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wetting of the displaced liquid

EDSON J. SOARES1 AND RONEY L. THOMPSON2†
1LFTC, Department of Mechanical Engineering, Universidade Federal do Espirito Santo, Avenida

Fernando Ferrari, 514, Goiabeiras, 29075-910 ES, Brazil
2LFTC-LMTA, Department of Mechanical Engineering (PGMEC), Universidade Federal Fluminense,

Rua Passo da Patria 156, 24210-240 Niteroi, RJ, Brazil

(Received 19 February 2009; revised 6 August 2009; accepted 7 August 2009)

The motion of two immiscible liquids in a capillary tube is analysed, theoretically
and numerically, for the case in which a residual film confines the displacing liquid to
the core of this tube. The theoretical analysis has shown that the three flow regimes
predicted by Taylor (J. Fluid Mech., vol. 10, 1961, pp. 161–165), for the case of gas-
displacement, can only be achieved when the ratio of the viscosity of the displaced
fluid to that of the displacing one is greater than 2. An elliptic mesh generation
technique, coupled with the Galerkin finite-element method, is used to compute the
velocity field and the configuration of the interface between the two fluids. A map of
cases in the Cartesian space defined by the capillary number (Ca) and the viscosity
ratio (Nμ) is constructed in order to locate the different flow patterns the problem
exhibits. The critical capillary number at which the flow enters the transition range
between the bypass regime and the full-recirculating one is given. While a decrease of
the fraction of mass attached to the wall is achieved by decreasing Ca or increasing
Nμ, bypass flow patterns are formed as a consequence of high values of the capillary
number and viscosity ratio.

Key words: capillary flows, core-annular flows, Hele-Shaw/porous media

1. Introduction
The present work investigates the liquid–liquid displacement when a residual liquid

film of the displaced fluid is formed near the wall. An important application is
in oil recovery from porous media, where the liquid film of the displaced oil that
remains attached to the rocks has a significance in the efficiency of the recovery
during water-flooding operation. Typically, because of the high viscosity levels and
slow displacement velocities involved, these kind of processes occur with negligible
inertial effects. Besides that, as a consequence of the small length scale, the capillary
forces play a fundamental role in the physics of the phenomena.

Figure 1 shows a scheme of the problem analysed. The tube is initially occupied by
Phase 2 (generally a liquid) when Phase 1 (another liquid or a gas) is injected, forming
a two-phase flow. As an idealized model, Phase 1 forms a long drop that displaces
Phase 2, leaving behind a residual layer of fluid attached to the wall. When inertia is
negligible, this front moves with a constant velocity U , and the configuration of the
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Figure 1. Schematics of the analysed problem.

interface achieves a fixed shape with a constant width of residual layer far enough
from the tip of the drop.

Following the pioneering works carried out by Fairbrother & Stubbs (1935),
Bretherton (1961), Taylor (1961) and Cox (1962), several investigators have analysed
the residual liquid film that remains attached to the wall for the case of the
displacement of a viscous liquid in a capillary tube when Phase 1, the displacing
fluid, is a gas. The fraction of mass remaining attached to the wall, m, is defined as

m = 1 − R2
b

R2
0

, (1.1)

where R0 is the radius of the tube and Rb is the radius of the drop when it
has reached its constant value, as seen in figure 1. When inertial effects can be
neglected, the dimensionless parameter that governs this problem is the capillary
number Ca ≡ (μ2U )/σ that signifies the relative importance of viscous stresses to
interfacial-tension stresses.

The experimental investigation carried out by Taylor (1961) for the problem of a
gas displacing a viscous liquid is remarkable and very relevant in the context of the
present work. After a co-ordinate transformation that attaches the reference frame to
the tip of the bubble, he sketched three possible flow regimes of the liquid near the
interface, as shown in figure 2. The first regime, figure 2(a), has a stagnation point
at the tip of the bubble. It is a bypass flow, which would occur for high capillary
numbers. In this case Phase 2 would pass completely and no recirculation would
be formed in the displaced liquid near the free surface. The second regime occurs
when another stagnation point is formed at a certain position of the centreline in
the liquid domain, away from the bubble, as shown in figure 2(b). In this case, a
recirculation pattern is developed. Upstream of this new stagnation point a filament at
the centreline moves away from the bubble, while downstream of this point a filament
at the centreline moves towards the bubble. The third flow pattern, as depicted in
figure 2(c), is generally referred to a full-recirculation regime. The recirculation of
Phase 2 reaches the interface with Phase 1, and thus, besides the stagnation point at
the tip of the bubble, a stagnation ring at the surface is formed. It is worth noticing
that there is a critical value for the fraction of mass attached to the wall, mc, above
which the flow is always in the bypass regime. For a gas displacing a Newtonian
liquid, mc =0.5 (Taylor 1961).
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m > 1/2

m < 1/2

Stagnation points

Stagnation ring

m < 1/2

(a)

(b)

(c)

Figure 2. Streamline patterns suggested by Taylor for the gas-displacement in capillary tubes’
problem: (a) bypass flow regime; (b) transition flow regime; and (c) recirculation flow regime.

