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SUMMARY

The objective of the present study was to present the theory and application of best linear unbiased prediction
(BLUP) in reciprocal recurrent selection (RRS). Seven progeny tests from two RRS programmes with popcorn
(Zea mays L. ssp. mays [syn. Zea mays L. ssp. everta (Sturtev.) Zhuk.]) populations were conducted and analysed
for expansion volume and grain yield. The interpopulation half- and full-sib family models were fitted using
ASReml software. Half-sib selection is equivalent to selection for the general combining ability (GCA) of the
common parents. With inbred full-sib progeny and BLUP analysis, it is possible to predict the general and specific
combining ability effects. The standard error of prediction of the progeny effect was lower than the standard
deviation of the best linear unbiased estimation (BLUE) estimate. For half- and full-sib RRS, the BLUE and BLUP
provided highly correlated estimates of progeny genotypic values. The coincidence between selected parents
ranged from 64 to 95%. With inbred full-sib progeny, the correlations between the BLUE of progeny genotypic
values and the BLUP of GCA effects were lower. Consequently, the coincidence between selected parents was
lower, ranging from 0 to 57%. The percentage of common selected inbred progeny based on the BLUE and BLUP
of the progeny genotypic value ranged from 57 to 100%.

INTRODUCTION

The conventional approach for estimating variance
components and genotypic values in annual crop
breeding is to use the analysis of variance (ANOVA)
method and best linear unbiased estimation (BLUE).
Recently, best linear unbiased prediction (BLUP)
and Bayesian inference have emerged as alternative
procedures for genetic evaluation by plant breeders
(Piepho et al. 2008; Bauer et al. 2009). Best linear
unbiased prediction was originally developed for pre-
dicting additive values in animal breeding (Henderson
1974) and it requires the parametric values of the
variance components. As these values are unknown,
predictions are commonly based on the restricted
maximum likelihood (REML) estimates (Patterson &
Thompson 1971). Best linear unbiased prediction and
Bayesian inference allow the inclusion of pedigree

information in the analysis. The Bayesian approach
allows incorporating prior knowledge about par-
ameters of the model (Blasco 2001). Several studies
have shown the efficacy of BLUP in annual crop
breeding for predicting untested maize single crosses
performance (Bernardo 1996) and breeding values in
recurrent selection and in the development of pure
and inbred lines (Bauer et al. 2006; Oakey et al. 2007;
Viana et al. 2011).

In maize breeding, reciprocal recurrent selection
(RRS) is one of the most commonly used methods.
Comstock et al. (1949) proposed the evaluation of
interpopulation paternal half-sib families and recom-
bination of S1 progeny. Hallauer (1967) suggested
a modified method for continually assessing inbred
interpopulation full-sib families to obtain hybrids. Full-
sib RRS with S1 progeny recombination was proposed
by Hallauer & Eberhart (1970). Ordás et al. (2012)
compared the efficiency of the full-sib RRS with a
modification to the method that essentially applied
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a selection index to include the S2 progeny perform-
ance (FS-S2-RRS). Both procedures efficiently im-
proved the populations per se and the FS-S2-RRS
was more efficient than the standard method for
developing high-yielding and stable crosses between
the two populations. dos Reis et al. (2012) investigated
the efficiency of RRS strategies by determining the
expected and realized responses to selection as well
as changes in heterosis, concluding that the method
proposed by Souza (1987) showed the highest
efficiency in improving the interpopulation cross
but not the parental populations. This method also
increased heterosis in the interpopulation hybrid
after three selection cycles. Romay et al. (2011)
evaluated the effect of full-sib RRS in two Spanish
maize populations, observing that this method was
effective for the improvement of grain yield in the
interpopulation cross and in one of the parental
populations. Furthermore, the grain yield heterosis
increased significantly.
Reciprocal recurrent selection has proven to be

