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SUMMARY

Recently, a way was opened with the development of many mathematical methods to model and analyze genome-scale

metabolic networks. Among them, methods based on graph models enable to us quickly perform large-scale analyses

on large metabolic networks. However, it could be difficult for parasitologists to select the graph model and methods

adapted to their biological questions. In this review, after briefly addressing the problem of the metabolic network re-

construction, we propose an overview of the graph-based approaches used in whole metabolic network analyses.

Applications highlight the usefulness of this kind of approach in the field of parasitology, especially by suggestingmetabolic

targets for new drugs. Their development still represents amajor challenge to fight against the numerous diseases caused by

parasites.
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INTRODUCTION

Despite constant efforts to find new remedies,

eukaryotic parasites remain today one of the most

damaging plagues for the human species. A classical

approach to fight against a parasite consists of dis-

turbing its metabolism in a lethal way, for instance by

the use of a drug inhibiting the action of a target

enzyme. This drug also has to be designed in order to

limit its effects on the host metabolism. To decipher

both the effect of drugs and their potential targets, it

is important to understand as completely as possible

the metabolism of the parasite and the host.

Descriptive studies can be achieved by using low-

and high-throughput experimental techniques. For

instance, carbonflux tracing or knock-out tests enable

us to describe a few central metabolic pathways in

several parasites (Coustou et al. 2008). But gene

regulation and other complex processes can trigger

metabolic events in pathways other than the ones

under study. It is thus necessary to complete these

pathway-oriented studies with a larger (genome-

scale) analysis of metabolism. Functional annotation

of a complete genome provides an overview of the

enzymatic activities potentially performed by an

organism. These activities can then be translated into

biochemical reactions gathered into metabolic path-

ways. For several parasites, these pathways are stored

in browsable databases such as KEGG (Kanehisa

et al. 2010) or BioCyc (Caspi et al. 2008). Although

they are very helpful for the study of metabolic

functions independently, these databases do not

enable us to analyse the metabolism at once in its

entirety. This is particularly the case when a meta-

bolic process spans several metabolic pathways (see

Fig. 1). An alternative to pathway-oriented analysis is

to gather all the reactions present in the organism’s

metabolism into a single metabolic network. In that

case, a compound or a reaction occurring in several

pathways will be considered as a single element thus

keeping a faithful image of the connectivity (see

Fig. 1b).

The most detailed and faithful computational

analysis of metabolism consists of modelling each

reaction using all its kinetic parameters in order to

get a list of ordinary differential equations. Solvers

can then be applied to this mathematical model in

order to simulate the dynamical behaviour of the

metabolism (Garfinkel, 1968; Voit, 2002). This

method provides the most detailed image of metab-

olism but requires many parameters such as enzyme

kinetic properties or initial concentrations. This

model is thus not suitable for large-scale studies.

Constraint-based methods such as Flux Balance

Analysis (Palsson, 2000) or elementarymode analysis

(Schuster and Hilgetag, 1994), enable us to model

the distribution of the flux in the metabolic network

under certain conditions. Nevertheless, to be really

efficient, these models need a rigorous and tedious

data curation step as they require exact stoichio-

metric coefficients and system boundaries to fulfil

the steady-state assumption on which they are based
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(Reed et al. 2006). Some global metabolic questions

can be addressed using less data in the network. The

graph model only requires a list of reactions and is

already a powerful tool to get a first insight on a com-

plete metabolic network. For instance, the search of

potential drug targets can be guided by using a meta-

bolic graph model. This mathematical object has

long been studied and a large range of algorithms to

analyse graphs is already available. Some of these

methods are particularly well suited for biological

networkmining (Barabási and Oltvai, 2004). A graph

is made of a set of nodes and links (edges) connecting

them. This modelling is itself a challenge since there

are several ways to build a metabolic graph, depend-

ing on the elements (reactions, compounds, en-

zymes) and the kind of interactions one wants to

model (Lacroix et al. 2008).

Moreover, the relevance of an algorithm output is

strongly conditioned by thesemodelling choices.The

challenge for parasitologists interested in such ap-

proaches is to knowwhich graphmodels andmethods

are more appropriate to their biological questions.

The purpose of this review is to guide parasitologists

in graph modelling of parasite metabolism, from the

construction of the metabolic network to the choice

of a graph model and suitable methods. As the

pertinence of the results obtained from modelling is

often directly linked to the quality of the original data,

we first address the metabolic reconstruction pro-

cess and its limitations. Then, we briefly review the

characteristics of metabolic databases and format

exchanges focusing on their utility in network mod-

elling. Next, we detail the different ways to model a

genome-scale metabolic network into a metabolic

graph. Finally, we demonstrate the relevance of

graph modelling for analysing parasite metabolism,

in particular by providing a framework to map omics

experiments, and by using the graph topology to pro-

vide some clues about new drug targets.

METABOLIC NETWORK RECONSTRUCTION

The reconstruction of themetabolic network consists

precisely of defining the reactions potentially occur-

ring in a given organism.

