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Syringomyelia is a medical condition in which one or more fluid-filled cavities
(syrinxes) form in the spinal cord. The syrinxes often form near locations where
the spinal subarachnoid space (SSS; the fluid-filled annular region surrounding the
spinal cord) is partially obstructed. Previous studies showed that nonlinear interactions
between the pulsatile fluid flow in the SSS and the elastic deformation of the tissues
surrounding it can generate a fluid pressure distribution that would tend to drive fluid
from the SSS into the syrinx if the tissue separating the two regions was porous. This
provides a potential explanation for why a partial occlusion of the SSS can induce the
growth of an already existing nearby syrinx. We study this hypothesis by analysing
the mass transfer between the SSS and the syrinx, using a poroelastic fluid–structure
interaction model of the spinal cord that includes a representation of the partially
obstructed SSS, the syrinx and the poroelastic tissues surrounding these fluid-filled
cavities. Our numerical simulations show that poroelastic fluid–structure interaction
can indeed cause an increase (albeit relatively small) in syrinx volume. We analyse
the seepage flows and show that their structure can be captured by an analytical
model which explains why the increase in syrinx volume tends to be relatively small.

Key words: biological fluid dynamics, flow-vessel interactions, porous media

1. Introduction
The brain and the spinal cord are submerged in cerebrospinal fluid (CSF), a

water-like substance that occupies the subarachnoid space and the brain’s ventricles.
Magnetic resonance imaging (MRI) scans show evidence of oscillatory flows along
the spinal subarachnoid space (SSS), the annular CSF-filled region that surrounds the
spinal cord. These flows are driven by the time-periodic systolic expansion of the
intracranial extracerebral arteries which displaces CSF from the brain into the SSS.
The SSS accommodates the fluid by increasing its volume via the compression of the
spinal cord and the expansion of the dura, the tissue forming the outer boundary of
the SSS; see figure 1 below for a schematic showing the geometry. Typical amplitudes
of the resulting pulsatile fluid velocities are in the region of 5–10 cm s−1; see, e.g.
Hentschel et al. (2010) or Bunck et al. (2011). The ability to alleviate pressure
fluctuations in the brain via the expansion of the SSS can be severely compromised
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FIGURE 1. (Colour online) Sketch of the axisymmetric model. Cerebrospinal fluid (CSF;
cyan) occupies the annular spinal subarachnoid space (SSS) which is partly occluded by
a blockage. The syrinx is the fluid-filled cavity inside the spinal cord. In the top figure
different colours identify the different tissues; see text for details. The fluid occupying
the SSS is subject to an oscillatory pressure at the cranial end of the SSS. Note the large
aspect ratio, L/D= 30, where D= 20 mm is the maximum outer diameter of the SSS (at
its cranial end). The dashed line indicates the position of the radial slice across which we
compute the volume fluxes that are documented in figure 2.

by conditions such as Chiari malformation which form an obstruction between the
cranial and spinal subarachnoid spaces.

The pressure fluctuations associated with the pulsatile flow of CSF along the
elastically deforming SSS have long been suspected of playing a possible role in
the pathogenesis of syringomyelia – a medical condition in which one or more
fluid-filled cavities (so-called syrinxes) form in the spinal cord. These syrinxes often
grow over time and ultimately cause serious medical problems; see Elliott et al.
(2013) for a detailed recent review. Syrinxes often form near regions where the SSS
is partially obstructed, for instance by Chiari malformations (see, e.g. Shaffer, Martin
& Loth 2011) or as a result of injuries arising from spinal trauma. This raises the
question of whether such obstructions affect the flow of CSF in such a way that the
formation of syrinxes is facilitated. This question motivated early theoretical studies
by Carpenter and co-workers (Berkouk, Carpenter & Lucey 2003; Carpenter, Berkouk
& Lucey 2003; also Cirovic 2009 and Cirovic & Kim 2012) who employed spatially
one-dimensional models to analyse the propagation of large-amplitude pressure waves
along the elastic-walled SSS. These studies were based on extensions of the classical
theory of pulse wave propagation in the arteries (see van de Vosse & Stergiopulos
(2011) for a review), combining one-dimensional inviscid fluid models with so-called
tube laws which describe the change in the SSS’s local cross-sectional area as a
function of the local fluid pressure. One early conjecture was that the large pressures
associated with the formation of ‘elastic jumps’ generated by the presence of partial
obstructions in the SSS could cause damage to the cord tissue. This hypothesis
was later discredited by Bertram, Brodbelt & Stoodley (2005) who were the first
to analyse the system via the coupled solution of the axisymmetric Navier–Stokes
equations and the equations of elasticity; Elliott, Lockerby & Brodbelt (2009) later
reached the same conclusions on the basis of a one-dimensional model.
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Bertram et al.’s (2005) model was subsequently refined by including a representation
of (i) a syrinx (Bertram 2009) and (ii) an obstruction of the SSS (Bertram 2010),
resulting in the model shown in figure 1 below. Bertram’s (2010) numerical
simulations of this system and Martin et al.’s (2010) experimental study of a related
benchtop model showed that when this system is subjected to time-periodic pressure
fluctuations at its cranial end, nonlinear effects arising from fluid–structure interaction
(FSI) lead to an increase in the CSF pressure in the caudal part of the SSS via what
Martin et al. (2010) termed the ‘valve mechanism’. Bertram (2010) observed that
the resulting CSF pressure distribution was such that it would tend to drive fluid
from the SSS into the syrinx if the cord tissue was porous. This provides a possible
explanation for why the presence of an obstruction in the SSS may induce the
growth of an adjacent syrinx: the inflation of the syrinx may provide a stimulus for
the subsequent remodelling of the tissue to relieve the induced mechanical stresses.

It is the aim of the present paper to assess whether the incorporation of
poroelasticity into Bertram’s (2010) fluid–structure interaction model does indeed
result in an increase in the syrinx volume via Martin et al.’s (2010) ‘valve
mechanism’. The outline of the paper is as follows. In § 2 we discuss our theoretical
model which is based on the coupled solution of the axisymmetric Navier–Stokes
equations and the equations of isotropic poroelasticity. Following a brief discussion
of the numerical solution in § 3 we present our results in § 4. We show that the
‘valve mechanism’ observed in the impermeable system persists in the presence of
poroelasticity and that the resulting seepage flows do indeed result in an increase
(albeit relatively small) in syrinx volume. We analyse the seepage flows and show that
their structure can be captured by an analytical model which also explains how the
system evolves towards its ultimate time-periodic steady state and why the increase
in syrinx volume is very small. Finally, in § 5 we provide a brief summary of our
results and assess the limitations of our analysis by discussing various features that
are not represented in our model.

2. The model
Figure 1 shows a sketch of Bertram’s (2010) axisymmetric model which forms the

basis of the current study. CSF (cyan) is contained in the annular SSS the outer
boundary of which is formed by the stiff dura (black). The spinal cord (grey) is a
relatively soft tissue that is surrounded by a thin outer layer of increased stiffness, the
pia (yellow). The cord ends in the filum (green). The syrinx is the fluid-filled cavity
(cyan) inside the cord. A ‘block’ (brown) forms a partial occlusion of the SSS near
the syrinx. We refer to the thin layer of tissue that separates the SSS from the syrinx
as the syrinx cover. The system is subject to a time-periodic pressure, Pcranial(t), that is
imposed at the cranial end of the SSS (at z= 0) and we neglect the effect of gravity.

We assume that the fluid occupying the SSS and the syrinx is incompressible, and
that its velocity v and pressure p are governed by the Navier–Stokes equations,

ρfluid

(
∂v

∂t
+ v · ∇v

)
=∇ · τττ and ∇ · v = 0, (2.1a,b)

where ρfluid is the fluid density. Assuming Newtonian behaviour, the fluid stress tensor
τττ is given by

τττ =−pI+µfluid(∇v + (∇v)T), (2.2)

where µfluid is the fluid’s dynamic viscosity.
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We describe the deformation of the various elastic and poroelastic tissues and the
seepage flow within the latter in terms of the displacement u of their solid matrix, the
seepage flow q (relative to the deforming solid matrix), and the pore pressure, ppore.
The poroelastic tissues are assumed to be fully saturated with pore fluid. Using Biot’s
classical isotropic linear theory of poroelasticity (see, e.g. Simon (1992) or Cowin
(1999)), these fields are governed by the momentum equation for the compound
poroelastic material,

∇ ·σσσ = ρp.e.
∂2u
∂t2
+ ρfluid

∂q
∂t
, (2.3)

and the momentum equation for the pore fluid (Darcy’s law),

−∇ppore − µfluid

k
q= ρfluid

∂2u
∂t2
+ ρfluid

φ

∂q
∂t
. (2.4)

Here k is the permeability, φ the porosity (the volume fraction occupied by the pore
space), and

ρp.e. = (1− φ)ρsolid + φρfluid (2.5)
is the density of the compound, poroelastic medium which comprises the solid matrix
(which is made of material that has density ρsolid) and the embedded pore fluid. The
terms on the right-hand side of (2.3) and (2.4) represent inertial effects. These arise
from the accelerations of the solid matrix and the CSF fluid that flows within (and
relative to) that matrix. Neglecting these terms in (2.4) we recover the classical, quasi-
steady Darcy model. The stress in the compound poroelastic material is given by the
constitutive equation

σσσ =σσσ elast − α pporeI, (2.6)
where

σσσ elast = Edrained

(1+ νdrained)

(
νdrained

(1− 2νdrained)
(∇ · u)I+ 1

2
(∇u+ (∇u)T)

)
(2.7)

is the stress tensor for the drained solid matrix in terms of its Young’s modulus,
Edrained, Poisson’s ratio, νdrained and the Biot–Willis parameter, α.

