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Abstract. In a topological dynamical system(X, T ) the complexity function of a coverC
is the minimal cardinality of a sub-cover of

∨n
i=0 T −iC. It is shown that equicontinuous

transformations are exactly those such that any open cover has bounded complexity. Call
scattering a system such that any finite cover by non-dense open sets has unbounded
complexity, and call 2-scattering a system such that any such 2-set cover has unbounded
complexity: then all weakly mixing systems are scattering and all 2-scattering systems
are totally transitive. Conversely, any system that is not 2-scattering has covers with
complexity at mostn+ 1. Scattering systems are characterized topologically as those such
that their cartesian product with any minimal system is transitive; they are consequently
disjoint from all minimal distal systems. Finally, defining(x, y), x 6= y, to be a complexity
pair if any cover by two non-trivial closed sets separatingx from y has unbounded
complexity, we prove that 2-scattering systems are disjoint from minimal isometries; that in
the invertible case the complexity relation is contained in the regionally proximal relation
and, when further assuming minimality, coincides with it up to the diagonal.

0. Introduction
The complexity function of symbolic systems, especially those with entropy zero, has
been studied by many researchers in the past few years; a survey is given in [F2]. The
complexity function is the non-decreasing mapp from N to itself such thatp(n) is the
number of allowed words of lengthn of a symbolic system. It must not be mistaken for the
notion of algorithmic and structural complexity, which can be given a completely distinct
meaning in Dynamics.
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It was remarked long ago that given a symbolic system(S, σ ), the complexity function
pS(n) is either ultimately constant (and thenS is a finite union of periodic orbits), or
greater thann for all n; the symbolic systems having a bounded complexity function are
exactly the equicontinuous ones. In [F1] Ferenczi defined a natural complexity function
for ergodic measured systems (independently introduced in [KT ] for other purposes), and
proved that it is bounded in a certain sense if and only if the system is isomorphic to an
isometry, i.e. to a minimal rotation of a compact group equipped with its Haar measure; in
the topological setting all minimal equicontinuous systems are known to be conjugate to
isometries. There remained to see whether a suitable definition of topological complexity
allows one to single out equicontinuous systems among all other topological systems.

Consider a topological dynamical system(X, T ), whereX is a compact metric space
andT a continuous surjective self-map ofX. Given a coverC, usually open or closed,
its complexity functionc(C, n) is the minimal cardinality of a sub-cover of the refinement
Cn

0 = ∨n
i=0 T −iC—the exponential growth rate of this function was called topological

entropy as early as 1965 in [AKM ], but here we are mainly concerned with the fact that
it goes to infinity or not. WhenC is the natural generating partition-cover of a symbolic
systemc(C, n) is just the usual symbolic complexity. We do not try to define any global
complexity for topological systems, as Ferenczi did in the measured setting [F1]; instead
we consider the complexities of all finite covers of a system belonging to some convenient
subclass.

The first result in this article (Proposition 2.2) establishes that topological complexity
discriminates equicontinuous systems, among them isometries, from all other dynamical
systems. We show that(X, T ) is equicontinuous if and only if any open coverC has
bounded complexity function: there isk > 0 such thatc(C, n) ≤ k for all n.

In the opposite direction we consider systems where in some sense complexity occurs
everywhere, and we study the links between these ‘scattering’ properties and classical
notions of Topological Dynamics, among them so-called chaotic properties; let us mention
that several of the ideas in this article arose while reading [GW1].

Precisely we introduce the notions of scattering and 2-scattering:(X, T ) is called
scattering if any non-trivial closed cover (or any cover by non-dense open sets) has
unbounded complexity, and 2-scattering if the same is true for 2-set covers only. Scattering
evidently implies 2-scattering, but we do not know whether the converse is true.

Some results concern weak mixing and transitivity. Any topologically weakly mixing
system is scattering (Proposition 3.4), and in the other direction if any non-trivial
closed cover of(X, T ) has complexity at leastn + 2 then (X, T ) is weakly mixing
(Proposition 3.6). We did not prove that weak mixing is strictly stronger than scattering;
recently Akin and Glasner found an example of a scattering non-weakly mixing system
[AG].

When (X, T ) has an equicontinuity point, there are particular open covers with
complexity at mostn + 1 (Proposition 3.11). However, there are not always covers with
bounded complexity: Akin and Glasner’s scattering non-weakly mixing system contains
equicontinuity points. A corollary is that scattering does not imply sensitivity to initial
conditions.

We then give a series of topological statements equivalent to the existence of a closed
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cover with bounded complexity for(X, T ) (Proposition 4.1). The most striking is the
following: (X, T ) is scattering if and only if its cartesian product with any minimal system
is transitive. An interesting consequence is that scattering systems are disjoint from all
minimal distal systems (Proposition 4.2); the proof is almost identical to that given by
Furstenberg for a similar theorem, when assuming weak mixing instead of scattering [Fu].

In [Bl2] one of the authors introduced entropy pairs. Complexity pairs are defined
similarly: (x, x ′), x 6= x ′, forms a complexity pair if any closed 2-set cover separating
x andx ′ has unbounded complexity; a system is 2-scattering if and only if any pair of
distinct points is a complexity pair. With their help we prove that minimal equicontinuous
systems are disjoint from 2-scattering systems (Proposition 5.4) and that the maximal
equicontinuous factor of(X, T ) is the one associated with the smallest closed invariant
equivalence relation containing the set Com(X, T ) of complexity pairs (Proposition 5.7).
Finally when(X, T ) is invertible Com(X, T ) is included in the regionally proximal relation
RP(X, T ) (Proposition 5.7), and equal to it when(X, T ) is also minimal (Example 5.10).

We do not address the measure-theoretic side of complexity, except by remarking that,
almost obviously, the existence of an invariant probability measure with full support and
trivial Kronecker factor implies scattering (Remark 5.12).

The results we obtain prove that the significance of complexity in Topological Dynamics
is not restricted to its exponential growth rate. For minimal systems its meaning is clear. It
mainly provides new equivalent definitions of classical properties: when(X, T ) is minimal
the weak mixing, scattering and 2-scattering properties are equivalent (Proposition 3.8);
whenT is also invertible the complexity relation is identical to the regionally proximal
relation up to the diagonal. It is only for non-minimal zero-entropy systems that complexity
properties introduce new elements of classification.

This research was partly motivated by, and may also shed new light on, the question of
chaos. Since this is not the main concern of the article we have gathered all discussions of
this topic in the last section.

After the introduction and definitions, §2 establishes the characterization of
equicontinuity. §3 describes the relations of complexity with weak mixing, transitivity,
and the existence of equicontinuous points. §4 is devoted to a topological characterization
of the scattering property and its consequence in terms of disjointness. In §5 we introduce
complexity pairs, establish a disjointness theorem for 2-scattering systems, prove that
Com(X, T ) ⊂ RP(X, T ) and that the two relations are equal in the minimal case. Finally,
in §6 we make a few remarks about chaoticity and briefly discuss the connection between
sensitive dependence on initial conditions and complexity properties.

1. Definitions and notation
1.1. Topological dynamical systems.A (topological) dynamical system(X, T ) is a
compact metric setX endowed with a continuous, onto mapT . WhenT is invertible it
is called a homeomorphism. Aninvariant setE is one such thatT E = E: whenE is
closed the restriction(E, TE) is also a dynamical system.

A factor mapφ : (X, T ) → (Y, S) is a continuous onto map such thatS ◦ φ = φ ◦ T ;
when such a map exists(Y, S) is called a factor of(X, T ) and (X, T ) an extension of
(Y, S). A conjugacy map is a bijective factor map.
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A joiningJ between(X, T ) and(Y, S) is a closedT ×S-invariant subset of the cartesian
productX × Y , projecting onto both factors; it is said to benon-trivial when it is a proper
subset. CallJ ∗(y) the fiber{x ∈ X : (x, y) ∈ J } of J overy, andJ∗(x) the fiber ofJ over
x; these two sets are closed.