From genomic data

The process classically starts by determining the en-

zymatic activities potentially coded by the genome of

Fig. 1. Difference between pathway- and network-oriented modelling. Given a text-book description (a.) of energetic

metabolism, two kinds of models can be generated, a network-oriented (b.) and a pathway-oriented one (c.). In fact,

energy metabolism can be divided into two pathways: glycolysis and Krebs cycle both sharing the pyruvate. In the

network-oriented model pyruvate is modelled by one node whereas it is duplicated in the pathway-oriented model. For

a path search (e.g. which reactions are linking glycogen and acetyl coenzyme A), the network model is more adapted,

especially when the path spans several pathways.

Ludovic Cottret and Fabien Jourdan 1394

https://doi.org/10.1017/S0031182010000363 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182010000363


an organism.This functional annotation is essentially

performed by sequence homology but could be

refined by using genome-context information (syn-

teny groups, protein co-evolution and gene fusion) or

generated by transcriptomics or proteomics. To

perform this first step, many methods have been

developed. Their efficiency and limitations have

been discussed in recent papers (Francke et al. 2005;

Reed et al. 2006; Lacroix et al. 2008) and, in par-

ticular, when applied to eukaryotic parasites (Pinney

et al. 2007).

The second step consists in inferring a list of re-

actions from the list of metabolic activities deduced

from the functional annotation of the genome. Most

enzymatic activities are coded by an EC number,

made of four point separated numbers (e.g. 1.6.3.1),

each one providing a more detailed description

of the enzymatic activity. By referencing to

databasesasENZYME(Bairoch,2000),orBRENDA

(Schomburg et al. 2004), a list of potential reactions

can be linked to each EC number. It may happen that

an enzyme has no assigned EC number. To circum-

vent this problem, the PATHOLOGIC software

compares the enzyme name to a dictionary where

enzymatic activity names are linked to potential re-

actions (Karp et al. 2002).

This preliminary list of reactions has to be refined

for several reasons. Some reactions may be missing

because the corresponding enzyme was not assigned

during the annotation process. To overcome this

limitation, it is possible to use the information about

metabolic pathways already inferred in the organism.

In fact, if a metabolic pathway is known as being

present in the organism, most of its reactions should

be present in the list (Green and Karp, 2004). For

each missing reaction, the Pathway Hole Filler

proposes a list of candidate genes that could corre-

spond to the missing enzymatic activity. This search

is performed by homology to genes coding for the

same activity in other organisms. To strengthen this

prediction, the co-localisation with other genes of the

pathway is also taken into account (Green and Karp

2004). The SEED system proposes the same ap-

proach but, in addition, the list of reactions is con-

strained by checking the feasibility of biological

scenarios on the inferred network. A scenario is

simply the synthesis of a set of products from a set of

substrates using a sequence of reactions. If the model

used does not fulfil this constraint, a list of potentially

missing reactions is proposed (DeJongh et al. 2007).

An enzyme can potentially catalyse several re-

actions, but it is often the case that not all these re-

actions occur in a single organism. For instance,

although primary metabolites are often the same for

homologous enzymes across organisms, the use of

cofactors may vary (Reed et al. 2006). A first option

to determine the specificity of an enzyme consists

of manually browsing BRENDA (Schomburg et al.

2004). This database contains, for a large range

of organisms, literature-based enzyme reaction cor-

respondences. For many non-model organisms, in

particular eukaryotic parasites, BRENDA does not

cover the entire list of enzymes. In this case the

SEED (DeJongh et al. 2007) and the method called

AUTOGRAPH (Notebaart et al. 2006) propose to

automatically do this enzyme specificity assignment

by looking for the considered enzyme in a reference

organism.

Substrates of many reactions inferred from EC

numbers or enzymatic activity names are not actually

specified but correspond to generic classes of com-

pounds (e.g. an aldehyde). In a network analysis,

these reactions cannot be considered as the other

ones. It is necessary to determine manually precisely

which metabolites are actually involved. In the pre-

vious reconstruction steps, the direction of reactions

is not determined. A simple way to achieve this as-

signation consists of considering a reaction as irre-

versible if its direction is always the same in all the

pathways where it occurs. However, the direction

of a reaction can vary depending on the cell con-

ditions, such as the temperature, pH and concen-

tration of themetabolites (Reed et al. 2006).Recently,

some methods were proposed to combine the overall

topology of the network and thermodynamical con-

straints to infer these directions (Kümmel et al.

2006; Feist et al. 2007).

The localisation of enzymes and consequently of

the reactions in membrane-bound compartments

have a great impact on the overall functioning of

metabolism, especially in eukaryotes. In a complete

metabolic network, some reaction cascades are im-

possible because of the sub-cellular localisation of

the enzymes involved. In Roberts et al. (2009) and

Chavali et al. (2008), the authors added compartment

information in the genome-scale metabolic recon-

struction for Trypanosoma cruzi and Leishmania

major, respectively according to the literature. Un-

fortunately, this kind of information is not available

for every organism and implies expensive large-scale

experiments. To circumvent this problem, automatic

methods based on signatures in the sequence or in

the structure of the enzyme were designed (Casadio

et al. 2008). However, the accuracy of these methods

depends on the organism and the compartments.

Mintz-Oron et al. (2009) propose a method which

takes into account stoichiometric constraints and

a priori localised reactions to predict the compart-

mentalisation of the whole network.