Mass conservation requires that

α∇ ·
(
∂u
∂t

)
+∇ · q= 0, (2.8)

so the dynamic compression/dilation of the solid matrix acts as source/sink term in
the continuity equation for the pore fluid. The Biot–Willis parameter α ‘represents
the ratio of the fluid volume gained (or lost) in a material element to the volume
change of that element, when the pore pressure is allowed to return to its initial
state’ (Detournay & Cheng 1993). α is equal to one if the pore fluid and the material
making up the solid matrix are both incompressible. Purely elastic (impermeable)
behaviour can be recovered by setting the Biot–Willis parameter to α = 0, and by
imposing q= 0 and ppore = 0.

2.1. Boundary conditions
Equations (2.3)–(2.8) apply throughout the various tissues (cord, pia, etc.) which
have different mechanical properties as reflected in the values of their constitutive
parameters, discussed in § 2.2 below. At the material interfaces between the tissues we
impose continuity of traction, displacement, pore pressure and the normal component
of the seepage velocity.
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We set the normal component of the traction acting on the fluid at the cranial end
of the SSS to the imposed oscillatory pressure, Pcranial(t), so that

−ez · τττ · ez = Pcranial(t) at z= 0, (2.9)

and enforce parallel inflow/outflow,

v · er = 0 at z= 0. (2.10)

At the caudal end of the SSS we suppress any inflow/outflow by setting

v · ez = 0 at z=−L. (2.11)

We constrain the axial motion of the dura and the cord at the cranial and caudal ends
of the domain (so that u · ez= 0 at z= 0 and z=−L) but allow the tissues to expand
freely in the radial direction.

At the FSI interfaces, fluid and solid interact via the continuity of traction and
velocity/displacements; see, e.g. Badia, Quaini & Quarteroni (2009). The compound
poroelastic solids are subject to the fluid traction, implying that

τττ · n=σσσ · n, (2.12)

where n is the outer unit normal on the poroelastic solid, pointing into the fluid.
Furthermore, the pore pressure is given by the normal component of the fluid traction,

ppore =−n ·σσσ · n. (2.13)

The normal component of the fluid velocity at the FSI interfaces has to match the
normal component of the velocity of the poroelastic solid plus the seepage flow,

v · n=
(
∂u
∂t
+ q
)
· n. (2.14)

Finally, the Beavers–Joseph–Saffman (BJS) boundary condition (Beavers & Joseph
1967, Saffman 1971; see also Carraro et al. 2013) requires that the tangential
component of the fluid velocity be equal to the tangential component of the velocity
of the poroelastic solid plus a slip component,

v · t= ∂u
∂t
· t−
√

k
γ

t · τττ · n, (2.15)

where t is a unit tangent vector to the fluid–solid interface. Thus the slip velocity
is proportional to the tangential shear stress exerted by the fluid onto the poroelastic
solid; the slip vanishes as the inverse slip rate coefficient, γ −1, goes to zero.

2.2. Parameter values
The spatial dimensions of the model were chosen to be identical to those of Bertram
(2010), with an overall length of L=60 cm and a maximum outer diameter of the SSS
(at the cranial end) of D= 20 mm; see figure 1(b) for a plot of the system using a 1:1
aspect ratio. We refer to Bertram (2010) for full details of the geometry. As in Bertram
(2010) we set the fluid and solid densities to ρfluid=ρsolid= 1000 kg m−3, and assumed

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

66
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.669


A poroelastic fluid–structure interaction model of syringomyelia 365

the dynamic viscosity of the CSF to be close to that of water, µfluid = 10−3 Pa s. The
dura and pia are much stiffer than the other tissues and, again following Bertram
(2010), we set their (drained) Young’s moduli to E[dura]

drained = E[pia]
drained = 1.25 × 106 Pa

while using E[cord]
drained = 5 × 103 Pa and E[ filum]

drained = E[block]
drained = 6.25 × 104 Pa for the other

tissues.
Since we are mainly interested in the fluid transport between the SSS and the syrinx,

we only considered the cord tissue (including the pia and the filum) to be porous.
For simplicity we assumed that the poroelastic parameters were the same throughout
the pia, filum and cord. We used a porosity of φ = 0.3 (Linninger et al. 2007), a
default permeability of k = 10−13 m2, set the Biot–Willis parameter to α = 1 and
the drained Poisson’s ratio to νdrained = 0.35 (Smillie, Sobey & Molnar 2005, Tully
& Ventikos 2011). Extensive parameter studies were performed to assess the effect
of variations in the permeability; see § 4. The porosity φ only affects one of the
inertial terms in (2.4) which, for the permeabilities and forcing frequencies considered
in the present study were found to be negligible; see § 4.2. The block and the dura
were modelled as impermeable, near-incompressible solids, as in Bertram (2010), by
setting the Biot–Willis parameter to α = 0, the Poisson’s ratio to ν[drained] = 0.49 and
by imposing q= 0 and ppore = 0 throughout these tissues. The inverse slip coefficient,
γ −1, in the BJS boundary condition (2.15) was set to zero after confirming that it had
no effect on the results; see figure 13(b) in § 4.2.

Simulations were performed using the same protocol employed in Bertram’s (2010)
study of the impermeable system. Starting from an initial condition in which the
fluid and the solids were at rest (and the solids in their stress-free, undeformed
configuration), we imposed an oscillatory pressure at the cranial end of the SSS,

Pcranial(t)=
{
P̂ sin2(2πt/T ) for t< T /4
P̂ sin(2πt/T ) for t > T /4,

(2.16)

and simulated the system’s behaviour for at least ten periods of the oscillation, 0< t<
10 T . Following Bertram (2010), we set the peak pressure to P̂= 500 Pa and chose
the period of the oscillation as T = 0.4 s.

When presenting results we generally non-dimensionalise all quantities on
problem-specific reference values: time on the period of the oscillations, T ; lengths
on the maximum outer diameter of the SSS, D (as in figure 1); time-varying
volumes on their initial values at t = 0; pressures on the peak forcing pressure,
P̂; velocities on the associated inertial velocity scale, U = (P̂/ρfluid)

1/2; and volume
fluxes on U/D2. It is important to note that the large nominal Reynolds number
Renominal = ρfluidUD/µfluid = 14, 142 formed from these quantities does not adequately
describe the character of the flow. This is because the CSF only flows in the thin
annular SSS (or in the even narrower gap under the block), and/or with peak velocities
that are significantly smaller than U . The effective local Reynolds number, formed
from the actual velocities and length scales (as illustrated in figure 4 below, for
instance), tends to reach peak values of approximately 170, consistent with estimates
obtained by Loth, Yardimci & Alperin (2001) based on MRI images of the CSF flow
in actual spinal cavities.

3. Numerical solution
The governing equations were discretised by finite elements and implemented

in a fully coupled manner in oomph-lib (Heil & Hazel 2006). We discretised the
arbitrary Lagrangian–Eulerian form of the Navier–Stokes equations using six-noded
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triangular Taylor–Hood elements on a moving unstructured mesh. Nodal positions
in the fluid mesh were updated by the method of spines (Kistler & Scriven 1983)
by displacing fluid nodes such that they were always located at fixed fractions
along straight lines that connected predetermined material reference points on the
moving FSI boundaries. The traction boundary condition (2.9) was incorporated
into the boundary term that arises when integrating the weak form of the axial
momentum equation by parts. The equations of poroelasticity were also discretised
on six-noded triangles, using an isoparametric interpolation for the solid displacements,
u; second-order Raviart–Thomas basis functions for the seepage flux, q; and piecewise
linear, discontinuous basis functions for the pore pressure ppore. See, e.g. Ervin (2012,
2013) for details. The FSI traction boundary conditions (2.12) and (2.13) were
incorporated into the weak form of (2.3) and (2.4), respectively, while the coupling
conditions (2.14) and (2.15) were imposed on the fluid velocities by Lagrange
multipliers. First- and second-order time derivatives were discretised using the
implicit, second-order-accurate backward differencing (BDF2) and Newmark schemes,
respectively. The resulting large system of nonlinear algebraic equations arising at
each time step was solved by Newton’s method using the multifrontal direct solver
MUMPS (Amestoy et al. 2001) to solve the associated linear systems. All meshes
were generated with Shewchuk’s (1996) Triangle code, with element sizes carefully
adjusted to resolve the various boundary layers in the fluid and solid domains. The
standard spatial discretisation involved 1.5 million degrees of freedom and time
stepping was performed with a fixed time step corresponding to 80 time steps
per period of the imposed oscillation in Pcranial(t). Results of spatial and temporal
convergence tests and details of the code validation are presented in appendix A.