Recently, some interesting literature on gas-displacement dealt with displacement
of non-Newtonian liquids, as investigated in Sousa et al. (2007), Dimakopoulos &
Tsamopoulos (2003b, 2004, 2007), de Souza Mendes et al. (2007), Sousa, Pinto &
Campos (2006), Soares, Carvalho & de Souza Mendes (2006), Lee, Shaqfeh &
Khomami (2002) and Huzyak & Koelling (1997), among others. In these cases,
in addition to Ca , other dimensionless parameters related to the rheology of the
displaced liquid were taken into account. These analyses gave further insights
into understanding, in the problem considered, how capillary forces interact with
other phenomena of complex materials, such as pseudo-plasticity, viscoplasticity and
viscoelasticity. Concerning pseudo-plasticity and viscoplasticity, these works agree in
the conclusion that as the displaced fluid departs from Newtonian behaviour, the
fraction of the mass deposited on the tube wall decreases and the shape of the
interface becomes flatter. The viscoelastic case is a little more complex. The results
related to Boger-like fluids, e.g. Huzyak & Koelling (1997), indicate an increase in
the residual mass fraction, while for shear-thinning fluids such as FENE-P (Lee
et al. 2002) and PTT (Dimakopoulos & Tsamopoulos 2004) there is a competition
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between pseudo-plasticity and elasticity, and therefore, for low Weissenberg numbers,
gas-displacement of viscoelastic fluids can exhibit a thinner layer of deposited mass.
In the context of flow regimes, Sousa et al. (2007) found an interesting new flow
pattern with a small recirculation near the bubble for viscoplastic and pseudo-plastic
materials. In this case, upstream of the second stagnation point a material filament at
the centreline moves ‘towards’ the bubble. This flow pattern was sketched by Hodges,
Jenseng & Rallison (2004) in the liquid–liquid displacement for very low capillary
numbers.

It seems that the first investigation of the liquid–liquid displacement in a capillary
tube was done by Goldsmith & Mason (1963). They conducted an experimental
analysis adding another dimensionless parameter (besides Ca) to the problem: the
ratio of viscosity of the displaced fluid to that of the displacing one, Nμ ≡ μ2/μ1. In
their experiments, the displacing material was, therefore, a long drop of a viscous
liquid, immiscible to the liquid that was previously in the tube. They were also
interested in the amount of the displaced liquid left on the tube wall as a function of
Nμ and Ca . The results showed that m increases as the viscosity ratio is decreased.
This trend agrees with the theoretical predictions and experimental data presented
by Soares, Carvalho & de Souza Mendes (2005). Westborg & Hassager (1989) and
Martinez & Udell (1990) numerically analysed the problem of the creeping flow of
closed drops in a capillary tube. They found a secondary recirculation inside the
drop that disappears for high capillary numbers. Martinez & Udell (1990) showed
that when the undeformed drop radius is greater than 1.1 times the tube radius, the
drop can be considered long. Hodges et al. (2004) extended Bretherton’s (1961) work
for the liquid–liquid displacement in the Ca � 1 limit. They found a non-monotonic
behaviour for film thickness as the viscosity ratio decreases from infinity. Allouche,
Frigaard & Sona (2000) investigated the displacement of two viscoplastic materials
in a plane channel for the case in which interfacial tension stresses are negligible.
They were interested in the process of mud removal during the primary cementing of
an oil well where the fluids involved are typically non-Newtonian with viscoplastic
properties. Their predictions for the yield-stress effect on the liquid film attached to the
wall agrees qualitatively with the experimental results obtained by Poslinski, Oehler &
Stokes (1995), who reported an experimental gas-assisted displacement in tubes for
two samples of viscoplastic materials. Also, the analysis of Allouche et al. (2000)
is in agreement with the recent numerical analysis presented by Sousa et al. (2007)
and Dimakopoulos & Tsamopoulos (2007). Soares, Carvalho & de Souza Mendes
(2008) experimentally investigated the effect of viscoelasticity on the liquid–liquid
displacement and found that, within the covered range, the fraction of mass deposited
at the wall is higher when viscoelastic Boger-like fluid is displaced by a Newtonian
one when compared with a Newtonian–Newtonian displacement. As discussed
previously, this result follows the same trend as the gas-viscoelastic Boger-like
displacement.

The problems in which capillary forces are relevant to the analysis require numerical
schemes that can accurately determine the configuration of the interface, since the
force generated by the interfacial tension is a function of the mean radius of curvature.
Compared to the gas–liquid case, the liquid–liquid displacement significantly increases
the numerical efforts necessary to simulate this kind of problem. One additional
complexity is due to the fact that in the gas–liquid displacement the effects of the
displacing fluid (gas) are introduced into the the problem as a boundary condition,
while in the liquid–liquid displacement the conservation equations have to be solved
in the displacing fluid domain also. Another complexity comes from the force balance
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Regimes in capillaric liquid–liquid displacement 67

at the interface, since in a liquid–liquid displacement case, the normal stress at the
interface at the displacing-fluid side is not solely given by the pressure. For the reasons
indicated above, there are few papers dealing with the analysis of the liquid–liquid
displacement that consider a residual liquid film attached to the wall and include
interfacial tension.

In the present paper we study the liquid–liquid displacement in a capillary tube
from a purely theoretical and a numerical point of view. The theoretical analysis
has led to important guidelines in the conduction of the numerical experiments
and in the interpretation of the observed phenomena. We employed an elliptic grid
generation methodology via a Galerkin finite-element method. The main objective
of the numerical approach is to investigate the flow patterns at the liquid–liquid
interface.

2. Problem formulation
The flow near the liquid–liquid interface is analysed using a moving frame of

reference attached to the tip of the drop. A basic assumption of this analysis is that
the configuration of the interface converges to a fixed shape and a long drop of
Liquid 1 is formed. This assumption is a fairly good approximation, since inertia is
neglected and the drop is not accelerating. Relative to the reference frame adopted,
the capillary tube wall moves with the interface velocity U while the interface is
stationary, as shown in figure 1. We are adopting this reference and the motion
experienced by the part of Liquid 2 which is in contact with the wall to designate
the upstream and downstream regions of the flow. In the laboratory frame, where
the problem is transient, the imposed conditions are, generally, the inlet and outlet
pressures, and therefore, the front velocity U is a consequence of this input. Since
U is an imposed condition in the present approach, the translational invariance of
the problem is taken into account in the numerical method by letting the pressure
at the outlet free. The reason why it is preferred to let the outlet pressure free than
the inlet one is because the pressure jump between the two fluids at the outlet is
unknown a priori. In this case, the location of tip of the interface is not fixed but is
determined by the level of the inlet pressure. The problem is considered axisymmetric
with vanishing azimuthal velocity. A further step not followed here is the conduction
of a stability analysis to find the operating window where the predicted results
are physically realizable (e.g. Huen, Frigaard & Martinez 2007; Lac & Sherwood
2009).