During their life cycles, the metabolism of para-

sites can be the subject of substantial modifications,

in particular those caused by modifications of the

environment. Therefore, to build stage-dependent

models, it is essential to determine in which life stage

each reaction is active. For instance in proteomics,

data are used to characterize and analyze the meta-

bolism of Trypanosoma cruzi when the parasite is

present in the insect gut (Roberts et al. 2009).
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From metabolomic data

In silico reconstruction has mainly been done using

genome annotation. However, the development of

high-throughput methods allows getting a different

point of view on the metabolism. In this section we

will focus on the use of metabolomics to refine and

extend metabolic network reconstructions.

High resolution mass spectrometry (FT-ICR,

LTQ-Orbitrap) gives a more accurate view of the

metabolome (Wilson et al. 2005). In fact, Breitling

et al. (2006a) show that, with a precision lower than

two PPM (parts per million), the number of possible

molecular formulae is becoming low enough for an-

notation. Based on this level of accuracy, Breitling

et al (2006b) proposed a method to build networks

based only on high resolution masses called ab initio.

This method computes the difference M1xM2

between each pair of masses of the metabolome

{M1,M2}. This difference is then compared to a list

of potential biochemical transformations. If this

difference corresponds to one of the transformations

then a potential link is defined between two meta-

bolites. For instance, if the difference corresponds

to the molecular weight of a water molecule then a

link modelling the adding/removing of a water mol-

ecule is added to the network. This method provides

a potential network but does not take into account

thermodynamic rules or cellular localisation, and

really depends on the quality of the mass list used as

input. The software Metanetter (Jourdan et al. 2008)

implements this algorithm and allows the visualiza-

tion into Cytoscape (Shannon et al. 2003) software.

Metabolomics can associate quantitative values

with observed metabolites. In a perturbed system

metabolite quantities can be followed during a time

series. There is a large range of probabilistic methods

able to imply relations between metabolites from

these quantitative data (Bayesian methods, corre-

lation based methods … etc). The main limitation in

using these approaches for metabolic network is that

the predicted links (edges) do not necessarily corre-

spond to a single biochemical reaction (de la Fuente

et al. 2004). A great advantage of ametabolic network

reconstruction based on metabolomics is that it de-

tects non-enzymatic reactions and that it does not

depend on the availability of a genome sequence.

However, the approaches describedhere are very sen-

sitive and generate many false positive links between

metabolites. Furthermore, even with high resolution

metabolomic data, one mass can match several meta-

bolites (Kind and Fiehn, 2007), adding imprecision

in the metabolic network produced. When both

genomic and metabolomic data are available for

the same organism, the confrontation of the two

sources can greatly improve the quality of the

metabolic network. One of the next challenges in the

metabolic network reconstruction will be to create

methods able to integrate the network built from

genomic annotations and the one built from meta-

bolomic experiments and other omics experiments.

Table 1 presents a non-exhaustive list of tools to

reconstruct metabolic networks.

Metabolic databases

The two most commonly used metabolic databases

are BioCyc (Caspi et al. 2008) and KEGG (Kanehisa

et al. 2010). The main advantage of these two data-

bases is that they have an open access policy for the

data they store. These data are of different kinds:

genomic, biochemical, and metabolic. Moreover,

they cover almost the entire scope of organisms that

have been sequenced. Finally, they offer a wide

range of bioinformatics tools to mine metabolic

networks.

The main difference between these two databases

is their metabolic network reconstruction strategy.

KEGGismade of a unique repositorywhere allmeta-

bolic reconstructions are centralised and were built

Table 1. Metabolic reconstruction tools

Name Input Outputs
Network
Export Type References

Pathway-tools
http://bioinformatics.ai.sri.
com/ptools

Annotated genome Reactions
Pathways

BioPax Standalone Karp et al.
(2002)

KAAS
http://www.genome.jp/tools/
kaas/

Protein sequences EST Orthology groups
KEGG Maps

No Web server Moriya et al.
(2007)

PRIAM
http://priam.prabi.fr

Non-annotated genome EC numbers No Standalone Claudel-Renard
et al. (2003)Protein Sequences KEGG maps

SharkHunt
http://bioinformatics.leeds.
ac.uk/shark/

Non-annotated genome EC numbers No Standalone Pinney et al.
(2005)KEGG maps

RAST Server
http://rast.nmpdr.org/

Non-annotated genome Functional
annotation
Genome-scale
network model

SBML Web server Aziz et al.
(2008)
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by the same team. BioCyc works in a more dis-

tributive manner. The assumption is that no single

team can curate the reconstruction of such a large

range of organisms. For each new sequenced organ-

ism they provide a first automatically built recon-

struction. Then expert teams curate their own

organism-specific database. Moreover, the pathway-

tools, metabolic reconstruction software provided

by BioCyc, allow creation of a web front-end to

the curated database. This web interface imple-

ments BioCyc graphical conventions and functions.

BioCyc-like databases have been developed by ex-

pert groups for many parasites (see Table 2).

MetaTIGER database contains information about

the metabolic networks of more than 500 organisms

(Whitaker et al. 2009).The specificity of this database

is that it offers a comparative view of several organ-

isms on KEGG metabolic maps. Another specificity

of MetaTIGER is to give a confidence score to

each inferred enzyme. The databaseMalaria Parasite

Metabolic Pathway (MPMP) describes a collection

ofmetabolic pathways highly curated forPlasmodium

falciparum (Ginsburg, 2006). In addition to this

complete source of information, graphical views of

metabolic pathways show the transcription level of

metabolic genes according to the stage in the life

cycle of the parasite. Moreover, MPMP allows a

direct access to PubMed to obtain articles on meta-

bolic pathways specific to Plasmodium falciparum.

