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Abstract In a topological dynamical systetX, T') the complexity function of a covet

is the minimal cardinality of a sub-cover §f7_, T~'C. It is shown that equicontinuous
transformations are exactly those such that any open cover has bounded complexity. Call
scattering a system such that any finite cover by non-dense open sets has unbounded
complexity, and call 2-scattering a system such that any such 2-set cover has unbounded
complexity: then all weakly mixing systems are scattering and all 2-scattering systems
are totally transitive. Conversely, any system that is not 2-scattering has covers with
complexity at mosk + 1. Scattering systems are characterized topologically as those such
that their cartesian product with any minimal system is transitive; they are consequently
disjoint from all minimal distal systems. Finally, definigg, y), x # y, to be a complexity

pair if any cover by two non-trivial closed sets separatingrom y has unbounded
complexity, we prove that 2-scattering systems are disjoint from minimal isometries; that in
the invertible case the complexity relation is contained in the regionally proximal relation
and, when further assuming minimality, coincides with it up to the diagonal.

0. Introduction

The complexity function of symbolic systems, especially those with entropy zero, has
been studied by many researchers in the past few years; a survey is gid].inrhe
complexity function is the non-decreasing magrom N to itself such thaip(n) is the
number of allowed words of lengihof a symbolic system. It must not be mistaken for the
notion of algorithmic and structural complexity, which can be given a completely distinct
meaning in Dynamics.
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It was remarked long ago that given a symbolic systSno ), the complexity function
ps(n) is either ultimately constant (and thehis a finite union of periodic orbits), or
greater tham for all n; the symbolic systems having a bounded complexity function are
exactly the equicontinuous ones. 1] Ferenczi defined a natural complexity function
for ergodic measured systems (independently introduceTinj for other purposes), and
proved that it is bounded in a certain sense if and only if the system is isomorphic to an
isometry, i.e. to a minimal rotation of a compact group equipped with its Haar measure; in
the topological setting all minimal equicontinuous systems are known to be conjugate to
isometries. There remained to see whether a suitable definition of topological complexity
allows one to single out equicontinuous systems among all other topological systems.

Consider a topological dynamical systéX, 7), whereX is a compact metric space
andT a continuous surjective self-map &f. Given a covelC, usually open or closed,
its complexity functiorc(C, n) is the minimal cardinality of a sub-cover of the refinement
s = Vizo T~i{C—the exponential growth rate of this function was called topological
entropy as early as 1965 idKM ], but here we are mainly concerned with the fact that
it goes to infinity or not. Whert is the natural generating partition-cover of a symbolic
systeme(C, n) is just the usual symbolic complexity. We do not try to define any global
complexity for topological systems, as Ferenczi did in the measured seftliigristead
we consider the complexities of all finite covers of a system belonging to some convenient
subclass.

The first result in this article (Proposition 2.2) establishes that topological complexity
discriminates equicontinuous systems, among them isometries, from all other dynamical
systems. We show th&iX, 7') is equicontinuous if and only if any open cov@rhas
bounded complexity function: thereks> 0 such that(C, n) < k for all .

In the opposite direction we consider systems where in some sense complexity occurs
everywhere, and we study the links between these ‘scattering’ properties and classical
notions of Topological Dynamics, among them so-called chaotic properties; let us mention
that several of the ideas in this article arose while readB\yL].

Precisely we introduce the notions of scattering and 2-scatterixg:7") is called
scattering if any non-trivial closed cover (or any cover by non-dense open sets) has
unbounded complexity, and 2-scattering if the same is true for 2-set covers only. Scattering
evidently implies 2-scattering, but we do not know whether the converse is true.

Some results concern weak mixing and transitivity. Any topologically weakly mixing
system is scattering (Proposition 3.4), and in the other direction if any non-trivial
closed cover of(X, T) has complexity at least + 2 then (X, T) is weakly mixing
(Proposition 3.6). We did not prove that weak mixing is strictly stronger than scattering;
recently Akin and Glasner found an example of a scattering non-weakly mixing system
[AG].

When (X, T) has an equicontinuity point, there are particular open covers with
complexity at most + 1 (Proposition 3.11). However, there are not always covers with
bounded complexity: Akin and Glasner’s scattering non-weakly mixing system contains
equicontinuity points. A corollary is that scattering does not imply sensitivity to initial
conditions.

We then give a series of topological statements equivalent to the existence of a closed
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cover with bounded complexity fofX, ) (Proposition 4.1). The most striking is the
following: (X, T) is scattering if and only if its cartesian product with any minimal system

is transitive. An interesting consequence is that scattering systems are disjoint from all
minimal distal systems (Proposition 4.2); the proof is almost identical to that given by
Furstenberg for a similar theorem, when assuming weak mixing instead of scatfar]ng [

In [BI2] one of the authors introduced entropy pairs. Complexity pairs are defined
similarly: (x, x"), x # x/, forms a complexity pair if any closed 2-set cover separating
x andx’ has unbounded complexity; a system is 2-scattering if and only if any pair of
distinct points is a complexity pair. With their help we prove that minimal equicontinuous
systems are disjoint from 2-scattering systems (Proposition 5.4) and that the maximal
equicontinuous factor ofX, T) is the one associated with the smallest closed invariant
equivalence relation containing the set Ga7') of complexity pairs (Proposition 5.7).
Finally when(X, T) is invertible ContX, T) is included in the regionally proximal relation
RP(X, T) (Proposition 5.7), and equal to it whél, T) is also minimal (Example 5.10).

We do not address the measure-theoretic side of complexity, except by remarking that,
almost obviously, the existence of an invariant probability measure with full support and
trivial Kronecker factor implies scattering (Remark 5.12).

The results we obtain prove that the significance of complexity in Topological Dynamics
is not restricted to its exponential growth rate. For minimal systems its meaning is clear. It
mainly provides new equivalent definitions of classical properties: wkeff) is minimal
the weak mixing, scattering and 2-scattering properties are equivalent (Proposition 3.8);
whenT is also invertible the complexity relation is identical to the regionally proximal
relation up to the diagonal. Itis only for non-minimal zero-entropy systems that complexity
properties introduce new elements of classification.

This research was partly motivated by, and may also shed new light on, the question of
chaos. Since this is not the main concern of the article we have gathered all discussions of
this topic in the last section.

After the introduction and definitions, 82 establishes the characterization of
equicontinuity. 83 describes the relations of complexity with weak mixing, transitivity,
and the existence of equicontinuous points. 84 is devoted to a topological characterization
of the scattering property and its consequence in terms of disjointness. In 85 we introduce
complexity pairs, establish a disjointness theorem for 2-scattering systems, prove that
Com(X, T) c RP(X, T) and that the two relations are equal in the minimal case. Finally,
in 86 we make a few remarks about chaoticity and briefly discuss the connection between
sensitive dependence on initial conditions and complexity properties.

1. Definitions and notation
1.1. Topological dynamical systemsA (topological) dynamical systeniX, T) is a
compact metric sek endowed with a continuous, onto m@p WhenT is invertible it
is called a homeomorphism. Anvariant setE is one such thalT’ E = E: whenE is
closed the restrictionE, Tg) is also a dynamical system.

A factor mapg : (X, T) — (Y, S) is a continuous onto map suchttfas ¢ = ¢ o T
when such a map exist¥, S) is called a factor of X, T) and (X, T) an extension of
(Y, S). A conjugacy map is a bijective factor map.
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A joining J between(X, T) and(Y, S) is a closed” x S-invariant subset of the cartesian
productX x Y, projecting onto both factors; it is said to hen-trivial when it is a proper
subset. Call/*(y) the fiber{x € X : (x, y) € J} of J overy, andJ,(x) the fiber ofJ over
x; these two sets are closed.

A system(X, T) is calledtransitiveif for any two non-empty open setg, V there is
n > 0such thaty N T7"V # ¢; equivalent properties are f¢X, T') to have transitive
points, i.e. points having a dense positive orbit; or the fact that all non-empty invariant
open sets are dens@&otal transitivitymeans thatX, 7") is transitive for anyz > 0. A
system(X, T) is said to beveakly mixingf its cartesian squareX 2 T x T) is transitive,
or, equivalently, if for any four non-empty open setsB, C and D there isn > 0 such
that(ANT"C) x (BNT™"D) # @. If (X, T) is weakly mixing then it is weak mixing of
all orders, i.e. any of its cartesian powers is transitive; in other words, given two families
of non-empty open sefsA1, ..., Ay) and (B, ..., By), there isn > 0 such that all the
intersectionsA; N T~" B; are simultaneously non-emptly, Proposition I1.3].

A minimalsystem is one that contains no proper clogeithvariant subset excegt

An isometryis a system(X, T') such thatT preserves distances. An extension:

(Y, S) — (X, T) is said to basometricif d(Sy, Sy’) = d(y, y’) whenevery, y’ € Y and
n(y) =n@".

A slightly weaker property is equicontinuity. A systeiX, 7) is said to be
equicontinuou# for any e > 0 there isy > 0 such thatifc, y € X with d(x, y) < n, then
foranyn € None hasi(T"x, T"y) < €. By compactness, ifX, T') is not equicontinuous
there aree > 0 and a pointt € X such that for any; > 0 one can findy € X with
d(x,y) < nandn € N such thatd(T"x,T"y) > €. A pointx € X is called an
equicontinuity poinif for any ¢ > 0 there isp > 0 such that ify € X with d(x, y) < n
then for anyn € N one hasd(T"x, T"y) < €; obviously a system is equicontinuous
if all its points are equicontinuity points. Minimal equicontinuous systems are conjugate
to minimal isometries, i.e. minimal rotations of compact monothetic groups, and play a
central ole in the theory of Topological Dynamics as developed in Auslander’s baok [

The property of distality is still weaker: distal system(X, T') is one such that if
x # y € X, there ise > 0 with d(T"x,T"y) > €, n € N. Minimal distal systems
form the smallest class containing the trivial system and stable under factor maps, minimal
isometric extensions and inverse limita].

A system(X, T) is said to havesensitive dependence on initial conditipias to be
sensitive for short, if there exists > 0 such that for every € X, everyn > 0 there
arey € B(x,n) andn > 0 with d(T"x, T"y) > €. Obviously a sensitive system has
no equicontinuity points; on the other hand a transitive, non-sensitive system contains
equicontinuity pointsAAB].

One particular class is that of symbolic systems. HAebe a finite set of symbols or
alphabet; finite sequences of elementsiafre calledvords Consider the set™ (or A%)
endowed with the usual product topology; fore AN let x(i) (respectivelyx (i, j) for
i < j) denote theth coordinate ofc (respectively the block of its coordinates franto
j). The shift transformation, defined o’ byo(x(O)x(Dx2)...) =x(D)x2)x@3)...,
is continuous and onto; its two-sided version is also invertiblédnA symbolic system
or subshift(S, o) is a closed -invariant subset oft N, endowed with the restriction of the
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shift to S. A subshiftS is completely determined by the setS) of all words of the form
w=w(,j),wes,ijeN, i< j;onesometimes considers the setgS) of allowable
words of length: of S. The cylinder set associateddoe L;(S) is

[wl={weS:w@,i—1 =uw)

1.2. Covers and names.The covers we are dealing with in this article are always finite,
but not always open. A cover is said totoeial if one of its elements is equal to the whole

setX.
Given two coverg = (Cq,...,C,) andD = (D1, ..., D,,) define their refinement as
CvD=(C;ND;:i=1...,nj=1,...,m). AcoverC is said to becoarser than

another cove€’ (or C’ to befiner thanC) if any element of”’ is included in an element of
C; this property is denoted b/ < C'.

For any finite cove€ of a compact spack, letr(C) be the minimal cardinality of a sub-
cover ofC: if C < C’ thenr(C) < r(C’). One has the inequalityC v D) < r(C) x r(D).

Standard covers were introduced for the study of the topological entropy of covers; it is
not surprising they also play a part in the study of complexitgt@ndard covers a cover
by two non-dense open sets. A standard caverB) is said toseparatetwo different
pointsx andy if x € Int(A€) andy € Int(B¢).

With the help of a finite covef = (Cq, ..., C;) of (X, T) one defineg-names for the
points ofX. PutA = {1, ...,m} and2 = AN. A sequence € Q is said to be @-name
ofx e Xif

o
(x,w)eJ = {(x,a)) EXxQ:xe ﬂTi(Cw(i))}.

i=0
Note that ifw is aC-name ofx theno (w) is aC-name ofT'x; consequently isaT x o-
invariant set, and whed is a closed covey is a joining betweer(X, T') and a closed
invariant subset of$2, o). As in the case of joinings denote By (w) = N2, Y (Cow@y)
the fiber of J overw, here equal to the set of all pointsof X such that is aC-name of
x,and byJy(x) = {w € Q : (x,w) € J} the set of all possibl€-names ofx; when( is
closed these sets are closed too. A set-oBmesw; € AN : i € I} is said tocoverX if
Uier /¥ (wi) = X (beware! here subscriptio notdenote coordinates).

WhenT is a homeomorphism it is often convenient to consider namagiriThey are
defined in the same way, withvarying from—oo to +oc0. In this article we sometimes
use finite names: a word € A" is aC-name ofx if x € (N, T~ (Cw(y), and for
o € AN we call J;* (w) the set of all points having the finite nara€0, n — 1); note that
J*(w) =1im,_ o ) ().

2. Topological complexity and equicontinuity
Given a dynamical systeitX, 7') and a cove€, putCy = \/i_ T-C.

Definition. Thetopological complexity functioaof the finite coveC of (X, T') is the non-
decreasing function

c(C,n) =r(Cp).
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We often call itcomplexityfor short. Remark that(C, n) = k means that there is a
family of k C-names of length coveringX.

If C < (' thenc(C,n) <c(C’,n),andc(C v D,n) < c(C,n) x c(D, n).

The cover( is said to havebounded complexitwhen ¢(C, n) is bounded, which
means ultimately constant becausg, ») is non-decreasing. Otherwiges said to have
unboundear infinite complexity

When( is the canonical clopen partition of a substiif, o) according to the value
of the zeroth coordinate,(C, n) is just what is usually called the complexity function of
(X, o) [F2]. However, even in the case of subshifts we shall consider the complexity of
various covers, not only that of the canonical partition.

When a finite cove€ has bounded complexity there exists a finite covering collection
of infinite C-names, as expressed in the following lemma.

LEMMA 2.1. Let(X, T) be a dynamical system (respectively a homeomorphism). A finite
coverC = (Uy, ..., Ux) has complexity bounded hy if and only if there is a collection
of m infinite (respectively bi-infinite-names covering.

Proof. LetC have complexity bounded by. PutA = {1, 2, ..., k}. Tow € AN associate
for givenn € N the set/(w) of points ofX for whichw (0, n — 1) is aC-name.

Call H(n) the set of m-tuples {w1,...,w,} of elements of AN such that
(JH(w1), ..., ] (wn)) covers X. The set H(n) is non-empty by definition of
m; it is a closed subset ofAN)". If (J}(w1),..., J (wn)) covers X then
(Jy_q(w1), ..., J;_1(wn)) coversX too, and thereforél (n) C H(n—1). The intersection
of decreasing closed sef$ = (,-, H(n) contains at least one-tuple w; obviously
UM T (@) = limysee ULy ¥ (@) = X, which means that the set 6fnamesw
coversX.

The reverse is obvious. The proof for bi-infinite names is the same. |

Now we characterize equicontinuity in terms of the combinatorics of open covers.

PROPOSITION2.2. Let (X, T) be a dynamical system. The two following statements are
equivalent:

(1) (X, T)is equicontinuous;

(2) for any finite open covef of X, ¢(C, n) is bounded.

Proof. (1) = (2). Lete > 0 be a Lebesgue number of the finite open caehis means
any open balB with radiuse is contained in at least one elementof

By the equicontinuity assumption theresis> 0, n < ¢, such that ifd(x,y) < n
then for anyn € N one hasd(T"x,T"y) < €. Letxi1,x2,...,x; be such that the
open ballsB(x;,n), 1 < i < k, coverX. By equicontinuity forj € N one has
TJB(xi,n) C B(T'x;,¢€), and sincee is a Lebesgue number @f there is an element
U;,; of C containing completelB(T/x, €). Thereforel/ B(x;, n) C U;,j, and for anyn

BGxi,mC [ T7/Ui;.
0<j=n

The last formula means thaﬂofjfn T‘-"U,-,j), 0 < i < k, is a sub-cover of; with
cardinalityk independent ofi. Thereforec(C, n) < k.
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(2) = (1). Supposerl is not equicontinuous, then there are> 0 and a point
x € X such that for any; > 0 one can findy € X, d(x,y) < n, andn € N such
thatd(T"x, T"y) > €. If the assumption (2) is true f@, T'), consider a finite covet by
open balls with radius/4, and leiC = (Uy, ..., Uy) be the cover made up of the closures
of the elements of: sinceC < C its complexity is also bounded. By Lemma 2.1 this
means there is a closed covéf, Xo, ..., X.) of X with

o0
X, = ﬂT_-"U,',j, Ui, j eC.
j=0

By definition ofC if y andz both belong taX; the distancel(T/y, T/z) is bounded by
€/2 forany; > 0.

Let n, > 0 go to zero; choose, € X such thatd(x,y,) < 5, and there are
integersk, with d(T*x, T¥y) > €. By taking a subsequence, tlyg can be assumed
to belong all to the same s&t, and sinceX; is closedx belongs to it too. This implies
d(T*x, T*y,) < €/2, which contradicts the previous assumption. |

Remark 2.3.This is where the difference lies between an irrational rotatiii) of the
torusT and its Sturmian symbolic extensioK, o): (T, «) is equicontinuous and any open
cover has bounded complexity; on the other hand the canonical clopen partitignof
has complexity: + 1; its image, the classical interval coverBfis closed but it is not the
closure of an open cover.

3. Complexity, mixing and transitivity
Here we examine the relations between the complexity of covers and some classical
topological properties.

Remark 3.1.The existence of afinite cover @X, T') by non-dense open sets with bounded
complexity, and the existence of a finite non-trivial closed cover with the same cardinality
and bounded complexity, are equivalent propertieSisfopen non-dense and has bounded
complexity so has the non-trivial closed cover made up of the closures of its elements; and
if a closed non-trivial cover has bounded complexity any coarser non-dense open cover has
bounded complexity too. On the other hand all open covers may have bounded complexity
while there exist closed covers with unbounded complexity, as was remarked for irrational
rotations.

Call adynamical systerq, T') scattering respectively2-scatteringif any finite cover
by non-dense open sets, respectively any standard cover, has unbounded complexity. In
view of Remark 3.1 above one can replace open covers by non-trivial closed covers in
these definitions. One could also definscattering forn > 2 in similar manner.

Question 3.2.Does 2-scattering imply scattering? This question is given its whole
significance by the results of §4 and 85.

Relations between topological mixing and complexity are the matter of the next two
propositions. We require one lemma for the proof of each.
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The first is purely combinatorial. Suppose the minimal cardinality of a sub-cov@r of
isr(C) =k, let I(C) be the set of intersections bf- 1 complements of elements 6f by
definition ofr (C) none of these intersections is empty.

LEMMA 3.3. Let C and D be two finite non-trivial closed covers of, r(C) = k,
r(D) = ¢. Assume that forang € 1(C), anyB € I(D), the setA N B is non-empty. Then
rC\/D)=k+¢—1

Proof. Considerk + ¢ — 2 elements of \/ D, each of them of the forn@; N D;. The
subset ofX they do not cover is the complement of their union; it is a union of intersections
of k + ¢ — 2 setsCy andD;; some of these are intersections of an eleme{6j and an
element ofl (D). By hypothesis these are not empty, therefore no subset of size— 2

of C\/ D can be a sub-cover. O

PrROPOSITION3.4. Weak topological mixing implies scattering.

Proof. In this proof we use the definition of scattering by closed covers. (Kef") be
weakly mixing and le = (Cy, ..., Cy), with k > 1, be any non-trivial cover by closed
sets.

Observe that sincé is non-trivial the minimal cardinalityg = »(C) of a sub-cover is
at least two. We define inductively an increasing sequence of intégers € N) such
thatr(C(’)") goes to infinity, starting frondg = 0 for whichr(C) > 2. Putc(C, i) = m,.

As C is closed, the two familieﬁ(CS’) and! (C) are made up of non-empty open sets. By
weak mixing of all orders, which we know is equivalent to weak mixing, there is an integer
Ja > 0 such that whatevet € 1(CJ), B € I(C), the setA N T~/ B is not empty. We

can thus apply Lemma 3.3 to the two covéj;SandT—-/"C: their refinement has minimal
cardinality at leastn,, + mo — 1 > m,,. '

Puttingi,4+1 = in + ju, Observe thaty \/ T~/nC < Cg**, thusm;, > n + 1. This
proves that’ has unbounded complexity. m|

The next lemma, due to Banks, characterizes weak mixing for invertible as well as
non-invertible systems; a similar Lemma was proved long agB]ifof group actions.

LEMMA 3.5. A dynamical systemX, T') is not weakly mixing if and only if there exist
two non-empty open setsandV such that

Vn >0, eitherUNT™"U=¢ or UNT "V =40. (1)

PROPOSITION3.6. Suppose each standard covkof (X, T') is suchthat(C,n) > n+1
for somen; then (X, T) is topologically weakly mixing.

Proof. Suppose X, T) is not weakly mixing; by Lemma 3.5 there are non-empty open
setsU and V with property (1); without loss of generality assume their intersection is
empty. LetR’ = {U’, V'} be a standard cover df such thatv® c U’ andU°¢ c V'.
Given a positive integei, eitherU N T~'U # @, in which case/ c (T~ V)¢ c T~'U’;
orUNT™U = @andU c T~'V’'. This means there is a sequern@®,: > 0) with

W; = U’ or V’, such that

UcUNTwin...n1"w,n-...
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Fixing n and choosing for each e X the smallest integér0 < i < n, suchthax € U
when there exists one, otherwise putting: n + 1, we observe that the family af + 1
sets

v'nrao...nr v nrvnr i twin - N T Wl 0<i <n+1)
is a sub-cover oR’g. Hencec(R',n) < n+ 1foralln > 0. O

Non-standard covers may have uncharacteristically small complexity. \Wheh) is
weakly mixing and contains periodic points it is easy to find an open cover with bounded
complexity. On the other hand it is a significant fact that some non-standard cover has
unbounded complexity (see Proposition 5.1(2)).

Remark 3.7.(X, T) is said to be affr-systenif it has a dense set of periodic points and if
all powers ofT" act transitively onX [Fu]. F-systems are weakly mixin@[L] and therefore
scattering.

PrROPOSITION3.8. For a minimal dynamical system 2-scattering, scattering and weak
mixing are equivalent.

Proof. Any minimal system that is not weakly mixing has a non-trivial equicontinuous
factor (KR], see Pu] for a simple proof due to McMahon), and therefore possesses
standard covers with bounded complexity. It cannot thus be scattering or 2-scattering.
The converse results from Proposition 3.4. |

Question 3.9.Except for minimal systems Propositions 3.4 and 3.6 do not add up to a
characterization of weak topological mixing. Scattering does not imply weak mi&i@g [
Nevertheless, is it possible to characterize weak mixing in terms of complexity?

PrRoOPOSITION3.10. If (X, T) is 2-scattering, theriX, T") is 2-scattering and transitive
foranyn > 0.

Proof. Let us show first that wheqX, T) is 2-scattering so i$X, 7%). Let subscripts
denote the transformations with respect to which a complexity is computed, ahtdet
finite cover such thaty (C, n) — oo whenn goes to infinity. One has

kn+k—1 ) n ' n .
C'T(Cak”+k—1)=r< \/ T’C) :r( Tle\/...\/\/TkszrlC)
i=0 0 i—0

< r(\n/ T_kiC) X -0 X r<\n/ T_ki_k+1C>;
i=0

i=0

i=

but thek terms of the last expression are equal, beca€e = r(7~1C), and the first
is equal tocyi (C,n). Thuscer(C,kn +k — 1) < cpk (C,n)* and if C has unbounded
complexity undefT’ the same is true und@r*. In particular, this applies to all standard
covers, so that 2-scattering frimplies 2-scattering fof .

There remains to prove that any 2-scattering system is transitiveX,IT") is not
transitive letA, B be two non-empty open sets such tiath 7="B = ¢ holds for
anyn > 0.
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1st caseSupposed N B # (. ReplacingA and B by their intersection we can assume
A = B. ThenC = (A, T~1A°) is a non-trivial closed cover: if the orbit of some point
x € X hitsT~1A at timen it hits A at timen + 1, but it can belong to either of these two
sets at any other time. The two names 01010Jand 101010. . thus coverX.
2nd caseSuppose nowA N B = @.
(&) Ifthereisn > O with BN T7"A # () letm be the minimum of such values. Then if
E=BNT™AonehasENT"E = () forn > 0 so that we are in the first case

again.
(b) Ifforanyn >0onehaBNT"A=ANT "B =@, puttingA® = Co, B = Cq,
C = (A€, B°) the twoC-names 000.. and 111.. coverX. O

The converse of Proposition 3.10 is false: irrational rotations of the 1-torus are totally
transitive and not 2-scattering.

An equicontinuous system is one for which all points are equicontinuity points.
Naturally enough the existence of an equicontinuity point in a system that is not
equicontinuous has some consequences in terms of complexity, but these are not as clear
as in the global case. Existence of an equicontinuity point contradicts weak mixing, so that
the following statement is a consequence of Proposition 3.6.

PROPOSITION3.11. Suppose is an equicontinuity point afX, 7). ThenX is not weakly
mixing and for any € X, y # x, there is a standard cové&rl separatingc and y and with
complexitye(C,n) <n+ 1.

Proof. Letx € X be an equicontinuity point. Fix # x, € > 0 such that/(x, y) > 4¢ and
the corresponding > 0; without loss of generality assume< «.

Call A the closed balB(x, n) and B the closed balB(y, ¢). One hasi(A, B) > 2¢
andR = (A€, B¢) forms a standard cover df, separatinge andy. An essential feature
of A andB is that for anyn > 0, at least one of the setsN T B andA N T~" A must
be empty: for instance il N T™"B # @, by equicontinuityd(T"x, B) < ¢; again by
equicontinuity ofx and becausé(A, B) > 2c onehasANT " A = (.

A sufficient condition for non-weak mixing is thus satisfied. Then just as in the proof
of Proposition 3.6, one can find a sub—cove‘Rﬁ“l of cardinality at most: + 1. |

An easy consequence is that weak mixing implies sensitivity to initial conditions: recall
that a transitive, non-sensitive system has equicontinuity pohft8 .

If there exists a cover with bounded complexity, this does not imply that there exists
an equicontinuity point. A Sturmian symbolic system is expansive and cannot have
equicontinuity points; but it also has infinitely many standard covers with bounded
complexity (all those inherited from the rotation it has as a factor).

In the setting of Proposition 3.11, if one wishes to have a cover with bounded complexity
separating from some other point it is not enough to suppose thgtan equicontinuity
point, i.e. that any point near enoughshadows its orbit; there must also be some
assumption about what happens at some distancexdrdrhe following example illustrates
this point.

Example 3.12Consider the homeomorphisfh: f(x) = x2 of the unit interval. The
map f is equicontinuous everywhere except at one. Choose any €cva(A, B), where
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A =11 = [0, h) and B¢ = I, is any open interval disjoint fronfy. Suppose the orbit of
x1 enters/ at timeiy, necessarily staying iB hereafter; there exisks, the orbit of which
entersl, at timei;, > i and/y at timeiy; any of itsC-names must have anat timei;, and
Bs afteriz, which implies that it is different from ang-name ofx1. An easy induction
based on this remark permits one to construct an infinite sequence of pgints € N,
none of which may have the saienames. Therefor@ has infinite complexity. However,
this system is not transitive, which by Proposition 3.10 implies it is not 2-scattering.

Scattering does not imply that there exist no equicontinuity poid@][ The same
example shows that scattering systems are not necessarily sensitive to initial conditions
(see 86): a transitive sensitive system has no equicontinuity p&iAB .

A class of transitive, non-equicontinuous systems with equicontinuity points is
described in GW1, GW2, Proposition 1.5]. Systems with this set of properties cannot
be minimal, and no invariant measure with full support can exist on théiw7,
Theorem 1.3], and there exists a subsequen¢&’0of converging uniformly to the identity
[GW1, Lemma 1.2]. Any system belonging specifically to the aforementioned class of
examples has a surprising property: its cartesian product with some minimal weakly
mixing system is not transitive.

4. Covers with bounded complexity and a disjointness theorem

Scattering and other definitions based on complexity may look rather abstract; they can
also be hard to check for particular systems. Can one find a characterization which would
be at once more familiar to dynamists and easier to manipulate? The next proposition
answers this question: a system is scattering if and only if its cartesian produarmith
minimal system is transitive.

PrRoOPOSITION4.1. For atransitive systemX, T') the following properties are equivalent:
(1) (X, T)is not scattering;
(2) there exists a minimal systeif, S) suchthat X x Y, T x S) is not transitive. When
such a system exists there is a minimal homeomorphism with the same property;
(3) there exists a minimal syste¥, S), a closedl” x S-invariant proper subsey of
X x Y and an integetV > 0 such thal_J,_,,_y (Id x$")J = X x Y. When such a
system, S) exists there is a minimal subshift with the same property.

Proof. (1) = (3). AssumeC = {C1, ..., Ci} is a non-trivial closed cover df elements
with bounded complexity. Le2 = {1, ..., k}"N be endowed with the shift. Forw €
let J*(w) be the closed set of all pointse X such thatw is aC-name ofx.

SinceC has bounded complexity, by Lemma 2.1 there exist 1 andws, . .., @, € Q
such that
U 7 @) = x. 2)
j=1
Call H the set ofm-tuplesw = (w1, ..., w,) for which (2) holds. It is closed: suppose

the sequencéw™), n € N, converges ta and each of its elements satisfies (2). As in
81 call J;*(w) the set of points oKX for whichw (0, n — 1) is aC-name; fixj > 0: when
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n is large enougl; andwf”) have the same firgt coordinates, whatevere {1, ..., m},
and for the same values ofone has/} (w;) = J;‘(a)f”)); hencel J/_; J7 (@) = X. This
is true for allj > 0; passing to the limit (2) is seen to hold fer Let S be the joint shift
o x -+ x o one easily checks th&tH C H, so that the intersectioA’ = (2, S" H is
a closed, invariant (i.eSH’ = H’) subset ofH .

Therefore there exists = (w1, ..., w,) € H' having a minimal closed orbE under
S; (2) holds for any € ¥ becauséd’ is closed and invariant. Denote ¥y the invariant
minimal closed orbit ofs; undero; the setx is a closedS-invariant subset of[,_; _,, Vi-
Forl<i <m put o

Ki={(a,x) € T x X :x € J*(a;)}.

Eachk; is closed inX x X: this relies on the fact thdt is a closed cover; as (2) holds
fora € ¥, one hag J_; K; = £ x X. For these reasons one of tke has non-empty
interior. Assume it isK1: this means there is a non-empty openigaif X, and for eacli

a non-empty open set; C Y; such that

m
z:zm(]_[A,»);ew and Ve = (o1,...,am) € Z, U C J*(a1).
i=1

Z is defined as a non-empty open subseEofSince(X, S) is minimal, there exists an
integerN such that

Voex, 3kel0,...,N—1}, withSaeZ,

which means by definition of that

N-1
Voevr, Uc|]J*c*w);
k=0

remarking that'; is invariant and thal J*(w) C J*(ow), one obtains

N-1
VoeYy, VneN, T1"Uc |/ w).
k=0
The open set/ contains a transitive point, therefdrg, . 7" U is dense inX.

PutY = Y1. The setU,I{V:‘O1 J*(o*w) is equal toX: it is closed becausg is a closed
cover, and it contains the denselsgf  7"U. Theset/’ = {(x,a) € X xY : x € J*(w)}
is closed andT x o)-invariant; suppose belongs to the non-empty séf, whereC; < C:
then(x, o) ¢ J whenever(0) = i, and consequently’ is a proper subset of x Y.

(3) = (2). By Baire’s theorem the interior of is non-empty; it is an open non-dense
invariant set. Taking the natural extension(&f S) we get a minimal homeomorphism
with the same property.

(2) = (3). LetU # ¢ be invariant, open and non-denseXnx Y, and put/ = U.
The projection ofU to X is a non-empty open set; it contains a transitive poptJ/ (xg)
is closed with non-empty interior in the minimal S&t so that there is an integef such
that( g,y 5"/ (x0) = Y. Let K be the closed invariant sefl,_, ., (Id xS™)J: then
K (xo) = Y; sincexg is transitivek (x) = Y forallx € X andK = X x Y.
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(3 = (1). Fixyp € Y. SinceJ # X x Y andY is minimal one hag*(yg) # X. This
implies there exists a closed neighbourhdoaf yg such that/*(A) # X; putF = J*(A).
By hypothesis one hdg)y.,_y T"J*(y0) = X, thusC = (F, TF, ..., T"~1F)is anon-
trivial closed cover of{.

ChooseM big enough ford = (A, SA, ..., S¥~1A) to coverY, and letw be anA-
name ofyp. We can suppos®/ = M. Letx € X; thereisn, 0 < n < N, such that
x € J*(S"yp). For anyk € N one hass"t*yg € S+ A, whence

Tkx (S J*(Sn+ky0) C J*(Swn+k A) — T Pntk F,
this means that"  is aC-name ofx, and the complexity of the covéris bounded byv. O

It is worth noting that in fact the setéandJ’ are joinings.

Furstenberg proved that weakly mixing systems are disjoint from minimal distal
systemsIfu, Theorem I1.3]. In his proof he only uses weak mixing through the fact that
the cartesian product of a weakly mixing system with any minimal system is transitiye [
Proposition 11.11]. Now Proposition 4.1 tells us that, T') is scattering if and only if its
cartesian product with any minimal system is transitive (which by the way proves again
that weak mixing implies scattering). A natural consequence is the following result.

PROPOSITION4.2. Scattering systems are disjoint from all minimal distal systems.

Proof. Minimal distal systems form the smallest class containing the trivial system and
stable under factor maps, minimal isometric extensions and inverse limits. The trivial
system is disjoint from all others; disjointness freM, T') is preserved under factor maps
and inverse limits. We only have to prove that the disjointness property passes on to
minimal isometric extensions: this is done in Lemmas 4.3 and 4.4. |

The two following statements are implicit in Furstenberg’s proof. Our proof of
Lemma 4.3 is based on the isometric extension property, whereas the one he gives relies
on the properties of group extensions; the two are of course equivalent.

LEMMA 4.3. Letm : (Y, S) — (X, T) be an isometric extension. If there is an invariant
closed sef C Y with F £ Y andn (F) = X, then(Y, S) is not transitive.

Proof. Fore > 0 put
Fe={yeY:3ze F,n(z) =n(y)andd(y,z) <e}.

F¢ is closed inY, and invariant because the extension is isometricFF'ag Y one can
choose: small enough folf, # Y. