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Abstract

This study aimed to conduct a meta-analysis based on a random-effects model to combine
different published heritability estimates and genetic correlations for milk and serum minerals
in dairy cows. In total, 59 heritability and 25 genetic correlation estimates from 12 articles
published between 2009 and 2021 were used. The heritability estimates for milk macro-
minerals were moderate to high and ranged from 0.311 (for Na) to 0.420 (for Ca). On the
other hand, milk micro-minerals had lower heritabilities with a range from 0.013 (for Fe)
to 0.373 (for Zn). The heritability estimates for serum macro-minerals were generally low
and varied from 0.126 (for K) to 0.206 (for Mg). The estimates of genetic correlation between
milk macro-minerals varied from −0.024 (between Na and K) to 0.625 (between Mg and P).
The genetic correlations of milk Ca and P with milk yield were −0.171 and −0.211, respect-
ively. The estimates of genetic parameters reported in this meta-analysis study are appropriate
to utilize in breeding plans when valid estimates are not available for milk minerals in dairy
cow populations.

Bovine milk is an important source of minerals that are important for human nutrition and
dairy product quality (Gaucheron, 2005; Haug et al., 2007; Buitenhuis et al., 2015).
Although vitamins are organic substances, minerals are inorganic but are needed solely in
minute values. Minerals can be grouped into trace or micro-elements (e.g. Fe, Zn, Se, Mn
and I) that are needed in low values, and quantity or macro-elements (e.g. Mg, P, K and
Ca) that are needed in greater quantities. When the dietary intakes of macro- and micro-
minerals are inadequate, deficiencies can appear that can affect the health of human or animal
consumer. Milk mineral concentration is known to differ by numerous variables, such as breed
(Carroll et al., 2006; Niero et al., 2016), lactation stage (Carroll et al., 2006; van Hulzen et al.,
2009), lactation number (Kume et al., 1998), and udder health situation (Summer et al., 2009).

Milk minerals contribute to numerous essential physiological mechanisms. For example, Ca
and P play a significant role in the metabolism of bone, Se and Zn in immune responses and
Ca, K, and Mg in blood pressure control (Cashman, 2006; Haug et al., 2007). Moreover,
increased levels of milk Na can be a benchmark for mastitis incidence (Gaucheron, 2013).
Milk minerals are also related to technological features of milk processing (Jensen et al.,
2012). Calcium phosphate impacts physicochemical stability of casein in milk, cheese-making
characteristics and milk quality throughout storage (Gaucheron, 2005; Haug et al., 2007). This
connection between milk minerals and cheese-making properties is held up by the genetic
associations that were reported between them (Sanchez et al., 2018). Modifying Ca levels
affected milk stability to heat treatment (Deeth and Lewis, 2015).

The desire to include new phenotypes in the selection objectives for dairy cattle is increas-
ing. Attention to both milk yield and composition as well as animal health and reproductive
performance are all important (Fleming et al., 2018) and environmental impact (or lack of it)
will come into focus in the future. The inclusion of a new phenotype into a selection program
requires the regular phenotyping of the trait at the population level. However, quantifying milk
minerals on a large scale needs many resources due to the time and cost of reference laboratory
analyses. This possible threat represents a restriction for the estimation of accurate genetic
parameters for milk minerals, as well as being able to obtain high accuracy estimates of genetic
merit for individual animals (Visentin et al., 2019). Therefore, infrared prediction of milk
minerals could be a very important and cheap addition to the collection of milk traits that
are presently accessible for farm management and breeding programs (Zaalberg et al., 2021).