But it is not possible to retrieve the data in another

Table 2. Metabolic databases containing metabolic network information about eukaryotic parasites

Database
Parasites present in the
databases

Additional tools and
information References

ApiCyc Apicomplexean
metabolic pathways
http://apicyc.apidb.org

Cryptosporidium hominis BioCyc tools:
Cryptosporidium parvum Cross species comparison
Plasmodium berghei Advanced query tool
Plasmodium chadaudi User experiment data

painting onto the
cellular overview diagram

Plasmodium falciparum
Plasmodium vivax
Plasmodium yoelii
Toxoplasma gondii

LeishCyc
http://leishcyc.bio21.unimelb.edu.au/

Leismania major BioCyc tools Doyle et al.
(2009)

TrypanoCyc
http://biocyc.org/TRYPANO/

Trypanosoma brucei BioCyc tools Chukualim et al.
(2008)

Malaria Parasite
Metabolic Pathways
http://sites.huji.ac.il/malaria/

Plasmodium falciparum Pubmed interactive query Ginsburg (2006)

Stage-dependent
transcription of the genes

KEGG
http://www.genome.jp/kegg/

All parasites sequenced Drug and xenobiotic
pathways

Kanehisa et al.
(2010)

Color objects in map
Web services

Reactome
http://www.reactome.org/

Entamoeba histolytica SBML, BioPax,
Cytoscape export

Matthews et al.
(2009)

Plasmodium falciparum User experiment data
painting onto the cellular
overview diagram

MetaTIGER
http://www.bioinformatics.leeds.
ac.uk/metatiger/

All parasites sequenced Cross-species comparison Whitaker et al.
(2009)

BIGG database
http://bigg.ucsd.edu/

Leismania major SBML and excel files

MetExplore
http://metexplore.toulouse.inra.fr

Cryptosporidium hominis SBML, Cytoscape export
Cryptosporidium parvum Network filtering
Plasmodium berghei Mass Mapping
Plasmodium chadaudi
Plasmodium falciparum
Plasmodium vivax
Plasmodium yoelii
Toxoplasma gondii
Leismania major
Plasmodium falciparum
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format than the graphic one which makes the use

of other bioinformatics tools difficult. Table 2 pres-

ents a non-exhaustive list of databases containing

information about the metabolism of eukaryotic

parasites.

Data exchange

One aim of metabolic reconstruction is to allow the

application of several computational methods on a

metabolic network. But these methods are often im-

plemented in various softwares. To facilitate the use

of these softwares on the same metabolic network,

standard exchange formats have been developed. It is

thus relevant for databases to export networks in at

least one of these formats. For metabolic networks

mainly two formats are available: Biopax and SBML,

both are based on the XML format (Extensible

Markup Language). Both formats and their specifi-

city have been described by Strömbäck and Lambrix

(2005). BioPax format is more complete since it is

able to handle hierarchical links between objects and

all the information, from genes to metabolites, can be

stored in a single file. Nevertheless, it seems that its

complexitymakes it rarely used inmetabolic network

tools. The SBML format (Systems Biology Markup

Language) is much simpler. It is essentially made of a

list of reactions with a list of all the substrates and

products (Finney and Hucka, 2003). Information on

metabolite concentrations and kinetic properties can

be added to allow the numerical simulation of the

network. SBML is now used by a large number of

systems biology software.

The previously mentioned databases do not pro-

vide a description of the whole network in these

formats. The BIGG web server (http://bigg.ucsd.

edu/) gives access to around 40 highly curated meta-

bolic reconstructions directly available in SBML

format. But BIGG contains only a metabolic recon-

struction for one eukaryotic parasite (Leishmania

major). Recently, our group developed the web ser-

ver MetExplore (http://metexplore.toulouse.inra.fr)

that contains about 50 metabolic networks built

from genomic annotations and available in SBML

format. Of them, about 10 come from eukaryotic

parasites (Table 2). SBML format also allows graph

Fig. 2. Metabolic graph models. Given a textual description of the five reactions of the network, five metabolic graph

models can be built. In this figure and all the following ones, the round nodes correspond to the metabolites and the

square nodes to the reactions. In the compound graph (a), nodes are compounds and two compounds are connected if

they are input and output of a reaction. In the reaction graph (b) nodes are reactions and two reactions are connected if

the product of one is the substrate of the other. In the enzyme graph (c), nodes are enzymes and they are connected if at

least one reaction catalysed by the first enzyme has a product which is the substrate of at least one reaction catalysed by

the other enzyme. In the bipartite graph (d) there are two kinds of nodes, reactions and metabolites ; a compound is

connected to a reaction if it is a substrate or a product of this reaction. In the hypergraph model (e) substrates of a

reaction are connected to products of a reaction through a hyperedge.
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visualisation of ametabolic network. Indeed,Metaviz

(Bourqui et al. 2007) and Cytoscape (Shannon et al.

2003) represent a SBML file as a bipartite graph

and, beyond its visualisation, propose graph tools

to analyse it. Once the list of reactions and, eventu-

ally, the associated enzymes are obtained, the next

step in the graph modelling is to choose which el-

ements of the network among the reactions, the

compounds and the enzymes the model will be

focused on and the kind of relations that will be

modelled.