4. Results

Figure 2 shows a plot of the imposed pressure, Pcranial(t)= p(z= 0, t), and illustrates
the resulting redistribution of cerebrospinal fluid along the SSS and within the syrinx,
using time traces of the volume fluxes through (i) the cranial end of the SSS (at
z = 0); (ii) the narrow gap between the block and the cord (at z/D = −7.5); (iii) a
radial slice through the syrinx at the same z-position. (The location of the radial
slice is indicated by the dashed line in figure 1.) The volume flux is counted as
positive when it is directed into the SSS, i.e. away from its cranial end. The plot
shows that, following the decay of brief initial transients, the system settles into an
approximately time-periodic response, with the inflow at the cranial end of the SSS
being approximately 46◦ out of phase with the driving pressure, suggesting that the
system’s input impedance arises through a combination of inertial, viscous and elastic
effects. Approximately 50 % of the incoming volume flux passes through the narrow
gap under the block into the caudal part of the SSS (dashed line in figure 2b) while
the majority of the remaining volume flux is accommodated by the expansion of the
cranial part of the SSS (the seepage flow into the porous cord is too small to be
observable in these plots). Bertram’s (2010) simulations of the impermeable system
showed the presence of a noticeable time-periodic axial ‘sloshing flow’ along the
syrinx. This flow is also present in the permeable system; its magnitude is indicated
by the plot of the volume flux across the radial slice through the syrinx (dash-dotted
line in figure 2b).

The four panels in figure 3 provide a more detailed picture of the fluid–structure
interaction when the system has settled into its steady state oscillation. In each of
the panels, the bottom-most figure shows the fluid pressure distribution (represented
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FIGURE 2. (Colour online) (a) Time trace of the non-dimensional forcing pressure,
Pcranial(t)/P̂ . (b) The resulting volume flux into the SSS at z = 0 (black solid); through
the narrow gap under the block at z/D=−7.5 (blue dashed); through a radial slice across
the syrinx at the same axial position (red dash–dotted). The location of the radial slice
is indicated by the dashed line in figure 1. Time is non-dimensionalised on the period of
the oscillation, T . The volume fluxes are scaled on UD2 where U = (P̂/ρfluid)

1/2 is the
inertial velocity scale. The volume flux is positive when it is directed into the SSS, i.e.
away from its cranial end.

by the colour contours) and the resulting solid deformation, using the system’s
actual aspect ratio. The middle and top figures show the same data but with all
radial dimensions increased by a factor of 10. Finally, in the top figure the solid
displacements are magnified by a factor of 20 to illustrate the deformation more
clearly. The periodic expansion and contraction of the cranial part of the SSS which,
as discussed above, accommodates a large fraction of the incoming flow, is clearly
visible. The flow through the narrow gap between the block and the cord creates a
large viscous pressure drop, the magnitude of which depends on the instantaneous
width of the gap.

The contour plots in figure 4(a,b) show the fluid velocity field in the SSS in the
vicinity of the block at two instants when the flow is driven most rapidly towards
the cranial/caudal ends of the SSS, respectively. Within the narrow gap between
the block and the cord, the flow is approximately unidirectional, with a parabolic
profile (see figure 4c) and with the pressure decreasing linearly in the direction of
the flow (see also figure 5 below). This indicates that, despite the large velocities,
the flow in this region is of lubrication type and is therefore dominated by viscous
effects. As the flow emerges from the narrow gap and decelerates, it separates off
the solid boundaries. This results in the formation of strong transient vortices which
are advected with the flow. Since the flow changes direction periodically, the vortices
remain located in the vicinity of the block; their remnants remain visible even after
the flow has reversed direction (see, e.g. the velocity perturbations at the cranial [or
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(a) (b)

(c) (d )

10
Pressure

–1

–1.21 1.10

FIGURE 3. (Colour online) Four snapshots of the fluid pressure distribution (colour
contours) and the tissue deformation at (a) t/T = 9, (b) t/T = 9.25 (c) t/T = 9.5, (d)
t/T = 9.75. For each snapshot we show the system in its actual 1:1 aspect ratio (bottom)
and with the radial dimensions stretched by a factor of 10 (middle and top). In the
top panel the tissue displacements are exaggerated by a factor of 20. The pressure is
non-dimensionalised on the amplitude of the forcing pressure, P̂.

caudal] end of the block in figure 4(a) [or (b)], respectively. Away from the block,
the velocity becomes approximately unidirectional again, but now with a Womersley
profile (i.e. an inviscid plug flow profile in the centre of the SSS, with Stokes layers
near the walls; see figure 4d), indicating that the flow in these regions is inertially
dominated. In dimensional terms, the maximum oscillatory velocity in the profiles
shown in figure 4(d) corresponds to 4.24 cm s−1, consistent with the range of pulsatile
CSF velocities typically observed in MRI scans.

Apart from the regions where transient vortex shedding occurs, the fluid pressure
is approximately constant across any cross-sections through the SSS and the syrinx.
The axial variation of the fluid pressure is illustrated in figure 5(a–d) which shows
four snapshots of the instantaneous (dashed lines) and cycle-averaged (solid lines) fluid
pressure distribution along the FSI boundary between the SSS and the cord, and on
the centreline of the syrinx (at r = 0). The instantaneous pressure distribution in the
cranial part of the SSS is dominated by the time-harmonic pressure, Pcranial(t), that
we impose at z = 0. Since Pcranial(t) has zero mean, the cycle-averaged pressure in
this region is close to zero. Conversely, the pressure in the caudal part of the SSS
is strongly influenced by the viscous pressure drop across the narrow gap under the
block. Since the width of this gap (and therefore the viscous flow resistance) varies
considerably over the period of the oscillation (see figure 4c), nonlinear effects create
a net pressure difference across the block, leading to an elevated cycle-averaged fluid
pressure in the caudal part of the SSS – the ‘valve mechanism’ (Martin et al. 2010,
Bertram 2010). The cycle-averaged pressures are shown in more detail in figure 5(e)
where the arrows indicate the direction of the associated steady seepage flow that we
expect to be generated by the transmural pressure difference across the porous syrinx
cover.
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FIGURE 4. (Colour online) (a,b) Contour plots of the axial (top) and radial (middle) fluid
velocities, and the fluid pressure (bottom) in the SSS in the vicinity of the block, plotted
using the actual aspect ratio and the same orientation as in figure 1. (a) t/T = 9.25, (b)
t/T = 9.75. Bottom: profiles of the axial velocity in radial slices across the deforming
SSS, uz(r, t), at (c) z/D =−7.5 (in the gap between block and cord), (d) z/D =−3 (in
the cranial part of the SSS) at eight uniformly spaced instants over the forcing period,
starting at t/T = 9. Velocities are scaled on the inertial velocity scale, U = (P̂/ρfluid)

1/2,
and the pressure on the amplitude of the forcing pressure, P̂ .
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FIGURE 5. (Colour online) (a–d) Four snapshots of the instantaneous fluid pressure
distribution in the SSS (along the FSI interface with the outer boundary of the cord;
dashed line ranging over the entire length of the domain) and on the centreline of the
syrinx (at r = 0; dashed line ranging from z/D = −11 to −4). (a) t/T = 9, (b) t/T =
9.25 (c) t/T = 9.5, (d) t/T = 9.75. The solid lines in (a)–(d) show the corresponding
cycle-averaged pressures. These are shown more clearly in (e) where we also show (using
a thick dash–dotted line) the pressure distributions in the corresponding impermeable
system. All pressures are non-dimensionalised on the amplitude of forcing pressure, P̂,
and the axial coordinate is scaled on the maximum diameter of the dura, D.