Velocity and pressure fields, as well as the shape of the liquid–liquid interface,
are defined by the governing equations that impose conservation of mass and
momentum for a non-inertial incompressible fluid, subjected to the appropriate
boundary conditions. The subscript k =1, 2 labels the two liquids considered. The
conservation of mass is given by

1

r

∂

∂r
(rvk) +

∂uk

∂x
= 0, (2.1)

while the equations for conservation of momentum are given by

1

r

∂

∂r

(
rT(xr)k

)
+

∂

∂x

(
T(xx)k

)
= 0, (2.2)

1

r

∂

∂r

(
rT(rr)k

)
−

T(θθ)k

r
+

∂

∂x

(
T(rx)k

)
= 0, (2.3)
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U Boundary 3

Liquid 2

Boundary 4
(fully developed flow)

Boundary 2
(symmetry)

Boundary 5
(interface)

Liquid 1

Rb R0

Boundary 1
(fully developed flow)

X

r

Figure 3. Boundary conditions considered for the problem.

where u and v are, respectively, the axial and radial components of the velocity
field u and the quantities Txx , Txr , Trx , Trr and Tθθ are the components of the stress
tensor T.

For the description of the boundary conditions, boundaries are labelled from 1 to
5, as illustrated in figure 3. In the upstream far from the interface, Boundary 4, the
flow is taken to be fully developed and the pressure is assumed to be uniform. Hence,

n · ∇u2 = 0, p2 = Pin, (2.4)

where n is the unit vector normal to the boundary surface and p2 is the constant
pressure field on Phase 2 at the inlet.

Downstream, far from the cap of the drop, Boundary 1, the flow is also assumed
to be fully developed, but the pressure is not imposed, which leads to

n · ∇uk = 0. (2.5)

Along the symmetry axis, Boundary 2, both the shear stress and the radial velocity
vanish. Hence,

n · [Tk · t] = 0, n · uk = 0, (2.6)

where t is a unit vector tangent to the boundary surface.
No-slip and impermeability conditions are imposed along the tube wall, Boundary 3.

Therefore,

u2 = U ex, (2.7)

where ex is the unit vector in the x -direction.
At the liquid–liquid interface, Boundary 5, the traction balances the capillary

pressure, and there is no mass flow across the interface. Equation (2.8) is implemented
adding the capillary pressure at every point of the interface. In this sense, the interface
can be considered as part of Liquid 2. These conditions can be translated by

n(p1 − p2) + n · (τ 2 − τ 1) =
σ

Rm

n, (2.8)

where τk is the extra-stress tensor (τ k = Tk + pkI, where I is the identity tensor) and

u1 = u2 = (uk · t) t. (2.9)

So the velocity component normal to the interface vanishes. In (2.8), σ is the liquid–
liquid interfacial tension and p1 and p2 are the pressures on Phase 1 and Phase 2,
respectively; 1/Rm is the local mean curvature of the interface, defined as

1

Rm

≡ ∇H · n ≡ ∇ · n − (nn · ∇) · n, (2.10)
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where the operator ∇H · () is the divergence operator resolved in the tangential plane.
For the axisymmetric case, the mean curvature vector can be written as

1

Rm

n =
1√

x2
s + r2

s

∂ t
∂s

− xs

r
√

x2
s + r2

s

n, (2.11)

where s is the arclength curvilinear co-ordinate along the interface in the r–x plane
and xs and rs are spatial derivatives with respect to s.

In (2.8), σ/Rm is the normal stress jump due to the interfacial tension, while the
tangential stress at the interface is continuous.

The dimensionless parameters relevant to this kind of flow are the capillary number
(Ca) and the viscosity ratio (Nμ), presented previously.

3. Theoretical analysis
The objective of the theoretical analysis is to extract every possible information

from each of the fully developed regions and the relations between them. As will
become clear, we were able to (a) provide alternative methods for the calculation of
the residual mass fraction, (b) verify that Nμ = 2 divides the problem into two branches
and that when Nμ � 2 the flow cannot have a bypass regime (independent of the
value of Ca), (c) establish the relation between the critical mass fraction (defined
and explained in § 3.3) and the viscosity ratio and (d ) interpret and propose new
dimensionless numbers that better characterize the flow regimes of sizes LI, LII, LIII,
and LIV.

Figure 1 shows the physical domain divided into four regions (length of regions
defined by L). Region I and Region IV are regions in which the flow is fully developed
and, therefore, streamlines are parallel to the wall. The axial co-ordinate of the tip of
the drop marks the limit between Region II and Region III. Region II, occupied by
Liquid 2 only, begins where the velocity profile departs from the fully developed one.
The end limit of Region III is the point at which the velocity achieves its new fully
developed profile.

3.1. Global conservation of mass

The velocity profile of Liquid 2 in Region I, uI
2(r), can be calculated using the

boundary conditions uI
2(R0) = U and finite shear stress at the centreline. The flow rate

QI
2 is given by

QI
2 = UπR2

0

[
1 − R2

0

8μ2U

dp

dx

∣∣∣∣
I

]
= UπR2

0

[
1 − dp

dx

∣∣∣∣
∗

I

]
, (3.1)

where (dp/dx)∗ is a dimensionless pressure drop, constructed from the characteristic
stress in Liquid 2, as follows:

dp

dx

∣∣∣∣
∗

=

1

8

dp

dx
R0

μ2U

R0

. (3.2)

The velocity profiles of Liquid 1 and Liquid 2 at the fully developed Region IV can
be calculated using the symmetry condition at the centreline, the known velocity at
the wall and the compatibility conditions of continuity of velocity and the tangential
stress at the interface.
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The flow rates QIV
2 and QIV

1 are, thus, given by

QIV
2 = UπR2

0

[
m − dp

dx

∣∣∣∣
∗

IV

m2

]
(3.3)

and

QIV
1 = UπR2

b

{
1 − dp

dx

∣∣∣∣
∗

IV

[Nμ (1 − m) + 2m]

}
, (3.4)

where (1.1) and (3.2) have been used. It is worth noting that the pressure gradient in
Region IV is the same for the two liquids, since by Young–Laplace, pIV

1 −pIV
2 = σ/Rb.