GRAPH MODELLING OF METABOLIC NETWORKS

Graph models

A graph is a mathematical object that describes

connections between elements of a dataset. A graph is

defined as a set of nodes connected by a set of edges

(for a more formal definition, please refer to Lacroix

et al. (2008)). Creating a graph model consists in

translating a list of textual descriptions of connec-

tions into a formal object. We will see that this

translation is not unique in the case of metabolic

networks.

Defining a graph model for a metabolic network

requires identifying which biological entities are as-

sociated with nodes and what is the meaning of the

connections between them. This choice mainly de-

pends on the question one wishes to address using

this graph model. The genome reconstruction de-

scribed above will provide a list of reactions, for

instance metabolites A and B are turned into meta-

bolites C and D. From this list it is possible to build

different kind of metabolic graphs (see Fig. 2),

depending on which objects and relations the mod-

elling is centred on.

In the compound graph, nodes correspond to

metabolites and there is an edge between two meta-

bolites if a reaction exists where one is the substrate

and the other the product. In Fig. 2a, A and C are

linked by an edge because the reactionR1 produces C

from A. In the reaction graph, nodes correspond to

reactions. There is an edge between two reactions if

one produces a metabolite that is consumed by the

other one. InFig. 2b, there is an edge betweenR1 and

R2 because R1 producesDwhich is a substrate of R2.

R5 is not linked to any other reaction node because its

substrate (L) is not produced by any reaction and its

product (C) is not used by any reaction.

In the enzyme graph, nodes correspond to en-

zymes. There is an edge between two enzymes if one

catalyses at least one reaction that produces a

metabolite which can be consumed by a reaction

catalysed by the other one. In Fig. 2c, there is an edge

between E3 and E1 since E3 catalyses R3 which

produces I and I is a substrate of R4, catalysed by E1.

One can observe that these graphs, even if modelling

the same network, do not have the same topological

properties, underlying the fact that it is necessary to

take particular care when choosing the model to use.

Moreover modelling a metabolic network using

one of these three graphs could lead to a loss of in-

formation. In fact, in Fig. 2a, an edge exists between

A and C that could be interpreted as: C can be cre-

ated using only A. Nevertheless, R1 requires both A

and B to produce C. Two kinds of models can

overcome this ambiguity: bipartite graphs and hy-

pergraphs. In a bipartite graph, the set of nodes can

be divided in two subsets. One kind of node can only

be connected to another kind of node. In the case of

metabolic networks one set of nodes corresponds to

the metabolites and the other one to the reactions. As

shown in Fig. 2d, it models the necessity of the

availability of the two substrates (A and B) to activate

the reaction and synthesize its products (C and D).

A hypergraph is a graph where edges (called hy-

peredges) can link more than one node. In a meta-

bolic hypergraph, nodes correspond to metabolites

and hyperedges link set of substrates and set of

products of the same reaction (see Fig. 2e). All these

kinds of graphs can be directed or not. In a directed

graph, each edge has a direction. In an undirected

graph, an edge has no direction, meaning that the

connection between its extremities can go in both

ways. When all the reactions are reversible, then the

metabolic network can be modelled by an undirected

graph. When all the reactions are irreversible, then

the graph has to be directed. Most often, reversible

and irreversible reactions coexist in a metabolic

network. Then, the classical way to model such a

network is to build a directed graph by splitting each

reversible reaction into two reactions, one for each

direction.

Graph filtering

The necessity of several substrates to activate a

reaction in a metabolic network should require

modelling it as a bipartite graph or a hypergraph.

However, many concepts, well defined for simple

graphs, have not been defined in hypergraphs or bi-

partite graphs. For instance, whereas the notion of

path between two nodes is quite normal in simple

graphs, the definition and the algorithms to compute

them remain subjects of discussion when dealing

with bipartite graphs and hypergraphs.Many studies

about metabolic networks thus used a simple graph

representation. Some of them lead to biological

misinterpretations caused by artifactual links be-

tween nodes. In particular, compounds such as water

or cofactors (e.g. ATP, NADH) are commonly

involved in reactions and cause shortcuts without

biological meaning when computing paths in a sim-

ple graph (Arita, 2004).

Several automatic ways exist to filter the network

to avoid these artifactual links. The first way is to

remove from the metabolic network the most
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connected nodes as they often correspond to cofac-

tors or to compounds (as water or protons) not ac-

tually involved in the main transformation of the

reaction. Several problems are linked to this quite

strong filter. The first one is that important meta-

bolites that are also very connected, such as pyruvate,

might be removed from the metabolic network. The

second one is that an objective way to choose that a

threshold does not exist, based either on its absolute

connectivity or on its rank among themost connected

metabolites, to decide if a metabolite has to be re-

moved or not. Finally, some important metabolic

processes (e.g. the formation of ATP) might disap-

pear from the metabolic network (Lacroix et al.

2008). Another way is to break down each reaction

into several sub-reactions corresponding to inde-

pendent transformations in the reactions. For

instance, it is easy to detect common cofactor trans-

formations (as ATPpADP+Pi) and to separate

them from the rest of the reactions. More subtle

methods split the reaction by computing the most

probable exchanges of group atoms between sub-

sets of substrates and products. In KEGG, such

information is available in the RPAIR database (Oh

et al. 2007).