For reference, the dashed–dotted line in this figure shows the cycle-averaged
pressure distribution obtained in a simulation with an impermeable cord. As observed
by Bertram (2010), in this case the pressure distribution is such that one would
expect that, overall, fluid is driven from the SSS into the syrinx because the integral
of the cycle-averaged transmural pressure, p|SSS− p|syrinx, over the length of the syrinx
is positive. Here and elsewhere in this paper we denote the moving average of a
quantity f (t) as

f (t)= 1
T

∫ t+T

t
f (τ ) dτ , (4.1)
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FIGURE 6. (Colour online) (a) Evolution of the relative change in syrinx volume,
1Vsyrinx(t)/Vsyrinx(t = 0) (black dashed line) and its cycle average (blue solid line) for a
permeability of k = 10−13 m2. (b) Plot of the cycle average (black solid line), the fit to
the exponential (4.2) (thick dashed line), and its asymptotic limit (thin dash–dotted line).
Time is scaled on the period of the oscillation, T .

and we omit the argument when we refer to the cycle average over the ultimate time-
periodic steady state that is reached as t→∞, i.e. f = limt→∞ f (t).

To assess if the permeability of the cord tissue does indeed result in a net increase
in syrinx volume, figure 6(a) shows the evolution of the relative change in the syrinx
volume, 1Vsyrinx(t)/Vsyrinx(t = 0). The syrinx volume fluctuates and, following the
initial transients, settles into a periodic oscillation about a slowly evolving mean. To
characterise the evolution of the latter, figure 6(b) shows a plot of the moving average,
1Vsyrinx(t), again normalised by the initial syrinx volume. We observe that, following
the decay of the initial transients, the moving average tends to an asymptotic limit,
1V [∞]syrinx, the approach to which is well described by a damped exponential, i.e.

1Vsyrinx(t)≈1V [∞]syrinx + A exp(−λt) as t→∞. (4.2)

This is illustrated by the broken lines in figure 6(b) which show the damped
exponential (4.2) and its asymptotic limit, respectively, using parameter values for
1V [∞]syrinx, A and λ that were obtained by fitting (4.2) to the computational data for
t> 5 T .

Figure 7 shows that the general trends observed in figure 6 for the default
permeability of k = 10−13 m2 are robust when the permeability is changed over two
orders of magnitude. The main effect of an increase in permeability is an increase in
(i) the amplitude of the fluctuations in the syrinx volume; (ii) the asymptotic limit
of its moving average; (iii) the rate at which this asymptotic limit is approached. In
all cases, the poroelastic fluid–structure interaction results in a net increase (albeit
relatively small) in the syrinx volume, 1V [∞]syrinx > 0.

The fact that the cycle-averaged syrinx volume approaches a constant value,
1V [∞]syrinx, implies that the net porous seepage flow into the syrinx (integrated over
one period of the oscillation) must tend to zero as t →∞. The plots in figure 8
illustrate how this is achieved: figure 8(b) shows the cycle-averaged traction, −ppore n,
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FIGURE 7. (Colour online) (a) Evolution of the relative change in syrinx volume,
1Vsyrinx(t)/Vsyrinx(t= 0) for three different values of the permeability. (b) Plot of the cycle
averages (black solid lines), the fits to the exponential (4.2) (thick dashed line) and their
asymptotic limits (thin dash–dotted line). k= 10−14 m2, 10−13 m2, 10−12 m2 increasing in the
direction of the arrow. Time is scaled on the period of the oscillation, T .

–3–4–5–6–7–8–9–10–11–12

–3–4–5–6–7–8–9–10–11–12

Axial coordinate

(a)

(b)

FIGURE 8. (Colour online) (a) Cycle-averaged seepage velocity, (q ·n)n, crossing the FSI
interfaces between the cord and the SSS (top) and the syrinx (bottom). The FSI interfaces
(black lines) have been separated vertically for clarity but are otherwise drawn using the
actual aspect ratio. The closed loop indicates the direction of the circular seepage flow.
(b) Cycle-averaged normal traction −pporen, acting onto the cord. All for k = 10−13 m2.
The axial coordinate is scaled on the maximum diameter of the dura, D.
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that is exerted onto the pore fluid at the cord’s FSI interfaces (see (2.13)), while
figure 8(a) shows the normal component of the resulting cycle-averaged seepage
flow, represented by the vector (q · n)n. The cycle-averaged fluid pressure in the
syrinx is approximately constant (see also figure 5), therefore the cycle-averaged
transmural pressure, psyrinx − pSSS, that drives the seepage flow through the syrinx
cover closely follows the variations of the fluid pressure in the SSS. This results
in the generation of a mean flow in a closed loop, circulating as indicated by the
oval in figure 8(a). This circular flow transports fluid from the cranial to the caudal
end of the SSS where it seeps into the syrinx before re-emerging near the cranial
end of the SSS. The reduction in the cycle-averaged pressure in the caudal part of
the SSS (compared to the impermeable case), shown in figure 5(e), can therefore be
seen to be a consequence of the need to maintain overall mass conservation. Since
the seepage flow is relatively weak, the overall pressure distribution in the SSS (in
particular, the elevated pressure in the caudal part of the SSS) remains very similar
to that observed in the impermeable case. As a result, the ‘valve mechanism’ remains
active and generates an overall fluid pressure distribution that tends to drive fluid into
[out of] the syrinx at its caudal [cranial] end. The initial imbalance between in- and
outflow leads to a small increase in syrinx volume, but over sufficiently long times
the fluid pressures adjust such that the net inflow into the syrinx exactly balances the
net outflow. Figure 5(e) shows that this is achieved predominantly by a reduction in
the fluid pressure in the caudal part of the SSS (via small changes to the width of
the gap under block and thus the associated flow resistance) rather than an increase
in the fluid pressure in the (slightly inflated) syrinx.

Returning now to figure 8(a), we note that the majority of the seepage flow passes
through the thin syrinx cover, while only a relatively small fraction of the overall flow
leaves/enters the syrinx through its conical ends. The seepage flow has (integrable)
singularities at the ‘corners’ of the syrinx boundary (on the centreline and where the
conical ends meet the syrinx cover). These singularities are clearly artefacts of the
overly simplistic syrinx geometry assumed in our model. We refer to § 4.1.2 for a
more detailed discussion of these features and an assessment of the sensitivity of
our results to changes in the syrinx geometry. A detailed inspection of the seepage
velocity field within the syrinx cover shows that the seepage flow is approximately
unidirectional and directed radially inwards/outwards. The variation of the radial
seepage velocity, qr, and the pore pressure, ppore, in a radial slice through the syrinx
cover at z=−7.5 are illustrated in figure 9; these profiles are qualitatively similar to
those in other cross-sections. The temporal fluctuations in both quantities are much
larger than their cycle averages, but they are several orders of magnitude smaller than
the fluid velocities in the SSS and the syrinx. (Compare, e.g. the magnitudes of the
seepage velocities, figure 9(a), to the fluid velocities in the SSS, figure 4; both are
scaled on the inertial velocity scale, U = (P̂/ρfluid)

1/2.) The strong spatial variations
in qr and, in particular, its deviation from a divergence-free profile, qr ∼ 1/r, indicate
that much of the seepage flow is generated by the dynamic compression/expansion of
the solid matrix – as discussed in § 2, the divergence of the solid velocity acts as a
source term in the continuity equation for the seepage flow; see (2.8). The majority
of the fluid that instantaneously enters the syrinx cover at the interface with the SSS
is absorbed internally, with very little fluid emerging into the syrinx. In fact, over
most of the period of the oscillation fluid tends to be ingested into (or ejected from)
the porous syrinx cover simultaneously at both FSI interfaces, indicating that the
Darcy-like through flow that is driven by the instantaneous transmural pressure across
the syrinx cover only makes a small contribution to the instantaneous seepage flow.
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FIGURE 9. (Colour online) Profiles of (a) the radial component of the seepage velocity,
qr(r, t), (b) the pore pressure, ppore(r, t), in a radial slice through the syrinx cover (at
z/D=−7.5) at eight uniformly spaced instants over the forcing period, starting at t/T = 9.
The blue solid line shows the results from the full FSI model; the black dashed lines show
the predictions from the analytical model discussed in § 4.1, where we approximated the
forcing due to the fluid pressure and the axial strain by their first two Fourier components.
The seepage velocity is scaled on the inertial velocity scale, U = (P̂/ρfluid)

1/2, the pore
pressure on the amplitude of the forcing pressure, P̂ and the radial coordinate on the
maximum diameter of the dura, D.