A system(X, T ) is calledtransitive if for any two non-empty open setsU , V there is
n > 0 such thatU ∩ T −nV 6= ∅; equivalent properties are for(X, T ) to have transitive
points, i.e. points having a dense positive orbit; or the fact that all non-empty invariant
open sets are dense.Total transitivitymeans that(X, T n) is transitive for anyn > 0. A
system(X, T ) is said to beweakly mixingif its cartesian square(X2, T × T ) is transitive,
or, equivalently, if for any four non-empty open setsA, B, C andD there isn > 0 such
that(A∩T −nC)× (B ∩T −nD) 6= ∅. If (X, T ) is weakly mixing then it is weak mixing of
all orders, i.e. any of its cartesian powers is transitive; in other words, given two families
of non-empty open sets(A1, . . . , Ak) and(B1, . . . , Bk), there isn > 0 such that all the
intersectionsAi ∩ T −nBi are simultaneously non-empty [Fu, Proposition II.3].

A minimalsystem is one that contains no proper closedT -invariant subset except∅.
An isometryis a system(X, T ) such thatT preserves distances. An extensionπ :

(Y, S) → (X, T ) is said to beisometricif d(Sy, Sy ′) = d(y, y ′) whenevery, y ′ ∈ Y and
π(y) = π(y ′).

A slightly weaker property is equicontinuity. A system(X, T ) is said to be
equicontinuousif for any ε > 0 there isη > 0 such that ifx, y ∈ X with d(x, y) < η, then
for anyn ∈ N one hasd(T nx, T ny) < ε. By compactness, if(X, T ) is not equicontinuous
there areε > 0 and a pointx ∈ X such that for anyη > 0 one can findy ∈ X with
d(x, y) < η and n ∈ N such thatd(T nx, T ny) > ε. A point x ∈ X is called an
equicontinuity pointif for any ε > 0 there isη > 0 such that ify ∈ X with d(x, y) < η

then for anyn ∈ N one hasd(T nx, T ny) < ε; obviously a system is equicontinuous
if all its points are equicontinuity points. Minimal equicontinuous systems are conjugate
to minimal isometries, i.e. minimal rotations of compact monothetic groups, and play a
central rôle in the theory of Topological Dynamics as developed in Auslander’s book [Au].

The property of distality is still weaker: adistal system(X, T ) is one such that if
x 6= y ∈ X, there isε > 0 with d(T nx, T ny) ≥ ε, n ∈ N. Minimal distal systems
form the smallest class containing the trivial system and stable under factor maps, minimal
isometric extensions and inverse limits [Fu].

A system(X, T ) is said to havesensitive dependence on initial conditions, or to be
sensitive for short, if there existsε > 0 such that for everyx ∈ X, everyη > 0 there
arey ∈ B(x, η) andn ≥ 0 with d(T nx, T ny) > ε. Obviously a sensitive system has
no equicontinuity points; on the other hand a transitive, non-sensitive system contains
equicontinuity points [AAB ].

One particular class is that of symbolic systems. LetA be a finite set of symbols or
alphabet; finite sequences of elements ofA are calledwords. Consider the setAN (or AZ)
endowed with the usual product topology; forx ∈ AN let x(i) (respectivelyx(i, j) for
i < j ) denote theith coordinate ofx (respectively the block of its coordinates fromi to
j ). The shift transformation, defined onAN by σ(x(0)x(1)x(2) . . . ) = x(1)x(2)x(3) . . . ,
is continuous and onto; its two-sided version is also invertible onAZ. A symbolic system
or subshift(S, σ ) is a closedσ -invariant subset ofAN , endowed with the restriction of the
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shift to S. A subshiftS is completely determined by the setL(S) of all words of the form
w = ω(i, j), ω ∈ S, i, j ∈ N, i < j ; one sometimes considers the setsLn(S) of allowable
words of lengthn of S. The cylinder set associated tow ∈ Li(S) is

[w] = {ω ∈ S : ω(0, i − 1) = w}.

1.2. Covers and names.The covers we are dealing with in this article are always finite,
but not always open. A cover is said to betrivial if one of its elements is equal to the whole
setX.

Given two coversC = (C1, . . . , Cn) andD = (D1, . . . ,Dm) define their refinement as
C ∨ D = (Ci ∩ Dj : i = 1, . . . , n, j = 1, . . . ,m). A coverC is said to becoarser than
another coverC′ (or C′ to befiner thanC) if any element ofC′ is included in an element of
C; this property is denoted byC ≺ C′.

For any finite coverC of a compact spaceX, letr(C) be the minimal cardinality of a sub-
cover ofC: if C ≺ C′ thenr(C) ≤ r(C′). One has the inequalityr(C ∨D) ≤ r(C) × r(D).

Standard covers were introduced for the study of the topological entropy of covers; it is
not surprising they also play a part in the study of complexity. Astandard coveris a cover
by two non-dense open sets. A standard cover(A,B) is said toseparatetwo different
pointsx andy if x ∈ Int(Ac) andy ∈ Int(Bc).

With the help of a finite coverC = (C1, . . . , Cm) of (X, T ) one definesC-names for the
points ofX. PutA = {1, . . . ,m} and� = AN . A sequenceω ∈ � is said to be aC-name
of x ∈ X if

(x, ω) ∈ J =
{
(x, ω) ∈ X × � : x ∈

∞⋂
i=0

T −i (Cω(i))

}
.

Note that ifω is aC-name ofx thenσ(ω) is aC-name ofT x; consequentlyJ is aT × σ -
invariant set, and whenC is a closed coverJ is a joining between(X, T ) and a closed
invariant subset of(�, σ). As in the case of joinings denote byJ ∗(ω) = ⋂∞

i=0 T −i (Cω(i))

the fiber ofJ overω, here equal to the set of all pointsx of X such thatω is aC-name of
x, and byJ∗(x) = {ω ∈ � : (x, ω) ∈ J } the set of all possibleC-names ofx; whenC is
closed these sets are closed too. A set ofC-names{ωi ∈ AN : i ∈ I } is said tocoverX if⋃

i∈I J ∗(ωi) = X (beware! here subscriptsdo notdenote coordinates).
WhenT is a homeomorphism it is often convenient to consider names inAZ. They are

defined in the same way, withi varying from−∞ to +∞. In this article we sometimes
use finite names: a wordw ∈ An is a C-name ofx if x ∈ ⋂n

i=0 T −i (Cw(i)), and for
ω ∈ AN we callJ ∗

n (ω) the set of all points having the finite nameω(0, n − 1); note that
J ∗(ω) = limn→∞ J ∗

n (ω).

2. Topological complexity and equicontinuity
Given a dynamical system(X, T ) and a coverC, putCn

0 = ∨n
i=0 T −iC.

Definition. The topological complexity functionof the finite coverC of (X, T ) is the non-
decreasing function

c(C, n) = r(Cn
0).
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We often call itcomplexityfor short. Remark thatc(C, n) = k means that there is a
family of k C-names of lengthn coveringX.

If C ≺ C′ thenc(C, n) ≤ c(C′, n), andc(C ∨D, n) ≤ c(C, n) × c(D, n).
The coverC is said to havebounded complexitywhen c(C, n) is bounded, which

means ultimately constant becausec(C, n) is non-decreasing. OtherwiseC is said to have
unboundedor infinite complexity.

WhenC is the canonical clopen partition of a subshift(X, σ) according to the value
of the zeroth coordinate,c(C, n) is just what is usually called the complexity function of
(X, σ) [F2]. However, even in the case of subshifts we shall consider the complexity of
various covers, not only that of the canonical partition.

When a finite coverC has bounded complexity there exists a finite covering collection
of infinite C-names, as expressed in the following lemma.

LEMMA 2.1. Let (X, T ) be a dynamical system (respectively a homeomorphism). A finite
coverC = (U1, . . . , Uk) has complexity bounded bym if and only if there is a collection
of m infinite (respectively bi-infinite)C-names coveringX.