Accurate estimates of genetic parameters for economically important traits are mandatory
to predict, precisely, the breeding values of animals in the breeding schemes (de Oliveira et al.,
2017). Satisfactory knowledge of the genetics underlying the mineral contents of milk and
serum in dairy cattle is required to enable enhancements through feeding or breeding systems.
Over the previous years, genetic parameter estimates have been reported for milk and serum
minerals in dairy cows. However, these estimates have been reported in studies differing in
terms of bovine population, breeds, samples size and considering different effects in the
model. This has resulted in considerable variability among heritability and genetic correlation
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estimates. A meta-analysis considering variability among studies
would be considered as an applied and well-planned solution to
summarize all studies and overcome the variability problem
(Sutton et al., 2000). Using the random-effects model of
meta-analysis, it is possible to provide more reliable outputs
than those obtained from individual studies (Borenstein et al.,
2009; de Oliveira et al., 2017). The reason for designing this
study was the need for collecting estimates from previous studies
to provide summary genetic parameter estimates for milk and
serum minerals to develop breeding objectives in dairy cattle.
Also, to prevent unfavorable correlated responses with other eco-
nomically important traits, understanding the genetic correlations
between them and with milk production is necessary before
including milk minerals into dairy breeding objectives. To the
knowledge of the author, a specific meta-analysis of the genetic
parameters for milk and serum minerals has not been reported
in the literature. Thus, the objective of this study was to conduct
a meta-analysis based on a random-effects model to combine dif-
ferent published heritability estimates for milk and serum miner-
als and their genetic correlations in dairy cows.

Materials and methods

Description of the study scope and evaluated traits

A systematic search of the literature using electronic databases of
ISI Web of Knowledge (https://apps.webofknowledge.com) and
Google Scholar (https://scholar.google.com) was conducted to
identify all references reporting estimates of heritability for milk
and serum minerals and their genetic correlation in dairy cows.
The most exhaustive research query was built, using synonyms
and derivatives of the following keywords: ‘dairy cow’, ‘milk
minerals’, ‘milk micronutrients’, ‘serum minerals’, ‘genetic para-
meters’, ‘heritability’, and ‘genetic correlation’. In total, 59 herit-
ability and 25 genetic correlation estimates from 12 scientific
articles were used in the present study. The considered articles
were published between 2009 and 2021 (online Supplementary
Table S1). The estimates were derived from restricted maximum
likelihood (REML) and Bayesian inference estimation methods
on a mixed animal model. Therefore, estimates obtained from
reduced models, such as the sire model, were removed. The litera-
ture cited in the above-mentioned articles was also checked. Traits
included in the study were milk concentrations of calcium (Cam),
phosphorus (Pm), potassium (Km), magnesium (Mgm), sodium
(Nam), copper (Cum), manganese (Mnm), selenium (Sem), zinc
(Znm) and iron (Fem), and also serum concentrations of calcium
(Cas), phosphorus (Ps), potassium (Ks) and magnesium (Mgs).

Data recorded

The data sets included information on direct heritability estimates
for milk and serum minerals, genetic correlations between milk
minerals and genetic correlations between milk calcium and
phosphorus with milk yield, as well as published standard errors
for these parameter estimates. Other information recorded was
the publication year, journal name, the number of records,
breed name, lactation number, country of origin, years of data col-
lection, phenotypic mean and standard deviation, the used esti-
mation method (REML or Bayesian) and model of analysis
(univariate or multivariate). When the same estimate was
reported in different publications, based on the same database,
only the most recent publication was included in the analysis.

Besides that, the meta-analysis was executed only for traits in
which the estimates were based on at least two different databases,
to minimize the possible impact of non-independence among
articles.

For articles in which the standard error for the heritability or
correlation estimates were not reported, approximated standard
errors were derived by using the combined-variance method
(Sutton et al., 2000), which is given by the following formula:

SEij =
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where SEij is the predicted standard error for the published par-
ameter estimate for the ith trait in the jth article that has not
reported the standard error, sik is the published standard error
for the parameter estimate for the ith trait in the kth article that
has reported the standard error, nik is the number of used records
to predict the published parameter estimate for the ith trait in the
kth article that has reported the standard error, and ń ij is the
number of used records to predict the published parameter esti-
mate for the ith trait in the jth article that has not reported the
standard error.

Phenotypic trait

Means and standard deviations were calculated for all traits using
the sample sizes as weights. The total number of records for each
phenotypic trait was calculated as the sum of the number of
records in each article that reported the trait. The coefficient of
variation in percentage (CVi(%)) for each ith trait was calculated
as follows:

CVi(%) = si
�Xi

× 100

where si is the standard deviation for the ith trait and �Xiis the trait
mean.

