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Abstract. Dendric shifts are defined by combinatorial restrictions of the extensions of the
words in their languages. This family generalizes well-known families of shifts such as
Sturmian shifts, Arnoux–Rauzy shifts and codings of interval exchange transformations.
It is known that any minimal dendric shift has a primitive S-adic representation where
the morphisms in S are positive tame automorphisms of the free group generated by the
alphabet. In this paper, we investigate those S-adic representations, heading towards an
S-adic characterization of this family. We obtain such a characterization in the ternary
case, involving a directed graph with two vertices.
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1. Introduction
Dendric shifts are defined in terms of extension graphs that describe the left and right
extensions of their factors. Extension graphs are bipartite graphs that can roughly be
described as follows: if u is a word in the language L(X) of the shift space X, one puts
an edge between the left and right copies of letters a and b such that aub is in L(X). A
shift space is then said to be dendric if the extension graph of every word of its language
is a tree. These shift spaces were initially defined through their languages under the name
of tree sets [BDFD+15a] and were studied in a series of papers. They generalize classical
families of shift spaces such as Sturmian shifts [MH40], Arnoux–Rauzy shifts [AR91],
codings of regular interval exchange transformations [Ose66, Arn63] (IETs) or else shift
spaces arising from the application of the Cassaigne multidimensional continued fraction
(MCF) algorithm [CLL17].

Minimal dendric shifts exhibit striking combinatorial [BDFD+15c, BDD+18], alge-
braic [BDFD+15a, BDFD+15b], and ergodic properties [BBD+21]. They for instance
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have factor complexity #(L(X) ∩ An) = (#A − 1)n+ 1 [BDFD+15a] and topological
rank #A [BBD+21], where A is the alphabet of the shift space. They also fall into the
class of shift spaces satisfying the regular bispecial condition [DF20], which implies that
the number of their ergodic measures is at most #A/2. An important property for our
work is that the derived shift of a minimal dendric shift is again a minimal dendric shift
on the same alphabet, where derivation is here understood as derivation by return words
(see §3 for definitions). This allows to give S-adic representations of such shift spaces
[Fer96], that is, to define a set S of endomorphisms of the free monoid A∗ and a sequence
σ = (σn)n≥1 ∈ SN, called an S-adic representation, such that

X = {x ∈ AZ | u ∈ L(x) ⇒ there exists n ∈ N, a ∈ A : u ∈ L(σ1σ2 · · · σn(a))}.
S-adic representations are a classical tool that allows to study several properties of

shift spaces such as the factor complexity [DLR13, DDMP21], the number of ergodic
measures [BD14, BHL21, BHL20], the dimension group and topological rank [BBD+21],
or yet the automorphism group [EM20]. In the case of minimal dendric shifts, the
involved endomorphisms are particular tame automorphisms of the free group generated
by the alphabet [BDFD+15c, BDD+18]. This in particular allows to prove that minimal
dendric shifts have topological rank equal to the cardinality of the alphabet and that
ergodic measures are completely determined by the measures of the letter cylinders
[BBD+21, BHL20].

An important open problem concerning S-adic representations is the S-adic conjecture
whose goal is to give an S-adic characterization of shift spaces with at most linear
complexity [Ler12], that is, to find a stronger notion of S-adicity such that a shift space
has an at most linear factor complexity if and only if it is ‘strongly S-adic’. Our work goes
one step further towards this conjecture by studying S-adic representations of minimal
dendric shifts. Our main result is the following that gives an�3S3�3-adic characterization
of minimal dendric shifts over a ternary alphabet, where S3 is defined in §5.1 and �3 is
the symmetric group. It involves a labeled directed graph G with two vertices and which
is non-deterministic, that is, a given morphism may label several edges leaving a given
vertex.

THEOREM 1.1. A shift space (X, S) is a minimal dendric shift over A3 = {1, 2, 3} if and
only if it has a primitive �3S3�3-adic representation σ ∈ (�3S3�3)

N that labels a path
in the graph G represented in Figure 7.

We then characterize, within this graph, the well-known families of Arnoux–Rauzy
shifts and of coding of regular 3-IET (Theorem 6.13). We also show that shift spaces
arising from the Cassaigne MCF are never Arnoux–Rauzy shifts, nor codings of regular
3-IET (Proposition 6.14). Observe that minimal ternary dendric shifts have factor com-
plexity 2n+ 1 and another S-adic characterization could be deduced from [Ler14]. This
other S-adic characterization would also involve a labeled graph, but with nine vertices.

Observe that we do not focus only on the ternary case. We investigate the S-adic
representations of minimal dendric shifts over any alphabet obtained when considering
derivation by return words to letters. We for instance show that when taking the image
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Y of a shift space X under a morphism in S, the extension graphs of long enough
factors of Y are the image of the extension graph of factors of X under some graph
homomorphism (Proposition 4.7). This allows us to introduce the notion of dendric
preserving morphism for X which is the fundamental notion for the construction of the
graph G. We also characterize the morphisms σ of S that are dendric preserving for all X
using Arnoux–Rauzy morphisms (Proposition 4.11).

The paper is organized as follows. We start by giving, in §2, the basic definitions for
the study of shift spaces. We introduce the notion of extension graph of a word, of dendric
shift, and of S-adic representation of a shift space.

In §3, we recall the existence of an S-adic representation using return words for minimal
shift spaces (Theorem 3.1) and the link between return words and Rauzy graph.

In §4, we then study the relation between words in a shift space and in its image by
a strongly left proper morphism (Proposition 4.1). We deduce from it a link between the
extension graphs (Proposition 4.7) using graph morphisms, and we prove that the injective
and strongly left proper morphisms that preserve dendricity can be characterized using
Arnoux–Rauzy morphisms (Proposition 4.11).

In §5, we study the notions and results of §4 in the case of a ternary alphabet. We then
prove the main result of this paper (Theorem 1.1) which gives an S-adic characterization
of ternary minimal dendric shifts using infinite paths in a graph.

Finally, in §6, we focus on three sub-families of dendric shifts: Arnoux–Rauzy
shifts, interval exchanges, and Cassaigne shifts. For interval exchanges, we first recall
the associated definitions and basic properties, then provide an S-adic characterization
(Theorem 6.13) in the ternary case using a subgraph of the graph obtained in the dendric
case. We also prove that the families of Cassaigne shifts, of Arnoux–Rauzy shifts, and of
regular interval exchanges are disjoint.

2. Preliminaries
2.1. Words, languages, and shift spaces. Let A be a finite alphabet of cardinality d ≥ 2.
Let us denote by ε the empty word of the free monoid A∗ (endowed with concatenation),
and by AZ the set of bi-infinite words over A. For a word w = w1 · · · w� ∈ A�, its length
is denoted |w| and equals �. We say that a word u is a factor of a word w if there exist words
p, s such that w = pus. If p = ε (respectively, s = ε) we say that u is a prefix (respectively,
suffix) of w. For a word u ∈ A∗, an index 1 ≤ j ≤ � such that wj · · · wj+|u|−1 = u

is called an occurrence of u in w and we use the same term for bi-infinite word
in AZ. The number of occurrences of a word u ∈ A∗ in a finite word w is denoted
as |w|u.

The set AZ endowed with the product topology of the discrete topology on each copy
of A is topologically a Cantor set. The shift map S defined by S((xn)n∈Z) = (xn+1)n∈Z is
a homeomorphism of AZ. A shift space is a pair (X, S) where X is a closed shift-invariant
subset of some AZ. It is thus a topological dynamical system. It is minimal if the only
closed shift-invariant subset Y ⊂ X is ∅ and X. Equivalently, (X, S) is minimal if and only
if the orbit of every x ∈ X is dense in X. Usually we say that the set X is itself a shift
space.
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The language of a sequence x ∈ AZ is its set of factors and is denoted L(x). For a
shift space X, its language L(X) is ∪x∈XL(x) and we set Ln(X) = L(X) ∩ An, n ∈ N. Its
factor complexity is the function pX : N → N defined by pX(n) = #Ln(X). We say that a
shift space X is over A if L1(X) = A.

2.2. Extension graphs and dendric shifts. Dendric shifts are defined with respect to
combinatorial properties of their language expressed in terms of extension graphs. Let F
be a set of finite words on the alphabet A which is factorial, that is, if u ∈ F and v is
a factor of u, then v ∈ F . For w ∈ F , we define the sets of left, right, and bi-extensions
of w by

E−
F (w) = {a ∈ A | aw ∈ F };

E+
F (w) = {b ∈ A | wb ∈ F };
EF (w) = {(a, b) ∈ A × A | awb ∈ F }.

The elements of E−
F (w), E

+
F (w), and E−

F (w) are respectively called the left extensions, the
right extensions, and the bi-extensions of w in F. If X is a shift space over A, we will use
the terminology extensions in X instead of extensions in L(X) and the index L(X) will
be replaced by X or even omitted if the context is clear. Observe that as X ⊂ AZ, the set
EX(w) completely determines E−

X(w) and E+
X(w). A word w is said to be right special

(respectively, left special) if #(E+(w)) ≥ 2 (respectively, #(E−(w)) ≥ 2). It is bispecial
if it is both left and right special. The factor complexity of a shift space is completely
governed by the extensions of its special factors. In particular, we have the following result.

PROPOSITION 2.1. (Cassaigne and Nicolas [CN10]) Let X be a shift space. For all n,
we have

pX(n+ 1)− pX(n) =
∑

w∈Ln(X)
(#E+(w)− 1)

=
∑

w∈Ln(X)
(#E−(w)− 1).

In addition, if for every bispecial factor w ∈ L(X), one has

#E(w)− #E−(w)− #E+(w)+ 1 = 0, (2.1)

then pX(n) = (pX(1)− 1)n+ 1 for every n.

A classical family of bispecial factors satisfying (2.1) is made of the ordinary bispecial
factors that are defined by E(w) ⊂ ({a} × A) ∪ (A × {b}) for some (a, b) ∈ E(w). A
larger family of bispecial factors also satisfying (2.1) are the dendric bispecial factors
defined below.

For a word w ∈ F , we consider the undirected bipartite graph EF (w) called its extension
graph with respect to F and defined as follows: its set of vertices is the disjoint union
of E−

F (w) and E+
F (w) and its edges are the pairs (a, b) ∈ E−

F (w)× E+
F (w) such that

awb ∈ F . For an illustration, see Example 2.2 below. We say that w is dendric if E(w) is a
tree. We then say that a shift space X is a dendric shift if all its factors are dendric in L(X).
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FIGURE 1. The extension graphs of ε (a), 0 (b) and 1 (c) are trees.

Note that every non-bispecial word and every ordinary bispecial word is trivially dendric.
In particular, the Arnoux–Rauzy shift spaces are dendric (recall that Arnoux–Rauzy shift
spaces are the minimal shift spaces having exactly one left-special factor un and one
right-special factor vn of each length n and such that E−(un) = A = E+(vn); all bispecial
factors of an Arnoux–Rauzy shift are ordinary). By Proposition 2.1, we deduce that any
dendric shift has factor complexity pX(n) = (pX(1)− 1)n+ 1 for every n.

Example 2.2. Let σ be the Fibonacci substitution defined over the alphabet {0, 1} by
σ : 0 �→ 01, 1 �→ 0 and consider the shift space generated by σ (that is, the set of bi-infinite
words over {0, 1} whose factors are factors of some σn(0)). The extension graphs of the
empty word and of the two letters 0 and 1 are represented in Figure 1.

2.3. S-adicity. Let A, B be finite alphabets with cardinality at least 2. By a morphism
σ : A∗ → B∗, we mean a non-erasing monoid homomorphism (also called a substitution
when A = B). By non-erasing, we mean that the image of any letter is a non-empty word.
We stress the fact that all morphisms are assumed to be non-erasing in the following. Using
concatenation, we extend σ to AN and AZ. In particular, if X is a shift space over A, the
image of X under σ is the shift space

Y = {Skσ(x) | x ∈ X, 0 ≤ k < |σ(x0)|}.
The incidence matrix of σ is the matrix Mσ ∈ N

B×A such that (Mσ )b,a = |σ(a)|b for any
a ∈ A, b ∈ B.

The morphism σ is said to be left proper (respectively, right proper) when there exists
a letter � ∈ B such that for all a ∈ A, σ(a) starts with � (respectively, ends with �). It is
strongly left proper (respectively, strongly right proper) if it is left proper (respectively,
right proper) and the starting letter (respectively, ending letter) � only occurs once in each
image σ(a), a ∈ A. It is said to be proper if it is both left and right proper. With a left
proper morphism σ : A∗ → B∗ with first letter �, we associate a right proper morphism
σ̄ : A∗ → B∗ by

σ(a)� = �σ̄ (a) for all a ∈ A.

Let σ = (σn : A∗
n+1 → A∗

n)n≥1 be a sequence of morphisms such that maxa∈An
|σ1 ◦

· · · ◦ σn−1(a)| goes to infinity when n increases. We assume that all the alphabets An are
minimal, in the sense that for all n ∈ N and b ∈ An, there exists a ∈ An+1 such that b is a
factor of σn(a). For 1 ≤ n < N , we define the morphism σ[n,N) = σn ◦ σn+1 ◦ · · · ◦ σN−1.
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For n ≥ 1, the language L(n)(σ ) of level n associated with σ is defined by

L(n)(σ ) = {w ∈ A∗
n | w occurs in σ[n,N)(a) for some a ∈ AN and N > n}.

As maxa∈An
|σ[1,n)(a)| goes to infinity when n increases, L(n)(σ ) defines a non-empty

shift space X(n)σ that we call the shift space generated by L(n)(σ ). More precisely, X(n)σ is
the set of points x ∈ AZ

n such that L(x) ⊆ L(n)(σ ). Note that it may happen that L(X(n)σ )

is strictly contained in L(n)(σ ). Also observe that for all n, X(n)σ is the image of X(n+1)
σ

under σn.
We set L(σ ) = L(1)(σ ), Xσ = X

(1)
σ , and call Xσ the S-adic shift generated by the

directive sequence σ . We also say that the directive sequence σ is an S-adic representation
of Xσ .

We say that σ is primitive if, for any n ≥ 1, there exists N > n such that for all (a, b) ∈
An × AN , a occurs in σ[n,N)(b). Observe that if σ is primitive, then mina∈An

|σ[1,n)(a)|
goes to infinity when n increases, L(X(n)σ ) = L(n)(σ ), and X(n)σ is a minimal shift space
(see for instance [Dur00, Lemma 7]).