Proof. Let C have complexity bounded bym. PutA = {1, 2, . . . , k}. To ω ∈ AN associate
for givenn ∈ N the setJ ∗

n (ω) of points ofX for whichω(0, n − 1) is aC-name.
Call H(n) the set of m-tuples {ω1, . . . , ωm} of elements of AN such that

(J ∗
n (ω1), . . . , J

∗
n (ωm)) covers X. The set H(n) is non-empty by definition of

m; it is a closed subset of(AN)m. If (J ∗
n (ω1), . . . , J

∗
n (ωm)) covers X then

(J ∗
n−1(ω1), . . . , J

∗
n−1(ωm)) coversX too, and thereforeH(n) ⊆ H(n−1). The intersection

of decreasing closed setsH = ⋂∞
n=0 H(n) contains at least onem-tuple ω; obviously⋃m

i=1 J ∗(ωi) = limn→∞
⋃m

i=1 J ∗
n (ωi) = X, which means that the set ofC-namesω

coversX.
The reverse is obvious. The proof for bi-infinite names is the same. 2

Now we characterize equicontinuity in terms of the combinatorics of open covers.

PROPOSITION2.2. Let (X, T ) be a dynamical system. The two following statements are
equivalent:
(1) (X, T ) is equicontinuous;
(2) for any finite open coverC of X, c(C, n) is bounded.

Proof. (1) ⇒ (2). Let ε > 0 be a Lebesgue number of the finite open coverC: this means
any open ballB with radiusε is contained in at least one element ofC.

By the equicontinuity assumption there isη > 0, η ≤ ε, such that ifd(x, y) < η

then for anyn ∈ N one hasd(T nx, T ny) < ε. Let x1, x2, . . . , xk be such that the
open ballsB(xi, η), 1 ≤ i ≤ k, cover X. By equicontinuity forj ∈ N one has
T jB(xi, η) ⊂ B(T jxi, ε), and sinceε is a Lebesgue number ofC there is an element
Ui,j of C containing completelyB(T jx, ε). ThereforeT jB(xi, η) ⊂ Ui,j , and for anyn

B(xi, η) ⊂
⋂

0≤j≤n

T −jUi,j .

The last formula means that(
⋂

0≤j≤n T −jUi,j ), 0 < i ≤ k, is a sub-cover ofCn
0 with

cardinalityk independent ofn. Thereforec(C, n) ≤ k.
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(2) ⇒ (1). SupposeT is not equicontinuous, then there areε > 0 and a point
x ∈ X such that for anyη > 0 one can findy ∈ X, d(x, y) < η, andn ∈ N such
thatd(T nx, T ny) > ε. If the assumption (2) is true for(X, T ), consider a finite coverC by
open balls with radiusε/4, and letC = (U1, . . . , Uk) be the cover made up of the closures
of the elements ofC: sinceC ≺ C its complexity is also bounded. By Lemma 2.1 this
means there is a closed cover(X1,X2, . . . , Xc) of X with

Xi =
∞⋂

j=0

T −jUi,j , Ui,j ∈ C.

By definition ofC if y andz both belong toXi the distanced(T jy, T j z) is bounded by
ε/2 for anyj > 0.

Let ηn > 0 go to zero; chooseyn ∈ X such thatd(x, yn) < ηn and there are
integerskn with d(T knx, T kny) > ε. By taking a subsequence, theyn can be assumed
to belong all to the same setXi , and sinceXi is closedx belongs to it too. This implies
d(T knx, T knyn) ≤ ε/2, which contradicts the previous assumption. 2

Remark 2.3.This is where the difference lies between an irrational rotation(T, α) of the
torusT and its Sturmian symbolic extension(X, σ): (T, α) is equicontinuous and any open
cover has bounded complexity; on the other hand the canonical clopen partition of(X, σ)

has complexityn + 1; its image, the classical interval cover ofT, is closed but it is not the
closure of an open cover.

3. Complexity, mixing and transitivity
Here we examine the relations between the complexity of covers and some classical
topological properties.

Remark 3.1.The existence of a finite cover of(X, T ) by non-dense open sets with bounded
complexity, and the existence of a finite non-trivial closed cover with the same cardinality
and bounded complexity, are equivalent properties: ifC is open non-dense and has bounded
complexity so has the non-trivial closed cover made up of the closures of its elements; and
if a closed non-trivial cover has bounded complexity any coarser non-dense open cover has
bounded complexity too. On the other hand all open covers may have bounded complexity
while there exist closed covers with unbounded complexity, as was remarked for irrational
rotations.

Call a dynamical system(X, T ) scattering, respectively2-scattering, if any finite cover
by non-dense open sets, respectively any standard cover, has unbounded complexity. In
view of Remark 3.1 above one can replace open covers by non-trivial closed covers in
these definitions. One could also definen-scattering forn > 2 in similar manner.

Question 3.2.Does 2-scattering imply scattering? This question is given its whole
significance by the results of §4 and §5.

Relations between topological mixing and complexity are the matter of the next two
propositions. We require one lemma for the proof of each.
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The first is purely combinatorial. Suppose the minimal cardinality of a sub-cover ofC

is r(C) = k, let I (C) be the set of intersections ofk − 1 complements of elements ofC; by
definition ofr(C) none of these intersections is empty.

LEMMA 3.3. Let C and D be two finite non-trivial closed covers ofX, r(C) = k,
r(D) = `. Assume that for anyA ∈ I (C), anyB ∈ I (D), the setA∩B is non-empty. Then
r(C

∨
D) ≥ k + ` − 1.

Proof. Considerk + ` − 2 elements ofC
∨
D, each of them of the formCi ∩ Dj . The

subset ofX they do not cover is the complement of their union; it is a union of intersections
of k + ` − 2 setsCc

i andDc
j ; some of these are intersections of an element ofI (C) and an

element ofI (D). By hypothesis these are not empty, therefore no subset of sizek + ` − 2
of C

∨
D can be a sub-cover. 2

PROPOSITION3.4. Weak topological mixing implies scattering.

Proof. In this proof we use the definition of scattering by closed covers. Let(X, T ) be
weakly mixing and letC = (C1, . . . , Ck), with k > 1, be any non-trivial cover by closed
sets.

Observe that sinceC is non-trivial the minimal cardinalityr0 = r(C) of a sub-cover is
at least two. We define inductively an increasing sequence of integers(in, n ∈ N) such
that r(Cin

0 ) goes to infinity, starting fromi0 = 0 for whichr(C) ≥ 2. Putc(C, in) = mn.

As C is closed, the two familiesI (C
in
0 ) andI (C) are made up of non-empty open sets. By

weak mixing of all orders, which we know is equivalent to weak mixing, there is an integer
jn > 0 such that whateverA ∈ I (C

in
0 ), B ∈ I (C), the setA ∩ T −jnB is not empty. We

can thus apply Lemma 3.3 to the two coversCin
0 andT −jnC: their refinement has minimal

cardinality at leastmn + m0 − 1 > mn.
Putting in+1 = in + jn, observe thatCin

0

∨
T −jnC ≺ C

in+1
0 , thusmin ≥ n + 1. This

proves thatC has unbounded complexity. 2

The next lemma, due to Banks, characterizes weak mixing for invertible as well as
non-invertible systems; a similar Lemma was proved long ago in [P] for group actions.

LEMMA 3.5. A dynamical system(X, T ) is not weakly mixing if and only if there exist
two non-empty open setsU andV such that

∀n > 0, eitherU ∩ T −nU = ∅ or U ∩ T −nV = ∅. (1)

PROPOSITION3.6. Suppose each standard coverC of (X, T ) is such thatc(C, n) > n+ 1
for somen; then(X, T ) is topologically weakly mixing.

Proof. Suppose(X, T ) is not weakly mixing; by Lemma 3.5 there are non-empty open
setsU andV with property (1); without loss of generality assume their intersection is
empty. LetR′ = {U ′, V ′} be a standard cover ofX such thatV c ⊂ U ′ andUc ⊂ V ′.
Given a positive integeri, eitherU ∩ T −iU 6= ∅, in which caseU ⊂ (T −iV )c ⊂ T −iU ′;
or U ∩ T −iU = ∅ andU ⊂ T −iV ′. This means there is a sequence(Wi, i > 0) with
Wi = U ′ or V ′, such that

U ⊂ U ′ ∩ T −1W1 ∩ · · · ∩ T −nWn ∩ · · · .
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Fixing n and choosing for eachx ∈ X the smallest integeri, 0 ≤ i ≤ n, such thatT ix ∈ U

when there exists one, otherwise puttingi = n + 1, we observe that the family ofn + 1
sets

(V ′ ∩ T −1V ′ ∩ · · · ∩ T −i+1V ′ ∩ T −iU ′ ∩ T −i−1W1 ∩ · · · ∩ T −nWn−i : 0 ≤ i ≤ n + 1)

is a sub-cover ofR′n
0. Hencec(R′, n) ≤ n + 1 for all n > 0. 2

Non-standard covers may have uncharacteristically small complexity. When(X, T ) is
weakly mixing and contains periodic points it is easy to find an open cover with bounded
complexity. On the other hand it is a significant fact that some non-standard cover has
unbounded complexity (see Proposition 5.1(2)).