4.1. A model for the seepage flows in the syrinx cover
To elucidate the mechanism responsible for the structure of the seepage flows within
the syrinx cover, we will now develop a simple analytical model that exploits the
following observations: (i) over most of the syrinx cover (away from its cranial
and caudal ends) the seepage velocity and the displacement of the solid matrix
are dominated by their radial components; (ii) all quantities vary slowly with the
axial coordinate, so that generally ∂/∂z � ∂/∂r; (iii) the traction exerted onto the
poroelastic solid (and the embedded pore fluid) by the fluid in the SSS and the syrinx
is dominated by the fluid pressure the temporal variation of which is well described
by the first two Fourier components (comprising a constant part and a time harmonic
with period T ); (iv) the axial strain ∂uz/∂z is approximately constant across the
thickness of the syrinx cover and its temporal variation is again well described by
the first two Fourier components. Combining these observations with the fact that
the internal and external radii of the syrinx cover only vary slowly with z suggests
the use of a long-wavelength model in which each axial ‘slice’ of the syrinx cover
(treated as a thick-walled ring of inner and outer radius a and b, respectively) is
assumed to deform independently of its neighbours, and purely in response to the
local traction acting on it. In the interest of brevity we present our derivation only for
the case of a homogeneous syrinx cover, i.e. we do not distinguish between the pia
and the cord (which have different constitutive properties; see § 2.2). The extension
to the multi-layer case (for which we show results below) is straightforward. We
assume that within a slice through the syrinx cover (i.e. at a fixed z-coordinate), the
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pore pressure and the radial components of the solid displacement and the seepage
flow are given by

{ppore(r, t), ur(r, t), qr(r, t)} =Re

(∑
j

{P[ j]pore(r),U[ j](r),Q[ j](r)} exp
(

j 2πi
t
T

))
,

(4.3)
and that the boundary conditions (2.12) and (2.13) can be approximated by

ppore|r=a = Psyrinx(t) and ppore|r=b = PSSS(t) (4.4a,b)

and

−n · (σσσ · n)|r=a = Psyrinx(t) and −n · (σσσ · n)|r=b = PSSS(t). (4.5a,b)

We consider the system’s response to imposed time-periodic variations in the fluid
pressures and the axial strain,{

Psyrinx(t), PSSS(t),
∂uz

∂z
(r, t)

}
=Re

∑
j

{P[ j]syrinx, P
[ j]
SSS,D[ j]z } exp

(
j 2πi

t
T

)
, (4.6)

which are characterised by the Fourier coefficients P[ j]syrinx, P
[ j]
SSS, D[ j]z , assumed to be

given.
Since the poroelastic equations (2.3)–(2.7) are linear, the different Fourier modes

in (4.3) remain uncoupled. Upon inserting the ansatz (4.3) into (2.3)–(2.7) and
neglecting any z-derivatives we therefore obtain one system of linear ordinary
differential equations (ODEs) (for U[ j](r), Q[ j](r), P[ j]pore(r)) for each Fourier mode
j. While these systems are easily solved, further insight into the structure of the
solution for j > 0 can be obtained by observing that for the forcing frequencies
considered here the inertial terms (on the right-hand side of (2.3) and (2.4)) have
little direct effect on the deformation of the syrinx cover (but see § 4.2 for a more
detailed discussion of the effects of solid inertia). Neglecting these terms allows us
to combine equations (2.3)–(2.7) into a single equation for the solid displacement,

ikT
2πjα2µfluid

∇ ·∇ · Edrained

(1+ νdrained)

(
νdrained

(1− 2νdrained)
(∇ ·U[ j])I+ 1

2
(∇U[ j] + (U[ j])T)

)
+∇ ·U[ j] = 0 (for j> 0), (4.7)

where U[ j]=U[ j](r)er+D[ j]z zez – written in symbolic, vector-based notation because it
keeps the equation in its most compact form. Equation (4.7) shows that the limit k→0
is singular since it causes the highest derivatives to vanish. For small but finite values
of the permeability k we therefore expect the existence of an interior region inside the
syrinx cover within which the system’s behaviour is well described by the equations
for k= 0, with boundary layers required to satisfy the boundary conditions (4.4) and
(4.5). Setting k = 0 in (4.7) shows that the solid displacement in the interior region
must be divergence-free, ∇ ·U[ j] = 0, implying that

U[ j](r)= A
r
− 1

2
Dzr (4.8)

for some constant A. It turns out that, for a displacement field of this form, the
divergence of the stress associated with the drained solid matrix vanishes, ∇ ·σσσ [ j]elast=0,
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therefore equations (2.3) (with the inertial terms neglected) and (2.6) imply that the
pore pressure is spatially constant, ∇p[ j]pore=0. Substituting this into equation (2.4) then
shows that the seepage flow vanishes so that in the interior of the syrinx cover we
have

Q[ j](r)= 0 and P[ j]pore(r)= const. (4.9a,b)

As expected, this solution does not allow us to satisfy all the boundary conditions and
therefore requires the presence of boundary layers. These are indeed present in the full
solution for the radial displacement which, in regions where the material properties are
homogeneous, is given by

U[ j](r)= A
r
− 1

2
Dz r︸ ︷︷ ︸

inner solution

+ BJ1

(
i−1/2

(
r
δj

))
+C K1

(
i−3/2

(
r
δj

))
,︸ ︷︷ ︸

boundary layers

(4.10)

where J1 and K1 are the Bessel function of the first kind and the modified Bessel
function of the second kind (both of first order), respectively. In this expression the
boundary layer thickness for the jth Fourier mode is

δj =
(

k Edrained(1− νdrained) T
2πj α2 µfluid(1+ νdrained)(1− 2νdrained)

)1/2

. (4.11)

This agrees with the estimate of the boundary layer thickness in a time-periodically
forced planar poroelastic layer (see, e.g. Detournay & Cheng (1993)). The constants
A, B and C in (4.10) follow from the boundary conditions at r = a, b. For the
multi-layer case, where a solution of the form (4.10) describes the displacement field
within each layer of the syrinx cover (i.e. within the pia and the cord itself) the
imposition of the continuity of the radial displacement and stress, as well as the
seepage flow and pore pressure at the interfaces between the two layers provides
additional matching conditions. Similar expressions can be derived for P[ j]core and Q[ j]
by lengthy but straightforward algebra.

4.1.1. Seepage flow in the syrinx cover
To assess how well the approximate model manages to capture the key features

of the seepage flow in the syrinx cover, we determined the Fourier coefficients
P[ j]syrinx, P

[ j]
SSS and D[ j]z for the forcing that acts in the axial slice at z=−7.5 from the

full FSI simulations. The dashed lines in figure 9 show the predictions for the seepage
flow and the pore pressure obtained from the simplified analytical model with just two
Fourier terms ( j=0,1). The predictions agree extremely well with the results from the
fully coupled FSI simulation. Similar agreement was obtained in other cross-sections
and for different values of the permeability. This indicates that our simplified model
provides a good description of the poroelastic behaviour of the syrinx cover. We
can therefore employ this model to study (at greatly reduced computational cost)
the effect of variations in the tissue’s permeability and its multi-layer structure. To
illustrate the effect of the former, figure 10(a–f ) shows plots of the radial component
of the seepage velocity, qr, (a,c,e) and the pore pressure, ppore, (b,d, f ) for various
values of the permeability, for the case of a homogeneous syrinx cover in which the
drained Young’s modulus of the pia was set to the same value as that of the cord.
All other parameters (the Fourier coefficients P[ j]syrinx, P

[ j]
SSS and D[ j]z and the dimension

of the slice) were kept as in figure 9. For k= 10−13 m2 (figure 10a,b) the (nominal)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

66
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.669


A poroelastic fluid–structure interaction model of syringomyelia 377

0.23 0.25 0.27 0.23 0.25 0.27

0.23 0.25 0.27 0.23 0.25 0.27

0.23 0.25 0.27 0.23 0.25 0.27

0.23 0.25 0.27 0.23 0.25 0.27

0

–2.0

2.0

4.0

–4.0

0

–2.0

2.0

4.0

–4.0

0.5
0

–0.5
–1.0
–1.5
–2.0

1.0
1.5
2.0

0.5
0

–0.5
–1.0
–1.5
–2.0

1.0
1.5
2.0

0.5
0

–0.5
–1.0
–1.5
–2.0

1.0
1.5
2.0

0.5
0

–0.5
–1.0
–1.5
–2.0

1.0
1.5
2.0

0.5
0

–0.5
–1.0
–1.5
–2.0

1.0
1.5
2.0

0.5
0

–0.5
–1.0
–1.5
–2.0
–2.5

1.0
1.5
2.0
2.5

Cord Pia

Radial coordinate

R
ad

ia
l s

ee
pa

ge
ve

lo
ci

ty
R

ad
ia

l s
ee

pa
ge

ve
lo

ci
ty

R
ad

ia
l s

ee
pa

ge
ve

lo
ci

ty

Po
re

 p
re

ss
ur

e
Po

re
 p

re
ss

ur
e

Po
re

 p
re

ss
ur

e
Po

re
 p

re
ss

ur
e

R
ad

ia
l s

ee
pa

ge
ve

lo
ci

ty

Radial coordinate

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

FIGURE 10. (Colour online) Profiles of the radial component of the seepage velocity,
qr(r, t), (a,c,e,g), and the pore pressure, ppore(r, t), (b,d, f,h) in a radial slice through an
axially uniform model of the syrinx cover at eight uniformly spaced instants over the
forcing period. The blue solid line shows the results from the finite element-based solution
of the poroelastic equations (2.3)–(2.7), time integrated until a time-periodic steady state
was established; the black dashed lines show the predictions for the time-periodic state
from the analytical model discussed in § 4.1. (a,b) k = 10−13 m2, (c,d) k = 10−14 m2,
(e–h) k=10−15 m2. In (a–f ) we made the syrinx cover uniform by setting E[ pia]

drained=E[cord]
drained;

in (g,h) we employed the actual stiffnesses, resulting in a much stiffer pia. The seepage
velocity is scaled on the inertial velocity scale, U = (P̂/ρfluid)