The global conservation of mass of Liquids 1 and 2 requires that

QI
2 = QIV

2 (3.5)

QIV
1 = 0. (3.6)

From (3.4) and (3.6) we can find a relation between the dimensionless pressure
gradient in Region IV and the mass deposited at the wall for a given viscosity ratio,
which is given by

dp

dx

∣∣∣∣
∗

IV

=
1

(2 − Nμ)m + Nμ

. (3.7)

Solving for m we find that

m =

1 − Nμ

dp

dx

∣∣∣∣
∗

IV

(2 − Nμ)
dp

dx

∣∣∣∣
∗

IV

. (3.8)

From (3.7) we can observe that dp∗/dxIV is independent of m in two cases: when
Nμ → ∞ (gas–liquid displacement) and when Nμ = 2. The corresponding values for the
dimensionless pressure gradient in Region IV are dp∗/dxIV =0 and dp∗/dxIV = 1/2,
respectively. Therefore, these cases leave m undetermined, not singular.

From (3.1), (3.3) and (3.5) we obtain a relation between the dimensionless pressure
gradients in Region I and in Region IV. Using (3.7) we get an analogue of this
equation for dp∗/dx I :

dp

dx

∣∣∣∣
∗

I

= m2 dp

dx

∣∣∣∣
∗

IV

+ 1 − m =
m2

(2 − Nμ)m + Nμ

+ 1 − m. (3.9)

Solving the first equation for m we have that

m+
− =

1

2
dp

dx

∣∣∣∣
∗

IV

±

√√√√√√√√
⎛
⎜⎜⎜⎝ 1

2
dp

dx

∣∣∣∣
∗

IV

⎞
⎟⎟⎟⎠

2

−
1 − dp

dx

∣∣∣∣
∗

I

dp

dx

∣∣∣∣
∗

IV

. (3.10)

From (3.9) we verify that m(dp∗/dxIV = 0) = 1 − dp∗/dx I . Hence, in the gas–liquid
displacement problem, the dimensionless pressure gradient in Region I is the fraction
of mass ‘not attached’ to the wall, giving to dp∗/dx I another interpretation in this case.

An important aspect of the analysis is that we are considering a two-layer flow in
Region IV and, therefore, the restriction

0 < m < 1. (3.11)
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The two inequalities given by relation (3.11) can be combined with (3.8) and (3.10) to
impose restrictions on dp∗/dx I and dp∗/dxIV . These restrictions lead to the following
conclusions:

Nμ > 2 ⇒ 1

Nμ

<
dp

dx

∣∣∣∣
∗

IV

<
1

2
and

dp

dx

∣∣∣∣
∗

IV

< 1 − 1

4
dp

dx

∣∣∣∣
∗

IV

<
dp

dx

∣∣∣∣
∗

I

< 1. (3.12)

Nμ < 2 ⇒ 1

2
<

dp

dx

∣∣∣∣
∗

IV

<
1

Nμ

and 1 − 1

4
dp

dx

∣∣∣∣
∗

IV

<
1

2
<

dp

dx

∣∣∣∣
∗

I

. (3.13)

Nμ = 2 ⇒ 1 − 1

4
dp

dx

∣∣∣∣
∗

IV

=
dp

dx

∣∣∣∣
∗

IV

=
1

2
<

dp

dx

∣∣∣∣
∗

I

< 1. (3.14)

The results given by inequalitites (3.12)–(3.14) show the non-intuitive result that when
a fluid is displacing another one which has a viscosity twice that of the displacing
fluid, it is a special case that splits the problem into two branches. Interestingly,
Lac & Sherwood (2009), using boundary integral computations to investigate the
pressure-driven flow of a finite drop in a capillary tube, also found a two-branched
behaviour with Nμ =2 as a boundary between the cases. Inequality (3.11) also avoids
complex values for m when solving (3.10).

When the two viscosities are equal, the dependence of (3.9) on m2 is eliminated. The
compatibility between this case and inequality (3.11) can only be justified by Ca < ∞,
since the conditions Nμ = 1 and Ca = ∞ would mean the two fluids are the same. For
the case Nμ =1 and Ca < ∞ the dimensionless pressure gradients in Regions I and
IV are equal.

Equations (3.9) and (3.8) can be combined to calculate dp∗/dx I as a function of
dp∗/dxIV and Nμ. The result is

dp

dx

∣∣∣∣
∗

I

=

(Nμ − 1)

(
1 − 4

dp

dx

∣∣∣∣
∗

IV

)
+ N2

μ

dp

dx

∣∣∣∣
∗2

IV

(Nμ − 2)2
dp

dx

∣∣∣∣
∗

IV

. (3.15)

For the reasons previously discussed, dp∗/dx I is not unbounded for Nμ =2 and
nor is dp∗/dxIV = 0.

3.2. Force balance at the interface in Region IV

Since the tangential force is continuous through the interface, when this condition is
applied to the interface in Region IV, we find that

Nμ =
μ2

μ1

=

∂uIV
1

∂r
∂uIV

2

∂r

∣∣∣∣∣∣∣
r=Rb

=

∂uIV ∗
1

∂r∗

∂uIV ∗
2

∂r∗

∣∣∣∣∣∣∣
r∗=

Rb
R0

. (3.16)

This result shows that the viscosity ratio is related to the velocity gradient jump at
the interface.