Remark 3.7.(X, T ) is said to be anF-systemif it has a dense set of periodic points and if
all powers ofT act transitively onX [Fu]. F-systems are weakly mixing [B1] and therefore
scattering.

PROPOSITION3.8. For a minimal dynamical system 2-scattering, scattering and weak
mixing are equivalent.

Proof. Any minimal system that is not weakly mixing has a non-trivial equicontinuous
factor ([KR ], see [Au] for a simple proof due to McMahon), and therefore possesses
standard covers with bounded complexity. It cannot thus be scattering or 2-scattering.
The converse results from Proposition 3.4. 2

Question 3.9.Except for minimal systems Propositions 3.4 and 3.6 do not add up to a
characterization of weak topological mixing. Scattering does not imply weak mixing [AG].
Nevertheless, is it possible to characterize weak mixing in terms of complexity?

PROPOSITION3.10. If (X, T ) is 2-scattering, then(X, T n) is 2-scattering and transitive
for anyn > 0.

Proof. Let us show first that when(X, T ) is 2-scattering so is(X, T k). Let subscripts
denote the transformations with respect to which a complexity is computed, and letC be a
finite cover such thatcT (C, n) → ∞ whenn goes to infinity. One has

cT (C, kn + k − 1) = r

( kn+k−1∨
i=0

T −i
C

)
= r

( n∨
i=0

T −ki
C ∨ · · · ∨

n∨
i=0

T −ki−k+1
C

)

≤ r

( n∨
i=0

T −ki
C

)
× · · · × r

( n∨
i=0

T −ki−k+1
C

)
;

but thek terms of the last expression are equal, becauser(C) = r(T −1C), and the first
is equal tocT k (C, n). ThuscT (C, kn + k − 1) ≤ cT k (C, n)k and if C has unbounded
complexity underT the same is true underT k. In particular, this applies to all standard
covers, so that 2-scattering forT implies 2-scattering forT k.

There remains to prove that any 2-scattering system is transitive. If(X, T ) is not
transitive letA, B be two non-empty open sets such thatA ∩ T −nB = ∅ holds for
anyn > 0.
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1st case.SupposeA ∩ B 6= ∅. ReplacingA andB by their intersection we can assume
A = B. ThenC = (Ac, T −1Ac) is a non-trivial closed cover: if the orbit of some point
x ∈ X hitsT −1A at timen it hits A at timen + 1, but it can belong to either of these two
sets at any other time. The two names 010101. . . and 101010. . . thus coverX.

2nd case.Suppose nowA ∩ B = ∅.
(a) If there isn > 0 with B ∩ T −nA 6= ∅ let m be the minimum of such values. Then if

E = B ∩ T −mA one hasE ∩ T −nE = ∅ for n > 0 so that we are in the first case
again.

(b) If for anyn > 0 one hasB ∩ T −nA = A ∩ T −nB = ∅, puttingAc = C0, Bc = C1,
C = (Ac, Bc) the twoC-names 000. . . and 111. . . coverX. 2

The converse of Proposition 3.10 is false: irrational rotations of the 1-torus are totally
transitive and not 2-scattering.

An equicontinuous system is one for which all points are equicontinuity points.
Naturally enough the existence of an equicontinuity point in a system that is not
equicontinuous has some consequences in terms of complexity, but these are not as clear
as in the global case. Existence of an equicontinuity point contradicts weak mixing, so that
the following statement is a consequence of Proposition 3.6.

PROPOSITION3.11. Supposex is an equicontinuity point of(X, T ). ThenX is not weakly
mixing and for anyy ∈ X, y 6= x, there is a standard coverC separatingx andy and with
complexityc(C, n) ≤ n + 1.

Proof. Let x ∈ X be an equicontinuity point. Fixy 6= x, ε > 0 such thatd(x, y) > 4ε and
the correspondingη > 0; without loss of generality assumeη ≤ ε.

Call A the closed ballB(x, η) andB the closed ballB(y, ε). One hasd(A,B) > 2ε

andR = (Ac, Bc) forms a standard cover ofX, separatingx andy. An essential feature
of A andB is that for anyn > 0, at least one of the setsA ∩ T −nB andA ∩ T −nA must
be empty: for instance ifA ∩ T −nB 6= ∅, by equicontinuityd(T nx, B) < ε; again by
equicontinuity ofx and becaused(A,B) > 2ε one hasA ∩ T −nA = ∅.

A sufficient condition for non-weak mixing is thus satisfied. Then just as in the proof
of Proposition 3.6, one can find a sub-cover ofR

n−1
0 of cardinality at mostn + 1. 2

An easy consequence is that weak mixing implies sensitivity to initial conditions: recall
that a transitive, non-sensitive system has equicontinuity points [AAB ].

If there exists a cover with bounded complexity, this does not imply that there exists
an equicontinuity point. A Sturmian symbolic system is expansive and cannot have
equicontinuity points; but it also has infinitely many standard covers with bounded
complexity (all those inherited from the rotation it has as a factor).

In the setting of Proposition 3.11, if one wishes to have a cover with bounded complexity
separatingx from some other point it is not enough to suppose thatx is an equicontinuity
point, i.e. that any point near enoughx shadows its orbit; there must also be some
assumption about what happens at some distance fromx. The following example illustrates
this point.

Example 3.12.Consider the homeomorphismf : f (x) = x2 of the unit interval. The
mapf is equicontinuous everywhere except at one. Choose any coverC = (A,B), where
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Ac = I1 = [0, h) andBc = I2 is any open interval disjoint fromI1. Suppose the orbit of
x1 entersI1 at timei1, necessarily staying inB hereafter; there existsx2, the orbit of which
entersI2 at timei ′2 > i1 andI1 at timei2; any of itsC-names must have anA at timei ′2 and
Bs afteri2, which implies that it is different from anyC-name ofx1. An easy induction
based on this remark permits one to construct an infinite sequence of points(xn), n ∈ N,
none of which may have the sameC-names. ThereforeC has infinite complexity. However,
this system is not transitive, which by Proposition 3.10 implies it is not 2-scattering.

Scattering does not imply that there exist no equicontinuity points [AG]. The same
example shows that scattering systems are not necessarily sensitive to initial conditions
(see §6): a transitive sensitive system has no equicontinuity points [AAB ].

A class of transitive, non-equicontinuous systems with equicontinuity points is
described in [GW1, GW2, Proposition 1.5]. Systems with this set of properties cannot
be minimal, and no invariant measure with full support can exist on them [GW1,
Theorem 1.3], and there exists a subsequence of(T n) converging uniformly to the identity
[GW1, Lemma 1.2]. Any system belonging specifically to the aforementioned class of
examples has a surprising property: its cartesian product with some minimal weakly
mixing system is not transitive.

4. Covers with bounded complexity and a disjointness theorem
Scattering and other definitions based on complexity may look rather abstract; they can
also be hard to check for particular systems. Can one find a characterization which would
be at once more familiar to dynamists and easier to manipulate? The next proposition
answers this question: a system is scattering if and only if its cartesian product withany
minimal system is transitive.

PROPOSITION4.1. For a transitive system(X, T ) the following properties are equivalent:
(1) (X, T ) is not scattering;
(2) there exists a minimal system(Y, S) such that(X ×Y, T ×S) is not transitive. When

such a system exists there is a minimal homeomorphism with the same property;
(3) there exists a minimal system(Y, S), a closedT × S-invariant proper subsetJ of

X × Y and an integerN > 0 such that
⋃

0≤n<N(Id ×Sn)J = X × Y . When such a
system(Y, S) exists there is a minimal subshift with the same property.