Recently, methods based on graphs, either simple

or not, have been designed especially to analyse

metabolic networks. In the next section, we describe

some of them and their use in the context of para-

sitology.

USE OF METABOLIC GRAPHS IN PARASITOLOGY

Therapeutic target identification

In this section we consider the reactions as potential

therapeutic targets since generally drugs act on en-

zymes. The aim is to use the graph modelling to find

reactions that can be considered as potential ‘weak’

points of the network since inhibiting one of them

may have drastic metabolic effects. These reactions

will also have to be specific to the parasite to avoid

harming the host.

Yeh et al. (2004) introduced the notion of choke

points which aims at finding potential drug targets

based on the topological structure of the network.

Fig. 3. The choke point analysis pipeline. Given an original network (a) it is possible to detect four choke points

(reactions A, B, C and D of b). The enzymes catalysing these reactions are then compared using BLAST to the host

metabolic network, the circled reactions are present both in the host and in the parasite (c), they should not be

considered as relevant drug targets. The choke point B is thus discarded. Finally (d), the betweenness centrality is

computed. Higher values (e.g. 0.176 for A) mean that many paths go through the reaction. It helps ordering the three

remaining choke points: A (0.176), C (0.091) and D (0.013).
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The idea is that accumulation or depletion of a par-

ticular metabolite can strongly, maybe lethally, affect

the metabolism of a parasite. The formal definition

of a choke point is as follows: a reaction which is the

only one to consume (produce respectively) a meta-

bolite. In fact the inhibition of a choke point results

in the accumulation (starvation respectively) of a

metabolite. For instance, in Fig. 3b reaction A is the

only one to consume metabolite 1 and reaction B is

the only one to produce metabolite 3.

In their article, Yeh et al. (2004) computed all the

choke points of Plasmodium falciparum. They ident-

ified 216 reactions that corresponded to the choke

point definition. Among these reactions, 100% of the

existing drug targets and 87.5% of the clinically

proven targets were found. But this number is still

too important to directly use this list of choke points.

They proposed to filter this list by only keeping the

enzymes not coded by the human genome. In 2007,

Singh et al. followed the same idea with another para-

site,Entamoeba histolytica. Rahman and Schomburg,

(2006) improved this approach by ranking the choke

points by their centrality in the metabolic network.

The centrality of a reaction can be measured as the

proportion of shortest paths involving this reaction

in the reaction graph. We applied this analysis pipe-

line on the metabolic graph of Trypanosoma brucei

built from the metabolic information available in

TrypanoCyc (Chukualim et al. 2008). First, we

identified 285 choke points over a total of 422 reac-

tions involved in the small molecule metabolism of

T. brucei. Then, we removed from this set all the

reactions reported for Homo sapiens in HumanCyc

(Romero et al. 2005). We thus obtained a list of 64

choke points in T. brucei that are not involved in

H. sapiens. Finally, we computed the centrality as

defined above. Interestingly, the most central choke

point corresponds to the diacylglycerol choline

phosphotransferase (see Fig. 4) and is involved in the

synthesis of phospholipids in T. brucei. In parasites,

this pathway is involved in specific processes such as

host cell invasion, nutrient acquisition or host im-

mune system modulation and was indicated as an

interesting target for new drugs (Vial et al. 2003).

This quick analysis demonstrates the relevance

of using a graph model of the whole network to help

the parasitologists in the first steps of new drugs

design.

Fig. 4. Complete metabolic network of Trypanosoma brucei. Choke points not present in the human metabolic network

are highlighted in red and their size is proportional to their centrality in the network.
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Measure of the influence of metabolites on a

metabolic network

In the context of parasitology, it is important to know

how the metabolic network is affected by the import

of some metabolites in the cell of the parasite. The

imported metabolites can be products of the host

metabolism or therapeutic drugs.

The topology of metabolic graphs gives infor-

mation about the synthetic capacity of a set of

metabolites. Handorf et al. (2005) defined the scope

of a set of metabolites (so-called inputs) as the sum

of all metabolites that the inputs are able to produce

using the reactions available in an organism. On

the contrary, of shortest paths computed in simple

graphs, the scope concept takes into account the

availability of all the substrates to use a reaction

(Fig. 5b,c). The scope is computed in an iterative

way, called expansion process. At each step, the re-

actions using inputs are checked: if all the substrates

are in the set of inputs, then they are activated (fired)

and all their products join the set of inputs. The pro-

cess stops when no additional reactions can be fired.

The metabolites contained in the final set of inputs

represent the scope of the initial set of inputs.

Schwartz andNacher (2009) used the notion of scope

to determine the sub-network affected by several

drugs in the human metabolic network, and were

able to classify them considering the extent of their

scope.

Identification of the metabolic exchanges between the

parasite and its host

The complete understanding of the parasite’s metab-

olism requires knowledge of the metabolic ex-

changes between the parasite and its host. Indeed,

the metabolism of the parasite depends on the

availability of nutrients provided by the host. The set

of nutrients used by the parasite (so-called sources)

can be computed in an automatic way by considering

them as all the metabolites not produced by any re-

action. Because of the uncertainty about the meta-

bolic reconstruction, in particular about the direction

of the reactions, this definition is often not sufficient.