1/2, the pore pressure on the
amplitude of the forcing pressure, P̂ , and the radial coordinate on the maximum diameter
of the dura, D.
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boundary layer thickness is close to 20 % of the thickness of the syrinx cover and
as a result no pronounced boundary layers are visible in the various profiles; the
combination of the driving pressure drop, Psyrinx(t) − PSSS(t), and the kinematic
redistribution of the pore fluid due to the compression/expansion of the solid matrix
generates a seepage flow throughout the syrinx cover. As the permeability is reduced
(to k = 10−14 m2 and k = 10−15 m2 in figures 10(c,d) and 10(e, f ), respectively) the
pore fluid becomes increasingly immobile. Since the pore fluid and the material that
makes up the solid matrix are both assumed to be incompressible, the compound
poroelastic medium becomes itself increasingly incompressible. The pore pressure
in the interior becomes spatially constant and adopts a value that is, in general,
inconsistent with the boundary conditions (4.4) and (4.5). The pore pressure therefore
adjusts within the thin poroelastic boundary layers within which the pressure gradient
becomes sufficiently large to generate significant seepage flows despite the tissue’s
small permeability.

Equation (4.11) shows that the thickness of the poroelastic boundary layers depends
on the material’s (drained) Young’s modulus, Edrained. In the full multi-layer model the
stiffness of the pia is much greater than that of the cord, and the (nominal) boundary
layer thickness in the pia exceeds its thickness, even for the smallest permeability
considered here. As a result, the pore pressure and the seepage flow vary considerably
throughout the pia, even in cases where the small permeability has virtually suppressed
the seepage flow in the central region of the cord (see figure 10(g,h) for k= 10−15 m2).
Even though the pia is very thin, its stiffness is so much greater than that of the
cord tissue that the pia contributes significantly to the overall stiffness of the syrinx
cover. As a result, the amplitude of the syrinx displacements is reduced by a factor
of ≈23 compared to the case when the entire syrinx cover is assumed to be spatially
homogeneous (with the constitutive properties of the cord tissue, as in figure 10a–f ).
The fact that the seepage flow within the syrinx is reduced by approximately the
same factor (compare figures 10e, f and 10g,h) shows, yet again, that the seepage
flow is dominated by the kinematic redistribution of the pore fluid due to the dynamic
compression/expansion of the solid matrix.

We note that figure 10(a–h) contains a second set of (blue solid) lines. These were
obtained numerically by time integrating the full equations of poroelasticity (2.3)–(2.7)
(using oomph-lib) in a finite-size, axially uniform annular region of the same inner
and outer radius as in the analytical model. The computations were performed using
the forcing specified by (4.4) and (4.5). The annular region was allowed to expand
freely in the radial direction at its axial ends where we suppressed any axial outflow
and imposed the required value of ∂uz/∂z by prescribing a suitable time-periodic axial
displacement. The excellent agreement between the analytical and numerical results
provides useful cross-validation between the two approaches. The direct numerical
simulations also showed that for small permeabilities, it takes extremely long for the
system to settle into its fully time-periodic state. For instance, the computations for
k= 10−15 m2 had to be continued to 100 periods of the oscillation to achieve the level
of agreement with the time-periodic analytical solution shown in figure 10(e–h). Such
computations would have been extremely time-consuming if they had been performed
with the fully coupled FSI model.

4.1.2. Implications for the change in syrinx volume
The simplified analytical model also allows insight into the mechanism that is

responsible for the change in syrinx volume – or, rather, it helps explain why the
change is so small. For simplicity we only present the analysis for the case of
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a homogeneous syrinx cover; the results for the multi-layer case are algebraically
significantly more complicated but the final outcome of the analysis is the same. We
start by noting that only the steady components ( j= 0) of all fields in (4.3) make a
contribution to their cycle averages – the other components have zero temporal mean
by construction. Setting the time derivative in (2.8) to zero shows that the steady
seepage flow is divergence-free. Taking the divergence of the steady version of (2.4)
therefore yields a second-order ODE for the pore pressure which is subject to the
pressure boundary conditions P[0]pore(r= a)=P[0]syrinx and P[0]pore(r= b)=P[0]SSS. The solution
is given by

P[0](r; z)= P[0]SSS(z)− (P[0]syrinx(z)− P[0]SSS(z))
ln(r/a(z))

ln(b(z)/a(z))
. (4.12)

Substituting this back into (2.4) shows that the steady part of the seepage velocity in
a radial slice at an axial coordinate z is given by the Darcy profile

Q[0](r; z)= k(P[0]syrinx(z)− P[0]SSS(z))
µfluid ln(b(z)/a(z))

1
r
, (4.13)

which depends linearly on the local transmural pressure P[0]syrinx(z)− P[0]SSS(z) across the
syrinx cover. Inserting (4.12) and (2.7) into (2.6) then yields the steady component
of the stress tensor in the cord tissue which we substitute into the steady version of
(2.3). The radial component of this equation provides a second-order ODE for the
steady component of the radial displacement which is subject to the steady part of
the two traction boundary conditions (4.5). Solving these equations yields

U[0](r; z)= 1+ νdrained

Edrained(b2(z)− a2(z))



(
P[0]syrinx(z)− P[0]SSS(z)

) a2(z)b2(z)
r︸ ︷︷ ︸

I

+ (a2(z)P[0]syrinx(z)− b2(z)P[0]SSS(z))(1− 2νdrained)r︸ ︷︷ ︸
II


− νdrained D[0]z (z) r

︸ ︷︷ ︸
III

+ α(1+ νdrained)(1− 2νdrained)

2Edrained(1− νdrained)

{(
[(1− νdrained)− ln(r/a(z))](P[0]syrinx(z)− P[0]SSS(z))

ln(b(z)/a(z))

+ (P
[0]
syrinx(z)−P[0]SSS(z))b

2(z)− νdrained(P[0]SSS(z)b
2(z)+ P[0]syrinx(z)a2(z))− (1− 2νdrained)P[0]syrinx(z)a2(z)

b2(z)− a2(z)

)
r

− a2(z)b2(z)(P[0]syrinx(z)− P[0]SSS(z))
b2(z)− a2(z)

1
r

}
. (4.14)

Here term I represents the divergence-free expansion of the syrinx cover in response
to the local transmural pressure, P[0]syrinx(z) − P[0]SSS(z); term II represents the pressure-
induced compression of the syrinx cover (note that this term vanishes if the drained
solid matrix is incompressible, νdrained = 1/2); term III arises from the fact that the
axial compression of the syrinx cover (represented by D[0]z ) changes its thickness in
proportion to Poisson’s ratio. The remaining terms are premultiplied by the Biot–Willis
parameter α, indicating that they arise through the drag that the pore fluid exerts
onto the solid matrix; interestingly, this effect again vanishes if the solid matrix is
incompressible, i.e. if νdrained = 1/2.
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In the full FSI model, the inner and outer boundaries of the syrinx cover are
only slightly tapered in the axial direction, therefore the radii a(z) and b(z) are
approximately constant and close to their average values, a0 and b0, say. Assuming
that the flow into/out of the syrinx is dominated by the flow across the syrinx cover
(located between z = zlower and zupper, say), the condition that the cycle-averaged
in/outflow over the surface of the syrinx, ∂Vsyrinx,∮

∂Vsyrinx

q[0] · n dS = 2π

∫ zupper

zlower

Q[0](a(z); z) a(z) dz

≈ 2πk
µfluid ln(b0/a0)

∫ zupper

zlower

(P[0]syrinx(z)− P[0]SSS(z)) dz (4.15)

is zero therefore requires that∫ zupper

zlower

(P[0]syrinx(z)− P[0]SSS(z)) dz= 0. (4.16)

We now exploit that the typical thickness of the syrinx cover hcover = b0− a0 is small.
Evaluating (4.14) at r= a(z)≈ a0 and expanding the result in hcover/a0� 1 allows us
to approximate the cycle-averaged radial displacement at the inner boundary of the
syrinx cover by

U[0](a(z); z)≈ (P[0]syrinx(z)− P[0]SSS(z))
a0(1− ν2

drained)

(hcover/a0)Edrained
. (4.17)

Unlike the full expression, equation (4.14), the approximate version (4.17) is linear in
the local transmural pressure, P[0]syrinx(z)−P[0]SSS(z), across the syrinx cover. This implies
that the change in syrinx volume induced by the radial deformation of the syrinx
cover,

1V [∞]syrinx =
∮
∂Vsyrinx

u[0] · n dS= 2π

∫ zupper

zlower

U[0](r= a(z); z) a(z) dz

≈ 2πa2
0(1− ν2

drained)

(hcover/a0)Edrained

∫ zupper

zlower

(P[0]syrinx(z)− P[0]SSS(z)) dz (4.18)

vanishes because mass conservation requires the integral in the final term to be zero;
see (4.16).