Proof. (1) ⇒ (3). AssumeC = {C1, . . . , Ck} is a non-trivial closed cover ofk elements
with bounded complexity. Let� = {1, . . . , k}N be endowed with the shiftσ . Forω ∈ �

let J ∗(ω) be the closed set of all pointsx ∈ X such thatω is aC-name ofx.
SinceC has bounded complexity, by Lemma 2.1 there existm ≥ 1 andω1, . . . , ωm ∈ �

such that

m⋃
j=1

J ∗(ωj ) = X. (2)

Call H the set ofm-tuplesω = (ω1, . . . , ωm) for which (2) holds. It is closed: suppose
the sequence(ω(n)), n ∈ N, converges toω and each of its elements satisfies (2). As in
§1 callJ ∗

n (ω) the set of points ofX for which ω(0, n − 1) is aC-name; fixj > 0: when
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n is large enoughωi andω
(n)
i have the same firstj coordinates, whateveri ∈ {1, . . . ,m},

and for the same values ofn one hasJ ∗
j (ωi) = J ∗

j (ω
(n)
i ); hence

⋃m
i=1 J ∗

j (ωi) = X. This
is true for allj > 0; passing to the limit (2) is seen to hold forω. Let S be the joint shift
σ × · · · × σ : one easily checks thatSH ⊂ H , so that the intersectionH ′ = ⋂∞

n=0 SnH is
a closed, invariant (i.e.SH ′ = H ′) subset ofH .

Therefore there existsω = (ω1, . . . , ωm) ∈ H ′ having a minimal closed orbit6 under
S; (2) holds for anyα ∈ 6 becauseH ′ is closed and invariant. Denote byYi the invariant
minimal closed orbit ofωi underσ ; the set6 is a closedS-invariant subset of

∏
1≤i≤m Yi .

For 1≤ i ≤ m put
Ki = {(α, x) ∈ 6 × X : x ∈ J ∗(αi)}.

EachKi is closed in6 × X: this relies on the fact thatC is a closed cover; as (2) holds
for α ∈ 6, one has

⋃m
i=1 Ki = 6 × X. For these reasons one of theKi has non-empty

interior. Assume it isK1: this means there is a non-empty open setU of X, and for eachi
a non-empty open setAi ⊂ Yi such that

Z = 6 ∩
( m∏

i=1

Ai

)
6= ∅ and ∀α = (α1, . . . , αm) ∈ Z, U ⊂ J ∗(α1).

Z is defined as a non-empty open subset of6. Since(6, S) is minimal, there exists an
integerN such that

∀α ∈ 6, ∃k ∈ {0, . . . , N − 1}, with Skα ∈ Z,

which means by definition ofZ that

∀ω ∈ Y1, U ⊂
N−1⋃
k=0

J ∗(σ kω);

remarking thatY1 is invariant and thatT J ∗(ω) ⊂ J ∗(σω), one obtains

∀ω ∈ Y1, ∀n ∈ N, T nU ⊂
N−1⋃
k=0

J ∗(σ kω).

The open setU contains a transitive point, therefore
⋃

n∈N T nU is dense inX.
PutY = Y1. The set

⋃N−1
k=0 J ∗(σ kω) is equal toX: it is closed becauseC is a closed

cover, and it contains the dense set
⋃

n∈N T nU . The setJ ′ = {(x, α) ∈ X×Y : x ∈ J ∗(α)}
is closed and(T ×σ)-invariant; supposex belongs to the non-empty setCc

i , whereCi ∈ C:
then(x, α) /∈ J ′ wheneverα(0) = i, and consequentlyJ ′ is a proper subset ofX × Y .

(3) ⇒ (2). By Baire’s theorem the interior ofJ is non-empty; it is an open non-dense
invariant set. Taking the natural extension of(Y, S) we get a minimal homeomorphism
with the same property.

(2) ⇒ (3). Let U 6= ∅ be invariant, open and non-dense inX × Y , and putJ = U .
The projection ofU to X is a non-empty open set; it contains a transitive pointx0. J (x0)

is closed with non-empty interior in the minimal setY , so that there is an integerN such
that

⋃
0≤n<N SnJ (x0) = Y . Let K be the closed invariant set

⋃
0≤n<N(Id ×Sn)J : then

K(x0) = Y ; sincex0 is transitiveK(x) = Y for all x ∈ X andK = X × Y .
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(3) ⇒ (1). Fix y0 ∈ Y . SinceJ 6= X × Y andY is minimal one hasJ ∗(y0) 6= X. This
implies there exists a closed neighbourhoodA of y0 such thatJ ∗(A) 6= X; putF = J ∗(A).
By hypothesis one has

⋃
0≤n<N T nJ ∗(y0) = X, thusC = (F, T F, . . . , T N−1F) is a non-

trivial closed cover ofX.
ChooseM big enough forA = (A, SA, . . . , SM−1A) to coverY , and letω be anA-

name ofy0. We can supposeN = M. Let x ∈ X; there isn, 0 ≤ n ≤ N , such that
x ∈ J ∗(Sny0). For anyk ∈ N one hasSn+ky0 ∈ Sωn+kA, whence

T kx ∈ J ∗(Sn+ky0) ⊂ J ∗(Sωn+kA) = T ωn+kF ;
this means thatσnω is aC-name ofx, and the complexity of the coverC is bounded byN .2

It is worth noting that in fact the setsJ andJ ′ are joinings.
Furstenberg proved that weakly mixing systems are disjoint from minimal distal

systems [Fu, Theorem II.3]. In his proof he only uses weak mixing through the fact that
the cartesian product of a weakly mixing system with any minimal system is transitive [Fu,
Proposition II.11]. Now Proposition 4.1 tells us that(X, T ) is scattering if and only if its
cartesian product with any minimal system is transitive (which by the way proves again
that weak mixing implies scattering). A natural consequence is the following result.

PROPOSITION4.2. Scattering systems are disjoint from all minimal distal systems.

Proof. Minimal distal systems form the smallest class containing the trivial system and
stable under factor maps, minimal isometric extensions and inverse limits. The trivial
system is disjoint from all others; disjointness from(X, T ) is preserved under factor maps
and inverse limits. We only have to prove that the disjointness property passes on to
minimal isometric extensions: this is done in Lemmas 4.3 and 4.4. 2

The two following statements are implicit in Furstenberg’s proof. Our proof of
Lemma 4.3 is based on the isometric extension property, whereas the one he gives relies
on the properties of group extensions; the two are of course equivalent.

LEMMA 4.3. Let π : (Y, S) → (X, T ) be an isometric extension. If there is an invariant
closed setF ⊂ Y with F 6= Y andπ(F) = X, then(Y, S) is not transitive.

Proof. For ε > 0 put

Fε = {y ∈ Y : ∃z ∈ F, π(z) = π(y) andd(y, z) ≤ ε}.
Fε is closed inY , and invariant because the extension is isometric; asF 6= Y one can
chooseε small enough forFε 6= Y . Then its interior is a non-dense open invariant set; we
must show it is not empty.

For x ∈ X put F(x) = π−1(x) ∩ F . Recall that anε-separated subset inF(x) is a
set{y1, . . . , yk} ⊂ F(x) with d(yi, yj ) ≥ ε whenever 1≤ i 6= j ≤ k. Call N(x) the
maximum cardinality of anε-separated subset inF(x). For anyx one hasF(x) 6= ∅ and
1 ≤ N(x) ≤ ∞; moreover sinceF is closed the setUk = {x ∈ X : N(x) ≤ k} is open for
any integerk. Choose the smallest valuek such thatUk 6= ∅ and putUk = U ; thusU is a
non-empty open set andN(x) = k for x ∈ U .
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CLAIM . Givenε > 0, for anyx ∈ U there is a neighbourhoodV of x, V ⊂ U , such that
∀y ∈ F(x),∀x ′ ∈ V, ∃z ∈ F(x ′) with d(y, z) < ε.

Assume the claim is not true: there arex ∈ U , a sequence(xn) in U converging to
x, and for anyn a pointyn ∈ F(x) with d(yn, z) ≥ ε for all z ∈ F(xn). For eachn
let {zn,1, . . . , zn,k} be anε-separated subset ofF(xn). By taking a subsequence one may
suppose that for eachi ∈ {1, . . . , k} the sequence(zn,i ) converges to somezi ∈ F(x),
and that(yn) converges toy ∈ F(x). We assumed thatd(yn, zn,i ) ≥ ε for all i, n, thus
d(y, zi) ≥ ε; we also assumed thatd(zn,i , zn,j ) ≥ ε for 1 ≤ i 6= j ≤ k, this implies
d(zi, zj ) ≥ ε. Thus{y, z1, . . . , zk} is anε-separated subset ofF(x), which contradicts the
definition ofU : this proves the claim.