a highly efficient procedure for improving the inter-
population cross regardless of the trait, populations,
family or recombination unit (Penny & Eberhart 1971;
Romay et al. 2011). Experimental and simulated
results have also shown improvement in one or both
of the two populations (Keeratinijakal & Lamkey
1993; Peiris & Hallauer 2005; Viana et al. 2013).
Throughout the past 63 years of RRS use, identifi-
cation of the best families has been made based
on the BLUE of progeny genotypic values. Viana et al.
(2013) showed that half-sib RRS is more efficient than
full-sib RRS based on progeny genotypic value, but
as efficient as full-sib RRS based on the general
combining ability (GCA) effect. Unfortunately, as
highlighted by Viana et al. (2013), with the standard
full-sib RRS (evaluation of non-inbred full-sib progeny
and S1 recombination) it is not possible to estimate
or predict the GCA effects of the parents. The GCA
prediction is possible with the assessment of inbred
full-sib families based on BLUP with pedigree in-
formation (additive and dominance relationship
matrices different from an identity matrix). This is
because with non-inbred progeny there is only one
covariance between relatives (full-sibs), which de-
pends on the three components of the genotypic
variance (two GCA variances and the specific
combining ability (SCA) variance), assuming no
epistasis. Even assuming absence of dominance the
covariance depends on two components of variance.
Then the additive and dominance relationship

matrices must include at least three distinct covari-
ances between relatives.

Thus, the objective of the present study was to
present theory and application of BLUP for genetic
evaluation in RRS.

MATERIALS AND METHODS

Experimental data

Expansion volume (ml/g) and grain yield (kg/ha)
of seven progeny tests, corresponding to two pro-
grammes of RRS with Viçosa and Beija-Flor popcorn
(Zea mays L. ssp. mays [syn. Zea mays L. ssp. everta
(Sturtev.) Zhuk.]) populations were analysed. The first
programme was conducted with full-sib families
of the Beija-Flor Cycle 1 (BFC1) and Viçosa (VC0)
populations, the second with half- and full-sib families
of the Beija-Flor Cycle 3 (BFC3) and Viçosa Cycle 3
(VC3) populations. All of the improved populations
were obtained by half-sib selection. Both programmes
are based on the procedure proposed by Hallauer
(1967).

In Programme 1, 188 full-sib families from the first
selection cycle (S0×S0 hybrids) were evaluated during
the 2002/03 growing season in a 14×14 simple lattice
at Maringá State University (23°25′S, 51°57′W, 596m
a.s.l.), Paraná state, Brazil. One hundred and thirty six
inbred interpopulation full-sib families from the
second cycle (S1×S1 hybrids) were evaluated during
the 2004/05 growing season in a 12×12 lattice with
three replications. This trial was conducted in an
experimental area of Federal University of Viçosa
(UFV) located in Coimbra (20°51′S, 42°48′W, 720m
a.s.l.), Minas Gerais state, Brazil. In Programme 2, half-
and full-sib families from the first cycle were evaluated
in three different trials during the 2007/08 growing
season, in experimental areas of UFV at Coimbra and
Ponte Nova (20°24′S, 42°54′W, 431m a.s.l.), Minas
Gerais. The full-sib families test was designed as a
13×13 lattice with three replications. The half-sib
family tests were designed as 11×11 and 12×12
lattices with three replications, for the Viçosa Cycle 3
and Beija-Flor Cycle 3 progeny, respectively. In these
trials, eight checks were inserted as additional treat-
ments (one plot by replication). Inbred interpopulation
full-sib families from the second and third cycles
(S1×S1 and S2×S2 hybrids) were evaluated during
the 2009/10 and 2011/12 growing seasons at
Coimbra, and the trials were designed as 9×9 lattices
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with three replications. These trials included 73 and 72
progenies, respectively.

Each trial plot corresponded to a 5 m row of 25
plants (ideal stand) spaced 0·9 m apart. Final stand
and grain moisture (covariates) were measured in all
plots of each trial. The expansion volumewas assessed
using 30 g samples in a 27-litre microwave oven
(900W). The only control variety common to all
trials was the commercial hybrid IAC 112, which was
developed by the Agronomic Institute of Campinas,
São Paulo State, Brazil. With one exception (the test of
S0×S0 progeny from Programme 1), all trials included
the parental populations. The controls were not
included in the BLUP and BLUE analyses for generat-
ing unbalanced datasets.