Heritabilities and genetic correlation

Meta-analysis was performed based on a random-effects model
(Borenstein et al., 2009) using the Comprehensive
Meta-Analysis (CMA) software version 2.2 (Biostat, USA) to cal-
culate the effect size for genetic parameter estimates. In the
random-effects model, observed differences among study results
are due to the play of chance in repeated sampling and random
changes in real values of parameters (Borenstein et al., 2011).
The random-effects model fitted was as follows:

ûj = �u+ uj + ej

where ûjis the published parameter estimate in the jth article, �u
is the weighted population parameter mean, uj is the among
study component of the deviation from the mean, assumed as
ui∼N(0, τ2), where τ2is the variance representing the amount
of heterogeneity among studies, ej is the within-study component
due to sampling error in the parameter estimate in the jth article,
assumed as ej � N(0, s2

e ), where s
2
e is the within-study variance.
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Forest plots were constructed to indicate the effect size for each
study. Effect sizes for forest plots were the mean heritability esti-
mates for milk and serum minerals or genetic correlation estimates
at a 95% confidence interval using the random-effects model.

Heterogeneity

Chi-square (Q) test and the I2 statistic were determined to meas-
ure heterogeneity (Borenstein et al., 2011). Variations among the
study level were assessed using a Q test. The significance level was
set at 0.10 because the Q test has relatively low power when a
small number of studies are included (Huedo-Medina et al.,
2006; Lean et al., 2009). Although the Q test helps identify hetero-
geneity, the measure I2 was used to measure heterogeneity as fol-
lows (Lean et al., 2009):

I2(%) = Q− (k− 1)
Q

× 100

where Q is the χ2 heterogeneity statistic and k is the number of
studies. Q is the Q statistics given by the following formula:

Q =
∑k
j=1

wj(ûj − �u)
2

where wj is the parameter estimate weight (assumed as the
inverse of published sampling variance for the parameter, 1

s2j
) in

the jth article; ûj and �u were defined above in the random-effects
model, and k is the number of used articles. The I2 statistic
describes the percentage of variation across studies due to hetero-
geneity. Negative values of I2 are set equal to zero; consequently,
I2 lies between 0 and 100% (Lean et al., 2009). Its value might not
be important if it falls within the range of 0–40%. However,
a value of 30–60% often indicates moderate heterogeneity,

50–90% might represent substantial heterogeneity, and a value
in the range of 75–100% represents considerable heterogeneity
(Higgins and Green, 2011).

Results

Descriptive statistics

The number of literature estimates, measurement units, the total
number of records, weighted mean, standard deviation, and the
coefficient of variation for the concentrations of the minerals
and milk yield of dairy cows are shown in Table 1. The weighted
coefficients of variation for milk macro-minerals were generally
low and varied from 4.23 (for Km) to 20.20% (for Nam). In gen-
eral, micro-minerals of milk had greater weighted coefficients of
variation which ranged from 10.22 (for Znm) to 66.32% (for
Fem). For serum minerals, Mgs and Cas had low weighted coeffi-
cients of variation (1.16 and 6.72%, respectively), but Ps and Ks

had high values (48.30 and 82.06%, respectively). In addition,
the weighted coefficient of variation for milk yield was low
(1.55%) in this study.

Heritability estimates

Effect size and heterogeneity of the heritability estimates (based
on Q and I2 statistics) for the concentrations of minerals in
milk and serum of dairy cows obtained from the random-effects
model of the meta-analysis are presented in Table 2. The herit-
ability estimates for milk macro-minerals were moderate to high
and ranged from 0.311 (for Nam) to 0.420 (for Cam). On the
other hand, milk micro-minerals had lower heritabilities with a
range from 0.013 (for Fem) to 0.373 (for Znm). The heritability
estimates for serum macro-minerals were generally low and varied
from 0.126 (for Ks) to 0.206 (for Mgs). The evaluation of herit-
ability estimates for minerals showed that macro-minerals

Table 1. Number of literature estimates (N), measurement units (Unit), the total number of records (Records), weighted mean, standard deviation (SD), and the
coefficient of variation (CV) for the concentrations of the minerals in milk and serum of dairy cows

Trait Unit N Records Mean SD CV (%)