A dimensionless form of the Young–Laplace equation can be constructed to
represent how forces normal to the interface in Region IV equilibrate. We chose
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to compare the pressure drop from the centreline to a point just after the interface,
with the pressure drop that represents a head loss of the flow, dp/dx I . The result is

Nσ =

pIV
1 − pIV

2

Rb

1

8

dp

dx

∣∣∣∣
I

=
σR2

0

μ2UR2
b

dp

dx

∣∣∣∣
∗

I

=
1

Ca(1 − m)
dp

dx

∣∣∣∣
∗

I

. (3.17)

Another dimensionless number that can be useful to explain the behaviour of the
flow is one that represents the competition between the tangential and normal forces
at the interface between the two fluids in Region IV, such as Nμ/Nσ .

3.3. Critical condition

Before we proceed further with our analysis we must define the notion of a ‘transition
window’. In the present case, it corresponds to a two-dimensional region in the space
formed by the parameters Ca and Nμ, within which the flow is neither in the bypass
regime nor in the full-recirculation one. Bypass flow patterns are characterized by the
absence of recirculation on the fluid which is being displaced. The full-recirculation
regime is characterized not only by the presence of recirculation in the displaced liquid
but also by the presence of a secondary recirculation in the displacing liquid. A critical
case can be achieved when the flow regime is located at the boundary of the transition
window, i.e. when the flow starts the departure from the bypass regime towards the
full-recirculation one, in a trajectory in the Ca × Nμ space. The conditions for this
critical case are accomplished when the centreline velocity of Liquid 2 in Region I
vanishes; that happens when dp∗/dx I = 1/2. If we substitute this result in (3.9), we
find a quadratic equation with mc = 1 as one of the solutions. Since we are searching
for solutions that satisfy inequality (3.11), the only possible physical solution is

mc =
1

2

(
1 − 1

Nμ

) . (3.18)

The result given by (3.18) is the generalization, concerning liquid–liquid displacement,
of the result given by Taylor (1961) for the gas–liquid displacement, where mc = 0.5.
When Nμ → ∞, Taylor’s result is obtained. Now, if we combine (3.18) with inequality
(3.11) we find that Nμ > 2 is a restriction on the viscosity ratio for the existence of
a critical value for m. This result shows that for Nμ � 2 the flow can never achieve
the boundary of the transition region, and therefore, it will not develop the two
different limiting regimes. By examining relations (3.13) and (3.14), we can see that
dp∗/dx I > 1/2 in this case, and therefore, the bypass flow pattern is the regime not
achieved when Nμ � 2.

The derivative of mc with respect to Nμ is strictly negative, which shows that the
critical value for the fraction of mass increases when Nμ decreases.

4. Numerical implementation
4.1. Elliptic grid generation

Due to the position of the interface, the flow domain, for each fluid, is unknown
a priori. In order to tackle this problem by means of standard techniques for boundary
value problems, the approach used in the present work is to transform the set of
differential equations and boundary conditions written for the physical domain into an
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Figure 4. Mapping between the physical and the reference domain.

equivalent set, defined in a known reference domain. For a complete understanding of
the method employed the reader is referred to the works of Christodoulou & Scriven
(1992), Sackinger, Shunk & Rao (1996) and Dimakopoulos & Tsamopoulos (2003a).
This transformation is achieved by a mapping function x = x(ξ ) that connects the
two domains, as shown in figure 4. A functional of weighted smoothness can be
used successfully to construct the type of mapping involved here. The inverse of the
mapping that minimizes the functional is governed by a pair of elliptic differential
equations that are identical to those encountered in diffusional transport phenomena
with variable diffusion coefficients. The co-ordinates ξ and η of the reference domain
must satisfy

∇ · (Dξ ∇ξ ) = 0, (4.1)

∇ · (Dη∇η) = 0, (4.2)

where Dξ and Dη are diffusion-like coefficients used to control gradients in co-ordinate
potentials and, thereby, the spacing between the curves of constant ξ on one hand
and of constant η on the other that make up the sides of the quadrilateral elements
that were employed. Equations (4.1) and (4.2) describe the inverse mapping ξ = ξ (x).
To evaluate x = x(ξ ), the diffusion equations that describe the mapping also have to
be transformed to the reference configuration.

Following the ideas introduced in Christodoulou & Scriven (1992), Dimakopoulos &
Tsamopoulos (2003a ,b, 2004, 2007) have used different functions for the coefficients Dξ

and Dη for the transient gas displacement of Newtonian, viscoplastic and viscoelastic
materials, depending on the direction of the advancing front. The coefficients that
gave the best results were Dη = 1 and

Dξ = ε

√
r2
ξ + z2

ξ

r2
η + z2

η

+ 1 − ε, (4.3)

where ε is a weighting parameter adjusted by trial and error to optimize the
performance of the mesh generation scheme; usually it is set to 0.1 (ε = 0 corresponds
to Dξ = 1).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

15
46

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991546


74 E. J. Soares and R. L. Thompson

In the present work we adopt a different approach which is more suitable for steady-
state problems. This approach has already been adopted by Soares et al. (2005), but
the novelty introduced was not explained. Hence, for a better understanding, we briefly
describe below the main difference between this approach and the one presented by
Dimakopoulos & Tsamopoulos (2003a).

We divide the reference and physical domains into quadrilateral sub-domains.
Therefore, the distribution generated on the boundaries of a sub-domain is diffused
to the interior of it. By doing this, we can relax the complexity of the diffusion
coefficients and keep them as Dξ = Dη = 1. Depending on the problem a different
number of sub-domains is necessary. In the case of the present work we adopt six
sub-domains (see figure 4). Sub-domains 1 and 4 are far from the interface; hence,
the present arrangement enables freezing the nodal points inside these sub-domains.
In other words, differently from what happened in Soares et al. (2005), (4.1) and
(4.2) do not need to be solved in sub-domains 1 and 4, saving computational costs.
Another peculiarity of the problem is the impossibility to split the physical domain
occupied by Liquid 1 into quadrilateral sub-domains with the same orientation. In
other words if we label the boundaries of a sub-domain with north, south, east and
west, a north/south boundary is seen, from the perspective of a neighbourhood sub-
domain, as an east/west boundary. In particular, the boundary between sub-domains
1 and 5 is a constant ξ -line looking from the perspective of sub-domain 1 and is a
constant η-line looking from the perspective of sub-domain 5. In figure 4, the west
side of sub-domain 1 and the south side of sub-domain 5 correspond to a unique set
of points.