Genetic model

For two populations A and B in Hardy–Weinberg
equilibrium, the genotypic mean of an interpopulation
half-sib family of a plant from population A is

GHSF(A×B) = MH +GCA(A)

where MH is the mean of the interpopulation cross
and GCA(A) is the GCA effect of the common parent
(Viana et al. 2013). Thus, selection among half-sib
families is equivalent to selection for the GCA of the
common parents because for each gene the correlation
between the GCA effect and the number of genes
that increase trait expression is 1 or −1, depending on
the degree of dominance and gene frequency. This
correlation can only be negative with overdominance.
Assuming 100 genes for determining a quantitative
trait, the correlation is 0·95 (average of 100 simu-
lations) for degrees of dominance between −1·2 and
1·2 (bidirectional dominance as evidenced for the
expansion volume) and between 0 and 1·2 (positive
dominance as evidenced for the grain yield). The
correlation approaches 1 as the degree of dominance
approaches 0.

The genotypic mean of an interpopulation full-sib
family of plants from populations A and B is

GFSF(A×B) = MH +GCA(A) +GCA(B) + SCA

where GCA(B) is the GCA effect of the parent from
population B and SCA is the SCA effect (Viana et al.
2013). The SCA effect primarily reflects the difference
of gene frequencies between parents. Thus, selection
among interpopulation full-sib families is equivalent
to selection for general and specific combining ability.
The model derived by Viana et al. (2013) is a

generalization of the model proposed by Bernardo
(1994) for a factorial design involving inbred lines from
two heterotic pools, for any inbreeding coefficient.
Additionally, Viana et al. (2013) presented the
parametric values of the GCA and SCA effects and
variances.

With half- and full-sib RRS (assessment of half-
or full-sib progeny with recombination of selected S1)
Hardy–Weinberg equilibrium is expected in both
parental populations. With continuous assessment of
inbred full-sib progeny, because the process suggested
by Hallauer (1967) involves random crosses between
Sn+1 plants derived only from selected Sn parents, and
not recombination of the selected inbred progeny
(with this procedure Hardy–Weinberg equilibrium
is also expected in both parental populations), Viana
et al. (2013) assumed the following probabilities
for AA, Aa and aa individuals: p2+pqF, 2pq(1−F )
and q2+pqF, where p and q are allelic frequencies
and F is the inbreeding coefficient. Viana et al. (2013)
also assumed an independent assortment of genes.

BLUP analysis

The phenotypic values of the interpopulation half- and
full-sib families can be expressed as:

PHSF =MH +GCA(A) +
∑
f

(fixed effect)f

+
∑
r

(non-genetic random effect)r + error

and

PFSF =MH +GCA(A) +GCA(B) + SCA

+
∑
f

(fixed effect)f

+
∑
r

(non-genetic random effect)r + error

Considering a multi-generation analysis to increase
the prediction accuracy and defining trial and repli-
cations within trial as fixed effects, and blocks within
replication within trial as a random factor, the models
are, in matrix terms:

y = Xβ + Z1u1 + Z2u2 + ε,

for half-sib families and
y = Xβ + Z1u1 + Z2u2 + Z3u3 + Z4u4 + ε,

for full-sib families

where y is the vector of phenotypic values; X is the
incidence matrix of the fixed effects; β is the vector
of fixed effects; Z1, Z2, Z3 and Z4 are the incidence
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matrices of the random effects; and ε is the residuals
vector. For the interpopulation half-sib family model,
u1 is the vector of GCA effects of the common parents
and u2 is the vector of blocks within replication within
trial effects. For the interpopulation full-sib family
model, u1 is the vector of GCA effects of the parents
from population A; u2 is the vector of GCA effects of
the parents from population B; u3 is the vector of SCA
effects; and u4 is the vector of blocks within replication
within trial effects. All random vectors were assumed
to be mutually independent.
The criterion used to obtain the BLUP of a random

vector is the maximization of either the joint prob-
ability density function of y and the randomvector(s) or
the random vector(s) and ε, which obtains, assuming
Normal distribution, the mixed model equations
(MME) (Henderson 1974). Assuming Var(ε)=R, the
MME for these models are:

With interpopulation half-sib families, Cov(u1i,
u1j)=Cov(GCAi, GCAj)=0, as the common parents of
the progenies i and j are not related. Then
Var(u1) = G1 = Iσ2GCA whereG1 is the variance matrix
of the GCA effects and σ2GCA is the variance of the GCA
effects. Furthermore, Var(u2) = G2 = Iσ2b, where G2 is
the blocks within replication within trial variance
matrix.
With full-sib families, the covariance between

the GCA effects of two parents from population A is,
for each gene:

Cov(GCAi,GCAj) = Cov[(αB/2αA)Ai, (αB/2αA)Aj]

since (Viana et al. 2013),

GCAA1A1 = qαB = (αB/αA)qαA = (αB/2αA)AA1A1,

GCAA1A2 =
q− p
2

( )
αB = (αB/αA) q− p

2

( )
αA

= (αB/2αA)AA1A2

and

GCAA2A2 = −pαB = (αB/αA)(−pαA) = (αB/2αA)AA2A2

where p and q are the allelic frequencies in the
population A; αA and αB are the average effects
of a gene substitution in the populations A and B,
respectively; and A is the additive value.

Then:

Cov(GCAi,GCAj) =(αB/2αA)22rijσ2A(A) = 2rij(αB/2αA)2

× 2pqα2A = 2rij
1
2
pqα2B

( )

= 2rijσ2GCA(A)

where σ2A(A) is the additive variance in the
population A.

Thus, Var(u1) = G1 = A(A)σ2GCA(A) where A(A)= {2rij}
is the additive relationship matrix of the parents
from population A and rij is the coefficient of
coancestry between the parents i and j. Then,
Var(u2) = G2 = A(B)σ2GCA(B) where A(B) is the additive
relationship matrix of the parents from population
B and σ2GCA(B) = (1/2)∑ rsα2A where r and s are the
allelic frequencies in the population B. Furthermore,
defining i and j as the parents from population A
and k and l as the parents from population B,
Cov(SCAik, SCA jl) = p(ik)( jl)(1+ F)2σ2SCA, where p(ik)( jl)
is the probability that the parents of the two progenies
have genotypes identical by descent and F is the
inbreeding coefficient. This probability is p(ik)( jl) =
uijukl+uilukj=uijukl where uxy is the probability that the
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individuals x and y have genotypes identical by
descent. Thus, Var(u3) = G3 = D(1+ F)2σ2SCA where
D={p(ik)( jl)} is the dominance relationship matrix and
σ2SCA = ∑

pqrsd2 is the variance of the SCA effects
where d is the deviation due to dominance (Viana
et al. 2013).

The accuracy (correlation between the true and
predicted values) of the progeny, GCA and SCA effects
were computed as
















1− (PEV/v)

√
(Mrode 2005) where

PEV is the prediction error variance and v = σ̃2G,
(1+ F)σ̃2GCA or (1+ F)2σ̃2SCA, respectively, where σ̃2G,
σ̃2GCA and σ̃2SCA are the REML estimates of the progeny,
GCA and SCA variances. The ASReml v3.0 software
(Gilmour et al. 2009) was used for all analyses
(see code in the appendix). The additive and dom-
inance relationship matrices were computed with
a program developed in REALbasic 5.5 (REAL
Software 2004).

BLUE analysis

Each progeny test was also analysed individually
using the GLM procedure of the SAS System v.9.2
(SAS Institute 2007). Progeny and replication were
defined as fixed factors and blocks within replication
were regarded as a random factor (analysis with
recovery of the interblock information). The estimated
treatment genotypic means were used to compute
the midparent heterosis and the realized interpopu-
lation genetic gain in each selection cycle of each RRS
programme. The realized interpopulation genetic
gain was calculated as ΔM=mean of the Sn×Sn
progeny – mean of the Sn−1×Sn−1 progeny – (mean
of IAC 112 in the Sn×Sn trial –mean of IAC 112 in the
Sn−1×Sn−1 trial).

Selection criteria

In each progeny test, 10 and 20% of the best progeny
were selected adopting the following selection criteria:
selection of the best Sn×Sn families based on the
progeny genotypic value as estimated by BLUE or
predicted by BLUP; and selection of the best parents
for recombination of the Sn+1 (n50) families based
on either the BLUE of the progeny genotypic value or
the BLUP of the GCA effect. Selection criteria were
compared based on the correlation between estimated
genotypic values and predicted GCA effects as well
as the percentage of coincident Sn×Sn progeny and
parents of the families selected.