Cam mg/kg 12 1 479 133 1196.33 87.72 7.33

Km mg/kg 8 1 464 121 1500.27 63.39 4.23

Nam mg/kg 7 1 327 005 379.24 76.59 20.20

Pm mg/kg 12 1 476 752 1047.96 103.83 9.91

Mgm mg/kg 9 1 446 598 105.84 11.03 10.42

Sem μg/kg 4 3468 18.92 5.52 29.16

Znm μg/kg 4 3471 3939.92 402.74 10.22

Cum μg/kg 2 1287 94.60 41.13 43.48

Fem μg/kg 3 1540 673.62 446.76 66.32

Mnm μg/kg 2 1260 32.76 8.24 25.17

Cas mg/kg 2 4610 91.00 6.12 6.72

Ks mg/kg 2 4414 72.54 59.52 82.06

Ps mg/kg 2 4645 66.01 31.88 48.30

Mgs mg/kg 2 4637 22.41 0.26 1.16

Milk yield kg/day 2 992 009 22.84 0.35 1.55

‘m’ and ‘s’ subscripts indicated the concentrations of the minerals in milk and serum, respectively.
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Table 2. Effect size and heterogeneity of the heritability estimates for minerals in milk and serum of dairy cows obtained from the random-effects model of
meta-analysis

Trait N h2 SE 95% CI P-value Q P-value I2

Cam 15 0.420 0.048 0.327–0.513 0.000 459.305 0.000 96.952

Km 8 0.327 0.075 0.181–0.474 0.000 523.969 0.000 98.664

Nam 7 0.311 0.020 0.272–0.350 0.000 15.920 0.014 62.310

Pm 12 0.387 0.049 0.290–0.483 0.000 303.160 0.000 96.372

Mgm 9 0.383 0.062 0.262–0.504 0.000 348.148 0.000 97.702

Sem 4 0.171 0.048 0.076–0.266 0.000 0.399 0.940 0.000

Znm 4 0.373 0.069 0.238–0.507 0.000 2.491 0.477 0.000

Cum 2 0.043 0.028 0.000–0.098 0.123 0.910 0.340 0.000

Fem 3 0.013 0.027 0.000–0.067 0.642 0.535 0.765 0.000

Mnm 2 0.140 0.038 0.065–0.214 0.000 0.003 0.954 0.000

Cas 2 0.173 0.038 0.098–0.247 0.000 2.285 0.131 56.234

Ks 2 0.126 0.038 0.053–0.200 0.001 2.133 0.144 53.109

Ps 2 0.188 0.078 0.036–0.341 0.016 3.855 0.050 74.059

Mgs 2 0.206 0.019 0.168–0.244 0.000 0.672 0.412 0.000

‘m’ and ‘s’ subscripts indicated the concentrations of the minerals in milk and serum, respectively.

Fig. 1. The forest plots of individual studies and the overall outcome (last line) for heritability estimates of Cam and Km in dairy cows. The mean effect size, cal-
culated according to a random-effects model, is indicated by the diamond at the bottom of each plot. The size of the squares illustrates the weight of each study
relative to the mean effect size. Smaller squares represent less weight. The horizontal bars represent the 95% confidence intervals for the study.
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measured in milk had greater heritability than their counterparts
in the serum of dairy cows. In general, most heritability estimates
had low standard errors and their 95% confidence intervals were
narrow. The heritability estimates for Fem and Cum were not sig-
nificant (P > 0.05), and their 95% confidence interval included
zero. Therefore, the heritability estimates for these two micro-
minerals of milk would be considered as zero. The test of the het-
erogeneity of heritability estimates, performed by Q statistics,
indicated that except for Sem (P = 0.940), Znm (P = 0.477), Cum
(P = 0.340), Fem (P = 0.765), Mnm (P = 0.954), Cas (P = 0.131),
Ks (P = 0.144), and Mgs (P = 0.412), which had low Q values
and non-significant heterogeneity, other minerals showed signifi-
cant heterogeneities (P < 0.10). Consistent with the results
obtained by Q statistics, the values of the I2 index indicated
the negligible heterogeneity for the heritability estimates of
Sem, Znm, Cum, Fem, Mnm, and Mgs, but Cas and Ks showed
moderate heterogeneities and the other minerals experienced con-
siderable heterogeneities (Table 2). Testing for the occurrence of
possible publication bias is not appropriate for the heritability
estimates that showed heterogeneity because it could lead to false-
positive claims, but the results of Egger’s test showed no publica-
tion bias for Sem, Znm, and Fem (online Supplementary Table S2).
Despite the no heterogeneous estimates of heritability for Cum,

Mnm, Mgs, Cas, and Ks, Egger’s test did not provide any output
for these minerals because the average standard error of estimates
obtained by random-model was very low.