The gradient of the mapping x = x(ξ ) in a two-dimensional domain is defined
as J ≡ ∇ξ x. The Jacobian of the transformation is ‖J‖ = detJ. Boundary conditions
are needed in order to solve the second-order partial differential equations ξ = ξ (x).
Spatial derivatives with respect to the co-ordinates of the physical domain x can be
written in terms of the derivatives with respect to the co-ordinates of the reference
domain ξ by using the inverse of the mapping gradient, that is

⎛
⎜⎝

∂

∂x

∂

∂r

⎞
⎟⎠= J−1

⎛
⎜⎜⎝

∂

∂ξ

∂

∂η

⎞
⎟⎟⎠. (4.4)

Along the solid walls, symmetry planes and synthetic inlet and outlet planes,
the boundary is located by imposing a relation between co-ordinates x and r , and
stretching functions are used to distribute the nodal points of the finite-element mesh
along the boundaries. The same procedure is applied for the non-interface boundaries
between sub-domains. The points located at the boundaries between sub-domains 2
and 5 and between sub-domains 3 and 6 belong to the same linear function between
x and r . For sub-domains 1, 5 and 6, an exponential function was used to concentrate
points close to the front of the drop. For the other boundaries the distribution
was uniform. The position of the liquid–liquid interface is located by imposing the
condition stated by (2.9) on the boundaries between sub-domains 5 and 6 and between
sub-domains 2 and 3.

Two representative meshes for the same pair (Ca, Nμ) are shown in figure 5. The
difference between them is the given inlet pressure. Since sub-domains 1 and 4 are of
fixed sizes, sub-domains 2 and 3 change their refinement according to this boundary
condition. It can be shown that when pressure gradient is greater in Region I than in
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(a)

(b)

Figure 5. Typical meshes used (a) to capture the secondary recirculation in Phase 1 and (b)
to capture the transition from the bypass and recirculation flow regimes.

Region IV, lower values of the inlet pressure would lead to meshes such as the one
represented by figure 5(a), while higher values of P ∗

in would lead to meshes as the one
shown in figure 5(b).

4.2. Solution of the equation system by Galerkin finite-element method

The differential equations that govern the problem and the mapping (mesh generation)
equations were solved all together by the Galerkin finite-element method as explained
in Sousa et al. (2007). Biquadratic basis functions were used to represent the velocity
and nodal co-ordinates, while linear discontinuous functions were employed to expand
the pressure field. The coefficients of the expansions are the unknowns of the problem.
The corresponding weighted residuals of the Galerkin method related to conservation
of mass, to conservation of momentum and to mesh generation can be found in
Soares et al. (2005).

4.3. Solution of the nonlinear system of algebraic equation by Newton’s method

The set of simultaneous algebraic equations for the coefficients of the basis functions
of all the fields is nonlinear and sparse. It was solved by Newton’s method. In order
to improve the initial guess it was necessary to solve intermediate problems. The
first successful preliminary problem was computed using a fixed mesh with slippery
surface (a surface that allows perfect slip) in place of the liquid–liquid interface as
the initial condition for Newton’s method.

The linear system of equations for each Newton iteration was solved using a frontal
solver. A mesh convergence analysis was performed by increasing the number of
elements until the solution changed by less that 1 %, and a set of mesh arrangements
was analysed until the recirculation on the tip of the liquid–liquid interface had
been captured precisely. In the final mesh architecture, as exemplified by figure 5,
the domain is divided into 880 elements that correspond to 3635 nodes and 17 180
degrees of freedom.

5. Results and discussion
Since we are concerned with the flow patterns the problem exhibits, and the three

kinds of flow regimes are only possible for Nμ > 2, the numerical analysis is restricted
to Nμ � 2, letting Nμ = 2 be a limiting one.

Values of the viscosity ratio, chosen as to form a spectrum of possibilities, in order
to analyse the effect of Ca on the problem being considered, were Nμ = 2, 4, 8 and 400.

5.1. Fraction of mass m

The results for the residual mass fraction as a function of the capillary number
for these viscosity ratios (figure 6) were used to test the accuracy of the numerical
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Figure 6. Fraction of deposited mass on the wall as a function of capillary number for a
range of viscosity ratio and comparison with the previous prediction from Soares et al. (2005)
and data from Taylor (1961) and Cox (1962).

method/scheme employed. For Nμ = 400, the liquid–liquid displacement problem tends
to the gas–liquid displacement. Therefore, the experimental results obtained by Taylor
(1961) and Cox (1962) can be compared to the present ones. From figure 6, we can see
that the numerical results of the present work (white triangles) follow the same curve
as the experimental results (black triangles and cross). The relative difference in value
was less than 1 % for a number of tested cases in which an interpolation of third
order was used for experimental values between numerical results. Soares et al. (2005)
made a comparison of the residual fraction of mass with some results of Goldsmith &
Mason (1963) and found a relative difference of less than 1%. In the present work a
more refined mesh was used and the residual mass fraction was coincident with that
of Soares et al. (2005) (less than 0.5 % in most of the cases). Therefore, we can infer
that the errors, related to the experimental results of Goldsmith & Mason (1963) are
of the same order of magnitude.