RESULTS

In general, for both traits and RRS programmes there
was evidence of genetic variability in the parental
populations (Table 1). If there is no pedigree infor-
mation, only the progeny genotypic variance can be
estimated. The additive and additive plus dominance
models were fitted only with pedigree information and
data from inbred full-sib progeny. The combined
analysis of half- and non-inbred full-sib progeny did
not allow the inclusion of dominance in the model.
The evidence of dominance for expansion volume and
grain yield is also shown by the estimates of heterosis
(Table 2). The average heterosis ranged from −3·7 to
3·0% and from−18·1 to 28·5% for expansion volume
and grain yield, respectively. The maximum values
of average heterosis were observed for the parental
populations of Programme 1 (BFC1×VC0). After the
first cycle, positive average heterosis for grain
yield (12·3%) occurred only with S1×S1 hybrids of
Programme 2 (BFC3×VC3). Interpopulation genetic
gain for expansion volume (9·7%) and grain yield
(27·3%) was observed only in the first cycle relative to
Programme 2. After the second cycle of Programme 2,
a decrease in interpopulation genetic gain was ob-
served for both traits.

The standard error of prediction of the progeny effect
was lower than the standard deviation of the BLUE
estimate, even with no pedigree information, showing
that BLUP analysis was superior to the BLUE approach
(Table 3). For both traits, the higher accuracies of the
progeny, GCA and SCA effects were observed in the
S2×S2 test. The joint analysis of half- and non-inbred
full-sib progeny did not increase the GCA prediction
accuracy. The accuracy of the SCA effect was greater
than the accuracy of the progeny and GCA effect.
The accuracy of the GCA effect ranged from 0·52 to
0·85 for expansion volume and from 0·40 to 0·68 for
grain yield.

Regardless of the trait analysed and RRS programme
used, the coincidences between the best S0×S0
families selected according to the progeny genotypic
values obtained through BLUP or BLUE ranged from
79 to 95% (Table 4). The percentage of common
Sn×Sn progeny (n51) selected according to these
criteria ranged from 57 to 100%, ignoring the cases of
no coincidence due to absence of genetic variability
(expansion volume, Programme 2, S1×S1 test). All
correlations between genotypic values were, with one
exception, >0·74. With half-sib families, the coinci-
dences between selected parents were also high for
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Table 1. Restricted maximum-likelihood estimates of the genotypic (G), general and specific combining ability and error variances, and the standard
errors (S.E.) from the analyses with and without pedigree information, relative to expansion volume (EV; ml/g) and grain yield (GY; kg/ha) of progeny
from two RRS programmes (BF=Beija-Flor and V=Viçosa)

Trait Programme Progeny

No pedigree information Pedigree information

σ̃2G σ̃2 σ̃2GCA(BF) σ̃2GCA(V) σ̃2SCA σ̃2

EV BFC1×VC0 S0×S0 6·3±1·16 8·2
S1×S1 3·2±0·60 8·2 3·4±0·92 0·1±0·59 8·3

BFC3×VC3 S0×S0 0·8±0·67 13·1
S1×S1 0·7±1·11 14·2 1·3±0·86 0·6±0·77 13·5
S2×S2 16·3±3·66 13·4 1·4±0·61 0·4±0·40 1·4±0·88 13·7
Half-sib BFC3 2·2±1·07 16·9
Half-sib VC3 3·0±1·13 14·8
Joint analysis 1·0±0·60 0·8±0·61 15·5

GY BFC1×VC0 S0×S0 121068±33025 288058
S1×S1 248158±42123 586739 57874±45600 94963±48244 686872

BFC3×VC3 S0×S0 324177±61715 583618
S1×S1 364906±149031 1219120 8179±60939 0 499911±110574 792593
S2×S2 216725±58584 353467 20258±24634 0 191209±42504 528924
Half-sib BFC3 163363±54791 732213
Half-sib VC3 250472±75688 826892
Joint analysis 126880±42058 195876±47726 772438

B
LU

P
in
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both traits, ranging from 64 to 88%. The correlations
ranged from 0·95 to 0·98. The best Sn (n51) parents
for recombination of inbred progeny based on the
genotypic values of the Sn×Sn progeny estimated by
BLUE analysis differed from the selected parents based
on the BLUP of the GCA effects of plants from each

population. According to these two selection criteria,
the percentage of coincident selected parents ranged
from 0 to 57%. The difference between these selection
criteria is also evidenced by the lower correlations
between progeny and GCA effects, which ranged
from −0·05 to 0·72. The higher coincidences were

Table 2. Minimum, maximum and average heterosis, standard errors (S.E.) for progeny and for average
heterosis and realized interpopulation genetic gain for expansion volume (EV; ml/g) and grain yield
(GY; kg/ha) from two reciprocal recurrent selection programmes (BF=Beija-Flor and V=Viçosa)

Trait Programme Progeny

Heterosis

Genetic gainMin. Max. S.E. Average S.E.

EV BFC1×VC0 S0×S0 −7 13 2·4 1 (3·0%) 1·4
S1×S1 –* – – – – −6·1 (−35·2%)

BFC3×VC3 S0×S0 −7 4 3·2 −1 (−2·7%) 1·9
S1×S1 −9 4 3·2 −1 (−3·7%) 1·9 3·1 (9·7%)
S2×S2 −13 11 3·3 −1 (−3·5%) 1·9 −6·4 (−19·4%)

GY BFC1×VC0 S0×S0 −1393 1981 448·0 608 (28·5%) 260·0
S1×S1 – – – – – −703·5 (−25·7%)

BFC3×VC3 S0×S0 −2006 1753 653·2 −396 (−18·1%) 379·3
S1×S1 −735 1421 571·1 305 (12·3%) 334·2 488·6 (27·3%)
S2×S2 −1574 1798 505·5 −201 (−6·4%) 295·9 −374·3 (−13·4%)

* Trial without the parental populations as controls.

Table 3. Standard error of prediction or standard deviation and accuracy (in parenthesis) for the effects
predicted by BLUP or estimated by BLUE, relative to the expansion volume (EV; ml/g) and grain yield
(GY; kg/ha) of progeny from two RRS programmes (BF=Beija-Flor and V=Viçosa)*

Programme Progeny Parameter

BLUP BLUE

EV GY EV GY

BFC1×VC0 S0×S0 G–M 1·6 (0·77) 260·1 (0·66) 2·8 644·1
S1×S1 G–M 1·2 (0·73) 336·7 (0·74) 2·4 769·1

GCABF 1·2 (0·85) 245·2 (0·55)
GCAV 0·3 (0·08) 284·0 (0·66)

BFC3×VC3 S0×S0 G–M 0·8 (0·40) 360·4 (0·77) 3·2 660·0
S1×S1 G–M 0·8 (0·35) 453·6 (0·66) 3·8 676·5

GCABF 1·0 (0·67) 101·7 (0·40)
GCAV 0·8 (0·56) –

SCA – 360·3 (0·94)
S2×S2 G–M 2·0 (0·87) 279·6 (0·80) 3·4 533·7

GCABF 1·1 (0·74) 162·5 (0·50)
GCAV 0·7 (0·52) –

SCA 1·1 (0·85) 321·1 (0·91)
Half-sib BFC3 GCABF 1·3 (0·52) 316·9 (0·62) 3·5 710·6
Half-sib VC3 GCAV 1·4 (0·61) 368·7 (0·68) 3·3 776·9
Joint analysis GCABF 0·9 (0·39) 306·8 (0·51)

GCAV 0·8 (0·32) 353·5 (0·60)

* G–M, progeny effect; GCA and SCA, general and specific combining ability effects.
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associated with the lower selection intensity, equiv-
alent to 20% of selected progeny.