The method proposed by Borenstein et al. (2008)

to find the set of sources (or seeds) is based on the

identification of strongly connected components

Fig. 5. Identification of seeds, scopes and precursors. The metabolic network is represented as a bipartite graph.

(a) Identification of the seeds as defined by Borenstein et al. (2008). The identified seeds are the black nodes. Each seed

belongs to a strongly connected component without input edge in the graph. (b, c). Scope. The inputs are circled with

dotted lines and the compounds produced during the scope are coloured in black. In (b), the initial input is only able to

fire one reaction; all the substrates of the other reaction using it are not available. In (c), the extension of the input set

makes available all the substrates of the second reaction and enables the extension of the scope. (d) Precursors. The

target metabolite is circled with dotted lines, the potential precursors are the seeds defined in (a). Each graph represents

an alternative precursor set of the target. Each seed involved in the precursor set is coloured in black.
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(sub-network such that it exists a path between any

pair of nodes) that do not have incoming edge, form-

ing a collection of candidate sources (Fig. 5a). Once

the sources of the metabolites are defined, it is inter-

esting next to know which subsets of them (so-called

precursor sets) are sufficient to produce important

metabolites (so-called target metabolites), such as

those involved in vital or pathogenic functions in

a parasite (Fig. 5d). Handorf and Ebenhöh (2007)

used the expansion process that they defined to test

whether some precursor subsets heuristically defined

are able to produce given target metabolites. How-

ever, this method does not return all the alternative

precursor sets for a given set of targets and does not

take into account the presence of cycles between the

sources and the target metabolites. A method was

recently developed to overcome these limitations

(Cottret et al. 2008).

Metabolic networks for contextual analysis

Nikolsky et al. (2005) suggest that biological inter-

action networks can be used as a universal data

integration platform especially in drug discovery.

Metabolic networks help to understand the link be-

tween gene products and metabolites, thus they can

be used as a context for cross analysis, for instance to

cross transcriptomics and metabolomics data. In a

metabolomics study, not all the metabolites present

in the network are identified. To understand the

metabolic processes connecting the ones identified, it

is useful to put them in the context of the complete

metabolic network.

One way to map metabolomics data in metabolic

networks consists of using the ultra-high resolution

offered by new mass spectrometers (e.g. LTQ-

Orbitrap). In this case the molecular weight is

detected with sufficient resolution to get most of

the time a unique formula for a mass. Tools like

MassTRIX (Suhre and Schmitt-Kopplin, 2008) take

advantage of this high resolution by mapping masses

to metabolites. Thus, given a list of masses, it is poss-

ible to obtain a report showing metabolites identified

in each KEGG pathway regarding the number of

predicted metabolites for the organism under study.

Once the experimentally detected metabolites are

identified in the network, a first analysis can be done

by investigating these data visually in the network

context. Tools like KEGG or the omics viewer

provide pathway oriented visualisations. But as dis-

cussed previously, pathway analysis implies a loss

in the connectivity knowledge. Thus we will focus

on network visualisation. A wide range of tools to

visualise networks exists and some are particularly

dedicated to the visualisation of biological networks

(Shannon et al. 2003) even metabolic networks

(Bourqui et al. 2007). Drawing this kind of network

in a relevant way is a computational challenge

(Jünger and Mutzel, 2004). But a network view of

metabolomics data will generally result in an over-

loaded view. Thus a relevant approach consists of

extracting from this network the sub-network con-

necting the identified metabolites.

Sub-network extraction

A first approach consists of connecting two meta-

bolites if they are output and input of a reaction. But

the metabolites identified by metabolomics only

represent a part of the complete metabolome and are

generally linked through a sequence of reactions. It

could be due to technical artefacts. For instance,

metabolites with low masses will not be detected or

the separation method will preferentially detect par-

ticular families of metabolites. Moreover, some

metabolites are consumed almost immediately when

they are produced. Thus the sub-network extraction

method has to compute paths between metabolites.

An opposite solution would be to consider all the

possible paths between the identifiedmetabolites and

then to merge them to build the sub-network. In that

case, the size of the sub-network can be too large and,

in the worst case, can reach the size of the original

one. So the idea of Antonov et al. (2009) is to consider

only the shortest paths between two identified meta-

bolites. They consider the length of a path between

two metabolites as the number of metabolites (gaps)

that have to be produced to create one metabolite

from the other. If the number of gaps is not limited

then the sub-network can be large. Thus they build

one sub-network for each number of allowed gaps

until no new connection is made. For each sub-net-

work associated to a given number of gaps, a P value

is computed to indicate the statistical relevance of the

extraction. This method was designed for compound

graphs and, most importantly, they do not take into

account the availability of all the substrates to incor-

porate a reaction in their path. Recently, we proposed

an approach allowing only one gap but designed for

bipartite graphs and taking into account availability

of substrates to activate a reaction (Jourdan et al.

2010). These methods are quite useful for biological

interpretation since they help the expert focus on

relevant metabolic processes as they connect meta-

bolites of interest. Moreover it provides feedback on

the metabolomics data identification, for instance by

proposing metabolites that appear with a too low

abundance in mass spectra (Jourdan et al. 2010).

Table 3 presents a selection of web-servers pro-

viding graph functions to apply on metabolic net-

works.

DISCUSSION

Each step of metabolic reconstruction can generate

mistakes that can propagate to the following ones

(Lacroix et al. 2008). All these biases may create in-

consistency in the results of the network analysis
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used. Great efforts have been made in bioinformatics

to improve the quality at each level. Anyway the

reconstruction is a cyclic process because feedback

on analysis helps in new annotations of a network:

metabolic reconstruction is a permanent curation

process (Palsson, 2000).

Recently, Ginsburg (2009) criticised the efficiency

of automatic reconstruction methods for metabolic

networks. In particular he focused on the prediction

of metabolic pathways for eukaryotes. The author

compares the metabolic pathways predicted for

Plasmodium falciparum by different automatic

methods and available on three different databases

(BioCyc, KEGG and metaTIGER) to the manually

defined list present in the ‘‘Malaria Parasite Meta-

bolic Pathway’’ (MPMP) (Ginsburg, 2006). For each

automatic method, around 25% of the metabolic

pathways are present in MPMP. This study clearly

shows that metabolic pathways present in an organ-

ism cannot be determined only by comparison of

reference pathways. Ginsburg mentions false path-

way predictions which could have been avoided by a

manual curation as has been done in MPMP. Un-

fortunately, highly curated databases such asMPMP

are available for only few organisms. Thus it is

necessary, when using metabolic networks, to take

this limitation into account. More than these pre-

diction limitations, the organisation into metabolic

pathways is different from one database to another.

Thus to get a global unbiased view of the metabolism

it is better to analyse the data at the network level. In

fact, metabolic pathways are not independent and

they share reactions and compounds. For instance,

following a path spanning different pathways be-

comes difficult even in small metabolic networks (see

Fig. 1).

According to the biological question, the mod-

elling choice is a critical step in graph- based studies

of metabolic networks. It is the case for the definition

of biological entities associated nodes and edges but

also for the filters that should be applied to the

original network reconstruction. With a sufficiently

curated reconstruction and a relevant modelling

choice, we identified several examples showing that

metabolic graphs can enhance global studies of para-

sitemetabolism. From a computational point of view,

we showed that drug target identification could be

guided by studying the topology of the network. In

particular, the choke points are relevant starting

points for these studies. But they clearly benefit from

the combination with other topological measures as

centrality.

The metabolic graph facilitates the contextual

analysis of experimental data such as metabolomics.

This methodology is still a challenging problem that

requires new algorithms. The first difficulty is to

make the correspondences between masses or meta-

bolites identifiers and nodes in the metabolic graphs.

Table 3. Web-servers providing graph functions to apply on metabolic networks

Tools Functions References

MassTrix
http://www.masstrix.org $ Identification of metabolites

from masses

Suhre et al. (2008)

MetaPath
http://scopes.biologie.hu-berlin.de $ Scope of compounds

Handorf et al. (2007)

Meta Route
http://www-bs2.informatik.uni-tuebingen.
de/services/MetaRoute

$ Biolocally realistic path finding
Blum et al. (2008)

MetExplore
http://metexplore.toulouse.inra.fr $ Identification of metabolites from masses

$ Scope of compounds
$ Precursors
$ Choke points
$ Sub-network extraction from a

list of metabolites
NeAT
http://rsat.ulb.ac.be/rsat/index_neat.html $ Comparison between two graphs

$ Neighborhood of a set of input nodes
$ Path finding
$ Clustering

Brohée et al. (2008)

Pathway Hunter Tool
http://pht.tu-bs.de/PHT/ $ Biolocally realistic path finding

$ Choke points

Rahman et al. (2005)

TICL
http://mips.helmholt.z-muenchen.
de/proj/cmp/

$ Sub-network extraction from

a list of metabolites

Antonov et al. (2009)
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It is known that even with high resolution tech-

niques, the mass alone is not sufficient to give an

unambiguous identification (Kind and Fiehn, 2006).

Technical considerations, biological and chemical

knowledge are commonly used to identify metab-

olitesmanually frommetabolomics experiments.The

development of freely available automatic methods

taking into account clues other than mass is urgently

required to allow interpretation of the metabolomics

results. Even with metabolites already identified,

the lack of common controlled vocabularies and

ontologies makes difficult their mapping on a meta-

bolic network. Confronting metabolites identified

from metabolic experiments and metabolites present

in metabolic networks built from genomic anno-

tations allows the curation of both sources of infor-

mation. The second difficulty with interpreting

metabolomics studies by usingmetabolic networks as

context is to extract sub-networks relevant enough

to find the biological links between identified meta-

bolites. Some recent methods using the graph top-

ology have been developed (Antonov et al. 2009;

Jourdan et al. 2010). The integration in these

methods of biological considerations such as the

spent energy or the number of involved reactions,

should improve the selection of pertinent scenarios

that link identified metabolites.

All these graph-based methods provide a first in-

sight on the metabolism of a parasite. They are quite

useful since they only require the topology of the

network and are particularly well suited even for

genome-scale metabolic networks. The first con-

clusions drawn by these studies will then require a

more in-depth analysis, for instance by using flux-

based methods. All these results will be improved by

gathering parasitology community knowledge and

automatic methods to accelerate and strengthen the

curation of these metabolic networks. In particular,

stage and compartmental information are required to

get better metabolic models.
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