Given that our model provides a good description of the behaviour of the syrinx
cover, the small change in syrinx volume that is observed in the full FSI simulations
must therefore arise predominantly through secondary features that are not captured
by this model, such as the flow through and the deformation of the (conical) ends of
the syrinx. To show that these do indeed have a (relatively large) effect on the (small)
change in syrinx volume, we performed an additional FSI simulation using a different
syrinx geometry. Rather than terminating the syrinx with conical ends (as in Bertram’s
(2010) original model), we used ellipsoidal ends which merged smoothly with the
unchanged syrinx cover. Figure 11(a,b) shows that this has very little effect on the
overall pressure distribution and the seepage flow along the syrinx cover. The main
effect of the change in the geometry is the disappearance of the singularities in the
seepage flow that developed at the sharp corners in the conical geometry (cf. figure 8).
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FIGURE 11. (Colour online) Plots illustrating the effect of changing the geometry of
the syrinx. (a) and (b) The cycle-averaged seepage velocity and normal traction acting
onto the cord (as in figure 8; see caption to that figure for details) when the conical
ends of the syrinx in the original model are changed to ellipsoids. (c) Cycle average
of the relative change in syrinx volume, 1Vsyrinx(t)/Vsyrinx(t = 0) (red solid line), the fit
to the exponential (4.2) (thick dashed line), and its asymptotic limit (thin dash–dotted
line) for the two syrinx geometries. Time is scaled on the period of the oscillation, T .
(d–f ) Comparison of the cycle-averaged syrinx deformation for the (d) original and (e)
ellipsoidal syrinx shape. Broken lines: undeformed shape; solid lines: deformed shape.
( f ) Direct comparison between the deformed cycle-averaged syrinx shapes for the two
geometries. All displacements are exaggerated by a factor of 40 and lengths are scaled
on the maximum diameter of the dura, D. k= 10−13 m2.
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Figure 11(d–f ) compares the cycle-averaged deformation of the syrinx for the two
geometries and shows that the deformation of the syrinx cover for the two cases
is graphically indistinguishable. In fact, even the deformation of the syrinx ends is
practically identical in the sense that for both geometries it is dominated by their
axial displacements. It is difficult to identify the mechanism via which the change in
the syrinx geometry leads to the further increase in the syrinx volume that is evident
in the time trace in figure 11(c). This is because even though the change in the
syrinx geometry increases the relative change in syrinx volume by approximately 25 %,
the net change in syrinx volume of O(10−3 %) is far too small to be observable in
the deformation shown in figure 11(d–f ), despite the fact that the displacements are
exaggerated by a factor of 40 in these plots.

To assess the robustness of our findings we also studied the effect of variations
in the waveform of the imposed pressure at the cranial end, Pcranial(t), by replacing
the sinusoidal signal (2.16) with a waveform that more closely resembles actual
cardiac-induced pressure fluctuations. While this forcing generated higher-frequency
components in the system’s response (results not shown in the interest of brevity),
the overall behaviour (in terms of the tissue deformation, CSF flow and the character
of the seepage flows) remained qualitatively unchanged. In particular, the forcing still
generated only a very small increase in the cycle-averaged syrinx volume – even
smaller, in fact, than that generated by the sinusoidal forcing (2.16)).

Finally, we considered the effect of variations in the initial syrinx volume which
we illustrate in figure 12(a). The figure shows time traces of the relative change
in syrinx volume, created by the sinusoidal forcing (2.16), for four different syrinx
shapes. These were generated by displacing the conical syrinx ends symmetrically
in the axial direction, as illustrated in figure 12(b) which shows plots of the syrinx
shapes (in the (r, z) plane) using a 1:1 aspect ratio. The system’s overall behaviour
(again assessed in terms of the tissue deformation, CSF flow and the character of the
seepage flows) was again found to be qualitatively similar in all cases and the change
in the cycle-averaged syrinx volume was always very small. A reduction/increase in
the length of the syrinx can be seen to lead to a systematic reduction/increase in the
relative change in syrinx volumes, so that for sufficiently short syrinxes the volume
change becomes negative. This implies that the presence of seepage flow does not
always lead to an inflation of the syrinx. Because the actual change in syrinx volume
remained very small, we were again unable identify a simple mechanism that would
explain how the volume change depends on the length of the syrinx – the differences
between the various cases are too small to be observable, and there may, of course,
not even be a single mechanism that is responsible for the observed behaviour. Similar
behaviour is found when the position of the syrinx is shifted relative to the block;
see Bertram & Heil (2016).

4.2. The effect of solid inertia and the slip boundary conditions
For the forcing frequencies and permeabilities considered here, inertial effects do not
have a strong effect on the deformation of and the seepage flow within the syrinx
cover: the results obtained from our analytical model (which excluded the terms on
the right-hand side of (2.3) and (2.4)) agree perfectly with those from corresponding
direct numerical simulations in which inertia was included. This is because the
deformation of the syrinx cover is dominated by its (small) radial displacements.
However, inertia does have a noticeable effect on the system’s overall behaviour
because the cord tissue undergoes relatively large time-periodic axial displacements
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FIGURE 12. (Colour online) (a) Relative change in syrinx volume (instantaneous and
cycle averaged, as in figure 6) for k= 10−13 m2 for syrinxes of different length, increasing
in the direction of the arrow. (b) Plot of the four syrinxes (in the (r, z) plane) using a
1:1 aspect ratio.

(and hence accelerations). These do affect the fluctuations in syrinx volume but
appear to have little effect on the its ultimate cycle average; see figure 13(a). We
also investigated the effect of variations in the porosity φ which, within our simple
model for the behaviour of the poroelastic tissues, only features in the inertial terms
for the pore fluid in (2.4). Repeating the simulations with a value of φ= 0.03 yielded
results that were graphically indistinguishable from those obtained with the default
value of φ = 0.3 – another indication that the seepage flow is far too weak to have
a significant effect on the system’s overall behaviour.

Figure 13(b) demonstrates that the slip of the fluid along the porous FSI interfaces
has little effect on the result. The slip coefficient γ in (2.15) is proportional to the
fluid’s dynamic viscosity, γ = αBJS µfluid, where αBJS is an O(1) constant; see Beavers
& Joseph (1967). Equation (2.15) shows that slip effects are most likely to play a
significant role for large permeabilities. We therefore repeated the simulation for k=
10−12 m2 (the largest permeability considered in this study) with a non-zero value of
the inverse slip coefficient, γ −1 = µ−1

fluid (the value for αBJS = 1). Figure 13(b) shows
that this has no visible effect on the results.

5. Summary and discussion
The results from the fully coupled FSI simulations and from our simple analytical

model provide a clear picture of the mechanism by which poroelastic fluid–structure
interaction controls the mass transfer between the SSS and the syrinx. For the
relatively small permeabilities encountered in the spinal cord (see below for a more
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FIGURE 13. (Colour online) Relative change in syrinx volume (instantaneous and cycle
averaged, as in figure 6) for k = 10−13 m2 with (solid) and without (dashed) the inertial
terms in (2.3) and (2.4). (b) Relative change in syrinx volume for k= 10−12 m2, allowing
(γ −1 = µ−1

fluid; solid) and not allowing (γ −1 = 0; dashed) for tangential slip at the FSI
interfaces.