5.2. Alternative methods for the determination of the residual mass fraction

Using the continuity equation, it can be shown that the fraction of mass attached to
the wall is also given by

m ≡ 1 − R2
b

R2
0

=
ūI

2

ūIV
2

, (5.1)

where ūI
2 and ūIV

2 are the mean velocities of Liquid 2 in Region I and in Region IV,
respectively. For the gas-displacement case, ūIV

2 ≈ U , and the residual mass fraction
can be determined by the velocity of the propagating front and by measuring the rate
at which the mass of the displaced fluid is leaving the tube. However, this procedure
cannot be used for the liquid–liquid displacement, since ūIV

2 is not measured. In this
case, optical devices that can locate the value of Rb should be preferred. However,
for non-transparent displaced fluids, such as dark oils, optical devices are not able
to detect the inner fluid. Another possible detection problem could happen when
it is difficult to distinguish one phase from another due to a similarity between
the refractive indexes of the fluids. Equations (3.8) and (3.10) suggest alternative
experimental methods for computing the fraction of mass deposited at the wall. Two
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Nμ = 8 A B mn m1 E1 m2 E2

Ca = 50 0.4465 0.2479 0.662 0.6611 0.14 % 0.6622 0.03%
Ca = 1 0.5114 0.2126 0.554 0.5491 0.88 % 0.5538 0.03%
Ca = 0.1 0.7047 0.1627 0.311 0.3087 0.74 % 0.3107 0.10%

Table 1. Comparison between different ways to obtain the fraction of mass deposited on
the wall for Nμ = 8, where A = dp∗/dx I ; B = dp∗/dxIV ; mn = 1 − (Rb/R0)

2; m1 = (1 − NμB)/

(2 − Nμ)B; m2 = (1/2B) −
√

(1/2B)2 − (1 − A)/B .

Nμ = 4 A B mn m1 E1 m2 E2

Ca = 50 0.4770 0.3913 0.739 0.7381 0.12 % 0.7337 0.72%
Ca = 1 0.5357 0.3554 0.585 0.5929 1.35 % 0.5866 0.27%
Ca = 0.1 0.7135 0.2964 0.316 0.3131 0.92 % 0.3161 0.03%

Table 2. Comparison between some different form to obtain the fraction of mass
deposited on the wall for Nμ = 4, where A = dp∗/dx I ; B = dp∗/dxIV ; mn = 1 − (Rb/R0)

2;

m1 = (1 − NμB)/(2 − Nμ)B; m2 = (1/2B) −
√

(1/2B)2 − (1 − A)/B .

nearby pressure transducers attached to the tube wall can be used to measure the
pressure drop in Regions I and IV and the velocity of the interface, as explained next.
These transducers would provide two curves of pressure as a function of time. When
the front of the drop is far from the transducers, pressure will drop linearly, and thus,
dp/dx I and dp/dxIV can be calculated. A deviation from its linear behaviour would
indicate that Regions II and III are passing through the transducers’ longitudinal
position. There will be a time delay, from one transducer to the other, for the detection
of the nonlinear pressure behaviour. The distance between the transducers divided by
this time delay would give a measure for the velocity of the propagating front. With
these measurements, (3.8) and (3.10) provide two independent approximated values
for m (one of the roots of (3.10) is always out of the range ]0, 1[). In figure 6 the
procedure to determine m was to infer, from the numerical results, the position of
the interface. Tables 1 and 2 show results obtained from (3.8) and (3.10), m1 and
m2, respectively, and how they compare with our numerical value obtained from the
position of the interface, mn, for the values of capillary number Ca = 0.1, 1.0 and 50.
Table 1 refers to the results obtained for Nμ = 8, while table 2 refers to the results
obtained for Nμ = 4. We chose different positions in Regions I and IV to measure the
dimensionless pressure gradients dp∗/dx I and dp∗/dxIV , and therefore, the values
that fill the tables are average values. The percentage difference Ei is calculated as
follows:

Ei =
|mi − mn|

mn

× 100. (5.2)

These results show that the theoretical analysis that led to (3.8) and (3.10) is in
agreement with our numerical calculation. This can be seen as another accuracy test
of our numerical method/scheme, since three different ways of calculating the same
quantity led to the same result (within a relative error of less than 1 %).

Equation (3.8) does not need the measurement of dp∗/dx I as in (3.10). However,
the same apparatus set-up provides the measurement of this quantity. Hence, the two
equations are equivalent in giving indirect measures of m.
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Figure 7. Streamline patterns near the liquid–liquid interface given in a Cartesian manner in
a Ca × Nμ space: transitions from bypass to recirculation flow regimes from the perspective
of Phase 2.

5.3. Streamline patterns

Figure 7 depicts a set of examples of the streamlines in the neighbourhood of the
tip of the interface between the two liquids, given in a Cartesian manner. These
cases were built to cover qualitatively the main aspects of the space (Nμ � 2 ×
Ca). This figure shows the influence of the dimensionless parameters, the viscosity
ratio and the capillary number, on the different flow patterns that this problem
presents.

The spectrum of capillary numbers chosen to compose the complete frame were
Ca = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 and 50. We can observe that for higher values of the
capillary number and higher values of the viscosity ratio, we have bypass regimes.
On the other side of this tendency, for lower values of Ca and Nμ, the cases are of
full-recirculation flow in which a secondary recirculation appears within the displacing
fluid domain near the finger tip. As discussed previously, Nμ = 2 does not present

the bypass flow regime in this case. We can also observe a limiting value CaL

(0.5 < CaL < 1), below which there is no transition either, independently on the
value of Nμ. This result was not predicted in the theoretical analysis. However, in
general, we have that for a fixed viscosity ratio, there is a range of capillary numbers
of transition between the two extreme flow patterns and that this range occurs for
decreasing values of Ca as Nμ increases.
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Figure 8. Streamline patterns in liquid–liquid displacement for fixed viscosity ratio, Nμ = 400,
and a fine range for the capillary number around its transition value from bypass to
recirculation flow regimes.