The forest plots of individual studies and the overall
outcome for heritability estimates of milk minerals are presented
in Figures 1 to 4. Also, the forest plots of individual studies and
the overall outcome for heritability estimates of serum minerals
are depicted in online Supplementary Figures S1 and S2.
Estimated effect sizes along with their 95% CI were visually dis-
played in these plots. The heterogeneity of heritability estimates
for the majority of minerals was visually evident in forest plots.
Funnel plot of mean heritability estimates for milk selenium is
shown in Figure 5. The funnel plots of mean heritability estimates
for Znm, and Fem are shown in online Supplementary Figures S3
and S4. Results from statistical tests to evaluate publication bias
and the trim-and-fill method to correct funnel plot asymmetry
in mean heritability estimates of minerals that did not present het-
erogeneity are shown in Table 3. Although Egger’s test did not
detect any bias (P > 0.10) with mean heritability estimates for
Sem, Znm, and Fem, two missing studies were needed at the left
side of the funnel plot for Znm to regain funnel plot asymmetry
according to the trim-and-fill method (online Supplementary
Table S2 and Fig. S3).

Fig. 2. The forest plots of individual studies and the overall outcome (last line) for heritability estimates of Nam and Pm in dairy cows. The mean effect size, cal-
culated according to a random-effects model, is indicated by the diamond at the bottom of each plot. The size of the squares illustrates the weight of each study
relative to the mean effect size. Smaller squares represent less weight. The horizontal bars represent the 95% confidence intervals for the study.
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Genetic correlation estimates

Effect size and heterogeneity of the genetic correlation estimates
(based on Q and I2 statistics) between milk macro-minerals,
and between Cam and Pm with milk yield in dairy cows obtained
from the random-effects model of the meta-analysis are presented
in Table 3. The estimates of genetic correlation between milk
macro-minerals varied from weak to strong. The weakest genetic
correlations observed between Nam-Mgm (−0.015) and Nam-Km

(−0.024), but the strongest genetic correlations were between
Cam-Pm (0.500), Cam-Mgm (0.510), and Mgm-Pm (0.625). All
estimates of genetic correlation between Nam with other milk
minerals were negative (Table 3). Except for genetic correlations
between Cam-Nam, Cam-Km, Nam-Mgm, and Nam-Km, other cor-
relations were significant and statistically different from zero (P <
0.05). The 95% confidence interval of genetic correlations

between Cam-Nam, Cam-Km, Nam-Mgm, and Nam-Km included
zero. Therefore, zero genetic correlations could be concluded
between these minerals. The genetic correlation estimates of
Cam and Pm with milk yield were negative and significant
(−0.171 and −0.211, respectively; P < 0.05). The test of the hetero-
geneity of correlation estimates, performed by Q statistics, showed
that except for the genetic correlations between Cam-Km,
Nam-Km, and Mgm-Pm which had lower Q values and non-
significant heterogeneity (P > 0.10), the genetic correlations
between other minerals showed significant heterogeneities (P <
0.10). The values of the I2 index indicated considerable heteroge-
neities for the genetic correlations between Cam-Km, Nam-Km,
Nam-Pm, and Mgm-Pm, moderate heterogeneities between
Cam-Pm, Cam-Nam, and Nam-Mgm, and negligible heterogeneities
between other mineral combinations (Table 3). The test of the
heterogeneity of genetic correlation estimates between Cam and

Fig. 3. The forest plot of individual studies and the overall outcome (last line) for heritability estimates of Mgm, Sem and Znm in dairy cows. The mean effect size,
calculated according to a random-effects model, is indicated by the diamond at the bottom of each plot. The size of the squares illustrates the weight of each study
relative to the mean effect size. Smaller squares represent less weight. The horizontal bars represent the 95% confidence intervals for the study.
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Pm with milk yield, based on Q and I2 statistics, indicated non-
significant (P > 0.10) and negligible heterogeneities for these esti-
mates (Table 3).

The forest plots of individual studies and the overall outcome
for genetic correlation estimates between milk macro-minerals,
and between Cam and Pm with milk yield in dairy cows are pre-
sented in online Supplementary Figures S5 to S9. The funnel plot
of the mean genetic correlation estimate between Cam and Pm is
shown in online Supplementary Figure S10. Results from statistical
tests to evaluate publication bias and the trim-and-fill method to
correct funnel plot asymmetry in mean genetic correlation esti-
mates that did not present heterogeneity are shown in online
Supplementary Table S3. The results of Egger’s test indicated non-
significant (P > 0.10) publication bias for the genetic correlation
between Cam and Pm. Two missing studies were needed at the
left side of the funnel plot for genetic correlation between these
two macro-minerals to regain funnel plot asymmetry according
to the trim-and-fill method (online Supplementary Table S3).

Discussion

This meta-analysis study evaluated the extent of exploitable gen-
etic variation in milk and serum minerals of dairy cows. This

information is important to assess the possibilities to modify
the mineral concentrations of the milk and serum by selective
breeding (Buitenhuis et al., 2015). Dairy products, such as milk
and cheese, are substantial resources of minerals and contribute
greatly to dietary intakes of Ca, P, I, Zn, and Mg (Denholm
et al., 2019). Mg and Ca are principally important factors in
bone development, especially in children (Givens et al., 2014).
Therefore, the circulating concentrations of these minerals in
the blood and milk of dairy cows possibly associate with animal
fitness given their important functions in several immunological
and physiological mechanisms (Alpert, 2017). Ca plays a key
role at the start of lactation. Hypocalcaemia is the most important
macro-mineral disorder of the transition dairy cow (Tsiamadis
et al., 2016). It is connected with health problems including
retained fetal membranes, uterine infection, mastitis, ketosis,
and displaced abomasum, as well as decreased dry matter intake
and milk yield (Tsiamadis et al., 2016). Therefore, recognizing
breeding schemes to optimize mineral concentrations for each
cow would be of considerable benefit both for the cow and the
human dairy product consumer (Denholm et al., 2019).

The lower weighted coefficients of variation indicated the lower
dispersion around the weighted means for milk macro-minerals
and milk yield among studies which implied the more precise

Fig. 4. The forest plot of individual studies and the overall outcome (last line) for heritability estimates of Cum, Fem and Mnm in dairy cows. Detailed information is
provided in Figure 1.
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estimates of weighted means for these traits. The lowest weighted
coefficient of variation was observed for Mgs (1.16%), showing
that its phenotypic variation is restricted biologically. On the
other hand, the greatest weighted coefficient of variation was esti-
mated for Ks (82.06%), indicating that there is greater phenotypic
variation in this trait than in other traits (de Oliveira et al., 2017).

The standard errors and 95% confidence intervals of the mean
heritability estimates for the majority of the minerals in this study
were low which indicates that the mean heritability estimates

reported in this study are accurate. The lower heritability esti-
mates observed for serum minerals showed the more evident
influence of non-genetic (environmental) factors, but the moder-
ate to high heritability estimates for milk minerals showed a
medium-to-high impact of genes with additive action on these
traits and possibly a high selection response for them. Although
heritability would affect the rate of genetic progress, other vari-
ables such as selection intensity, genetic variation and generation
interval would also influence the rate in a population of animals.

Fig. 5. Funnel plot of mean heritability estimates for Sem (empty circles). The solid dots are the potentially missing studies imputed from the trim-and-fill method.
The open diamond represents the mean and confidence interval of the existing studies and the solid diamond represents the mean and confidence interval if the
theoretically imputed studies were included in the meta-analysis.

Table 3. Effect size and heterogeneity of the genetic correlation estimates between milk minerals, and between milk calcium and phosphorus with milk yield in
dairy cows obtained from the random-effects model of meta-analysis

Trait 1 Trait 2 N rg 95% CI P-value Q P-value I2

Cam Pm 3 0.500 0.338–0.634 0.000 3.506 0.173 42.952

Cam Nam 2 −0.166 −0.357 to 0.038 0.111 1.770 0.183 43.506

Cam Mgm 2 0.510 0.492–0.527 0.000 0.267 0.605 0.000

Cam Km 2 −0.236 −0.602 to 0.211 0.299 8.479 0.004 88.206

Nam Pm 2 −0.352 −0.589 to −0.059 0.019 2.536 0.111 60.576

Nam Mgm 2 −0.015 −0.221 to 0.193 0.889 2.154 0.142 53.581

Nam Km 2 −0.024 −0.336 to 0.293 0.887 2.748 0.097 63.611

Mgm Pm 2 0.625 0.392–0.782 0.000 5.175 0.023 80.678

Mgm Km 2 0.220 0.202–0.237 0.000 0.024 0.878 0.000

Pm Km 2 0.129 0.046–0.211 0.002 1.124 0.289 10.993

Cam MY 2 −0.171 −0.236 to −0.104 0.000 0.085 0.770 0.000

Pm MY 2 −0.211 −0.273 to −0.148 0.000 0.119 0.730 0.000

rg, Genetic correlation; MY, Milk yield.
‘m’ subscript indicated the concentrations of the minerals in milk.
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Because meta-analysis combines published parameter estimates
reported by different studies, it is anticipated that the true param-
eter may differ from study to study (de Oliveira et al., 2017; Ghavi
Hossein-Zadeh, 2021). Different studies used in the meta-analysis
would be different according to the structure of populations
(ie Holstein cows or not, first parity or multiparous cows, repeated
records or not, lactation or test-day records, the lactation stage
used), source of minerals (ie minerals in milk or serum, mineral
contents measured by mid-infrared spectrometry or by prediction
equations), analysis model (ie inclusion of random regression or
not), data edits and method of analysis (REML or Bayesian).

The greatest genetic correlations were seen between Cam with
Pm and Mgm, and between Pm with Mgm. Also, Nam had the
weakest genetic correlations with Mgm and Km. The strong and
positive genetic correlations between Cam with Pm and Mgm are
the reason for similar genetic and physiological mechanisms con-
trolling these traits. Also, the positive and strong genetic correl-
ation between these traits suggests that selection on Cam would
improve Pm and Mgm, resulting in large improvements in milk
mineral contents for the advantage of the human dairy consumer.
Based on very weak genetic correlation estimates between Nam
with Mgm and Km, it would be stated that Nam did not seem to
be genetically associated with these two macro-minerals of milk.
The negative genetic correlations of Nam with other minerals
indicated the opposite direction of changes when genetic selection
is directly performed on Nam. These negative genetic correlations
would be favorable because the present nutritional guidelines
advise decreasing Na ingestion (Whelton and He, 2014).
Therefore, if milk mineral concentration is considered as a breed-
ing goal trait, Na should be included as a trait with negative selec-
tion pressure to keep it constant, or decrease it (Visentin et al.,
2019). Because of the positive and strong genetic correlation
between Cam with Pm, the negative genetic correlation of these
two macro-minerals with milk yield would be expected. The dilu-
tion effect would be considered as the possible reason for these
negative genetic correlations. The negative genetic correlations
of Cam and Pm with milk yield can prevent a simultaneous genetic
gain for milk yield. This is particularly unfavorable when the pay-
ment system is mainly based on the quantity of milk delivered,
suggesting milk yield as the main selection objective (Ghavi
Hossein-Zadeh, 2021).

Recording new traits will be always an expensive exercise.
Therefore, regular recording of the concentration of minerals
depends on the capability of dairy cattle breeders to incorporate
these new phenotypes in a breeding plan or to apply them as a
management help (Ghavi Hossein-Zadeh, 2021). According to
the results of the present meta-analysis, enough variability for
milk and serum minerals was observed. This implied that these
minerals could be modified by genetic selection. From the indus-
try point of view, the delivery of milk appropriate for processing is
a pertinent item (Visentin et al., 2019). The participation of sta-
keholders in the construction of a selection index for milk quality
traits, including milk minerals, must be supported in all stages of
the process because the quality of milk is not only economically
valuable but also is connected with public health problems
(Visentin et al., 2019).

In conclusion, the random-effects model meta-analysis performed
in this study provided pooled genetic parameter estimates for milk
and serum minerals in dairy cows. These estimates are needed for
accurate genetic evaluation of dairy cows and the development of
an optimum breeding goal. The results of this meta-analysis study
showed the existence of additive genetic variation for milk and

serum minerals in dairy cows that could be exploited in genetic selec-
tion plans. Improvement in milk minerals could be of benefit for the
human nutritional and technological characteristics of milk.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0022029922000127
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