detailed discussion of the constitutive models and their parameters), the system’s
overall behaviour is dominated by the interaction between the elastic deformation
of the various tissues and the fluid flow in the SSS and the syrinx. This interaction
remains very similar to that observed in Bertram’s (2010) study of the corresponding
impermeable system. In particular, nonlinear effects arising through the time-varying
flow resistance across the narrow gap under the block create a cycle-averaged
difference in fluid pressure between the cranial and caudal part of the SSS – the
‘valve mechanism’. In the impermeable system, the resulting transmural pressure
across the syrinx cover is such that it has a tendency to drive fluid from the SSS
into the syrinx. When the permeability of the tissue is accounted for, any initial
imbalance in the cycle-averaged seepage flow into/out of the syrinx leads to a
change in syrinx volume and an adjustment of the various fluid pressures until a new
cycle-averaged steady state is established. Computations show that the adjustment in
the fluid pressures is achieved primarily by a small reduction in fluid pressure in the
caudal part of the SSS, with the pressure in the syrinx and in the cranial part of the
SSS remaining virtually unchanged compared to the impermeable case. The direction
of the transmural pressure differences that drive fluid across the porous syrinx cover
remains unchanged too and in the poroelastic system they generate a cycle-averaged
circular seepage flow which transports fluid into/out of the syrinx in its caudal/cranial
part. Once the system has reached its cycle-averaged steady state, there is no net
mass transfer into the syrinx – the inflow exactly balances the outflow. We developed
a simple analytical model which shows that for elongated syrinx geometries in which
most of the seepage flow into/out of the syrinx passes through a long, thin syrinx
cover, the requirement of zero cycle-averaged in/outflow implies that the change in
the cycle-averaged syrinx volume is close to zero. This is consistent with the results
from the full FSI model which showed that the change in syrinx volume is indeed
very small. We note that the analysis presented in § 4.1.2 relied on the fact that for
sufficiently thin syrinx covers, both the radial seepage flux and the radial displacement
of the syrinx cover depend linearly on the local transmural pressure difference across
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the syrinx cover. For thicker syrinx covers, all terms in (4.14) (including those that,
like term II, do not depend on the transmural pressure difference alone) will affect
the expansion (or compression) of the syrinx.

The steady circular seepage flow that develops after the decay of the initial
transients results in a continuous mass transfer between the syrinx and the SSS.
However, its magnitude is generally much smaller than that of the time-periodic
fluctuations which are represented by the higher Fourier modes ( j > 0) in the
expansion (4.3). The unsteady flow is driven primarily by the kinematic redistribution
of the fluid within the periodically expanding and contracting solid matrix. For
sufficiently small permeabilities the oscillatory seepage flows and the pore pressures
develop pronounced boundary layers at the FSI interfaces and at the material interfaces
between the different tissue layers, e.g. between the pia and the cord. The thickness
of the boundary layers at the FSI interfaces controls how far the oscillatory seepage
flows penetrate the solid matrix.

The overall behaviour was found to be robust to changes in the waveform of the
imposed pressure fluctuations, Pcranial(t), and to changes in the shape and the size
of the syrinx: while the precise value of the change in the cycle-averaged syrinx
volume was found to depend sensitively on these parameters (and, for sufficiently
short syrinxes can even become negative), its value was always very small –
possibly too small to regard it as a sufficiently strong stimulus for a subsequent
remodelling of the cord tissue which would lead to a long-term growth of the syrinx.
While, over sufficiently long time scales even a small stimulus may initiate/drive
a remodelling process, our model neither permits us to explore this nor to pass
judgement on the likelihood of other mechanisms (possibly non-mechanical in nature,
such as inflammation) being at work. There is a considerable body of literature on
mechanically induced remodelling in the cardiovascular system (see, e.g. Humphreys
(2008) for a review of arterial remodelling), but we are not aware of any comparable
studies in the context of syringomyelia.

The model used in this study incorporates a fair amount of anatomical detail such
as the multi-layer structure of the spinal cord. However, in an attempt to facilitate
the identification of the dominant mechanisms that control the mass transfer from the
SSS to the syrinx, we deliberately applied many drastic simplifications: in vivo, neither
the geometry nor the flow are perfectly axisymmetric; the SSS is traversed by nerve
bundles and connective tissue filaments known as trabeculae; biological tissue is not
perfectly poroelastic and its material properties are anisotropic and inhomogeneous;
the dura is surrounded by other tissue which we omitted from our model (though we
note that Bertram (2010) deliberately set the thickness of the dura to a value that is
somewhat larger than in vivo in an attempt to account for the stiffness of the backing).

Recent improvements in MRI-based imaging techniques have made it possible
to visualise not only the geometry of the SSS but also the time-resolved three-
dimensional flow of CSF within it; see, e.g. Bunck et al. (2011), Yiallourou et al.
(2015), Heidari Pahlavian et al. (2014), Heidari Pahlavian et al. (2015). These
visualisations show that, as expected, deviations from an axisymmetric geometry tend
to induce secondary non-axisymmetric flow features such as the formation of jets near
localised constrictions, and recirculation regions downstream of anatomical features
such as nerve roots or denticulate ligaments. However, these complex localised flow
features appear to have little effect on the average CSF flow (Stockman 2006), and
more importantly, on the CSF pressure distribution along the SSS (Heidari Pahlavian
et al. 2014) which we showed to be the key feature that controls the seepage flow
from the SSS to the syrinx. Note, however, that simulations by Gupta et al. (2009)
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and Gupta et al. (2010) showed that in the cranial subarachnoid space the presence
of the trabecular network has a significant effect on the CSF flow.

Our model assumed the system to be forced exclusively by the cranial pressure
fluctuation, Pcranial(t), which we assumed to be correlated with the heart beat. CSF
flow can also be affected by respiratory manoeuvres, with sneezing and coughing
providing particularly powerful, transient pressure perturbations; see, e.g. Elliott
et al. (2013). While steady-state quiet breathing generates pressure variations of
much smaller amplitude, it may still have an effect on the CSF flows (see, e.g.
Dreha-Kulaczewski et al. 2015).

Regarding the constitutive modelling we note that, even though the spinal
cord is viscoelastic (see, e.g. Chang, Hung & Feng (1988)), for the forcing
frequencies considered in the current study, viscoelastic effects only play a minor role.
Furthermore, even though we did not include viscoelastic effects into the constitutive
equation for the drained solid matrix, the dissipation associated with the seepage flows
introduces viscous losses into the solid model; see, e.g. Elliott (2012) for a study
of the effects of poroelasticity on the propagation of pressure waves along the SSS.
Estimates for the elastic constitutive parameters such as the tissues’ Young’s moduli
vary considerably and most tissues display noticeable anisotropy. We refer to Elliott
et al. (2013) for a compilation of data from a variety of sources; in the current study
we used the same (isotropic) values that were used by Bertram (2010) to facilitate
comparisons between the two studies. Similar comments apply to parameter values for
the tissue permeability where estimates span several orders of magnitude, ranging from
O(10−14 m2) for white matter to O(10−16 m2) for grey matter (see, e.g. Smillie et al.
2005), with the permeability of the cord greater in the longitudinal than the transverse
direction (Rossi et al. 2008). While it is relatively straightforward to include such
details in a computational model, the determination of the appropriate patient-specific
parameters is difficult. As a result, even in studies that are based on anatomically
realistic geometries, ‘parameters are usually obtained experimentally from animal
cadavers’, to quote from Støverud et al. (2015) who assessed the sensitivity of a
poroelastic model of the spinal cord (with anatomically correct geometry determined
from MRI scans) to variations in the constitutive parameters.

While our comparatively simple model clearly cannot (and is not intended to)
capture all of these details, we believe that its relative simplicity helps to elucidate
the fundamental mechanisms by which poroelastic fluid–structure interaction controls
the mass transfer between the SSS and the syrinx.
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Appendix A. Validation and spatio-temporal convergence tests
oomph-lib’s axisymmetric Navier–Stokes equations and FSI capabilities are well

validated and have, over the years, been used in a wide variety of studies (e.g. Hewitt
et al. 2011; Hazel et al. 2012; Pihler-Puzovic et al. 2015). To validate the driver code
developed for the problem considered in this paper we initially recomputed some of
the cases from Bertram’s (2010) study of the impermeable system. Bertram (2010)
performed these computations allowing for a realistic degree of liquid compressibility
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FIGURE 14. (Colour online) Evolution of the relative change in syrinx volume,
1Vsyrinx(t)/Vsyrinx(t= 0) for the standard resolution (red solid line); an increased temporal
(thick blue dashed line) and spatial (markers) resolution, respectively. Parameters as in
figure 6.

but the Mach number of the flows is so small that this had no practical effect on the
results. The predictions for key quantities, such as the cycle-averaged fluid pressures
shown in figure 14 in the present paper, agreed extremely well with Bertram’ (2010)
original results. The newly implemented equations of poroelasticity were validated
by comparing the numerical results against a variety of analytical solutions such as
those presented in figure 10 in this paper. Figure 14 shows the results of spatial and
temporal convergence tests for the fully coupled FSI simulations. The red solid line
shows the relative change in syrinx volume for the standard spatial resolution (80 time
steps per period and a spatial discretisation with approximately 1.5 million degrees of
freedom). This is compared to results from a simulation with twice the number of
time steps per period (thick blue dashed line) and with an increased spatial resolution
(9.4 million degrees of freedom). The figure indicates that the results obtained with
the standard spatial/temporal resolution are fully converged.
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