Let y ∈ F with π(y) ∈ U , and letV be the neighbourhood associated toπ(y) for
the valueε/2 by the claim. There is a neighbourhoodW ⊂ B(y, ε/2) of y such that
π(W) ⊂ V . By the claim fory ′ ∈ W there is a pointz ∈ F(π(y ′)) with d(y, z) < ε/2,
whenced(y ′, z) < ε andy ′ ∈ Fε . ThusW ⊂ Fε , so that the interior ofFε is not empty
and(Y, S) is not transitive. 2

LEMMA 4.4. Suppose(X, T ) is scattering and letπ : (Y, S) → (Z,R) be an isometric
extension with(Y, S) minimal. If(X, T ) and(Z,R) are disjoint so are(X, T ) and(Y, S).

Proof. Let J ⊂ X × Y be any joining. (Id ×π)(J ) is a joining of (X, T ) and (Z,R)

so by disjointness it is equal toX × Z. On the other hand Id×π : (X × Y, T × S) →
(X ×Z, T ×R) is an isometric extension. By Proposition 4.1(X ×Y, T ×S) is transitive;
applying Lemma 4.3 one getsJ = X × Y . 2

Remark 4.5.With the help of Proposition 4.1 above and the proof of [GW2, Lemma 2.2] it
is not too hard to obtain the following result: any scattering system with an equicontinuity
point contains only one minimal system which is a fixed point.

5. Complexity pairs and the regionally proximal relation
Let us define a relation between points ofX. A couple of points(x, y) in X2 \ 1X is said
to be acomplexity pairif for every standard coverC that separates them,c(C, n) tends
to infinity. We denote by Com(X, T ) the set of complexity pairs of(X, T ). This notion
is analogous to that of entropy pair introduced in [Bl2]. One easily sees that(X, T ) is 2-
scattering if and only if all couples of different points inX are complexity pairs. An entropy
pair (x, y), i.e. one such that any standard cover separatingx and y has exponentially
growing complexity, is a complexity pair.

In the next proposition we gather all of the relevant facts about covers with unbounded
complexity and complexity pairs. The proofs are left to the reader: they are practically
identical to those of analogous properties of entropy pairs in [Bl2].

PROPOSITION5.1. Let (X, T ) be a dynamical system.
(1) Let C be an open cover with unbounded complexity. Then there exists a standard

cover with unbounded complexity.
(2) Let C = (U, V ) be an open cover (not necessarily standard). Ifc(C, n) is not

bounded there is a complexity pair inUc × V c.
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(3) The setCom(X, T ) ∪ 1X is closed.
(4) Let π : (X, T ) → (Y, S) be a factor map. If(x, x ′) ∈ Com(X, T ) and

π(x) 6= π(x ′), then (π(x), π(x ′)) ∈ Com(Y, S). If (y, y ′) ∈ Com(Y, S), then
there is (x, x ′) ∈ Com(X, T ) such thatπ(x) = y, π(x ′) = y ′. In particular,
Com(X, T ) ∪ 1X is T × T -invariant.

In view of Proposition 5.1(2) observe that many systems have non-standard covers with
unbounded complexity.

Example 5.2.SupposeX has no isolated points and(X, T ) is transitive but not minimal
with T invertible; letx be a transitive point. Using the invertibility assumption it is not
hard to prove that if all preimages ofx entered any of its neighbourhoods in bounded
time then(X, T ) would be minimal; so there exists some neighbourhoodV of x such that
the entrance time for preimages ofx is unbounded: more precisely for anyn > 0 there
are infinitely many pointsy in the negative orbit ofx such thatT jy /∈ V, j ≤ n. Put
U = {x}c andC = (U, V ). Assume that for some positivenk there are alreadyk points
in {T −ix, i ≤ nk} such that two of them can never be in the same open set of the cover
C

nk

0 ; there existsj > nk such thatT i(T −j x) /∈ V for 0 ≤ i ≤ nk. Settingnk+1 = j and
addingT −j x to our collection we now havek+1 points in{T −ix, i ≤ nk+1} such that two
of them can never be in the same element of the coverC

nk+1
0 . Therefore the non-standard

open coverC has unbounded complexity.

Remark 5.3.The relation Com(X, T ) ∪ 1X is closed and invariant but not, in general, an
equivalence relation: see Example 5.9 below.

A first consequence of the properties of complexity pairs is a disjointness theorem; it
is not contained in Proposition 4.2, under the condition that 2-scattering and scattering are
distinct properties.

PROPOSITION5.4. 2-scattering dynamical systems are disjoint from minimal equicontin-
uous dynamical systems.

Proof. Again the proof is close to that of [Bl2, Proposition 6]. We show that if(X, T ) is 2-
scattering and(Y, S) is minimal, and there is a non-trivial joiningJ between the two, there
exists a complexity pair in(Y, S): then by Proposition 2.2(Y, S) cannot be equicontinuous.

Call J∗(x) the closed set{y ∈ Y : (x, y) ∈ J }. Suppose there arex 6= x ′ ∈ X

such thatJ∗(x) ∩ J∗(x ′) = ∅. Let π andπ ′ be the projections ofJ on X andY . As
(x, x ′) ∈ Com(X, T ) by Proposition 5.1(4) applied toπ , there existy, y ′ ∈ Y such that
((x, y), (x ′, y ′)) ∈ Com(J, T × S): our assumption thatJ∗(x) ∩ J∗(x ′) = ∅ ensures that
y 6= y ′. Then, by Proposition 5.1(4) applied toπ ′ in the reverse direction(y, y ′) is a
complexity pair.

So we must only show that there existx, x ′ ∈ X with J∗(x) ∩ J∗(x ′) = ∅. We can
assumeJ is minimal as a joining, i.e. no proper subset ofJ is a joining ofX andY . Now
supposeJ∗(x) ∩ J∗(x ′) 6= ∅ for x, x ′ ∈ X; consider the subset ofJ :

J ′ =
⋃
x∈X

{x} × (J∗(x) ∩ J∗(T x)) =
⋃
x∈X

{x} × (J∗(x) ∩ S(J∗(x))) = J ∩ (Id × S)(J ).
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One easily checks that it is closed and invariant, and by our assumptionJ ′∗(x) 6= ∅ for
x ∈ X, soπ(J ′) = X; by minimality of (Y, S), π ′(J ′) = Y . If one hadJ ′ = J this
would mean that for everyx J∗(x) = J∗(T x), and as a non-empty closed invariant subset
of the minimal setY , the setJ∗(x) would beY itself, henceJ = X × Y . ThusJ ′ is a
proper subjoining ofJ , soJ cannot be minimal as a joining. So there has to bex ∈ X with
J∗(x) ∩ J∗(x ′) = ∅, which finishes the proof. 2

A transitive dynamical system on which there exists an invariant measure with full
support is called anE-system.

PROPOSITION5.5. For an E-system 2-scattering is equivalent to scattering and also to
disjointness from all minimal equicontinuous systems.

Proof. Let (X, T ) be anE-system. By Proposition 4.1 it is scattering if and only if its
product with any minimal homeomorphism(Y, S) is transitive. Following the proof of
[Au, Theorem 7, Chapter 11] such a cartesian product is transitive whenever the maximal
equicontinuous factor of(Y, S) is disjoint from(X, T ) (see the Appendix). This obviously
holds when(X, T ) is disjoint from all minimal equicontinuous systems, and this is true for
2-scattering systems by Proposition 5.4. 2

Question 5.6.Here are, in fact, two in a series of natural questions, some of which are
distinct only if scattering and 2-scattering are different properties. Is 2-scattering also a
necessarycondition for a transitive system to be disjoint from all minimal isometries? Is
scattering a necessary condition for a transitive system to be disjoint from all minimal
distal systems?