We say that σ is ((strongly) left, (strongly) right) proper whenever each morphism σn is
((strongly) left, (strongly) right) proper. We also say that σ is injective if each morphism
σn is injective (seen as an application from A∗

n+1 to A∗
n). By abuse of language, we say

that a shift space is a (strongly left or right proper, primitive, injective) S-adic shift if there
exists a (strongly left or right proper, primitive, injective) sequence of morphisms σ such
that X = Xσ .

3. S-adicity using return words and shapes of Rauzy graphs
3.1. S-adicity using return words and derived shifts. Let X be a minimal shift space
over the alphabet A and let w ∈ L(X) be a non-empty word. A return word to w in X is a
non-empty word r such that w is a prefix of rw and, rw ∈ L(X) and rw contains exactly
two occurrences of w (one as a prefix and one as a suffix). We let RX(w) denote the set of
return words to w in X and we omit the subscript X whenever it is clear from the context.
The shift space X being minimal, R(w) is always finite.

Let w ∈ L(X) be a non-empty word and write RX(w) = {1, . . . , #(RX(w))}. A
morphism σ : R(w)∗ → A∗ is a coding morphism associated with w if σ(R(w)) = R(w).
It is trivially injective. Let us consider the set Dw(X) = {x ∈ R(w)Z | σ(x) ∈ X}. It is
a minimal shift space, called the derived shift of X (with respect to w). We now show
that derivation of minimal shift spaces allows to build left proper and primitive S-adic
representations. We inductively define the sequences (an)n≥1, (Rn)n≥1, (Xn)n≥1, and
(σn)n≥1 by:
• X1 = X, R1 = A and a1 ∈ A;
• for all n, Rn+1 = RXn(an), σn : R∗

n+1 → R∗
n is a coding morphism associated with an,

Xn+1 = Dan(Xn) and an+1 ∈ Rn+1.
Observe that the sequence (an)n≥1 is not uniquely defined as well as the morphism σn

(even if an is fixed). However, to avoid heavy considerations when we deal with sequences
of morphisms obtained in this way, we will speak about ‘the’ sequence (σn)n≥1 and it is
understood that we may consider any such sequence. Also observe that as we consider
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derived shifts with respect to letters, each coding morphism σn is strongly left proper.
It is furthermore a characterization: a morphism σ : {1, . . . , n}∗ → A∗ is injective and
strongly left proper (with first letter �) if and only if there is a shift space X over A such
that σ is a coding morphism associated with �.

THEOREM 3.1. (Durand [Dur98]) Let X be a minimal shift space. Using the notation
defined above, the sequence of morphisms σ = (σn : R∗

n+1 → R∗
n)n≥1 is a strongly left

proper, primitive, and injective S-adic representation of X. In particular, for all n, we have
Xn = X

(n)
σ .

In the case of minimal dendric shifts, the S-adic representation σ can be made stronger.
This is summarized by the following result. Recall that if FA is the free group generated
by A, an automorphism α of FA is tame if it belongs to the monoid generated by the
permutations of A and by the elementary automorphisms

{
a �→ ab,

c �→ c for c �= a,
and

{
a �→ ba,

c �→ c for c �= a.

THEOREM 3.2. (Berthé et al [BDFD+15c]) Let X be a minimal dendric shift over the
alphabet A = {1, . . . , d}. For any w ∈ L(X), Dw(X) is a minimal dendric shift over
A and the coding morphism associated with w is a tame automorphism of FA. As a
consequence, if σ = (σn)n≥1 is the primitive directive sequence of Theorem 3.1, then all
morphisms σn are strongly left proper tame automorphisms of FA.

3.2. Rauzy graphs. Let X be a shift space over an alphabet A. The Rauzy graph of order
n of X, is the directed graph Gn(X) whose set of vertices is Ln(X) and there is an edge
from u to v if there are letters a, b such that ub = av ∈ L(X); this edge is sometimes
labeled by a.

Assuming that X is minimal, any Rauzy graph Gn(X) is strongly connected. It is also
easily seen that any return word to a non-empty word w ∈ L(X) labels a path from w
to w in G|w|(X) in which no internal vertex is w. As a consequence, the shape of the
Rauzy graph G1(X) provides restrictions on the possible return words to a letter a in
X. Furthermore, for the extension graph of the empty word having for edges the pairs
(a, b) ∈ EX(ε), it completely determines L2(X), and hence the Rauzy graph G1(X).
Therefore, the extension graph EX(ε) provides restrictions on the possible return words to
letters in X.

Example 3.3. The Rauzy graph of order two of the shift space X generated by the
Fibonacci substitution is given in Figure 2. The word 00100 belongs to L(X), so that 001
is a return word to 00 and it labels the circuit (00, 01, 10, 00). The converse however does
not hold, that is, there might exist paths from w to w whose label is not a return word. For
any n ≥ 1, the word 0(01)n labels a path from 00 to 00 but does not belong to L(X) when
n ≥ 3.
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FIGURE 2. Rauzy graph of order two for the Fibonacci shift.

4. Bispecial factors in S-adic shifts
4.1. Description of bispecial factors in injective strongly left proper S-adic shifts. Our
aim is to describe bispecial factors and their bi-extensions in an S-adic shiftXσ . A classical
way to do this is to ‘desubstitute’ a bispecial factor u, that is, to find the set of ‘minimal’
factors vi in L(X(k)σ ) such that u is a factor of the words σ[1,k)(vi ) and then to deduce the
extensions of u from those of the vi . The set of such vi can be easily described when σ is
an injective and strongly left proper sequence of morphisms.

PROPOSITION 4.1. Let X be a shift space over A, σ : A∗ → B∗ be an injective and
strongly left proper morphism (with first letter �), Y the image of X under σ , and u a
non-empty word in L(Y ). If � does not occur in u, then there exists b ∈ A such that u is a
non-prefix factor of σ(b). Otherwise, there is a unique triplet (s, v, p) ∈ B∗ × L(X)× B∗
for which there exists a pair (a, b) ∈ EX(v) such that u = sσ (v)p with:
(1) s a proper suffix of σ(a);
(2) p is a non-empty prefix of σ(b).

In the case where � occurs in u, the left, right, and bi-extensions of u are governed by
those of v through the equation

EY (u) = {(a′, b′) ∈ B × B | there exists (a, b) ∈ EX(v)
: σ(a) ∈ B∗a′s ∧ σ(b)� ∈ pb′B∗}. (4.1)

Proof. Since u is a word in L(Y ), it is a factor of σ(w) for some w ∈ L(X). The word u
being non-empty, any such w is non-empty as well. We say that w is covering u if u is a
factor of σ(w) and for any proper factor w′ of w, u is not a factor of σ(w′). Recall that �
is the first letter of σ(a) for all a ∈ A. Thus, if |u|� = 0, then any word w covering u is a
letter and u is a non-prefix factor of σ(w).

Now assume that |u|� ≥ 1 and let u = su′p with |s|� = 0, p ∈ �(A \ {�})∗, and u′ ∈
{ε} ∪ �A∗. As the letter � occurs only as a prefix in any image σ(a), a ∈ A, any word w
covering u is of the form xv′y with x ∈ A ∪ {ε} and y ∈ A, where one has σ(v′) = u′, s
is a suffix of σ(x) (which is proper if x �= ε), and p is a prefix of σ(y). In particular, the
triplet (s, v, p) satisfies the requirements of the result (take b = y and a = x if x �= ε or
any a ∈ E−(vy) if x = ε).

Let us show the uniqueness of (s, v, p). Assume that (s′, v′, p′) is a triplet satisfying the
requirements with the extension (a′, b′) ∈ E(v′). As u = s′σ(v′)p′, where s′ is a proper
suffix of σ(a′) and p′ is a non-empty proper prefix of σ(b′)�, we have |s′|� = 0, p′ ∈
�(A \ {�})∗, and σ(v′) ∈ {ε} ∪ �A∗. This implies that (s′, σ(v′), p′) = (s, σ(v), p) and,
as σ is injective, that (s′, v′, p′) = (s, v, p).
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Let us now prove (4.1). The inclusion

EY (u) ⊃ {(a′, b′) ∈ B × B | there exists (a, b) ∈ EX(v)
: σ(a) ∈ B∗a′s ∧ σ(b)� ∈ pb′B∗}

is trivial. For the other one, assume that (a′, b′) is in EY (u). Thus we have a′ub′ ∈ L(Y ).
Let w ∈ L(X) be a covering word for a′ub′. By definition of v, v is a factor of w, and thus
one has w = xvy for some words x, y. We then have a′ub′ = a′sσ (v)pb′, with a′s a suffix
of σ(x) and pb′ a prefix of σ(y)�. In particular, x and y are non-empty. Let a be the last
letter of x and b be the first letter of y. We have (a, b) ∈ EX(v) and, as |s|� = 0, s is a
proper suffix of σ(a), from which we have σ(a) ∈ B∗a′s. We also have that p is a prefix
of σ(b). If it is proper, then pb′ is a prefix of σ(b) so that σ(b)� ∈ pb′B∗. Otherwise,
p = σ(b), y has length at least 2, and b′ is the first letter of σ(c), where c is such that bc is
a prefix of y. Otherwise stated, b′ = � and we indeed have σ(b)� ∈ pb′B∗.

Motivated by the previous result, if X is a shift space over A and σ : A∗ → B∗ is a
strongly left proper morphism (with first letter �), then for any words v ∈ L(X) and x, y ∈
B∗, we define the sets

E−
X,x(v) = {a ∈ E−

X(v) | σ(a) ∈ B∗x},
E+
X,y(v) = {b ∈ E+

X(v) | σ(b)� ∈ yB∗},
EX,x,y(v) = EX(v) ∩ (E−

X,x(v)× E+
X,y(v)).

Thus (4.1) can be written as

EY (u) = {(a′, b′) ∈ B × B | there exists (a, b) ∈ EX,a′s,pb′(v)}.
Remark 4.2. Observe that, as we have seen in the previous proof (and using the same
notation), as s is a proper suffix of σ(a), the letter � does not occur in it. As a consequence,
for any a′ ∈ E−

X,s(v), s is a proper suffix of σ(a′).

Whenever u and v are as in the previous proposition with |u|� ≥ 1, the word v is called
the antecedent of u under σ and u is said to be an extended image of v. Thus, the antecedent
is defined only for words containing an occurrence of the letter � and an extended image
always contains an occurrence of �. Whenever u is a bispecial factor, the next result gives
additional information about s and p. We first need to define the following notation. If
σ : A∗ → B∗ is a morphism and a1, a2 ∈ A, let us denote by s(a1, a2) (respectively,
p(a1, a2)) the longest common suffix (respectively, prefix) between σ(a1) and σ(a2).

COROLLARY 4.3. Let X be a shift space over A, σ : A∗ → B∗ be an injective and
strongly left proper morphism (with first letter �), Y the image of X under σ , and v
a word in L(X). A word u is a bispecial extended image of v if and only if there
exist (a1, b1), (a2, b2) ∈ EX(v) with a1 �= a2, b1 �= b2, and u = s(a1, a2)σ (v)p(b1, b2).
In particular, the antecedent v of a bispecial word u is bispecial.

Proof. First assume that there exist (a1, b1), (a2, b2) ∈ EX(v) with a1 �= a2, b1 �= b2,
and u = s(a1, a2)σ (v)p(b1, b2). Let us fix s = s(a1, a2) and p = p(b1, b2). Since σ is
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1
3

1
2

2
3

1
2

FIGURE 3. Extension graphs of the bispecial extended images of v.

injective, σ(a1) �= σ(a2), and hence s is a proper suffix of one of them. Thus, as σ is
strongly left proper, s does not contain any occurrence of the letter �. As a consequence,
s is a proper suffix of both σ(a1) and σ(a2). In particular, u is left special. The same
reasoning shows that p is a proper prefix of σ(bi) for some i ∈ {1, 2} and that u is right
special, and hence bispecial. Furthermore, p is non-empty since it admits � as a prefix. The
pair (ai , bi) thus satisfies Proposition 4.1.

Now assume that u is a bispecial extended image of v with u = sσ (v)p. Since u is
bispecial, there exist (a′

1, b′
1), (a

′
2, b′

2) ∈ EY (u) with a′
1 �= a′

2 and b′
1 �= b′

2. From 4.1, there
exist (a1, b1), (a2, b2) ∈ EX,s,p(v) such that

σ(ai) ∈ B∗a′
i s and σ(bi)� ∈ pb′

iB∗

for all i ∈ {1, 2}. We deduce that s = s(a1, a2) and a1 �= a2. As b′
1 and b′

2 cannot be
simultaneously equal to �, we deduce that b1 �= b2 and that p = p(b1, b2).

Example 4.4. Consider the morphism

δ :

⎧⎪⎪⎨
⎪⎪⎩

1 �→ 1

2 �→ 123

3 �→ 1233

that will appear again in §5. Assume that v is a bispecial factor of X ⊂ {1, 2, 3}Z whose
extension graph is

1

2

3

1

2

By Corollary 4.3, the word v admits δ(v)1 and 3δ(v)1 as bispecial extended images.
Using Proposition 4.1, their extension graphs are given in Figure 3.

Assume that Xσ is an S-adic shift where the directive sequence σ = (σn : A∗
n+1 →

A∗
n)n≥1 is primitive and contains only strongly left proper injective morphisms. The

directive sequence σ being primitive, the sequence (mina∈An
|σ[1,n)(a)|)n≥1 goes to

infinity. Hence, iterating Proposition 4.1, with any word u ∈ L(Xσ ), one can associate a
unique finite sequence (u1, u2, . . . , uk) such that u1 = u, uk ∈ L(X(k)σ ) does not have any
antecedent under σk and, for i < k, ui+1 ∈ L(X(i+1)

σ ) is the antecedent of ui under σi . We
say that u is a descendant of each ui , 1 ≤ i ≤ k, and, reciprocally, that each ui , 1 ≤ i ≤ k,
is an ancestor of u. The word uk ∈ L(X(k)σ ) is its oldest ancestor and it is either empty or
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a non-prefix factor of σk(b) for some letter b ∈ Ak+1. Observe that with our definition, u
is an ancestor and a descendant of itself.

Let X be an S-adic shift with a strongly left proper and injective S-adic representation
σ . Let u be a bispecial factor of X. From Corollary 4.3, all ancestors of u are bispecial
factors of some X(k)σ . From Proposition 4.1, the extensions of u are completely governed
by those of its oldest ancestor. More precisely, we have the following direct corollary.

