loop transfer functions
and differs from the mixed-sensitivity method, which only targets S, T and sometimes
K ′1S (Henning & King 2007; Henning et al. 2007; Williams et al. 2010), but not G̃0

0S.
The advantage of the four-block method over mixed sensitivity will become clear in
§ 4.2.1. We note that directly shaping the closed-loop transfer functions is a much
more challenging task than shaping the loop gain G̃0

0K ′1, as done in the loop-shaping
approach (Dahan et al. 2012; Jones et al. 2015; Li & Morgans 2016; Dalla Longa
et al. 2017). Loop shaping takes advantage of the linearity of the loop gain with
respect to the controller K ′1 in order to indirectly achieve constraints on the closed
loop at low cost, whereas both the mixed-sensitivity and the four-block frameworks
target the closed loop in a more direct fashion.

Here we use a structured H∞ framework, which means that the controller order
may be chosen a priori, i.e. independently of the order of the ROM. In our case, we
fix the order of K ′1 and all subsequent controller corrections to 10. This is another key
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FIGURE 12. (Colour online) Frequency response of the four closed-loop transfer functions
of the ROM (black lines): (a) G̃0

0S, (b) S, (c) T , (d) K ′1S. The frequency templates ρ/|WGS|,
ρ/|WS|, ρ/|WT | are plotted in blue (ρ/|WK′S| is not shown in (d) as it is just a constant
curve located well above the maximum of |K ′1S|), with solid lines for ρ = 1 and dashed
lines for the optimized value of the multiplicative constant ρ = 0.6. In (b), the shaded
region is the forbidden area where the modulus margin constraint (4.20) is violated.

difference with the loop-shaping approach, where the order of the controller cannot
be chosen freely and is always larger than that of the ROM. However, computing
fixed-order controllers for the H∞-synthesis problem is known to be NP-hard (Blondel
& Tsitsiklis 1997) and one has to rely on local optimization techniques to compute
simple and practical controllers. In this work, we have used the control software
hinfstruct from the MATLAB Control Toolbox, which is based on a non-convex
non-smooth bundle technique developed in Apkarian & Noll (2006).

In the rest of this section, we will explain the specifications on the closed-loop
transfer functions and the choice of appropriate frequency templates. The final transfer
functions (black lines) and frequency templates (blue lines) are shown in figure 12,
before (solid) and after (dashed) optimization of the parameter ρ to a final value of
0.6.

4.2.1. Shaping G̃0
0S: attenuation of the main resonance peak

The goal of the controller is to suppress intrinsic resonances. To ‘desensitize’ the
flow to input perturbations n at the main resonance frequency ω=ωh of G0

0(iω), we
must ensure that

|S(iωh)|< 1, (4.14)
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such that the closed-loop gain

|G̃1
0| = |G̃

0
0S| (4.15)

be smaller than the open-loop gain |G̃0
0| at this frequency. This is achieved by

designing a ‘bell-shaped’ frequency template

1/WGS = 1/kGS
s2/α2

+ 2ξωhs+ω2
h/α

2

s2 + 2ξωhs+ω2
h

, (4.16)

with α2> 1 (see figure 12a) applied to the closed-loop transfer function G̃0
0S. The gain

|1/WGS(iω)| varies between a minimum value of 1/(α2kGS), reached asymptotically
when ω→ 0 and ω→∞, and a maximum value of 1/kGS, reached at the resonance
frequency ω=ωh. The parameter ξ determines the width of the filter. By choosing

kGS = 1/|G̃0
0(iωh)| (4.17)

and constraining G̃0
0S, we indirectly enforce a constraint on the sensitivity function

|S(iωh)|<ρ. (4.18)

Since the optimal value of ρ is 0.6 in our case, we enforce a reduction of 60 % in
the height of the main resonance peak at ωh.

Shaping G̃0
0S in order to constrain S may seem counterintuitive at first sight: why

not directly shaping S? The aim of this ‘trick’ is to prevent pole cancellation by a zero
of the controller. Indeed, cancelling the pole α with a zero of K ′1 is not a robust way
to suppress the resonance at ωh since the mean-flow model is only an approximation
of the true plant. Worse still, the unstable pole α will remain present in the closed
loop through the transfer G̃0

0S. A much better alternative is to strongly damp the
growth rate associated with this pole by shaping G̃0

0S instead of S. When targeting
the sensitivity function, as in the mixed-sensitivity approach, pole cancellation would
typically occur since S is a function of the product G̃0

0K ′1, i.e. the loop gain, only.
The same problem occurs in the loop-shaping framework, which directly targets the
loop gain. When targeting G̃0

0S instead, pole cancellation does not occur since that
transfer depends on both the loop gain and G̃0

0. The four-block approach is therefore
well suited to the control of unstable plants.

In fact, with appropriate choices for α and ξ , we see in figure 12(a) that we manage
to suppress all three resonance peaks at ωh and ωh ±ωl, associated with modes α, β
and γ . As a result, we verify in (b) that the gain of the sensitivity function is less
than 1 at these three frequencies. We also verify in this panel that ρ = |S(iωh)| = 0.6.
We will later verify in figure 17 from § 5.3 that the corresponding poles α, β and γ
are indeed damped instead of being cancelled.

4.2.2. Shaping S: stability robustness (modulus margin)
The poles of all four closed-loop transfer functions are given by the zeros of 1−

G̃0
0K ′1. To ensure closed-loop stability, we must therefore ensure that all zeros lie in the

appropriate half-plane. To guarantee stability robustness, we also ask that these zeros
be sufficiently far from the imaginary axis, where the closed loop becomes marginally
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stable. Equivalently, for a stable closed loop, we may ask that the modulus margin (not
to be confused with the gain margin)

1M =min
ω∈R
|1− G̃0

0(iω)K
′

1(iω)| (4.19)

be sufficiently large. In practice, we ask that 1M > −6 dB, or 1M > 0.5 in linear
scale, which amounts to bounding the sensitivity function

‖S‖∞ < 2. (4.20)

The constraint on S(iω) being independent of ω, we consider a constant frequency
template 1/WS and optimize ρ such that

|S(iω)|6
ρ

|WS|
< 2 (4.21)

for any real ω. In figure 12(b), constraint (4.20) is represented by the shaded region.
We see that the value of ρ=0.6 reached after optimization did not allow the constraint
to be satisfied in the vicinity of ω≈ 13, with the chosen WS. However, the sensitivity
gain being almost equal to 2 there, the resulting controller is deemed satisfactory
without further changing WS.

4.2.3. Shaping T: enforcing zero controller static gain
To ensure that the base flow is the only fixed point of the closed loop, we need

to ensure the controller has zero static gain, as discussed in § 2.3. Imposing (2.30),
i.e. K ′1(0)= 0, is equivalent to a condition on the complementary sensitivity function

T(0)= 0, (4.22)

which can be approximately achieved using constraint (4.11) and a filter WT with a
sufficiently large static gain |WT(0)| � 1, such that

|T(0)|<
ρ

|WT(0)|
� 1. (4.23)

The frequency template 1/WT is therefore defined as a high-pass filter, as can be
verified in figure 12(c).

4.2.4. Shaping K ′1S: performance robustness to modelling errors at high frequency
Finally, the remaining transfer function K ′1S may be shaped in order to ‘desensitize’

the controller at high frequency. This can be useful if modelling errors are large at
high frequencies and if the signal y is stochastic or contaminated with noise. This
would typically be the case in an amplifier flow or in the context of turbulence.
To achieve sufficient ‘roll-off’ of the controller gain at high frequency, a low-pass
frequency template 1/WK′S may be used. In our case, we expect our model to become
inaccurate at large frequencies since the resolvent operator about the mean flow
only captures spatially coherent structures typically developing at low to moderate
frequencies. However, our signal y being deterministic, non-chaotic, noise free and
therefore weakly energetic at high frequencies (cf. spectrum in figure 7a), imposing
steep roll-off at high frequency is unnecessary. We therefore choose 1/WK′S as a very
large constant here, and simply verify a posteriori in figure 12(d) that the obtained
controller is strictly proper, i.e. that |K ′1(iω)|→ 0 as ω→∞.
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FIGURE 13. (Colour online) Time series of (a) the perturbation kinetic energy E, the
sensor perturbation y and the control signal u=

∑
m u′m for the controlled flow. The time

axis is in log scale to highlight the different time scales. For each iteration m, the time
origin is reset to zero by subtracting tm, the start-up time of the new controller K ′m, so
that the first point is at dt= 4× 10−4 in each panel.

5. Controlled flow
5.1. Time scales

A sequence of five robust controllers was found to lead the flow from state 0 to the
base flow. When a controller correction K ′m is added to the loop, its internal state
is initialized to 0. The internal states of the other controllers K ′j<m already in the
loop are not reset to 0, hence the control signal u evolves continuously over time.
Figure 13 shows the full time evolution of the system as the sequence of controllers
is applied. In this plot, we concentrate on the transient evolution from one state to
the next. The origin of time is reset to zero at each iteration m, by subtracting the
start-up time tm of a new controller K ′m. The time axis is in log scale, and different
shades of grey are used to highlight the different time scales involved in the journey
of the system from one state to the next. When a new controller is switched on,
the flow rapidly evolves over a short time scale of the order of O(1), which seems
sufficient for the system to latch onto a new state. This time scale is indicated with
a white background. Subsequent evolution of the local measurement y is insignificant,
but the perturbation kinetic energy keeps evolving considerably over the next O(100)
time units. This slow relaxation is indicated with a light grey background, and a
dark grey background is used to denote convergence to a new equilibrium. The
separation of time scales in the transient evolution is once again related to the two
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physical processes occurring in the flow: fast oscillations of the shear layer and slow
recirculation within the cavity. Indeed, due to its position, the local measurement
y is mostly sensitive to the former process and very little to the latter. Conversely,
the global measurement E is, by definition, sensitive to both. The control signal is
characterized by a third, ultra-fast, time scale O(0.1), highlighted in very dark grey
and visible at iteration 1 only. This time scale is intrinsic to the controller and the
large ‘overshoot’ observed at the first iteration is due to the transition from a 2-torus
to a limit cycle with a different fundamental frequency. Such qualitative transition
does not occur in subsequent iterations, as we shall see next.

In the last iteration, all three quantities vanish as the system is attracted towards
the base flow, which is a solution of the Navier–Stokes equation without forcing. At
this point, the power consumption of the controllers is infinitesimal (or proportional
to incoming noise in a realistic case) and the cavity drag is minimal, so the control
strategy is profitable in the long run, regardless of the initial cost. The exponential
decay of all quantities is governed by the least damped pole of the last transfer
function G5

5.

5.2. Attractors

In figure 8 from § 3, we plotted a spectrogram of the time series y(t), which shows the
evolution of the frequency content of the flow as it evolves. We comment here the part
for t > t1 concerning the controlled flow. We immediately notice in the spectrogram
that there is less and less energy at high frequencies as we iterate, which indicates
that the nonlinearity becomes weaker and weaker, before a linear regime is eventually
reached at iteration 5. Initially, the dynamics is on a 2-torus characterized by the
two fundamental frequencies ωl and ωh. But soon after t1, the flow transitions to a
limit cycle with a fundamental frequency close to the previous harmonic ωh + ωl.
During subsequent iterations, the flow stays on (nearly) that same attractor, but the
fundamental frequency slightly decreases. In fact, in the second iteration (between
t2 and t3), the attractor is not exactly a pure limit cycle but an almost degenerate
2-torus, which is strongly dominated by its fast fundamental frequency. The trace of
interactions between the high-frequency fundamental and a non-zero low-frequency
mode at ω≈ 2.5 is visible soon after t2 in figure 8.

Focussing on the permanent states in figure 13, we notice that each controller leads
to a reduction of up to a decade in the perturbation kinetic energy (a). The decrease of
the oscillation amplitude at the sensor y is less dramatic (b). In figure 14, we project
each attractor in the phase plane [1u2(1/4, 0), 1u2(3/4, 0)]. We observe a qualitative
change in the topology of the attractor from state 0 (two-dimensional) to state 1 (one-
dimensional). After that, each additional controller further reduces the amplitude of
shear-layer oscillations, without further qualitative change in the dynamics.

In figure 15, we also plot vorticity snapshots for each state, at a time of maximal
shear stress y. The reduction of the mean recirculation and the suppression of the low-
frequency cavity mode are responsible for the strong weakening of the vorticity sheet
within the cavity between states 0 and 1. The snapshots also illustrate the weakening
of the spatial instability in the shear layer: roll up is delayed and the resulting vortices
are therefore weaker as they impact the downstream edge of the cavity. We also notice
a reduction in the size of the vortices between states 0 and 1, which is consistent with
the increase in the oscillation frequency observed in figure 8.
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FIGURE 14. (Colour online) Characterization of dynamical equilibria m= 0, . . . , 5 in the
phase plane [1u2(1/4,0),1u2(3/4,0)]. As the control law is updated, the end state moves
closer and closer to the fixed point (state 5), which is located at (0,0). State 0 is a 2-torus,
states 1–4 are limit cycles (or almost) with decreasing oscillation amplitude and state 5
is the fixed point. State 2 is in fact an almost degenerate 2-torus: the extra dimension of
the attractor is so thin that it is hidden by the line width.
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FIGURE 15. (Colour online) Vorticity snapshots at a time where the shear-stress
measurement y is maximum (a) m=0, (b) m=1, (c) m=2, (d) m=3, (e) m=4, ( f ) m=5.
The colour map has been cropped to the same arbitrary extremal values in all plots for
comparison.

5.3. Evolution of the transfer function model G from n to y: gain and poles
In figure 16, we follow the evolution of the gain of the transfer function model G
characterizing the input–output relation from n to y, during the iteration. All mean
flows were computed by averaging over more than 200 time units, in the fully
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FIGURE 16. (Colour online) Evolution of the gain |G| during the iterative procedure.
(a) Shows the initial value of |G| at the beginning of the iteration, at t−0 . In each
subsequent panel, we show the relaxation of G from Gm

m−1 (dashed lines) at t = t+m to
Gm

m (solid lines) at t= t−m+1 (with t6→∞), under the effects of nonlinearity. Same labels
as figure 15. Vertical lines indicate Koopman frequencies of the permanent state obtained
with the controller Km (no unsteady peak for m = 5, because the system is steady). We
also indicate which poles of Gm

m are responsible for each receptivity peak. Mode labels
are coloured when their receptivity peak matches with a Koopman frequency of the flow.

developed regime. The plant Gm
m (solid lines), computed using (2.32), characterizes

the fully developed flow in feedback loop with the controller Km. At t= tm+1, a new
controller correction K ′m+1 is added to the loop, in order to desensitize the plant with
respect to incoming perturbations occurring at resonant frequencies. As previously
said in § 4.2.1, each controller targets the receptivity peaks matching with Koopman
modes (indicated with solid lines), using a ‘bell-shaped’ filter (cf. (4.16)) centred
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about the dominant Koopman mode. This procedure leads to the shaped plant Gm+1
m

(dashed lines). The flow being out of equilibrium, it transiently evolves until a new
dynamical state is reached. The new plant G is then characterized by the transfer
function Gm+1

m+1 (solid lines) and the iteration proceeds. In the last step, the flow state
4 is very close to the base flow already and the designed closed loop G4

5 is therefore
nearly equal to the last effective plant G5

5.
In figure 17, we plot the poles of each transfer function G during the iteration. The

poles of Gm
m are indicated with solid symbols and those of the shaped plant Gm+1

m

are indicated with open symbols. In fact, the poles are computed from a ROM G̃
obtained by subspace identification of G, at each step. We only follow the evolution
of the four poles α, β, γ , δ captured by the ROM. We checked in § 4.1 that the
poles are well approximated in the case of G0

0 (see figure 11c). The plant Gm
m always

has unstable poles, until the very last iteration. During the ‘shaping’ phase (dashed
arrows) Gm

m→Gm+1
m , the plant is stabilized. The growth rate of all four resonant poles

is damped (except pole γ in the last iteration; panel ( f )). Pushing the poles far from
the imaginary axis attenuates the receptivity peaks in the transfer function, as observed
in figure 16 and previously explained in § 4.2.1. The most strongly damped pole is
associated with the frequency of the dominant Koopman mode, specifically targeted
by the ‘bell-shaped’ template. Then, during the relaxation phase Gm+1

m → Gm+1
m+1, all

the poles drift upwards again (solid arrows) and settle closer to the imaginary axis,
causing the resurgence of sharp peaks in the next plant Gm+1

m+1. In the last step, the flow
is weakly nonlinear and the drift of the poles during the relaxation phase is sufficiently
small for all of them to remain in the stable half-plane, which leads to convergence
to the base flow.

We finally highlight the fact that, at each step m, the fundamental oscillation
frequency of the fully developed flow matches with a specific pole of Gm

m. In the
case G0

0 of the unforced flow, there is even a correspondence between five Koopman
frequencies and five poles. This remarkable observation confirms that each linear
model based on the mean state captures the intrinsic dynamics of the corresponding
nonlinear system {flow + controller Km}. Given the fact that each pole may be
associated with a base-flow eigenmode, we can identify which instability modes are
driving the observed nonlinear branches. The association is made explicit in the
spectrogram of figure 8, where mode labels are indicated on top of each frequency
peak. Initially, the flow is in a quasiperiodic regime due to an interaction between all
four modes α, β, γ and δ, which synchronize with mode b. Then the controlled flow
switches to a limit cycle driven by mode β, while the signature of the other modes
is completely suppressed from the output signal y. In the unforced case, the leading
Koopman mode is associated with mode α, whereas it is associated with mode β

when K ′1 is in the loop, which explains the sudden frequency jump in the spectrogram.
Interestingly, we note the complete disappearance of the low frequency at ωl, despite
the fact that controller K ′1 did not target the corresponding mode b. The suppression
of this oscillation probably occurred through a nonlinear mechanism: by damping
modes β, γ and δ corresponding to the oscillations at ωh−ωl, ωh+ωl and ωh+ 2ωl,
the controller K ′1 has indirectly targeted the low frequency ωl. In subsequent iterations
m > 1, the flow remains on a limit cycle governed by mode β, which explains the
smooth evolution of the dominant frequency in the spectrogram (figure 8), and the
qualitatively similar phase portraits in figure 14.
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6. Discussion
6.1. Alternative route to the base flow and robustness of the method

We checked the robustness of our method by using a different set of controllers for
the last 3 iterations. This choice led to a different route in phase space (not shown),
exciting modes γ and δ and suppressing the oscillation initially associated with mode
β altogether. It was however still possible to reach the base flow in five steps, which
shows that different sequences of controllers may be equally suitable.

Intuitively, the number of iterations increases with the nonlinearity and decreases
with the robustness of each controller. Indeed, a necessary condition for convergence
in m iterations is that the total controller Km stabilizes the closed-loop transfer
function Gb/(1−GbKm) based on the base flow. But our method relies solely on the
mean flow, with no prior knowledge of the base flow, and we only guarantee that
Km stabilizes the transfer function Gm

m−1 = G0
m−1/(1− G0

m−1Km) at step m (cf. (2.32)).
To converge in m iterations, we therefore need G0

m−1 sufficiently close to Gb, i.e. a
weakly nonlinear state m− 1, and a sufficiently robust controller Km. This is exactly
what happens for us after m= 5 iterations. With stronger initial nonlinearity, a higher
number of iterations may be required, but provided each intermediate input–output
model is able to correctly capture the intrinsic dynamics of the system, one would
still expect convergence to the base flow, although there is no theoretical proof and
the method remains heuristic at this point.

6.2. Key differences with a gain scheduling approach
By updating the controller at each iteration according to the evolution of the mean
flow, the method is reminiscent of the gain scheduling approach (Khalil 2002;
Högberg et al. 2003). There are however key differences listed below.

First, we do not know in advance what mean flows will be obtained, so rather
than being scheduled in advance, the controller gain is adapted during the iteration,
depending on the new mean flow emerging at each step. In Högberg et al. (2003),
a sequence of mean flows was determined a priori, by interpolating between the
fully developed turbulent state and the laminar state. The mean-flow models therefore
characterized the transient evolution of the globally stable (channel) flow during
relaminarization. In our case, the mean flows characterize different permanent states
visited during the iteration. The attractors may be driven by different instability
modes, resulting in qualitatively different mean flows which cannot be predicted by
interpolation.

Second, instead of designing a new controller Km+1 from the sole knowledge of
the mean flow m, we design a controller correction K ′m+1 = Km+1 − Km based on
the knowledge of both the mean flow m and the controller Km. Again, we are not
following the transient evolution of a globally stable flow, but a sequence of permanent
states visited by an unstable flow coupled with some controllers. The plant model G0

m
based on the mean flow m alone does not characterize the response to a small change
in actuation of the coupled system, and the adequate transfer function is Gm

m. As can
be seen in figure 18 for m=5, the transfer functions G0

m and Gm
m may be quite different

indeed.
Finally, in Högberg et al. (2003), the order of the controller remains fixed during

the iteration whereas that of the total controller Km =
∑m

j=1 K ′j increases in our case.
This drawback of our approach may not be an issue for implementation, since each
control law u′j may be computed independently, and then added to form um=

∑m
j=1 u′j.

Since each K ′j has the same order, the computational cost increases only linearly with
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FIGURE 17. (Colour online) Evolution of the poles α, β, γ , δ of the ROM transfer
function G̃ during the iterative procedure. Solid (respectively open) symbols correspond
to poles of G̃m

m (respectively G̃m+1
m ). Dashed arrows show the downward motion of the

poles into the stable half-plane during the shaping of a new closed loop. Conversely, solid
arrows show the upward motion of these poles following nonlinear relaxation of the mean
state. Same labels as in figures 15 and 16.

the number of iterations m. The computational time may even be kept constant using
parallel computing. Alternatively, a low-order model may be obtained from the total
controller Km at each step. In our case, we successfully reduced the number of states
of K5 from 50 to 12 with no loss in performance (using the modred command from
MATLAB, which is based on balanced truncation).
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FIGURE 18. Comparison between the gain of the transfer functions G0
5 = Gb associated

with the base flow only and G5
5, the transfer function associated with the closed loop

between the base flow and the final controller K5.

7. Conclusion
The present study proposes a novel approach for the control of strongly nonlinear

resonating flows using linear methods only. The approach is illustrated on the case of
open-cavity flow at Re= 7500, i.e. far from the linear instability threshold which is at
Rec=4140. Starting from a quasiperiodic unactuated regime, we manage to completely
suppress the oscillations with a sequence of five robust controllers. At the end of the
process, the base flow is reached, with stabilized linear dynamics. The method relies
on two key ideas:

(i) modelling of the system as an LTI plant using the resolvent operator about the
mean flow,

(ii) a Newton-type iterative procedure based on the successive mean flows.

The first point (i) builds on previous observations that linear analysis about the
mean state yields quantitative information about the underlying nonlinear dynamical
equilibrium. Modal analysis is indeed able to capture the structure and frequencies
of self-sustained oscillations, while resolvent analysis successfully captures receptivity
to forcing, even in turbulent flows. Using the resolvent operator in order to derive
a sequence of input–output models, we show that it takes no more than a series of
time-averaged flows to design a successful feedback loop. Not only is the method
simple, general and computationally inexpensive, it is also physically insightful.
Furthermore, LTI models of nonlinear flows derived from the mean state are also
unambiguously defined, as opposed to linear models identified from input–output
data. This is particularly useful in the case of unstable base flows, which inevitably
lead to nonlinear dynamics even in the most quiet environment. When the base flow
is reached, the system is truly linear and the proposed definition matches exactly
with the actual definition of the transfer function. In essence, the framework initially
introduced by McKeon & Sharma (2010) naturally lends itself to the modelling of an
LTI input–output relation for nonlinear flows. Although seemingly optimal in some
sense, there is however no proof that the resolvent operator about the mean flow is
the best option, or work in every cases, and these questions will be addressed in
future work.
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The second point (ii) also appears to be fairly novel, although it is in principle
independent of (i), which means that an iterative procedure could also be carried
out with a different modelling strategy for defining an LTI model at each step.
The key idea here is to resort to a sequence of linear approximations in order to
solve a nonlinear control problem. For sufficiently strong nonlinearity, designing a
single low-dimensional LTI controller able to destroy the initial attractor and drive
the system directly to the fixed point is a challenge. Instead of designing complex
nonlinear models, or crafting elaborate nonlinear control laws, we propose to use a
simple sequence of linear controllers. Each controller disrupts the current dynamical
equilibrium and drives the system to a new one, closer to the fixed point in phase
space. After a few iterations, the coupled system becomes attracted to the fixed point
and flow oscillations are fully suppressed. Note that although only linear controllers
are used, the entire procedure is nonlinear in essence, as the effect of each controller
depends fundamentally on the choice of the past controllers. And although the final
controller stabilizes the base flow once reached, it is not guaranteed to drive the
system from an initial condition on the attractor to the base flow. The method set
forth in this paper is in some sense analogue to Newton’s iteration: a series of linear
models and controllers are derived, until fluctuations arising from nonlinearity are
fully cancelled.

From a practical perspective, the proposed method has one clear advantage: it
only requires knowledge of the mean flow, at every iteration. There is no need
for an adjoint simulation either, and, in the case of turbulent flows, the method
might be applicable from a time-averaged unsteady RANS simulation. Computing
the transfer function requires the formation of the Jacobian matrix, followed by the
resolution of a linear system for each frequency. For two-dimensional, or equivalently
three-dimensional problems with one invariant direction, this is computationally
inexpensive. For fully three-dimensional mean flows, matrix-free methods may be
considered instead. A disadvantage of the method though, is that it requires knowledge
of the full mean state. However, data assimilation is an active field of research in
fluid mechanics, and techniques have recently been developed for two-dimensional
mean-flow reconstruction from under-resolved/incomplete/noisy measurements (Foures
et al. 2014; Symon et al. 2017). For the method to be applicable outside the
laboratory however, methods should be developed to infer the mean flow from
localized sensors only.

Future work will be dedicated to understanding the rationale behind the success
of mean-flow-based input–output models and their limitations. It would also be
interesting to analyse the convergence properties of the iterative method from a
theoretical viewpoint. Applicability of the method to noise amplifiers, chaotic flows
and turbulent flows also remains to be investigated.
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ALEKSIĆ, K., LUCHTENBURG, M., KING, R., NOACK, B. & PFEIFER, J. 2010 Robust nonlinear
control versus linear model predictive control of a bluff body wake. In 5th Flow Control
Conference, p. 4833. AIAA.
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MOARREF, R, JOVANOVIĆ, M. R., TROPP, J. A., SHARMA, A. S. & MCKEON, B. J. 2014 A low-
order decomposition of turbulent channel flow via resolvent analysis and convex optimization.
Phys. Fluids 26, 051701.

NAGARAJAN, K. K., CORDIER, L. & AIRIAU, C. 2013 Development and application of a reduced
order model for the control of self-sustained instabilities in cavity flows. Commun. Comput.
Phys. 14, 186–218.

NAKASHIMA, S., FUKAGATA, K. & LUHAR, M. 2017 Assessment of suboptimal control for turbulent
skin friction reduction via resolvent analysis. J. Fluid Mech. 828, 496–526.
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