Figures 8–10 show the two flow regimes and a refinement in the capillary number
in the transition range for fixed viscosity ratios, Nμ = 400, 8 and 4, respectively. We
can notice that here are some kinks in the streamlines in these figures, and ideally,
there would be room for a mesh refinement improvement. However, the convergence
of these cases with the present number of degrees of freedom is extremely difficult.
Besides freezing the nodal points in sub-domains 1 and 4, more intermediate cases
were necessary to solve the problem with the current method and achieve the
streamline accuracy shown in these figures, even though they are illustrative in
the sense that they give a reasonably accurate location of the values of critical
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Figure 9. Streamline patterns in liquid–liquid displacement for fixed viscosity ratio, Nμ = 8,
and a fine range for the capillary number around its transition value from bypass to
recirculation flow regimes.

Capillary number corresponding to the boundary of the transition window. We hope
these results can be compared by future experimental and numerical investigation
of the problem. Moreover, an important qualitative consequence of this analysis is
that for the conditions analysed, the patterns formed during transition are similar
to the ones obtained for the gas–liquid displacement of a Newtonian fluid, since
there are no closed recirculations near the tip of the interface at the displaced
fluid side, different from the ones sketched by Hodges et al. (2004), where the limit
Ca → 0 was considered, and numerically obtained by Sousa et al. (2007), where the
gas-displacement of non-Newtonian fluids were considered.
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Figure 10. Streamline patterns in liquid–liquid displacement for fixed viscosity ratio, Nμ = 4,
and a fine range for the capillary number around its transition value from bypass to
recirculation flow regimes.

For the case Nμ = 400 (figure 8), we can see that the critical capillary number is
0.685 < Cac < 0.7. This result is in accordance with the ones obtained by Sousa et al.
(2007) for gas displacing a Newtonian liquid, where they found that 0.6 < Cac < 0.7.
For Nμ = 8 and Nμ =4, the critical capillary number increases to 1.24 < Cac <

1.3 and 2.8 < Cac < 3.0, respectively. In order to give a precise value for this
critical capillary number, we use the corresponding critical fraction of mass deposited
at the wall, calculated from (3.18), namely mc(Nμ = 4) = 2/3, mc(Nμ = 8) = 4/7 and
mc(Nμ = 400) = 200/399. The critical capillary numbers using an interpolation of
third order of the numerical results were Cac(Nμ = 4) = 2.825, Cac(Nμ = 8) = 1.273
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Figure 11. Qualitative curves limiting the transition region between bypass and
full-recirculation flow patterns.

and Cac(Nμ =400) = 0.696, which are in agreement with the ranges indicated by
figures 8–10.

Finally, in figure 11, we use an interpolation function to sketch two qualitative curves
that limit the region of transition between bypass and full-recirculation flow regimes
in the Cartesian space Ca ×Nμ. The asymptote Nμ =2 was obtained theoretically. The
values corresponding to Nμ = 4 and Nμ = 8 as well as the asymptotes corresponding
to the Nμ → ∞ were obtained numerically. These point values and asymptotes are,
thus, included in the interpolation function. This result gives an idea of which kind
of flow regime is expected for a given pair (Ca, Nμ).

6. Final remarks
A theoretical and numerical analysis has been conducted on the problem of the

liquid–liquid displacement of two immiscible viscous fluids in a capillary tube for
the case in which a film of the displaced fluid remains attached to the wall as the
displacing fluid moves.

The theoretical analysis has shown a non-intuitive result that was essential for the
conduction of the numerical investigation, namely that the case in which the viscosity
of the displaced fluid is twice the viscosity of the injected fluid splits the problem
into two branches. The reason for that can be explained by the continuity equation,
applied for the two liquids in the fully developed regions. For Nμ � 2 the critical
value for the dimensionless pressure gradient in Region I is never achieved and the
flow regime cannot be a bypass flow. Hence, when Nμ > 2, the flow considered can
present the two extreme flow patterns considered by Taylor (1961), namely bypass
and full-recirculation regimes, and the transition between them, where there are two
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stagnation points. (In fact Taylor 1961 did not use the word transition and did not
mention that parameterized by a quantity, Ca, the flow regime with two stagnation
points was ‘in between’ the other cases.) The general expression for entering the
bypass regime is

mc =
1

2

(
1 − 1

Nμ

) (6.1)

and is reduced to mc = 0.5 (Taylor 1961), as a limit, when gas-displacement (Nμ → ∞)
is considered.

We have also found alternative methods, without the need to measure the interface
position visually, to calculate the fraction of mass attached to the wall by using the
pressure gradients. In an experimental apparatus, where the problem is transient,
this measure can be obtained by using pressure transducers at two near points. This
procedure can determine the velocity of the propagating front and the two pressure
gradients of the fully developed regions.

The main numerical result obtained was a construction of a map in the space
formed by (Ca × Nμ), where it is easy to locate the different flow regimes of the
problem. Therefore, different paths in this space can be followed from one case to
another. Concerning the flow regimes, we have found that the effects of the capillary
number and viscosity ratio are in the same direction: increasing Ca or Nμ, we
increase the tendency of the flow to have a bypass pattern. The reason for this
seems to be related to the ratio of the dimensionless numbers that appears in the
tangential (Nμ) and normal (Nσ ) balance of forces at the interface in Region IV,
Nμ/Nσ = NμCa(1 − m)(dp∗/dx I ), where there is a similar dependence on a change of
Ca or Nμ. The dimensionless numbers Nμ and Nσ can also be used to explain the
relation between viscoelasticity and interfacial forces and the competition between
elasticity and pseudo-plastic effects, since in a Newtonian–viscoelastic displacement
there is another stress jump in Region IV due to the first normal stress difference in
shear.

A refinement in the conditions near the transition between the regimes was done
to locate the critical conditions. In order to give the streamline patterns, different
meshes were used, refined at different locations, by changing the pressure level at the
inlet.

Figures 8–10 and the qualitative sketch in figure 11 show that the transition
window is narrow and, therefore, difficult to be captured, specially in an experimental
investigation. We hope that these results can be used to guide experimental and
numerical work for the precise location of the critical conditions.
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