COROLLARY 4.5. For all k ≥ 1, there is a finite number of bispecial factors of X(k)σ that
do not have an antecedent under σk . They are called initial bispecial factors of order k.
Furthermore, for any bispecial factor u of X, there is a unique k ≥ 1 and a unique initial
bispecial factor v ∈ L(X(k)σ ) such that u is a descendant of v. Finally, EX(u) depends only
on E

X
(k)
σ
(v), that is, if Y is a shift space such that EY (v) = E

X
(k)
σ
(v) and if Z is the image of

Y under σ[1,k), then EZ(u) = EX(u).

4.2. Action of morphisms on extension graphs. Proposition 4.1 shows that whenever v
is the antecedent of u under σ , the extension graph EY (u) is the image under a graph
morphism of a subgraph of EX(v) (where by subgraph we mean the subgraph generated
by a subset of edges). In particular, if #(E−

Y (u)) = #(E−
X(v)) and #(E+

Y (u)) = #(E+
X(v)),

then EY (u) and EX(v) are isomorphic. In this section, we formalize this observation and
study the behavior of a tree structure when we consider the extension graphs of bispecial
extended images.

In this section, X is a shift space over A, σ : A∗ → B∗ an injective and strongly left
proper morphism (with first letter �), Y the image of X under σ , and v a bispecial word in
L(X). By Corollary 4.3, the bispecial extended images of v under σ are the words u of the
form sσ (v)p where s = s(a1, a2) and p = p(b1, b2) for some (a1, b1), (a2, b2) ∈ EX(v)
such that a1 �= a2 and b1 �= b2. For any such σ and v, we introduce the following notation:

T−(σ ) = {s(a1, a2) | a1, a2 ∈ A, a1 �= a2};
T+(σ ) = {p(b1, b2) | b1, b2 ∈ A, b1 �= b2};
T−

v (σ ) = {s(a1, a2) | a1, a2 ∈ E−
X(v), a1 �= a2};

T+
v (σ ) = {p(b1, b2) | b1, b2 ∈ E+

X(v), b1 �= b2};
T−

v (σ ) = T−
v (σ ) ∪ σ(E−

X(v));

T+
v (σ ) = T+

v (σ ) ∪ σ(E+
X(v))�.

The prefix strict order (respectively, suffix strict order) defines a tree structure called
radix tree on T+

v (σ ) (respectively, on T−
v (σ )), where the root p0 (respectively, s0) is

the shortest word of the set. In particular, E−
X,s0(v) = E−

X(v) and E+
X,p0

(v) = E+
X(v).

Furthermore, the leafs of T+
v (σ ) (respectively, T−

v (σ )) are exactly the elements of
σ(E+

X(v))� (respectively, σ(E−
X(v))) and every internal node (that is, every element of

T+
v (σ ) or T−

v (σ )) has at least two children.
For (s, p) ∈ T−

v (σ )× T+
v (σ ), we define the subgraph EX,s,p(v) of EX(v)whose vertices

are those involved by the edges in EX,s,p(v). Observe that the sets of left and right vertices
of EX,s,p(v) are respectively included in E−

X,s(v) and E+
X,p(v). Furthermore, if s′ ∈ T−

v (σ )
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TABLE 1. Step 1.

δ(v)1 3δ(v)1

E−
X,ε(v) = {1, 2, 3} E−

X,3(v) = {2, 3}
E+
X,1(v) = {1, 2} E+

X,1(v) = {1, 2}

1

2

3

1

2

2

3

1

2

FIGURE 4. Step 2.

(respectively, p′ ∈ T+
v (σ )) is a child of s (respectively, of p), then EX,s′,p(v) (respectively,

EX,s,p′(v)) is a subgraph of EX,s,p(v).

Example 4.6. Using the notation from Example 4.4, we have the following radix trees:

T−
v (δ)

ε

1 3

123 1233

T+
v (δ)

1

11 1231

These structures help us understand the construction of the extension graphs of Figure 3.
Let s ∈ T−

v (σ ) and p ∈ T+
v (σ ) be such that u = sσ (v)p. The extension graph of u can be

obtained from the extension graph of v as follows.
(1) Start by selecting the elements of E−

X,s(v) and E+
X,p(v) (see Table 1). These elements

are the letters such that the corresponding leaf in T−
v (σ ) (respectively, T+

v (σ )) is in
the subtree with root s (respectively, p).

(2) Take the subgraph of EX(v) with only the vertices which are in these two sets and
remove the isolated vertices that were created. This gives the graph EX,s,p(v) (see
Figure 4).

(3) For any letter a ∈ A, merge the vertices b on the left side such that σ(b) ∈ A∗as into
a new left vertex labeled by a. In other words, for any left vertex b, map it to the left
vertex labeled by the letter a such that the leaf corresponding to b is in the subtree
whose root is the only child of s ending by as. Do the same on the right side with the
vertices b such that σ(b)� ∈ paA∗ (see Table 2).

The next result gives a more formal description of this construction and directly follows
from (4.1).
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TABLE 2. Step 3.

Left side Right side

δ(v)1
1 �→ 1
2 �→ 3
3 �→ 3

1 �→ 1
2 �→ 2

3δ(v)1 2 �→ 2
3 �→ 3

1 �→ 1
2 �→ 2

PROPOSITION 4.7. If (s, p) ∈ T−
v (σ )× T+

v (σ ) is such that u = sσ (v)p is an extended
image of v, the extension graph of u is the image of EX,s,p(v) under the graph morphism
ϕv,s,p : EX,s,p(v) → EY (u) that:

• for every child s′ of s in T−
v (σ ), maps all vertices of E−

X,s′(v) to the left vertex with
label a ∈ B such that s′ ∈ B∗as;

• for every child p′ of p in T+
v (σ ), maps all vertices of E+

X,p′(v) to the right vertex with
label b ∈ B such that p′ ∈ pbB∗.

In particular, if T−
v (σ ) = {s0} and T+

v (σ ) = {p0}, then v has a unique bispecial extended
image u and the associated morphism ϕv,s,p is an isomorphism.

Observe that the morphism ϕv,s,p of the previous result acts independently on the
left and right vertices of EX,s,p(v), that is, it can be seen as the composition of two
commuting graph morphisms ϕ−

v,s and ϕ+
v,p, where ϕ−

v,s acts only on the left vertices of
EX,s,p(v) and ϕ+

v,p acts only on the right vertices of EX,s,p(v). Furthermore, if a letter a
belongs toE−

X,s(v) ∩ E−
X,s(v

′) (respectively, toE+
X,p(v) ∩ E+

X,p(v
′)) then ϕ−

v,s(a) = ϕ−
v′,s(a)

(respectively, ϕ+
v,p(a) = ϕ+

v′,p(a)). Thus we can define partial maps ϕ−
s , ϕ+

p : A → B by
ϕ−
s (a) = ϕ−

ε,s(a) whenever a ∈ E−
X,s(ε) and by ϕ+

p (a) = ϕ+
ε,p(a) whenever a ∈ E+

X,p(ε).

4.3. Stability of dendricity. In this section, we use the results and notation of the
previous section to understand under which conditions a dendric bispecial factor only
has dendric bispecial extended images under some morphism. We then characterize the
morphisms for which every dendric bispecial factor only has dendric bispecial extended
images.

If X is a shift space over A and v is a dendric bispecial factor of X, we say that an
injective and strongly left proper morphism σ : A∗ → B∗ is dendric preserving for v ∈
L(X) if all bispecial extended images of v under σ are dendric. We extend this definition by
saying that a morphism is dendric preserving for a shift space X if it is dendric preserving
for all v ∈ L(X).

PROPOSITION 4.8. Let X be a shift space over A and v ∈ L(X) be a dendric bispecial
factor. An injective and strongly left proper morphism σ : A∗ → B∗ is dendric preserving
for v if and only if the following conditions are satisfied:
(1) for every s ∈ T−

v (σ ) \ {s0}, EX,s,p0(v) is a tree;
(2) for every p ∈ T+

v (σ ) \ {p0}, EX,s0,p(v) is a tree.
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Proof. Let us first assume that every bispecial extended image of v is dendric. We show
condition (2), the other one being symmetric. Consider p ∈ T+

v (σ ). The graph EX,s0,p(v)
is a subgraph of EX(v), which is a tree. Thus, EX,s0,p(v) is acyclic. Let us show that it
is connected. As there is no isolated vertex, it suffices to show that for all distinct right
vertices b1, b2 of EX,s0,p(v), there is a path in EX,s0,p(v) from b1 to b2. Assume by contrary
that there exist two right vertices b1, b2 of EX,s0,p(v) that are not connected.

For i ∈ {1, 2}, let Ai denote the set of left vertices of EX,s0,p(v) that are connected to
bi . Consider a maximal word s′ (for the suffix order) in {s(a1, a2) | a1 ∈ A1, a2 ∈ A2}.
Let also Bi , i ∈ {1, 2}, denote the set of right vertices of EX,s′,p(v) that are connected
to vertices of Ai and consider a maximal word p′ (for the prefix order) in {p(b′

1, b′
2) |

b′
1 ∈ B1, b′

2 ∈ B2}. We claim that the extension graph of the bispecial extended image
u = s′σ(v)p′ is not connected.

Let Y be the image of X under σ and let ϕ be the morphism from EX,s′,p′(v) to EY (u)
given by Proposition 4.7. By maximality of s′ and p′, the morphism ϕ identifies two
left vertices a, a′ (respectively, right vertices b, b′) only if they belong to the same Ai
(respectively, Bi). This implies that EY (u) is not connected, which is a contradiction.

Let us now show that, under the conditions (1) and (2), any bispecial extended image of
v is dendric. By Corollary 4.3, the bispecial extended images of v are of the form sσ (v)p ∈
L(Y ) where s is in T−

v (σ ) and p is in T+
v (σ ).

For any such pair (s, p), we first show that the graph EX,s,p(v) is a tree. It is trivially
acyclic as it is a subgraph of EX,s,p0(v), which is assumed to be a tree. Let us show that it
is connected. Let b1, b2 be right vertices of EX,s,p(v). As EX,s,p(v) is a subgraph of both
EX,s0,p(v) and EX,s,p0(v) which are trees, there exist a path q in EX,s0,p(v) and a path q ′ in
EX,s,p0(v) connecting b1 and b2. In particular, the right vertices occurring in q belong to
E+
X,p(v) and the left vertices occurring in q ′ belong toE−

X,s(v). As EX,s0,p(v) and EX,s,p0(v)
are both subgraphs of EX,s0,p0(v), which is a tree, the paths q and q ′ coincide. It means that
this path only goes through left vertices belonging to E−

X,s(v) and through right vertices
belonging to E+

X,p(v). This implies that it is a path of EX,s,p(v), and hence that b1 and b2

are connected in EX,s,p(v).
We now show that if u = sσ (v)p is an extended image of v, then it is dendric. By

Proposition 4.7, EY (u) is the image of EX,s,p(v) under some graph morphism ϕ, and hence
it is connected. We proceed by contradiction to show that it is acyclic. Assume that c =
(a1, b1, a2, b2, . . . , an, bn, a1), n ≥ 2, is a non-trivial cycle in EY (u), where a1, . . . , an
are left vertices and b1, . . . , bn are right vertices. Again by Proposition 4.7, for every
i ≤ n, there exist
• a child si of s in T−

v (σ ),
• a child pi of p in T+

v (σ ),
• left vertices a′

i , a
′′
i of EX,s,p(v), belonging to E−

X,si (v),
• right vertices b′

i , b
′′
i of EX,s,p(v), belonging to E+

X,pi (v),
such that ϕ(a′

i ) = ϕ(a′′
i ) = ai , ϕ(b′

i ) = ϕ(b′′
i ) = bi and such that the pairs

(a′
j , b′

j ), (a
′′
j+1, b′′

j ), j < n,
(a′
n, b′

n), (a
′′
1 , b′′

n),
are edges of EX,s,p(v).
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Observe that as EX,s,p(v) is a tree, for each i ≤ n there is a unique simple path qi from
a′′
i to a′

i and a unique simple path q ′
i from b′

i to b′′
i . In EX,s,p(v), we thus have the circuit

c′ = (a′′
1 , . . . , a′

1︸ ︷︷ ︸
q1

, b′
1, . . . , b′′

1︸ ︷︷ ︸
q ′

1

, a′′
2 , . . . , a′

2︸ ︷︷ ︸
q2

, b′
2, . . . , b′′

2︸ ︷︷ ︸
q ′

2

, . . . ,

a′′
n , . . . , a′

n︸ ︷︷ ︸
qn

, b′
n, . . . , b′′

n︸ ︷︷ ︸
q ′
n

, a′′
1 ).

We will now prove that the image of c′ by ϕ reduces to the non-trivial cycle c of
EY (u). By reducing, we mean that we remove consecutive redundant edges, that is, every
occurrence of a, b, a in the path is replaced by a. This will imply that c′ is not trivial and
contradict the fact that EX,s,p(v) is a tree, which will end the proof.

As EX,si ,p(v) is a sub-tree of EX,s,p(v), the path qi is a path of EX,si ,p(v), otherwise
this would contradict the fact that EX,s,p(v) is acyclic. In particular, the only left vertex of
ϕ(qi) is ai and thus ϕ(qi) reduces to the length-0 path ai in EY (u). Similarly, q ′

i is a path
of EX,s,pi (v) and thus ϕ(q ′

i ) reduces to the length-0 path bi . This concludes the proof that
ϕ(c′) reduces to c.

COROLLARY 4.9. If v is an ordinary bispecial factor of a shift space over A, then any
injective and strongly left proper morphism σ : A∗ → B∗ is dendric preserving for v. In
particular, the image under σ of an Arnoux–Rauzy shift space over A is a minimal dendric
shift.

The previous result is illustrated in the preceding examples. Indeed, for δ and v as
in Example 4.4, we have T−

v (δ) = {3, ε} and T+
v (δ) = {1} = {p0}. The extension graph

EX,3,1(v) in Figure 4 being a tree, v has only dendric bispecial extended images, as already
observed in Figure 3.

Another consequence of Proposition 4.8 is given by the following corollary.

COROLLARY 4.10. Let σ : A∗ → B∗ be an injective and strongly left proper morphism.
The following properties are equivalent.
(1) The sets T−(σ ) and T+(σ ) both only contain one element.
(2) For any shift space X on the alphabet A and any dendric bispecial factor v ∈ L(X),

σ is dendric preserving for v.

Proof. If T−(σ ) = {s0} and T+(σ ) = {p0}, the fact that σ is dendric preserving for any
dendric bispecial word v is a direct consequence of Proposition 4.8 since T−

v (σ ) ⊂ T−(σ )
and T+

v (σ ) ⊂ T+(σ ).
To prove the other implication, let us assume that s0, s1 ∈ T−(σ ), where s0 is the root

of T−(σ ) and s1 �= s0. Let a, b be such that s1 = s(a, b). As s0 ∈ T−(σ ), there exists c
such that s1 is not a suffix of σ(c). In particular, we have #A ≥ 3.

Let a1, . . . , an be the elements of A \ {a, b, c}. Let us denote by X the shift space
coding the interval exchange transformation represented below (for precise definitions and
more details about interval exchanges, see Subsection 6.2).
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c b a1 a2 . . . a

a c b a2
. . . a1

The extension graph of the word ε is given by

a

c

b

a2

...
a1

c

b

a1

a2

...
a

It is a tree and thus ε is dendric bispecial. However, the graph EX,s1,p0(ε) is not
connected as it does not contain the vertex c on the left but both a and b are left vertices.
By Proposition 4.8, σ is not dendric preserving for ε. This proves that T−(σ )must contain
exactly one element. Similarly, T+(σ ) also contains exactly one element.

The previous result characterizes injective and strongly left proper morphisms for which
every dendric bispecial factor has only dendric bispecial extended images. However, the
condition does not imply that the image of a dendric shift by such a morphism σ is
again dendric. Indeed, the result gives information only on the bispecial factors that are
extended images under σ , that is, that have an antecedent. The next result characterizes
those morphisms σ for which even the new initial bispecial factors are dendric. For any
letter a ∈ A, let αa and ᾱa denote the so-called Arnoux–Rauzy morphisms

αa(b) =
{
a if b = a,

ab otherwise,
ᾱa(b) =

{
a if b = a,

ba otherwise.

PROPOSITION 4.11. The injective and strongly left proper morphisms preserving dendric-
ity, that is, such that the image of any dendric shift is a dendric shift, are exactly the
morphisms

ᾱa1 ◦ · · · ◦ ᾱan ◦ α� ◦ π
for any n ≥ 0, any a1, . . . , an ∈ A \ {�} and any permutation π of A.

Proof. Using Corollary 4.10, an injective and strongly left proper morphism σ for the
letter � preserves dendricity if and only if the following conditions are satisfied:
(1) the sets T−(σ ) and T+(σ ) both only contain one element;
(2) if Fσ is the set

Fσ = Fac({σ(a)� : a ∈ A}),
then any word w ∈ Fσ such that |w|� = 0 is dendric in Fσ.
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Let σ = ᾱa1 ◦ · · · ◦ ᾱan ◦ α� ◦ π for a1, . . . , an ∈ A \ {�}. It is easily verified that σ is
injective and strongly left proper for the letter �. As conditions (1) and (2) only depend on
the set σ(A), one can assume that π = id. For any letter c, �c is a prefix of α�(c)� and thus

(ᾱa1 ◦ · · · ◦ ᾱan(�))c
is a prefix of σ(c)�. This shows that

T+(σ ) = {ᾱa1 ◦ · · · ◦ ᾱan(�)}.
Similarly, c� is a suffix of �ᾱ�(c) and thus

c(αa1 ◦ · · · ◦ αan(�))
is a suffix of

�(αa1 ◦ · · · ◦ αan ◦ ᾱ�(c)) = (ᾱa1 ◦ · · · ◦ ᾱan ◦ α�(c))� = σ(c)�.

Thus T−(σ ) only contains one element and σ satisfies the condition (1). To prove condition
(2), let us proceed by induction on n. If n = 0, then the only bispecial word is ε and it is
easy to verify that it is dendric. If σ ′ = ᾱa2 ◦ · · · ◦ ᾱan ◦ α� satisfies condition (2), then
simple adaptions of Proposition 4.1 and of Proposition 4.8 tell us that, as ᾱa1 is strongly
right proper for the letter a1 and the images of letters by ᾱa1 have a unique longest common
suffix and a unique longest common prefix, it suffices to prove that the words w ∈ Fσ such
that |w|a1 = 0 are dendric. These words are the elements of {ε} ∪ A \ {a1}, of which only
ε is bispecial. The conclusion follows.

Let us now assume that σ ′ is a strongly left proper morphism for the letter � which
satisfies conditions (1) and (2). As S(σ ′) = {s0}, for any letter a ∈ A, as0 is the suffix of
some σ ′(b). In particular, for a = �, this implies that there exists b ∈ A such that �s0 =
σ ′(b) and that, for any letter c �= b, σ ′(c) is strictly longer than σ ′(b). Similarly, p0� is the
prefix of some σ(b′)� and thus σ ′(b′) = p0 and, as σ ′(b′)must be strictly shorter than any
other σ ′(a), we obtain b = b′ and p0 = �s0. We can thus assume that σ ′ = σ ◦ π where
π is a permutation of A such that �s0a is a prefix of σ(a)� for all a ∈ A. In particular,
σ(�) = �s0. We have

Fσ = Fσ ′ .

By construction, for any prefix u of s0� and any suffix v of �s0,

E−
Fσ
(u) = A and E+

Fσ
= A.

In particular, if s0� ∈ aA∗ and �s0 ∈ A∗b, then

EFσ (ε) = (A × {a}) ∪ ({b} × A)

because ε is dendric in EFσ . Thus, any occurrence of c �= b in Fσ can only be followed by
an occurrence of a. Let us use this observation to prove that σ = ᾱa1 ◦ · · · ◦ ᾱan ◦ α� for
some letters a1, . . . , an ∈ A \ {�}. If s0 = ε, then a = b = � and thus σ(c) = �c for all
c ∈ A \ {�} and σ = α�. If s0 is not empty, then a is the first letter of s0 and b the last one.
In particular, a and b cannot be the letter � and, as s0� is an element of Fσ , a cannot only
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be followed by occurrences of a; thus a must be equal to b. For any letter c ∈ A, we know
that σ(c) begins with � and that any letter d �= a in σ(c) is followed by an a; thus

σ(c) ∈ �a({a} ∪ (A \ {�})a)∗.

Let us define the morphism τ such that

σ(c) = ᾱa ◦ τ(c).
This morphism is unique and τ(c) is obtained by removing an occurrence of a after each
letter d �= a in σ(c). By construction, τ is injective and strongly left proper for the letter �.
In addition, s0 begins and ends with the letter a, and thus there exists s′0 ∈ A∗ such that

aᾱa(s
′
0) = s0.

It is easy to check that, as �s0c is a prefix of σ(c)�, �s′0c is a prefix of τ(c)� and that,
as cs0 is a suffix of σ(c), cs′0 is a suffix of τ(c) for all c ∈ A. Thus, S(τ ) and P(τ ) both
contain only one element and τ satisfies the condition (1). In addition, for all w ∈ Fτ and
all c, d ∈ A

cwd ∈ Fτ ⇔ caᾱa(w)d ∈ Fσ .

Indeed, this equivalence is direct if c �= a and, for c = a, it derives from the fact that
a �= �; thus, if awd ∈ Fτ , then there exists c′ such that c′awd ∈ Fτ . As a consequence,
the extension graph of w in Fτ is the same as the extension graph of aᾱa(w) in Fσ and τ
satisfies the condition (2). By construction, we have |s′0| < |s0| and thus we can conclude
by iterating the proof on τ .

5. The case of ternary minimal dendric shifts
In §3, we showed that any minimal dendric shift X over the alphabet A is S-adic with S a
set of tame automorphisms ofFA, a directive sequence of X being given by Theorem 3.1. In
this section, we give an S-adic characterization of minimal dendric shifts over the alphabet
A3 = {1, 2, 3}. More precisely, we strengthen Theorem 3.1 by exhibiting a set S (several
choices are possible) and a subset D ⊂ SN such that a ternary subshift is minimal dendric
if and only if it has an S-adic representation in D.

5.1. Return morphisms in the ternary case. Let us start with an example. Assume that
X is a minimal dendric shift over A3 and that the extension graph of ε in X is

1
2
3

1
2
3

The associated Rauzy graph G1(X) is

1

2 3
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From it, we deduce that:
• the return words to 1 are 1, 12, and 132;
• the return words to 2 are of the form 21k or 21k3 with k ≥ 1;
• the return words to 3 belong to 3(21+)+.
An additional restriction concerning the powers of 1 occurring in the return words to 2 can
be deduced from the fact that X is dendric. We claim that if 21k is a return word to 2, then
the other return words cannot be of the form 21� for some � ≥ k + 2. Indeed, if both 21k

and 21�, k ≥ 1, � ≥ k + 2, are return words, then by definition of return words, the words
21k2, 21�2 belong to L(X). This implies that there is a cycle in the extension graph of 1k ,
which contradicts the fact that X is dendric. In addition, the third return word cannot be of
the form 21n3 with n ≥ min{k, �} + 2 for the same reason. Similarly, if 21k3 and 21�3 are
return word to 2 then |k − �| ≤ 1 and the third return word is 21n with n ≤ min{k, �} + 1.
Therefore, the set of return words to 2 is one of the following for some k ≥ 1 and some
1 ≤ � ≤ k + 1:

{21k , 21k+1, 21�3}, {21�, 21k3, 21k+13}.
Return words to 3 are less easily described. Since R(3) ⊂ 3(21+)+ and #(R(3)) = 3,

the set R(3) is determined by three sequences (k(j)i )1≤i≤nj , j ∈ {1, 2, 3} such that

R(3) = {321k
(j)
1 21k

(j)
2 · · · 21k

(j)
nj | j ∈ {1, 2, 3}}.

Similar arguments show that there exist inequality constraints between the k(j)i , but
precisely describing the three sequences (k(j)i )1≤i≤nj, j ∈ {1, 2, 3}, is much more tricky.
The main reason for this difference is that the letter 3 is not left special in X. If u
is the smallest left special factor having 3 as a suffix, then writing u = v3, we have
vR(3) = R(u)v. To better understand the possible sequences (k(j)i )1≤i≤nj , we thus need
the Rauzy graph of order |u| of X and not just G1(X).

With the notation of Theorem 3.1, any choice of sequence of letters (an)n≥1 leads to a
directive sequence of X. Consequently, in the following we will only consider return words
to left special letters with the ‘simplest’ return words. In other words, if the extension
graph of the empty word in X is as in the previous example, we will only consider the
coding morphisms associated with the left special letter 1.

Up to a permutation on A3, the possible extension graphs of the empty word for minimal
dendric shifts on A3 are given in Figures 5 and 6. They must satisfy two conditions: E(ε)
must be a tree and the associated Rauzy graph G1(X) must be strongly connected (by
minimality of X). We always assume that 1 is a left special letter and we present these
associated Rauzy graph of order 1 as well as coding morphisms associated with R(1).
Whenever some power appear in an image, we always have k ≥ 1. The reason why we only
have k and k + 1 as exponent is the same as in the previous example: a bigger difference
would contradict dendricity by inducing a cycle in some extension graph. We denote
the set

S3 = {α, β, γ , η} ∪ {δ(k), ζ (k) | k ≥ 1}
of morphisms as defined in Figures 5 and 6.
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FIGURE 5. The cases with a unique left special letter and/or a unique right special letter.

FIGURE 6. The cases with two left special letters and two right special letters.

Let �3 be the symmetric group on A3 = {1, 2, 3}. If A3 = {a, b, c}, we let πabc ∈ �3

denote the permutation 1 �→ a, 2 �→ b, 3 �→ c.

PROPOSITION 5.1. Any ternary minimal dendric shift X has a primitive �3S3�3-adic
representation σ and, for each such representation, X(n)σ is a ternary minimal dendric
shift for each n.

Proof. For the existence, we consider the construction of a directive sequence following
Theorem 3.1 where at each step, we choose the left special letter an for which σn is in
�3S3�3. Using Theorem 3.1 and Theorem 3.2, we obtain that for each �3S3�3-adic
representation σ and each n, X(n)σ is a ternary minimal dendric shift.
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TABLE 3. Definition of the graph morphisms ϕ−
s and ϕ+

p associated with
the morphisms α, β, and γ .

σ T−(σ ) ϕ−
s T+(σ ) ϕ+

p

α {ε} id {1} id

β {ε, 2} ϕ−
ε :

{
1 �→ 1
2, 3 �→ 2

{1} id

ϕ−
2 :

{
2 �→ 1
3 �→ 3

γ {ε} id {1, 12} ϕ+
1 :

{
1 �→ 1
2, 3 �→ 2

ϕ+
12 :

{
2 �→ 1
3 �→ 3

Note that the previous result is also true when considering �3S3-adic representations
but, for our results, �3S3� − 3-adic representations are more convenient.

While Proposition 5.1 deals with �3S3�3-adic representations, it is obvious that only
the morphisms in S3 really matter. In the next sections, we essentially focus on them and
we involve permutations only when they are needed.

5.2. Conditions for having only dendric bispecial extended images. Assume that X is
a minimal shift space over A and that v ∈ L(X) is a bispecial factor and let Y be the
image of X under some injective and strongly left proper morphism σ : A∗ → B∗. Recall
from §4.2 (and, in particular, Proposition 4.7) that the extension graph of any bispecial
extended image of v under σ is the image under two consecutive graph morphisms ϕ−

s and
ϕ+
p of a subgraph of EX(v). In this section, we determine those graph morphisms when
σ is a morphism in S3 and we give necessary and sufficient conditions on the extension
graph of v ∈ L(X) so that v only has dendric bispecial extended images. In this particular
case, since the alphabet has cardinality 3, T+(σ ) and T−(σ ) have cardinality at most 2.
Tables 3 and 4 define the (possibly partial) maps ϕ−

s , ϕ+
p : A3 → A3 associated with each

morphism σ ∈ S3.
A direct application of Proposition 4.8 shows that whenever v is dendric, then v

has only dendric bispecial extended images if and only if the following conditions are
satisfied:
(1) either T−

v (σ ) = {s0}, or both T−
v (σ ) = {s0, s} and EX,s,p0(v) is a tree;

(2) either T+
v (σ ) = {p0}, or both T+

v (σ ) = {p0, p} and EX,s0,p(v) is a tree.
We first give a handier interpretation of these conditions. Observe that for convenience,

we actually characterize the dendric bispecial factors v ∈ L(X) that have a non-dendric
bispecial extended image. When considering a letter a ∈ A3 as a vertex of E(v), we
respectively write a− or a+ to emphasize that a is considered as a left or right vertex.

For v ∈ L(X), we define C−
X(v) (respectively, C+

X(v)) as the set of letters a ∈ A such that
the subgraph of EX(v) obtained by removing the vertex a− (respectively, a+) and all the
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TABLE 4. Definition of the graph morphisms ϕ−
s and ϕ+

p associated
with the morphisms δ(k), ζ (k), and η.

σ T−(σ ) ϕs T+(σ ) ϕp

δ(k) {ε, 3k} ϕ−
ε :

{
1 �→ 1
2, 3 �→ 3

{1, 123k} ϕ+
1 :

{
1 �→ 1
2, 3 �→ 2

ϕ−
3k :

{
2 �→ 2
3 �→ 3

ϕ+
123k :

{
2 �→ 1
3 �→ 3

ζ (k) {ε, 3k} ϕ−
ε :

{
1, 3 �→ 3
2 �→ 2

{1, 13k} ϕ+
1 :

{
1, 3 �→ 3
2 �→ 2

ϕ−
3k :

{
1 �→ 1
3 �→ 3

ϕ+
13k :

{
1 �→ 1
3 �→ 3

η {ε, 3} ϕ−
ε :

{
1, 3 �→ 3
2 �→ 2

{1, 12} ϕ+
1 :

{
1 �→ 3
2, 3 �→ 2

ϕ−
3 :

{
1 �→ 1
3 �→ 2

ϕ+
12 :

{
2 �→ 1
3 �→ 3

induced isolated vertices (if any) are not connected. When the context is clear, the subscript
X will be omitted.

Remark 5.2. If v ∈ L(X) is a dendric factor, then a ∈ C−(v) if and only if a− has at least
two neighbors that are not leaves, that is, that have degree at least 2. In particular, v is
bispecial. Observe also that as E(v) is a tree, this implies that the left side of E(v) contains
three vertices. Hence, another equivalent condition when E(v) is a tree is that, writing
A3 = {a, b, c}, the path from b− to c− has length 4.

PROPOSITION 5.3. Let X be a shift space over A3 and σ be a morphism in S3.
If v ∈ L(X) is a dendric bispecial factor, then v has a non-dendric bispecial extended

image under σ if and only if one of the following conditions is satisfied:
(1) 1 ∈ C−

X(v) and σ ∈ {β, δ(k) | k ≥ 1};
(2) 2 ∈ C−

X(v) and σ ∈ {ζ (k), η | k ≥ 1};
(3) 1 ∈ C+

X(v) and σ ∈ {γ , δ(k), η | k ≥ 1};
(4) 2 ∈ C+

X(v) and σ ∈ {ζ (k) | k ≥ 1}.

Proof. The negation of condition (1) of Proposition 4.8 is equivalent to ‘there exists
a ∈ E−

X(v) such that EX,s(b,c),p0(v) is not a tree’. As EX,s(b,c),p0(v) is a subgraph of E(v),
it is acyclic and, if s(b, c) is a suffix of σ(a), it is also connected (indeed, we then
have EX,s(b,c),p0(v) = EX,s0,p0(v) = E(v)). Thus, the first condition of Proposition 4.8 is
not satisfied if and only if there exists a permutation {a, b, c} of A3 such that s(b, c) is
not a prefix of σ(a) and a ∈ C−(v). Using Figures 5 and 6, we see that it is equivalent
to condition 1 or 2. We proceed in a similar way to show that the second condition of
Proposition 4.8 is not satisfied if and only if one of the conditions 3 and 4 above is.
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Example 5.4. Assume that v is a dendric bispecial factor in some minimal ternary shift
space X with extension graph

1
2
3

1
2
3

Thus, we have 3 ∈ C−(v) and 1 ∈ C+(v). If Y1 is the image of X under β, the bispecial
extended images of v in Y1 are u1 = β(v)1 and u2 = 2β(v)1 and they have the following
extension graphs:

EY1(u1) EY1(u2)

1
2

1
2
3

1

3

1

3

Similarly, if Y2 is the image of X under γ , the bispecial extended images of v in Y2 are
w1 = γ (v)1 and w2 = γ (v)12 and they have the following extension graphs:

EY2(w1) EY2(w2)

1
2
3

1

2

1
2
3

1

3

5.3. Ternary dendric preserving morphisms. Assuming that v ∈ L(X) is a dendric
bispecial factor, Proposition 5.3 characterizes under which conditions v has a non-dendric
bispecial extended image under σ ∈ S3 or, in other words, under which conditions σ ∈ S3

is not dendric preserving for v. As we consider the ternary case, we denote by DP(v) the
set of dendric preserving morphisms for v in S3.

When X is a ternary dendric shift, we extend the notation C− and C+ and set

C−(X) =
⋃

v ∈ L(X)
C−
X(v),

C+(X) =
⋃

v ∈ L(X)
C+
X(v),

DP(X) =
⋂

v ∈ L(X)
DP(v).

Using Proposition 5.3, the sets C−(X) and C+(X) completely determine the set DP(X)
of all morphisms in S3 that are dendric preserving for X. In this section, we in particular
show that C−(X) and C+(X) contain at most one letter and we show that, when Y is
the image of X under σ ∈ DP(X), C−(Y ) (respectively, C+(Y )) is completely determined
by C−(X) (respectively, C+(X)) and σ . The next lemma is a trivial consequence of
Remark 5.2.

LEMMA 5.5. Let X be a shift space over A3. For every dendric bispecial factor v ∈ L(X),
C−
X(v) (respectively, C+

X(v)) contains at most one letter.
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TABLE 5. Sets C−
X(ε) and C+

X(ε) whenever X is
the image under σ of a shift space over A3.

σ α β γ δ(k) ζ (k) η

C−(ε) ∅ {1} ∅ {3} {3} {2}
C+(ε) ∅ ∅ {1} {1} {3} {3}

LEMMA 5.6. Let X be a shift space over A3 which is the image under σ ∈ S3 of another
shift space Z over A3. The sets C−

X(ε) and C+
X(ε) are given in Table 5.

Proof. Indeed, the morphism σ completely determines the extension graph EX(ε). The
result thus directly follows from the definitions of C−

X(ε) and C+
X(ε).

LEMMA 5.7. If X is a ternary dendric shift and if Y is the image of X under some morphism
σ ∈ S3, then Y is dendric if and only if σ ∈ DP(X).

Proof. Indeed, if σ ∈ DP(X), every bispecial extended image of a bispecial factor of X
is dendric by definition of DP(X). Any other bispecial factor of Y is the empty word or a
non-prefix factor of an image σ(a), a ∈ A3 (by Proposition 4.1). It suffices to check that
any such bispecial factor is dendric when σ belongs to S3 to prove that Y is dendric.

Assume now that Y is dendric. If σ is not in DP(X) then there exists v ∈ L(X) such that
σ /∈ DP(v) and thus v has an extended image in Y which is not dendric.

We say that a morphism σ ∈ S3 is left-invariant (respectively, right-invariant) if T−(σ )
(respectively, T+(σ )) is a singleton, that is, T−(σ ) = {s0} (respectively, T+(σ ) = {p0}).
The next lemma directly follows from the definition of the morphisms in S3.

LEMMA 5.8.
(1) α is both left-invariant and right-invariant;
(2) β is right-invariant, but not left-invariant;
(3) γ is left-invariant, but not right-invariant;
(4) δ(k), ζ (k) and η are neither left-invariant nor right-invariant.

We let SLI and SRI respectively denote the left-invariant and right-invariant morphisms,
that is,

SLI = {α, γ } and SRI = {α, β}.
Observe that if σ ∈ SLI (respectively, σ ∈ SRI), then the associated graph morphism ϕ−

s0
(respectively, ϕ+

p0
) is the identity. Moreover, from Table 5, a morphism σ belongs to SLI

(respectively, to SRI) if and only if C−
X(ε) (respectively, C+

X(ε)) is empty, where X is the
image under σ of a shift over A3.

LEMMA 5.9. Let X be a shift space over A3, σ ∈ S3 a non-left-invariant (respectively,
non-right-invariant) morphism and Y the image of X under σ . If v ∈ L(X) is a dendric
bispecial factor, then any dendric extended image u of v is such that C−

Y (u) = ∅ (respec-
tively, C+

Y (u) = ∅).
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In particular, if X is dendric and σ is in DP(X), then C−(Y ) = C−
Y (ε) �= ∅ (respectively,

C+(Y ) = C+
Y (ε) �= ∅).

Proof. Let us show the result for a non-left-invariant morphism, the other case being
symmetric. By definition of left-invariance, T−(σ ) contains two elements s0 and s1. It
suffices to check in Tables 3 and 4 that for each of them, the range of the associated
graph morphism ϕ−

si
has cardinality 2. As the left vertices of EY (u) are images of the

left vertices of EX(v), EY (u) contains at most two left vertices. By Remark 5.2, C−
Y (u) is

empty.
Now assume that X is dendric and that σ belongs to DP(X). By Lemma 5.7, Y is a

dendric shift. Let u be a non-empty factor of Y. By Proposition 4.1, either u is a non-prefix
factor of σ(a) for some letter a ∈ A3, or u is an extended image of a factor v ∈ L(X). In
the first case, it suffices to check that #(E−

Y (u)) ≤ 2, which implies that C−
Y (u) = ∅. In the

second case, as X is dendric, v is also dendric so by the first part of the lemma, C−
Y (u) = ∅.

Thus C−(Y ) = C−
Y (ε) and, by Lemma 5.6, it is non-empty.

LEMMA 5.10. Let X be a shift space over A3, σ ∈ S3 a left-invariant (respectively,
right-invariant) morphism and Y the image of X under σ . If v ∈ L(X) is a dendric bispecial
factor, then

C−
X(v) =

⋃
u bispecial extended image of v

C−
Y (u)(

respectively, C+
X(v) =

⋃
u bispecial extended image of v

C+
Y (u)

)
. (5.1)

In particular, if X is dendric and σ is in DP(X), then C−(Y ) = C−(X) (respectively,
C+(Y ) = C+(X)).

Proof. Let us assume that σ is left-invariant, the other case is symmetric. We first show
that if u is a bispecial extended image of v, then C−

Y (u) ⊂ C−
X(v). As T−(σ ) = {s0}, there

exists p ∈ T+(σ ) such that u = s0σ(v)p. Assume that a ∈ C−
Y (u). Writing A3 = {a, b, c},

Remark 5.2 states that the path q from b− to c− in EY (u) has length 4. This path q is the
image under ϕs0,p of a path q ′ of length at least 4 in EX(v). As EX(v) is a tree with at most
six vertices and the extremities of q ′ are left vertices, the path has length exactly 4. As ϕ−

s0
is the identity, we conclude that q ′ is a path of length 4 from b− to c− in EX(v), and hence
that a ∈ C−

X(v).
If C−

X(v) = ∅, then equality (5.1) is direct. Thus we only need to prove it when C−
X(v) �=

∅. As σ is left-invariant, we have by Lemma 5.8 that σ = α or σ = γ .
If σ = α, then as α is also right-invariant (see Lemma 5.8), Proposition 4.7 implies that

u is the unique bispecial extended image of v and that EY (u) = EX(v) (the graph morphism
is the identity), and hence that C−

Y (u) = C−
X(v).

If σ = γ , then as T+(σ ) = {1, 12}, (see Table 3), Corollary 4.3 implies that v has at
most two bispecial extended images u1 = σ(v)1 and u2 = σ(v)12. Let ϕ = ϕε,1 and ϕ′ =
ϕε,12. The morphism ϕ−

ε is the identity and thus we have ϕ = ϕ+
1 and ϕ′ = ϕ+

12.
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As C−
X(v) �= ∅, by Lemma 5.5 there is a letter a ∈ A3 such that C−

X(v) = {a}. Using
Remark 5.2, the path q from b− to c− has length 4 in EX(v). Let us write q =
(b−, x+, a−, y+, c−), with x, y ∈ A3.

If 1 ∈ {x, y}, we assume without loss of generality that 1 = x. Then we have ϕ(q) =
(b−, 1+, a−, 2+, c−) which is a path of length 4 from b− to c− in EY (u1). By Remark 5.2
and Lemma 5.5, one has C−

Y (u1) = {a}. As C−
Y (u2) ⊂ C−

X(v) by the first part of the proof,
we get C−

Y (u1) ∪ C−
Y (u2) = C−

X(v).
If {x, y} = {2, 3}, we assume without loss of generality that (x, y) = (2, 3). Then we

have ϕ′(q) = (b−, 1+, a−, 3+, c−) which is a path of length 4 from b− to c− in EY (u2).
By Remark 5.2 and Lemma 5.5, one has C−

Y (u2) = {a}. As C−
Y (u1) ⊂ C−

X(v) by the first
part of the proof, we also get C−

Y (u1) ∪ C−
Y (u2) = C−

X(v).
Let us finally show that C−(Y ) = C−(X). With σ ∈ {α, γ }, the non-prefix factor of

σ(a), a ∈ A3, are not bispecial. Hence, using Proposition 4.1, a bispecial factor u ∈ L(Y )
is either empty, or a bispecial extended image of some bispecial factor v ∈ L(X). As σ is
left-invariant, we have C−

Y (ε) = ∅ by Lemma 5.6. Using equation (5.1), we get

C−(Y ) =
⋃

v∈L(X), bispecial

⋃
u bispecial extended image of v

C−
Y (u)

=
⋃

v∈L(X), bispecial

C−
X(v)

= C−(X),

which ends the proof.

The following corollary is a direct consequence of Lemmas 5.9 and 5.10.

COROLLARY 5.11. Let X be a dendric shift over A3, σ ∈ DP(X) and Y the image
of X under σ . If C−(Y ) = ∅, then C−(X) = ∅ and σ is left-invariant. Respectively, if
C+(Y ) = ∅, then C+(X) = ∅ and σ is right-invariant.

PROPOSITION 5.12. Let X be a ternary minimal dendric shift. Then C−(X) and C+(X)
contain at most one letter. Moreover, if σ = (σn)n≥1 is a �3S3�3-adic representation of
X, then:
(1) C−(X) = ∅ if and only if σ belongs to (�3SLI�3)

N, if and only if X has a unique left
special factor of each length;

(2) C+(X) = ∅ if and only if σ belongs to (�3SRI�3)
N, if and only if X has a unique

right special factor of each length.

Proof. Using the notation of §2.3, we have X = Xσ and for each n ≥ 1, X(n)σ is dendric
by Proposition 5.1. Let σn = πnσ

′
nπ

′
n with πn, π ′

n ∈ �3 and σ ′
n ∈ S3. The shift spaces

π ′
n(X

(n+1)
σ ) and π−1

n (X
(n)
σ ) are dendric and π−1

n (X
(n)
σ ) is the image of π ′

n(X
(n+1)
σ ) under

σ ′
n. Thus, σ ′

n ∈ DP(π ′
n(X

(n+1)
σ )) by Lemma 5.7. We first show item (1).

Assume that C−(X) = ∅. We have, by induction using Corollary 5.11, that
C−(π ′

n(X
(n)
σ )) = ∅ and σ ′

n ∈ SLI for all n and thus σ ∈ (�3SLI�3)
N.
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Now assuming that σ belongs to (�3SLI�3)
N, we deduce that any bispecial factor of X

is a descendant of the empty word in some X(n)σ . Using Figure 5, the bispecial factor v =
ε ∈ L(X(n)σ ) has a unique right extension va, a ∈ A3, which is left special and it satisfies
E−
X
(n)
σ

(va) = A3. It then suffices to observe, using Proposition 4.1, that this property is

preserved by taking bispecial extended images under some morphism σ ∈ �3SLI�3. This
shows that any bispecial factor u, and hence any left special factor, of X satisfies E−

X(u) =
A3. Proposition 2.1 then implies that X has a unique left special factor of each length.

Finally assume that X has a unique left special factor un of each length n. By
Proposition 2.1, we have E−

X(un) = A3. Using Remark 5.2, the set C−
X(un) is non-empty if

and only if there are two letters x, y ∈ A3 such that both unx and uny are left special
factors of X. This implies that C−

X(un) = ∅. Any non-left-special factor u is such that
C−
X(u) = ∅ by Remark 5.2, and hence C−(X) = ∅.

The proof of item (2) is symmetric.
We finish the proof by showing that C−(X) and C+(X) contain at most one letter.

Assume by contrary that a, b ∈ C−(X) for some different letters a and b. By Lemmas 5.5,
5.9, and 5.10, all morphisms σ ′

n are left-invariant. But then item (1) implies that
C−(X) = ∅.

5.4. S3-adic characterization of minimal ternary dendric shifts. By Proposition 5.12,
any ternary minimal dendric shift X satisfies #C−(X), #C+(X) ≤ 1. To alleviate the
notation in what follows, we consider the alphabet A00 = A3 ∪ {0} and we write C−(X) =
a instead of C−(X) = {a} and C−(X) = 0 instead of C−(X) = ∅ (and similarly for C+(X)).
We then define the equivalence relation ∼ on the set of minimal ternary dendric shifts by

X ∼ Y ⇔ (C−(X), C+(X)) = (C−(Y ), C+(Y )).

For all l, r ∈ A00, we let [l, r] denote the equivalence class of all minimal ternary dendric
shifts satisfying (C−(X), C+(X)) = (l, r).

LEMMA 5.13. Let X and Y be minimal ternary dendric shifts. We have X ∼ Y if and only
if DP(X) = DP(Y ). Furthermore, if X ∼ Y , if σ ∈ DP(X) ∪�3, and if X′ and Y ′ are the
respective images of X and Y under σ , then X′ ∼ Y ′.

Proof. The equivalence between X ∼ Y and DP(X) = DP(Y ) follows from
Proposition 5.3. The second part of the statement follows from Lemma 5.9 and Lemma
5.10.

LEMMA 5.14. For each l, r ∈ A00, the equivalence class [l, r] is non-empty.

Proof. Let X be an Arnoux–Rauzy shift space. By Corollary 4.9, the image of X under
any morphism σ ∈ �3S3 is dendric. More precisely C−(X) and C+(X) are both empty.
Using Lemmas 5.6, 5.9, and 5.10, we can then choose such a morphism σ to X to obtain
an element of any equivalence class.

Using the previous lemmas, we can define, for each equivalence class C = [l, r], the set

DPP(C) = {πσπ ′ | π , π ′ ∈ �3, σ ∈ DP(π ′(X))},
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TABLE 6. Images of classes under the morphisms of S3.

Morphism Class C Image of C Conditions

α [l, r] [l, r] none
β [l, r] [1, r] l �= 1
γ [l, r] [l, 1] r �= 1
δ(k) [l, r] [3, 1] l, r �= 1
ζ (k) [l, r] [3, 3] l, r �= 2
η [l, r] [2, 3] l �= 2, r �= 1

where X ∈ C. Thus it corresponds to the set of morphisms in �3S3�3 that are dendric
preserving for X (DPP stands for dendric preserving with permutations). Furthermore, for
any σ ∈ DPP(C), there is a unique equivalence class C ′ such that when X ∈ C and Y is
the image of X under σ , then Y ∈ C′. We call C′ the image of C under σ .

For each morphism σ ∈ S3, the classes C such that σ ∈ DPP(C) and their images are
summarized in Table 6. They are computed using Proposition 5.3 (to determine the allowed
classes C), Table 5, and Lemmas 5.9 and 5.10 (to determine the corresponding image).

Up to permutations, we can distinguish five types of set DPP([l, r]), depending on
whether l or r is 0 and on whether l = r or not. We thus build the following directed graph
G′, whose set of vertices is V = {[0, 0], [0, 3], [3, 0], [3, 2], [3, 3]}. For each vertex, there
is an incoming edge labeled by each permutation and, for every vertices C, C ′ ∈ V and
every morphism σ ∈ �3S3�3, there is an edge from C to C′ with label σ if σ ∈ DPP(C′)
and C is the image of C′ under σ . In other words, we have an edge labeled by πσ ′π ′,
π , π ′ ∈ �3, σ ′ ∈ S3, from [l, r] to [l′, r ′] if the class [π ′(l′), π ′(r ′)]† is in Table 6 for σ ′
and its image is the class [π−1(l), π−1(r)].

This graph is a co-deterministic automaton, that is, for every vertex C and every
morphism σ , there is at most one edge with label σ reaching C. It gives a first�3S3�3-adic
characterization of minimal dendric shifts.

THEOREM 5.15. A shift space X is a minimal dendric shift over A3 if and only if it has a
primitive S-adic representation labeling an infinite path in G′.

Proof. Assume that X is a minimal ternary dendric shift. By Proposition 5.1, X has a
primitive �3S3�3-adic representation σ where for each n, X(n)σ is a ternary minimal
dendric shift. In addition, up to changing the permutations and considering a permutation
of X instead of X itself, we can assume that, for all n, the equivalence class of X(n)σ is an
element of V. By construction, X(n)σ and X(n+1)

σ are dendric; thus σn is dendric preserving
for X(n+1)

σ and P = ([C−(X(n)σ ), C+(X(n)σ )])n≥1 is a path in G′ with label σ .
Now consider a primitive sequence σ labeling a path ([C−

n , C+
n ])n≥1 in G′ and let us

show that the shift space Xσ is minimal and dendric. It is minimal by primitiveness of σ .
If it is not dendric, there exists a bispecial factor u ∈ L(Xσ ) which is not dendric. Using
Corollary 4.5, there is a unique k ≥ 1 and a unique initial bispecial factor v in L(X(k)σ )

such that u is a descendant of v and EX(u) depends only on E
X
(k)
σ
(v). By definition of initial

† We take as convention that, if π is a permutation on A3, then π(0) = 0.
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bispecial factors, v is either the empty word or a non-prefix factor of σk(a) for some letter a.
Moreover, by Lemma 5.14, there is a dendric shift space Y such that Y ∈ [C−

k+1, C+
k+1].

Thus, if Z is the image of Y by σk , Z ∈ [C−
k , C+

k ] and, as E
X
(k)
σ
(v) is completely determined

by σk , we have E
X
(k)
σ
(v) = EZ(v). By definition of the edges of G′, the morphism σ[1,k)

is dendric preserving for v. Thus, u is a dendric bispecial factor of X, which is a
contradiction.

We now improve the previous result by considering a smaller graph. We will need the
following lemma.

LEMMA 5.16. Let σ = πσ ′π ′ with π , π ′ ∈ �3, σ ′ ∈ S3. Let l, r , l′, r ′ ∈ A00 be such that
σ ∈ DPP([l, r]) and the image of [l, r] under σ is [l′, r ′].
(1) If σ ′ is left-invariant, then for all λ ∈ A00, we have σ ∈ DPP([λ, r]) and the image

of [λ, r] under σ is [ππ ′(λ), r ′].
(2) If σ ′ is not left-invariant, then l′ �= 0, there is a unique λ ∈ A3 such that σ /∈

DPP([λ, r]) and for all other λ′ ∈ A00, the image of [λ′, r] under σ is [l′, r ′].
(3) If σ ′ is right-invariant, then for all ρ ∈ A00, we have σ ∈ DPP([l, ρ]) and the image

of [l, ρ] under σ is [l′, ππ ′(ρ)].
(4) If σ ′ is not right-invariant, then r ′ �= 0, there is a unique ρ ∈ A3 such that σ /∈

DPP([l, ρ]) and for all other ρ′ ∈ A00, the image of [l, ρ′] under σ is [l′, r ′].

Proof. It follows from Table 6.

We are now ready to prove Theorem 1.1. We say that two sequences (σn)n∈N and (τn)n∈N
are equivalent if, for all n, there exist a permutation πn on the alphabet such that

σ1 · · · σnπn = τ1 · · · τn.

It is then clear that (σn)n∈N is a primitive S-adic representation of a shift space X if and
only if (τn)n∈N also is.

Proof of Theorem 1.1. Let G be the subgraph of G′ obtained by deleting the vertices [0, 0],
[0, 3], and [3, 0]. By definition of the edges of G′, for each edge incoming in [3, 3] and
labeled by σ , there is also an edge incoming in [3, 3] labeled by σπ213 (for instance,
[3, 2] is the image of [3, 3] under both π132η and π132ηπ213). In G, for each such pair,
we only keep one of the two edges. The choice is made so as to reduce the total number
of different morphisms labeling an edge in the graph. This subgraph contains two vertices
and is represented in Figure 7.

We show that for each infinite path P in G′ labeled by σ = (σn)n∈N, there is an
equivalent path in G, that is, a path labeled by a sequence τ = (τn)n∈N equivalent to σ .

We thus consider a path P = ([ln, rn])n≥1 in G′ with label σ = (σn)n≥1 (hence σn labels
the edge from [ln, rn] to [ln+1, rn+1]). For all n ≥ 1, let σn = πnσ

′
nπ

′
n with πn, π ′

n ∈ �3,
σ ′
n ∈ S3.

We first prove that we can delete the vertices [0, 0], [0, 3], and [3, 0]. If P goes through
one of the deleted vertices, then there exists N such that lN or rN is 0. Assume that N is
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FIGURE 7. A shift space on A3 is minimal and dendric if and only if it has a primitive�3S3�3-adic representation
labeling an infinite path in this graph denoted G.

the smallest integer such that lN = 0. By Corollary 5.11, we deduce that for all n ≥ N , σ ′
n

is left-invariant and ln = 0.
We prove by induction that there exist a sequence (ψn)n≥1 of permutations and a

sequence (l′n)n≥1 ∈ AN

3 such thatψ1 = id and for all n ≥ 1, the morphism τn = ψnσnψ
−1
n+1

labels an edge from [l′n, ψn(rn)] to [l′n+1, ψn+1(rn+1)] in G′. The sequence (τn)n∈N is
trivially equivalent to σ .

If N = 1, we take l′1 = 3. If N > 1, we take ψn = id and l′n = ln for all n ≤ N − 1.
Assume that we have found such ψn and l′n for n ≥ min{N − 1, 1} and let us find ψn+1

and l′n+1. We first show that we can find l′ ∈ A3 such that ψnσn ∈ DPP([l′, rn+1]) and the
image of [l′, rn+1] under ψnσn is [l′n, ψn(rn)]. Recall that ψnσn is in DPP([0, rn+1]) and
that the image of [0, rn+1] under ψnσn is [ψn(ln), ψn(rn)].

For n = N − 1 (with N > 1), by Lemma 5.10, σ ′
N−1 is not left-invariant. Thus, since

l′N−1 = lN−1 = ψN−1(lN−1), we can choose such an l′ ∈ A3 by Lemma 5.16. If n ≥ N ,
σ ′
n is left-invariant; thus, by Lemma 5.16, for any l′ ∈ A3, ψnσn is in DPP([l′, rn+1])

and, in particular, if l′ = (ψnπnπ
′
n)

−1(l′n), then the image of [l′, rn+1] under ψnσn is
[l′n, ψn(rn)].

Let ψn+1 be a permutation such that [ψn+1(l
′), ψn+1(rn+1)] is a vertex of G′ and

let l′n+1 = ψn+1(l
′). The morphism ψnσnψ

−1
n+1 then labels an edge from [l′n, ψn(rn)] to

[l′n+1, ψn+1(rn+1)].
We have thus found a path P′ = ([l′n, ψn(rn)])n≥1 equivalent to P and that does not go

through vertices of the form [0, r]. Note that for all n, ψn(rn) = 0 if and only if rn = 0.
Starting from P or P′, we similarly find another path P′′ equivalent to P. This path P′′

does not go through the vertices [0, 0], [0, 3], or [3, 0].
We now show that we can delete half of the edges incoming in [3, 3], as explained

in the beginning of the proof. It follows from the fact that if [ln+1, rn+1] = [3, 3], then
τn = σnπ213 labels an edge from [ln, rn] to [3, 3] and τn+1 = π213σn+1 labels an edge
from [3, 3] to [ln+2, rn+2]. Replacing σn by τn and σn+1 by τn+1 then gives an equivalent
path. This concludes the proof.
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We can make several observations regarding equivalent sequences in (�3S3�3)
N. The

first one is that, if σ = (πnσ
′
nπ

′
n)n∈N and τ = (ψnτ

′
nψ

′
n)n∈N, with πn, π ′

n, ψn, ψ ′
n ∈ �3

and σ ′
n, τ ′

n ∈ S3, are equivalent, then σ ′
n = τ ′

n for all n. Indeed, let ξn be the permutation
such that σ1 · · · σn−1ξn = τ1 · · · τn−1. The morphism τ1 · · · τn−1 is injective and thus
τn = ξ−1

n σnξn+1. The conclusion follows from the fact that composing a morphism of S3

with some permutations on the left and on the right will not give a different morphism
of S3.

Another observation is the following result.

PROPOSITION 5.17. Any two�3S3�3-adic representations of a shift space are equivalent.

Proof. Let σ = (πnσ
′
nπ

′
n)n∈N and τ = (ψnτ

′
nψ

′
n)n∈N, with πn, π ′

n, ψn, ψ ′
n ∈ �3 and

σ ′
n, τ ′

n ∈ S3, be two �3S3�3-adic representations of a shift space X.
We prove by induction on n ≥ 0 that there exists a permutation ξn such that σ1 · · · σn =

τ1 · · · τnξn and ξn(X
(n+1)
σ ) = X

(n+1)
τ . For n = 0, it suffices to take ξ0 = id. Assume now

that we have found such ξn−1, n ≥ 1. The shift X(n)τ can then be seen as the image of
π ′
n(X

(n+1)
σ ) under ξn−1πnσ

′
n or as the image of ψ ′

n(X
(n+1)
τ ) under ψnτ ′

n.
The shape of the extension graph E

X
(n)
τ
(ε) and the lengths of the longest power of 1

(respectively, 2, 3) in L(X(n)τ ) uniquely determine the morphisms σ ′
n = τ ′

n. Moreover, if
σ ′
n �= α, we even have ξn−1πnσ

′
n = ψnτ

′
n and thus σ1 · · · σn−1πnσ

′
n = τ1 · · · τn−1ψnτ

′
n.

We then take ξn = (ψ ′
n)

−1π ′
n. If σ ′

n = α, then either ξn−1πn = ψn and we proceed as
above, or ξn−1πn = ψnπ132. In that case, ξn−1πnσ

′
n = ψnτ

′
nπ132. Let ψ ′′

n = π132ψ
′
n. We

then take ξn = (ψ ′′
n )

−1π ′
n and the conclusion follows as in the previous case.

6. Descriptions in G of well-known families of minimal ternary dendric shifts
The class of minimal ternary dendric shifts contains several classes of well-known
families of shift spaces, namely Arnoux–Rauzy shifts, codings of regular 3-interval
exchange transformations, and Cassaigne shifts. In this section, we study the�3S3�3-adic
representations of these particular families in the light of G.

6.1. Arnoux–Rauzy shifts. A shift space X ⊂ AZ

3 is an Arnoux–Rauzy shift if it is a
minimal shift space with factor complexity p(n) = 2n+ 1 that has exactly one left and
one right special factor of each length. Another equivalent definition is that X admits a
primitive representation σ ∈ {α, π213απ213, π321απ321}N [AR91]. This equivalence is also
a consequence of Proposition 5.12 and Theorem 1.1.

6.2. Interval exchange shifts. Let us recall the definition of an interval exchange
transformation. We use the terminology of [FZ08] with two permutations. Let I = [l, r)
be a semi-interval, λ = (λ1, . . . , λd) be a positive d-dimensional vector such that ‖λ‖1 =
r − l, and (π0, π1) be two permutations of {1, 2, . . . , d}. The two permutations induce
some partitions of I by semi-intervals whose lengths are given by the vector λ and that
are ordered according to π0 and π1 respectively. More precisely, we consider the partitions
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I = {I1, . . . , Id} and J = {J1, . . . , Jd}, where for each i,

Ii =
[
l +

∑
π−1

0 (j)<π−1
0 (i)

λj , l +
∑

π−1
0 (j)≤π−1

0 (i)

λj

)
and

Ji =
[
l +

∑
π−1

1 (j)<π−1
1 (i)

λj , l +
∑

π−1
1 (j)≤π−1

1 (i)

λj

)

are semi-intervals of length λi . Setting μ0 = ν0 = l and, for every i ∈ {1, . . . , d},
μi = l + ∑

π−1
0 (j)≤i λj and νi = l + ∑

π−1
1 (j)≤i λj , we have Iπ0(i) = [μi−1, μi) and

Jπ1(i) = [νi−1, νi) for all i.

μ0 π0(1) μ1 π0(2) μ2 μd−1 π0(d) μd

ν0 π1(1) ν1 π1(2) ν2 π1(d) νd

The IET on I associated with (λ, π0, π1) is the piecewise translation Tλ,π0,π1 : I → I

such that Tλ,π0,π1(Ii) = Ji for every i. Thus it is the bijection defined by

Tλ,π0,π1(x) = x −
∑

π−1
0 (j)<π−1

0 (i)

λj +
∑

π−1
1 (j)<π−1

1 (i)

λj if x ∈ Ii .

When we want to emphasize the number of intervals, we talk about d-IETs and when
the context is clear, we write T instead of Tλ,π0,π1 . Obviously, up to translation and
rescaling, we can always assume that I = [0, 1). More precisely, we define the normalized
IET associated with T by T̄ : [0, 1) → [0, 1) by T̄ (x) = (1/(r − l))(T ((r − l)x + l)− l).
Observe that if τ is the permutation of {1, . . . , d} defined by τ(i) = d + 1 − i, then
replacing π0 and π1 by π0 ◦ τ and π1 ◦ τ , respectively, defines another interval exchange
transformation which is also conjugate to Tλ,π0,π1 ; we denote it by T̃λ,π0,π1 .

We let
(
π0(1)π0(2)...π0(d)
π1(1)π1(2)...π1(d)

)
denote the pair of permutations (π0, π1).

Example 6.1. A 3-IET on [0, 1) with pair of permutations
(123

231

)
. It is the rotation R :

[0, 1) → [0, 1), x �→ x + λ2 + λ3 mod 1.

0 1 2 3 1

0 2 3 1 1

6.2.1. Regular interval exchange transformations. Let T be an IET on I. The orbit of a
point x ∈ I is the set {T n(x) | n ∈ Z}. The transformation T is said to be minimal if, for
any x ∈ I , the orbit of x is dense in I.

A d-IET is said to be regular if the orbits of the points μi , 1 ≤ i < d, are infinite and
disjoint. A regular interval exchange transformation is also said to be without connections
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or to satisfy the idoc condition (where idoc stands for infinite disjoint orbit condition). As
an example, any non-trivial 2-IET is a rotation and, if normalized, it is regular if and only
if the angle of the rotation is irrational. The following result is due to Keane.

THEOREM 6.2. (Keane [Kea75]) A regular interval exchange transformation is minimal.

The converse is not true. Indeed, consider the rotation of angle α with 0 < α < 1/2
irrational, as a 3-IET with λ = (1 − 2α, α, α) and permutations

(123
312

)
. The transformation

is minimal as any rotation of irrational angle but it is not regular since μ1 = 1 − 2α, μ2 =
1 − α and thus μ2 = T (μ1).

The following necessary condition for minimality of an IET is useful. If an IET
T = Tλ,π0,π1 is minimal, then the pair of permutations (π0, π1) is indecomposable, that
is, π0({1, . . . , k}) �= π1({1, . . . , k}) for every k < d. When d = 3, any IET with an
indecomposable pair of permutations is conjugate to a 3-IET with a pair of permutations(123

231

)
or

(132
231

)
.

6.2.2. Codings of IET. Let T = Tλ,π0,π1 be a d-IET and let A = {1, . . . , d}. We say that
a word w = b0b1 · · · bm−1 ∈ A∗ is admissible for T if the set

Iw = Ib0 ∩ T −1(Ib1) ∩ · · · ∩ T −m+1(Ibm−1)

is non-empty. The language of T is the set LT of admissible words for T. It uniquely defines
the shift space

XT = {x ∈ AZ | L(x) ⊂ LT }
that we call as the natural coding of T. If T is regular, thenXT is minimal, and henceXT =
{x ∈ AZ | L(x) = LT }. Of course,XT is invariant under normalization and reflection, that
is, we have XT = X

T̃
= XT̄ .

6.2.3. Derivation and induction. The �3S3�3-adic representations of minimal dendric
subshifts that we consider are based on derivation by return words. In the context of
codings of IET, this derivation can be understood through induced transformations and
in particular Rauzy inductions [Rau79].

Let T = Tλ,π0,π1 be a d-IET on I. A semi-interval I ′ ⊂ I is said to be recurrent for T
if for all x ∈ I ′, there exists n > 0 such that T n(x) ∈ I ′. In that case, the transformation
induced by T on I ′ is the map TI ′ : I ′ → I ′, x �→ T rI ′ (x)(x), where rI ′(x) = min{n > 0 |
T n(x) ∈ I ′}. The following result is classical (for a proof, see for instance [DP17]).

PROPOSITION 6.3. If T is a regular d-IET. Then for every non-empty word w ∈ LT , the
transformation induced by T on Iw is a regular d-IET T ′ and one has XT ′ = Dw(XT ).

Induced transformations on Iw can be obtained by the (left or right) Rauzy induction.
Set l′ = min{μ1, ν1}, r ′ = max{μd−1, νd−1}, IL = [l′, r) and IR = [l, r ′). Observe that
IL (respectively, IR) is recurrent and, for all x ∈ IL, rIL(x) ≤ 2 (respectively, for all x ∈
IR , rIR (x) ≤ 2). The left Rauzy induction and right Rauzy induction of T are then the
transformations induced by T on IL and IR , respectively. We denote them as L(T ) and
R(T ).
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A d-IET T = Tλ,π0,π1 is said to be L-inducible (respectively, R-inducible) if λπ0(1) �=
λπ1(1) (respectively, λπ0(d) �= λπ1(d)). Observe that if T is L-inducible (respectively,
R-inducible), then L(T ) (respectively, R(T )) is a d-IET. A word F1 · · · Fn over {L, R}
is said to be valid for T if it defines a sequence (T0, T1, . . . , Tn) of d-IET by T0 = T and
for all k < n, Tk is Fn−k-inducible and Tk+1 = Fn−k(Tk).

LEMMA 6.4. Let T be a d-IET and let F1 · · · Fn be a word over {L, R} which is valid for
T. Then Tn is a d-IET on a semi-interval I ′ ⊂ I recurrent for T and we have Tn = TI ′ .

Proof. It suffices to prove it for n = 2. The general case will follow by induction. As F1F2

is valid for T, T1 and T2 are d-IETs on I1 ⊂ I and I2 ⊂ I1, respectively. Let x ∈ I2. By
definition, for all k ≥ 0, T k1 (x) = T nk (x) for a strictly increasing sequence (nk)k≥0 such
that n0 = 0 and, if nk < i < nk+1, then T i(x) /∈ I1. Let r = min{k > 0 | T k1 (x) ∈ I2}. As
I1 ⊂ I2, nr is the smallest exponent k > 0 such that T k(x) ∈ I2 and thus T2(x) = T r1 (x) =
T nr (x) = TI2(x).

The next result summarizes several classical results concerning Rauzy inductions
[Rau79, DP17].

THEOREM 6.5. Let T = Tλ,π0,π1 be a 3-IET, where (π0, π1) ∈ {(123
231

)
,
(132

231

)
,
(321

132

)}.
If λ satisfies the condition c and there is an edge from (π0, π1) to (π̃0, π̃1), labeled

by (c, (σ (1), σ(2), σ(3)) in the following graph, then L(T ) = T
M−1
σ λ,π̃0,π̃1

and XT is the
image of XL(T ) under σ .

(123
231

) (132
231

) (321
132

)(λ1 < λ2,
(21, 2, 3))

(λ1 > λ2, (1, 3, 21)) (λ1 < λ2, (2, 21, 3))

(λ1 > λ2, (1, 3, 21)) (λ3 < λ1, (2, 1, 13))

(λ3 > λ1,
(13, 2, 3))

If λ satisfies the condition c and there is an edge from (π0, π1) to (π̃0, π̃1), labeled
by (c, (σ (1), σ(2), σ(3)) in the following graph, then R(T ) = T

M−1
σ λ,π̃0,π̃1

and XT is the
image of XR(T ) under σ .

(123
231

) (132
231

) (321
132

)(λ3 > λ1,
(13, 2, 3))

(λ3 < λ1, (1, 2, 13)) (λ2 > λ1, (2, 3, 12))

(λ2 < λ1, (1, 12, 3)) (λ1 > λ2, (3, 1, 21))

(λ1 < λ2,
(21, 2, 3))

6.2.4. S-adic representations of regular 3-interval exchange transformations. Let X[3,2]

denote the set of codings of IETs associated with the permutations
(123

231

)
, or equivalently,

with the permutations
(321

132

)
, and X[3,3] the set of codings of interval exchanges with

permutations
(132

231

)
. We study the link between the two classes using inductions.
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PROPOSITION 6.6. Let X ∈ X[3,2] and let T be the corresponding IET with permutations(123
231

)
and length vector λ. We have the following cases.

• If λ1 > λ2 + λ3, then I1 is recurrent and, if T ′ = TI1 , XT ′ ∈ X[3,2] and X is the image
of XT ′ under α.

• If λ2, λ3 < λ1 < λ2 + λ3, then I1 is recurrent and, if T ′ = TI1 , XT ′ ∈ X[3,2] and X is
the image of XT ′ under π132ηπ321.

• If λ2 < λ1 < λ3, then I3 is recurrent and, if T ′ = TI3 , XT ′ ∈ X[3,3] and X is the image
of XT ′ under π312βπ213.

• If λ3 < λ1 < λ2, then I2 is recurrent and, if T ′ = TI2 , XT ′ ∈ X[3,2] and X is the image
of XT ′ under π213γ .

• If λ1 < λ2, λ3 and kλ1 < λ3 < (k + 1)λ1 for some integer k ≥ 1, then I2 is recurrent
and, if T ′ = TI2 , XT ′ ∈ X[3,3] and X is the image of XT ′ under π213δ

(k).
Moreover, the vector of interval lengths in T ′ is equal to M−1

σ λ where σ is the morphism
given by the cases above.

Proof. It follows from Lemma 6.4 by applying Theorem 6.5 several times until we obtain
the induction on the given interval. Let us detail the steps for the third case.

Assume that λ2 < λ1 < λ3 and assume that T is normalized. We start by applying a
left Rauzy induction and, as λ1 > λ2, by Theorem 6.5, T1 := L(T ) is the IET on [λ2, 1[
with permutations

(132
231

)
and length vector (λ1 − λ2, λ3, λ2). Moreover, X is the image of

XT1 under the morphism σ1 : 1 �→ 1, 2 �→ 3, 3 �→ 21. We then apply another left Rauzy
induction on T1. As λ1 − λ2 < λ1 < λ3, this gives the transformation T2 on [λ1, 1[ with
permutations

(321
132

)
and interval lengths (λ2 + λ3 − λ1, λ1 − λ2, λ2). The shift XT1 is the

image ofXT2 under the morphism σ2 : 1 �→ 2, 2 �→ 21, 3 �→ 3. We apply a third left Rauzy
induction on T2 to obtain the transformation T3 on [λ1 + λ2, 1[= I3. Since λ2 < λ2 +
λ3 − λ1, the associated permutations are

(132
231

)
. Moreover, XT2 is the image of XT3 under

σ3 : 1 �→ 2, 2 �→ 1, 3 �→ 13. By construction, XT ′ = XT3 is in X[3,3], the lengths of the
intervals in T ′ are given by M−1

σ1σ2σ3
λ and X is the image of XT ′ under the morphism

σ1σ2σ3 = π312βπ213.
For the other cases, we simply give the steps and leave the details to the reader.

• If λ1 > λ2 + λ3, then we do two consecutive right Rauzy inductions.
• If λ2, λ3 < λ1 < λ2 + λ3, we do three right Rauzy inductions.
• If λ3 < λ1 < λ2, we apply a left and a right Rauzy induction then swap the letters 1

and 2.
• If λ1 < λ2, λ3 and kλ1 < λ3 < (k + 1)λ1, we apply a left Rauzy induction and k + 1

right Rauzy inductions then swap the letters 1 and 2.

The proof of the next result is similar.

PROPOSITION 6.7. Let X ∈ X[3,3] and let T be the corresponding IET with permutations(132
231

)
and length vector λ. We have the following cases.

• If λ1 > λ2 + λ3, then I1 is recurrent and, if T ′ = TI1 , XT ′ ∈ X[3,3] and X is the image
of XT ′ under α.

• If λ2 > λ1 + λ3, then I2 is recurrent and, if T ′ = TI2 , XT ′ ∈ X[3,3] and X is the image
of XT ′ under π213απ213.
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FIGURE 8. A shift space on A3 is the coding of a regular interval exchange if and only if it has a primitive
�3S3�3-adic representation labeling an infinite path in this graph denoted GIET.

• If λ2 < λ1 < λ2 + λ3 and k(λ1 − λ2) < λ3 < (k + 1)(λ1 − λ2) for some integer k ≥
1, then I1 is recurrent and, if T ′ = TI1 , XT ′ ∈ X[3,3] and X is the image of XT ′ under
ζ (k)π213.

• If λ1 < λ2 < λ1 + λ3 and k(λ2 − λ1) < λ3 < (k + 1)(λ2 − λ1) for some integer k ≥
1, then I2 is recurrent and, if T ′ = TI2 , XT ′ ∈ X[3,3] and X is the image of XT ′ under
π213ζ

(k)π213.
Moreover, the vector of interval lengths in T ′ is equal to M−1

σ λ where σ is the morphism
given by the cases above.

Remark 6.8. If X ∈ X[3,2] ∪ X[3,3] is the coding of a regular IET, then it satisfies one of
the cases of Proposition 6.6 or Proposition 6.7 and, by Proposition 6.3, XT ′ is also the
coding of a regular interval exchange.

Using Propositions 6.6 and 6.7, we can define the graph GIET represented in Figure 8. It
has two vertices [3, 2] and [3, 3] and, for each of the cases of Proposition 6.6 (respectively,
of Proposition 6.7), it has an edge leaving [3, 2] (respectively, [3, 3]) going to the vertex
C such that XT ′ ∈ XC and labeled by the morphism σ such that X is the image of XT ′
under σ . Moreover, we add incoming edges labeled by each of the permutations. Remark
that it is a subgraph of the graph G represented in Figure 7 used to characterize ternary
dendric shifts.

Before using this graph to give a S-adic characterization of regular interval exchanges,
we recall the notion of letter frequency.

A shift space X over A is said to have letter frequencies if for all a ∈ A, there exists
λa ∈ [0, 1] such that for all x ∈ X, limn(|x1x2 . . . xn|a/n) = λa . A classical result of
Boshernitzan [Bos85] shows that minimal dendric shift spaces over A3 (hence codings
of regular 3-IET) are uniquely ergodic and thus have letter frequencies that are given by
the measure of the letter cylinders. In particular, when X is the coding of a regular 3-IET,
then the letter frequencies are given by the lengths of the intervals. The following result is
a direct consequence of [BD14, Theorem 5.7].

PROPOSITION 6.9. Let X be a uniquely ergodic shift space with primitive S-adic
representation σ . For all n, if fn is the vector of letter frequencies in X(n)σ , then f1 is
proportional to Mσ[1,n)fn.

LEMMA 6.10. Let X be a minimal ternary dendric shift space, σ = (σn)n∈N a primitive
�3S3�3-adic representation of X, and λ1, λ2, λ3 the letter frequencies in X. If σ1 ∈
{α, π132ηπ321, π312βπ213, π213γ } ∪ {π213δ

(k) | k ≥ 1}, then σ1 is determined by λ1, λ2 and
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λ3 in the following way:
• λ1 > λ2 + λ3 if and only if σ1 = α;
• λ2, λ3 < λ1 < λ2 + λ3 if and only if σ1 = π132ηπ321;
• λ2 < λ1 < λ3 if and only if σ1 = π312βπ213;
• λ3 < λ1 < λ2 if and only if σ1 = π213γ ;
• λ1 < λ2, λ3 and kλ1 < λ3 < (k + 1)λ1 if and only if σ1 = π213δ

(k).

Proof. Let μ1, μ2, μ3 be the letter frequencies in X
(2)
σ . The vector (λ1 λ2 λ3)

t is
proportional to Mσ1(μ1 μ2 μ3)

t and, by minimality, the letter frequencies in X(2)σ are
positive. Thus, given σ1, the inequalities follow. As λ1, λ2, λ3 can satisfy at most one (and
exactly one) set of inequalities, we have the equivalences.

LEMMA 6.11. Let X be a minimal ternary dendric shift space, σ = (σn)n∈N a primitive
�3S3�3-adic representation of X and λ1, λ2, λ3 the letter frequencies in X. If σ1 ∈
{α, π213απ213} ∪ {ζ (k)π213, π213ζ

(k)π213 | k ≥ 1}, then σ1 is determined by λ1, λ2, and λ3

in the following way:
• λ1 > λ2 + λ3 if and only if σ1 = α;
• λ2 > λ1 + λ3 if and only if σ1 = π213απ213;
• λ2 < λ1 < λ2 + λ3 and k(λ1 − λ2) < λ3 < (k + 1)(λ1 − λ2) if and only if σ1 =

ζ (k)π213;
• λ1 < λ2 < λ1 + λ3 and k(λ2 − λ1) < λ3 < (k + 1)(λ2 − λ1) if and only if σ1 =

π213ζ
(k)π213.

We will also need the following result. The proof can, for example, be found in [Del15].

PROPOSITION 6.12. Let X be the coding of a d-IET. If pX(n) = (d − 1)n+ 1 then the IET
is regular.

THEOREM 6.13. A shift space X is the coding of a regular 3-IET if and only if it has a
primitive �3S3�3-adic representation labeling a path in the graph GIET represented in
Figure 8.

Proof. First assume that X is the coding of a regular 3-IET. Possibly starting the
representation with a permutation, we can assume that X ∈ X[3,2] ∪ X[3,3]. The sequence
obtained by iterating Propositions 6.6 and 6.7 gives a �3S3�3-adic representation σ of
X and, if X(n)σ ∈ Cn, then σ labels the path (XCn)n∈N by construction of the graph. Using
Theorem 3.1 and Proposition 6.3, the sequence is primitive.

It remains to prove that if X has a primitive �3S3�3-adic representation σ = (σn)n∈N
labeling a path (Cn)n∈N in the GIET, then X is the coding of a regular 3-IET. We can
assume that the initial permutation is the identity. As GIET is a subgraph of the graph G, X
is minimal dendric by Theorem 1.1 and the letter frequencies exist by [Bos85]. Similarly,
for all n ∈ N, the letter frequencies exist in X(n)σ . Let λ(n) denote the vector of frequencies
in X(n)σ . By Proposition 6.9, λ(n+1) is proportional to M−1

σn
λ(n).

For every n, let Yn ∈ XCn be the coding of the IET whose vector of interval lengths is
λ(n). We prove that Yn is the image of Yn+1 under σn. This will prove that σ is a primitive
�3S3�3-adic representation of Y1, and hence that X = Y1. The fact that the underlying
IET is regular then follows from Proposition 6.12.
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If Cn = [3, 2], then σn ∈ {α, π132ηπ321, π312βπ213, π213γ } ∪ {π213δ
(k) | k ≥ 1}. By

Lemma 6.10, the vector λ(n) satisfies some inequalities that make Yn fall into one of the
cases of Proposition 6.6. By checking the different cases, we deduce from this result
that Yn is indeed the image of Yn+1 under σn. The proof is similar if Cn = [3, 3], using
Lemma 6.11 and Proposition 6.7 instead.

6.3. Cassaigne shifts. A shift space X over A3 is a Cassaigne shift if it has a primitive
C-adic representation, where C = {c1, c2} and

c1 :

⎧⎪⎪⎨
⎪⎪⎩

1 �→ 1

2 �→ 13

3 �→ 2

and c2 :

⎧⎪⎪⎨
⎪⎪⎩

1 �→ 2

2 �→ 13

3 �→ 3

.

Cassaigne shifts are minimal ternary dendric shifts and a directive sequence (σn)n≥1 ∈ CN

is primitive if and only if it cannot be eventually factorized over {c2
1, c2

2}, that is, there is
no N ∈ N such that for all n ≥ N , cN+2n = cN+2n+1 [CLL17].

By considering products of morphisms, we obtain that a shift space is a Cas-
saigne shift if and only if it has a primitive C′-adic representation where C′ =
{c11, c22, c122, c211, c121, c212} and

c11 = c2
1 :

⎧⎪⎪⎨
⎪⎪⎩

1 �→ 1

2 �→ 12

3 �→ 13

; c122 = c1c
2
2 :

⎧⎪⎪⎨
⎪⎪⎩

1 �→ 12

2 �→ 132

3 �→ 2

; c121 = c1c2c1 :

⎧⎪⎪⎨
⎪⎪⎩

1 �→ 13

2 �→ 132

3 �→ 12

;

c22 = c2
2 :

⎧⎪⎪⎨
⎪⎪⎩

1 �→ 13

2 �→ 23

3 �→ 3

; c211 = c2c
2
1 :

⎧⎪⎪⎨
⎪⎪⎩

1 �→ 2

2 �→ 213

3 �→ 23

; c212 = c2c1c2 :

⎧⎪⎪⎨
⎪⎪⎩

1 �→ 23

2 �→ 213

3 �→ 13

.

Thus, a shift space is a Cassaigne shift if and only if it has a primitive S-adic representation
using morphisms from the set

{α, π321απ321, π213γπ231, π231βπ132, π132ηπ231, π321ηπ231}
or, equivalently, if and only if it has a primitive SC-adic representation where

SC = {α, π321απ321, π213γπ231, π231βπ132, π132ηπ231, π321ηπ231}.
PROPOSITION 6.14. There is no Cassaigne shift which is an Arnoux–Rauzy or the coding
of a regular interval exchange.

Proof. Let X be a Cassaigne shift and σ = (σn)n≥1 be a primitive SC-adic representation
of X. First, it is clear that X is not an Arnoux–Rauzy shift. Using Proposition 5.12, it
would indeed require σ to only use left-invariant and right-invariant morphisms from S3,
and hence to be in {α, π321απ321}N. It then suffices to observe that there is no primitive
sequence in {α, π321απ321}N.

By Proposition 5.17 and Theorem 6.13, if X is the coding of a regular interval exchange,
then σ is equivalent to a primitive sequence τ ∈ (�3S3�3)

N (preceded by a permutation
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ψ0) labeling an infinite path in the graph GIET. Let σn = πnσ
′
nπ

′
n and τn = ψnτ

′
nψ

′
n with

πn, π ′
n, ψn, ψ ′

n ∈ �3 and σ ′
n, τ ′

n ∈ S3.
As σ and τ are equivalent, σ ′

n = τ ′
n; thus, τn /∈ {π213δ

(k), ζ (k)π213, π213ζ
(k)π213 |

k ≥ 1}. Since τ is primitive, it cannot belong to (�3S3�3)
∗{α, π213απ213}N; thus the path

labeled by τ stays in the vertex [3, 2] and τ ∈ {α, π132ηπ321}N. Moreover, there exists N
such that τN = π132ηπ321.

Let us show that we obtain a contradiction. Let ξn be the permutation such that
ψ0τ1 · · · τn−1 = σ1 · · · σn−1ξn. Since ψ0τ1 · · · τn−1 is injective, τn = ξ−1

n σnξn+1 for all
n ≥ 1. For n = N , this equality becomes

π132ηπ321 = ξ−1
N πNηπ231ξN+1;

thus, π321 = π231ξN+1 and ξN+1 = π213. If τN+1 = α, then we have

α = π213πN+1απN+1ξN+2.

This is impossible as πN+1 is either the identity or π321. If τN+1 = π132ηπ321, then

π132ηπ321 = π213πN+1ηπ231ξN+2

which is also impossible since πN+1 ∈ {π132, π321}.

7. Further work
The problem of finding an S-adic characterization of minimal dendric shift over larger
alphabets is still open. It is likely that, for any fixed alphabet Ak = {1, 2, . . . , k}, there
exists a graph Gk that allows to extend Theorem 1.1, but its definition is more tricky. We
will attack this problem in a future work.

In particular, for Lebesgue-almost every three-dimensional probability vector λ, there
is a Cassaigne shift X with vector of letter frequencies λ and with the additional
property of being finitely balanced [CLL21], that is, there is a constant K such that
for every a ∈ A3 and every n ∈ N, supu,v∈Ln(X) |u|a − |v|a ≤ K . It is an open problem
to generalize Cassaigne shifts over larger alphabets and it seems reasonable to look for
such a generalization among minimal dendric shifts. Better understanding the S-adic
representations of minimal dendric shifts could thus be helpful.

Another interesting question would be to study the S-adic representations obtained
by factorizing the morphisms of S3 into elementary automorphisms. Such factorizations
always exist (see Theorem 3.2) and therefore yield to another graph where the edges are
labeled by elementary automorphisms of FA3 .
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