DISCUSSION

In the last 63 years, some investigations based on
simulations and many applied studies have shown the
efficacy of RRS for the improvement of the interpopu-
lation cross and populations. This selection procedure
also determines increases in the heterosis of the
populations, decreases in the inbreeding depression
in the populations, population differentiation and
decreases in genetic variability (Penny & Eberhart
1971; Peiris & Hallauer 2005; Solomon et al. 2010;
Romay et al. 2011). Until now, analyses have
employed the BLUE for progeny genotypic means.
Why should plant breeders change their analyses to
BLUP or Bayesian inference? This question does not
have an easy answer.
Several studies have compared the BLUE, BLUP and

Bayesian inference methods for estimating variance
components and predicting breeding values. Mathew
et al. (2012) observed that REML estimates were as
accurate as Gibbs sampling estimates for barley lines
data, but the Bayesian analysis providedmore accurate
estimates for simulated data. Littell (2002) recognized
the contribution of the least square methods to

research in agriculture and other areas, but commen-
ted that the advantages of the residual maximum-
likelihood method compared with ANOVA-based
methods far exceed their disadvantages. Van Tassell
& Van Vleck (1996) and Van Tassell et al. (1995) also
verified that REML estimates were as accurate as
Gibbs sampling estimates, especially for traits with
high heritability. Harville & Carriquiry (1992) com-
mented that when the ratio between the estimates of
genetic and error variances is small and datasets are
either limited in extent or are highly unbalanced, the
results produced by BLUP can be markedly superior
to those obtained by least-squares methods.

The inclusion of pedigree information, historical
data and prior knowledge about parameters of the
model tends to make BLUP and Bayesian inference
superior to BLUE regarding precision and accuracy of
breeding values (Atkin et al. 2009; Piepho & Williams
2006; Piepho & Möhring 2006). Forkman & Piepho
(2013) compared these three methods in experiments
with small number of treatments, based on simulation.
The smallest root-mean-square error (RMSE) – a
measure of precision of the difference between two
treatment effects – was obtained with the Bayesian
approach. The BLUP analysis provided consist-
ently smaller RMSE compared with the BLUE
analysis. Several experimental results have evidenced

Table 4. Pearson’s correlation between the estimated genotypic values and combining ability effects,
and coincidence between selected Sn×Sn hybrids and parents according to different selection criteria
and proportion of selected progeny*

Programme Progeny Parameter
Selection

Selection criteria, expansion volume Selection criteria, grain yield

Criteria G̃ GC̃ABF GC̃AV G̃ GC̃ABF GC̃AV

BFC1×VC0 S0×S0 Correlation Ĝ 0·97 0·96
Coincidence 0·95/0·90 0·90/0·82

S1×S1 Correlation Ĝ 0·95 0·07 −0·05 0·98 0·01 0·07
Coincidence 0·64/0·71 0·14/0·32 0·70/0·24 0·79/0·87 0·0/0·18 0·70/0·29

BFC3×VC3 S0×S0 Correlation Ĝ 0·97 0·99
Coincidence 0·82/0·79 0·94/0·91

S1×S1 Correlation Ĝ −0·09 −0·12 0·04 0·74 0·04 –

Coincidence 0·0/0·14 0·0/0·29 0·0/0·70 0·57/0·79 0·14/0·29 –

S2×S2 Correlation Ĝ 0·90 0·72 0·54 0·97 0·65 –

Coincidence 0·71/0·71 0·57/0·57 0·29/0·43 0·86/1·00 0·57/0·57 –

Half-sib
BFC3

Correlation Ĝ 0·95 0·95
Coincidence 0·64/0·75 0·86/0·82

Half-sib
VC3

Correlation Ĝ 0·96 0·98
Coincidence 0·67/0·83 0·83/0·88

* Ĝ, selection based on the BLUE of the progeny genotypic value; G̃, selection based on the BLUP of the progeny genotypic
value; GC̃A, selection based on the BLUP of the GCA effect of the parent (BF=Beija-Flor and V=Viçosa); coincidence for
10 and 20% of selected progeny.
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equivalence between breeding values predicted
by BLUP and Bayesian analysis (Schenkel et al.
2002; Waldmann et al. 2008; Bauer et al. 2009;
Mathew et al. 2012). Furthermore, the breeding
values presented the same accuracy. Harville &
Carriquiry (1992) showed that BLUP and Bayesian
predictions are highly correlated when the ratio
between the estimates of genetic and error variances
is greater than zero. Henderson (1986) commented
that as covariance matrices estimated by ANOVA-
based methods may be negative definite, very
inaccurate predictions of breeding values can be
obtained.

It should be emphasized that the success of BLUP
and Bayesian inference in crop species breeding
depends upon the availability of flexible software for
data processing such as ASReml and Just Another
Gibbs Sampler (JAGS) (Plummer 2012), the recog-
nition of the advantages of these methods and the
professional training to interpret results. These factors
will determine the acceptance of BLUP and Bayesian
inference by breeders of crop species, at least as
alternative procedures for genetic evaluation or as
the options for more complex models as highlighted
by Blasco (2001). Although Bayesian inference is still
infrequently used in plant breeding (Bauer et al. 2009;
Mathew et al. 2012), genetic evaluation by BLUP
has been used in recurrent selection programmes
and for developing pure and inbred lines (Piepho
et al. 2008).

In RRS programmes with inbred full-sib families
(Sn×Sn, n51), selection of parents for recombination
of Sn+1 progeny is more efficient when based on
the GCA effect compared with the average geno-
typic value of the family. Viana et al. (2013) showed
increases in the intra- and interpopulation genetic
gains ranging from 12 to 194%, depending on both the
parental populations and the trait. Selection based
on GCA, however, is only possible with BLUP or
Bayesian approaches that include pedigree infor-
mation. For selection of the best Sn×Sn hybrids
(genotypic value-based selection) and with standard
half- and full-sib RRS (no related parents), these
methods are at least as efficient as BLUE.
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Education (Capes) and the National Council for
Scientific and Technological Development (CNPq)
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APPENDIX

ASReml code for genetic evaluation in RRS

BLUP analysis, RRS, 3 cycles (S0×S0, S1×S1 and S2×S2 progeny and checks) # title line
trial 3 # progeny tests
pop 16 # 1, 2 and 3 for progeny and 4–16 for the checks
rep 3 # replications
blo 13 # blocks
ga 327 !i !sort # 314 gca effects of parents from population A
gb 327 !i !sort # 314 gca effects of parents from population B
sab 327 # 314 sca effects for progeny
s # final stand – ideal stand
m # grain moisture – 14.5
y # grain yield
ev # expansion volume

A1.grm # additive relationship matrix for population A

BLUP in reciprocal recurrent selection 437

https://doi.org/10.1017/S0021859613000270 Published online by Cambridge University Press

http://mcmc-jags.sourceforge.net/
http://mcmc-jags.sourceforge.net/
https://doi.org/10.1017/S0021859613000270


A2.grm # additive relationship matrix for population B
D.grm # dominance relationship matrix
s0s1s2.asd # data file
!continue # more than 10 iterations (default), if necessary
!maxit 100 # maximum number of iterations
y * mu pop trial pop.trial trial.rep s m !r trial.rep.blo ga gb sab !f mv # mv estimates missing values
#ev * mu pop trial pop.trial trial.rep !r trial.rep.blo ga gb sab !f mv
1 1 4 # one R structure and four G structures
0 0 id
trial.rep.blo 1
trial.rep.blo 0 id 1
ga 1
ga 0 giv1 1 # giv1 is the inverse of A1.grm
gb 1
gb 0 giv2 1 # giv2 is the inverse of A2.grm
sab 1
sab 0 giv3 1 # giv3 is the inverse of D.grm

BLUP analysis, RRS, 1st cycle and three progeny tests # title line
trial 3 # progeny tests (half-sib families from populations A and B and full-sib families)
rep 3
blo 13
ga 290
gb 313
sab 169
s
m
y
ev

s0.asd
!continue
!maxit 100
y * mu trial trial.rep s m !r trial.rep.blo -at(trial,2).ga ga -at(trial,1).gb gb -at(trial,1,2).sab sab !f mv
#ev * mu trial trial.rep !r trial.rep.blo -at(trial,2).ga ga -at(trial,1).gb gb -at(trial,1,2).sab sab !f mv
1 1 4
0 0 id
trial.rep.blo 1
trial.rep.blo 0 id 1
ga 1
ga 0 id 1
gb 1
gb 0 id 1
sab 1
sab 0 id 1
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