Let us now examine the connection between Com(X, T ) and the well-known maximal
equicontinuous factor of a dynamical system.

PROPOSITION5.7. LetCom0(X, T ) be the smallest closed invariant equivalence relation
containingCom(X, T ) ∪ 1X, andπ0 : (X, T ) → (X0, T0) be the factor map obtained
by identifying points in the same equivalence class of this relation. Thenπ0 : (X, T ) →
(X0, T0) is the maximal equicontinuous factor of(X, T ).

Proof. First (X0, T0) is equicontinuous. Suppose it is not. By Proposition 2.2 it has an
open cover with unbounded complexity, then by Proposition 5.1(1) and (2), there exists a
complexity pair for(X0, T0), i.e. by Proposition 5.1(4), two distinct points such that there
is a complexity pair in their preimage forπ0. This is a contradiction:π0 collapses all
complexity pairs ofX2.

Now assume thatπ : (X, T ) → (Y, S) is another equicontinuous factor, thenπ must
collapse all complexity pairs of(X, T ) and the corresponding equivalence relation must
contain the one associated toπ0, which meansπ factors throughπ0. 2

For a homeomorphism(X, T ) theregionally proximalrelation is defined as

RP(X, T ) = {(x, y) ∈ X2 : (∀Ux)(∀Uy)(∀ε > 0)

(∃x ′ ∈ Ux)(∃y ′ ∈ Uy)(∃n ∈ Z)d(T n(x ′), T n(y ′)) ≤ ε}
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such that a pair(x, y) is regionally proximal if givenε > 0 one can find in any
neighbourhood of(x, y) a pair (x ′, y ′) such that the orbits ofx ′ andy ′ get within ε of
each other for somen ∈ Z. This relation is closed and invariant, and in the minimal case
it is an equivalence relation; the maximal equicontinous factor is the factor induced by the
smallest closed invariant equivalence relation containing RP(X, T ) [Au].

There are strong links between complexity pairs and regionally proximal pairs. When
a pair is not regionally proximal, one can find a standard cover with bounded complexity
separating it.

PROPOSITION5.8. Let (X, T ) be a homeomorphism. ThenCom(X, T ) ⊆ RP(X, T ).

Proof. Suppose that(x, y) /∈ RP(X, T ). Then there are neighbourhoodsUx andUy of
x and y, respectively, andε > 0 such that for everyx ′ ∈ Ux , y ′ ∈ Uy and n ∈ Z,
d(T n(x ′), T n(y ′)) > ε. By compactness, there is a cover(C1, . . . , Ck) with the following
properties:
(i) Ci , i = 1, . . . , k, is closed with interior and diam(Ci) ≤ ε/2;
(ii) x ∈ Int(C1) andy ∈ Int(Ck);
(iii) C1 ⊂ Ux andCk ⊂ Uy .

We claim that fori ∈ {1, . . . , k} andn ∈ N, eitherT n(Ci)∩C1 6= ∅ or T n(Ci)∩Ck 6= ∅
but not both: if for somei ∈ {1, . . . , k} there are two pointsz, z′ ∈ Ci andn ∈ N such that
T n(z) ∈ C1 andT n(z′) ∈ Ck thend(T −n(T n(z)), T −n(T n(z′))) ≥ ε; this contradicts the
fact that diam(Ci) ≤ ε/2. PutC = (Cc

1, Cc
k ): one can thus find a unique infiniteC-name for

each setCi . Then the standard coverC, which by (ii) separatesx from y, has complexity
bounded byk and(x, y) cannot be a complexity pair. 2

The converse inclusion is not, in general, true. The following property helps us prove
this claim.

LEMMA 5.9. Let (X, T ) be a transitive homeomorphism containing a fixed pointa. Then
RP(X, T ) = X2.

Proof. Let x0 andy0 be two distinct points ofX, and letU be a neighbourhood ofx0

andV be a neighbourhood ofy0. There is a transitive pointx in U , and there isk ∈ Z

with y = T kx ∈ V . There is a sequence(nj ) of integers such thatT nj x → a. Thus
T nj y → T nj a = a andd(T nj x, T nj y) → 0. 2

Here is a very simple symbolic system for which Com(X, T ) is not an equivalence
relation and Com(X, T ) 6= RP(X, T ).

Example 5.10.Consider the transitive sofic subshiftS ⊂ {0, 1}Z defined by the condition
that there is an odd number of zeros between any two occurrences of one. PutA = {ω ∈
S/ω2n = 1 for somen ∈ Z}, B = {ω ∈ S/ω2n+1 = 1 for somen ∈ Z} and letC be the
closed cover(Ac, Bc). One easily checks thatcn(C) = 2 for all n, and deduces from this
that one point inA and one point inB can never form a complexity pair. On the other hand
S is a factor of the cartesian product({0, 1}Z, σ )×(Z/2Z,+1); applying Proposition 4.1(4)
it is easy to check that any standard cover separating the unique fixed point on the letter zero
from any other point has infinite complexity. These two facts prove that Com(S, σ ) ∪ 1S
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is not transitive. Lemma 5.9 shows that RP(S, σ ) = X2. Thus Com(S, σ ) is a strict subset
of RP(S, σ ).

This example also shows that systems with RP(X, T ) = X2 are not necessarily disjoint
from group rotations:(S, σ ) has an obvious joining with the exchange of two points.

In the minimal case no system with these properties exists.

PROPOSITION5.11. If (X, T ) is a minimal homeomorphism,Com(X, T ) = RP(X, T ).

Proof. By Proposition 5.7 it is enough to prove that RP(X, T ) ⊂ Com(X, T ). Letx1 6= x2

be in X and assume that(x1, x2) /∈ Com(X, T ). Let (U1, U2) be a standard cover of
bounded complexity separating these points and putF1 = U1, F2 = U2; the cover
R = (F1, F2) also has bounded complexity. Put� = {1, 2}Z and letJ (the joining
associated toR-names),J ∗(ω) (the sets of points inX having the nameω) andJ∗(x) (the
set of names ofx) be as defined in §1.

The coverR has bounded complexity, which by Lemma 2.1 implies thatX is covered by
a finite union of setsJ ∗(ω). These sets are closed and at least one of them must have non-
empty interior. Thus there areα ∈ � and a non-empty open setW ⊂ X with W ⊂ J ∗(α).
Put

K = {(x, y) ∈ X2 : J∗(x) ∩ J∗(y) 6= ∅} =
⋂
n∈Z

T n × T n((F1 × F1) ∪ (F2 × F2)).

K is a closedT × T -invariant subset ofX2. If x andy are inW they have a common
nameα; thusW × W ⊂ K, which means thatK has a non-empty interior. Finally, by
invariance one also hasT nW × T nW ⊂ K for anyn; this fact and minimality imply that
K is a neighbourhood of the diagonal ofX2: there isε > 0 such that

d(x, y) < ε H⇒ (x, y) ∈ K. (3)

Choose arbitrary pointsy1 ∈ Fc
2 andy2 ∈ Fc

1 . ThenJ∗(y1) ⊂ [1] andJ∗(y2) ⊂ [2],
thereforeJ∗(y1) ∩ J∗(y2) = ∅ and(y1, y2) /∈ K. SinceK is invariant, for everyn ∈ Z one
has(T ny1, T

ny2) /∈ K, hence by (3)d(T ny1, T
ny2) ≥ ε; butFc

2 is a neighbourhood ofx1

andFc
1 is a neighbourhood ofx2: this implies that(x1, x2) /∈ RP(X, T ). 2

Remark 5.12.In the minimal case, complexity pairs are exactly those that are collapsed
by projection to the maximal equicontinuous factor. In the case of a Sturmian symbolic
system this permits one to describe easily all complexity pairs, and to tell which standard
covers have unbounded complexity; this would be a hard job by straight computation.

Remark 5.13.Suppose there is an ergodic measureµ with full support on(X, T ), such
that its Kronecker factor (its maximal factor with completely discrete spectrum) is trivial.
Does this imply that(X, T ) is scattering? The answer is almost obviously yes: a
trivial Kronecker factor is equivalent to measure-theoretic weak mixing; this and full
support imply weak topological mixing, which in turn implies that(X, T ) is scattering
by Proposition 3.4. On the contrary, it requires some real work to prove that any system on
which there exists aK-measure with support has uniform positive entropy [GW3].
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6. Some remarks about determinism and chaos
Here we very briefly address the most heuristic motivation of this article. One can consider
equicontinuity as a good candidate for a mathematical definition of complete topological
determinism: in an equicontinuous system when one knows precisely enough where a
point lies, every point of its orbit is determined up toε. This is especially patent for a
symbolic systemS. SupposepS(n) is bounded; then when one knows a long enough block
of coordinates ofx ∈ S this point is completely determined; whenpS(n) is unbounded
there are always blocks of coordinates with arbitrary length that can be prolonged by two
different letters, hence containing at least two points. Granting that chaos is the opposite of
determinism, by Proposition 2.2 it must have some relation with the complexity of covers.

In 1989 Devaney proposed to call chaotic any topological dynamical system that is
transitive, sensitive to initial conditions, and contains a dense set of periodic points [D];
previously Auslander and Yorke had called chaotic all transitive sensitive systems and
determined some properties of such systems [AY ]. Several other tentative definitions of
topological chaos are reviewed in [KS, §7]; although they are quite interesting we shall not
examine them here.

It was later observed that transitivity and dense periodic points imply sensitivity
[BB, GW1]. Sensitivity, nevertheless, remains a very interesting notion because it globally
contradicts equicontinuity; it even does so locally in the transitive case: any transitive
system that is not sensitive has equicontinuity points (actually coinciding with its transitive
points) [AAB ].

The scattering and 2-scattering properties also globally contradict equicontinuity. They
do so in a way that is more closely connected with the point of view of Information Theory.
By Proposition 3.10 both imply transitivity of all powers. Their rˆole in the theory of chaos
cannot be compared with that of sensitivity: scattering does not imply sensitivity [AG]; on
the other hand sensitivity and transitivity do not even imply total transitivity.

Example 6.1.There exist non-scattering systems that are chaotic in the sense of Devaney.
The cartesian product of a full shift and a 2-point set endowed with the exchange of points
is obviously chaotic in this sense. It also has a clopen partition(C0, C1) with T C0 = C1

andT C1 = C0.
Another instance is the system(S, σ ) of Example 5.10: it is also chaotic; the closed

coverC is a partition except for the fixed point, and its elements also have period two. The
following interval mapf has the same property:

f (x) = 2x + 1
2 on [0, 1

4],
f (x) = −2(x − 1

2) + 1
2 on [1

4, 3
4],

f (x) = 2(x − 3
4) on [3

4, 1].
In the three examples there exist almost continuous eigenfunctions—a not very chaotic

feature that Devaney’s definition does not exclude in general.

Let us now conclude with a very short discussion, partly inspired by the results in this
article.

Actually, rather than competing definitions of chaos what one needs is a theory of
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chaoticity, inside which various degrees might be accepted. The really important point
is not the definitions but their relations and fields of application.

Some definitions arefitted to particular classes of transformations. The existence of
a dense set of periodic points certainly looks a real feature of chaos when dealing with
interval maps (see for instance [KS]), and Devaney’s definition is satisfactory in this class,
if one does not mind its allowing the existence of eigenfunctions. It is possible that it is
also valid for cellular automata. On the other hand, in the symbolic setting the assumption
of dense periodic points excludes some systems that are highly chaotic in a sense, while
accepting others that can be considered chaotic in a very weak sense only. For a less
sketchy discussion of this hypothesis see [GW1].

There are indeedseveral possible degrees of chaoticityin the field of topological
dynamical systems. One may suggest a set of weak definitions: for instance scattering
(because it implies total transitivity and contradicts equicontinuity), or sensitivity and
total transitivity (for similar reasons); these definitions are not equivalent. Weak mixing
is strictly stronger than both previous definitions and may thus be considered as a mild
degree of chaoticity. An example of a very strong definition is uniform positive entropy
[Bl1]; there may be many others.

One should also distinguish betweenrequirements of complete or partial chaoticity.
An illustration of what we mean by partial chaos is to be found in [GW1], where the
authors suggest that a chaotic system might be anE-system with positive entropy; these
requirements do not exclude deterministic features but they ensure that there exist covers
with exponentially growing complexity, and no equicontinuity points. A natural further
step is to introduce various degrees of partial chaos.

Finally, one question: does the complexity of covers provide a scale of chaoticity?
Presently the answer is far from obvious.
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Appendix
The following result generalizes [Au, Theorem 7, Chapter 11] to the transitive case.
Auslander’s proof is for the minimal case only.

PROPOSITION A.1. Let (X, T ) be a transitive system andµ be an invariant measure
with full support. Let(Y, S) be a minimal homeomorphism. If(X, T ) is disjoint from
the maximal equicontinuous factor of(Y, S), then(X × Y, T × S) is transitive.

Proof. Assuming that(X × Y, T × S) is not transitive we construct an equicontinuous
factor (Z, τ ) of (Y, S) and a non-trivial joining(K, T × τ ) of (X, T ) and (Z, τ ). It
follows that(X, T ) is not disjoint from(Z, τ ), anda fortiori not disjoint from the maximal
equicontinuous factor of(Y, S).
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Step 1. (Construction of(Z, τ ).) There exists an open invariant subsetU of X × Y ,
such thatF = U 6= (X × Y ). By transitivity the projections ofF to X and Y are
onto: (F, T × S) is a non-trivial joining of(X, T ) and (Y, S). For everyy ∈ Y put
F(y) = {x ∈ X : (x, y) ∈ F }, and letfy = 1F(y) be the characteristic function ofF(y),
considered as an element ofL1(µ).

We show that the mapy 7→ fy is continuous fromY to L1(µ). Fix a ∈ Y andε > 0.
There exists an open setV with V ⊃ F(a) andµ(V \ F(a)) < ε. As F is closed, there
exists a neighbourhoodW of a such thatF(y) ⊂ V for everyy ∈ W . Thus fory ∈ W

one hasµ(F(y) \ F(a)) < ε. In particular,µ(F(y)) ≤ µ(F(a)) + ε; it follows that
the mapy 7→ µ(F(y)) is upper semicontinuous. A simple computation shows that it is
S−1-invariant, hence constant by minimality.

Let a, ε, V ,W be as above. For everyy ∈ W , µ(F(y) \ F(a)) < ε andµ(F(y)) =
µ(F(a)), thusµ(F(y)1F(a)) < 2ε, i.e.‖fy − fa‖1 < 2ε: this proves our claim thatfy

is continuous.
Denote byπ : Y → L1(µ) the mapy 7→ fy , and considerZ = π(Y ) ⊂ L1(µ),

endowed with the topology ofL1(µ). As π is continuous,Z is compact. AsF is invariant,
we havefS−1y = fy ◦ T andZ is invariant under the mapτ : g 7→ g ◦ T . Consider
(Z, τ ) as a dynamical system: thenπ is a factor map, and(Z, τ ) is minimal. Moreover,
this system is clearly isometric.

Step 2.Write p = (Id ×π) : (X × Y ) → (X × Z) andK = p(F): p is a factor map and
K is a joining ofX andZ. We only have to prove that this joining is not trivial.

Let (x, y) ∈ p−1(p(U)). There existsy ′ ∈ Y with (x, y ′) ∈ U andπ(y) = π(y ′)
which implies thatfy = fy ′ , i.e.µ(F(y)1F(y ′)) = 0. As µ has full support,F(y) and
F(y ′) have the same interior, butx belongs to the interior ofF(y ′), hence toF(y), and
finally we get that(x, y) ∈ F : we have shown that

p−1(p(U)) ⊂ F.

As F 6= (X × Y ), there exists a non-empty open subsetV of X and a non-empty open
subsetW of Y with (V × W) ∩ F = ∅. By minimality,⋃

n≥0

SnW = Y, thus
⋃
n≥0

τnπ(W) = Z

and by Baire’s theorem the interior� of π(W) is not empty. As(V ×W)∩p−1(p(U)) = ∅,
we have(V × �) ∩p(U) = ∅. Sincep(F) = p(U), we get(V × �) ∩p(F) = ∅, and the
joining K = p(F) is not equal to(X × Z). 2

With a few technical changes one can prove the same result without assuming thatS is
a homeomorphism.
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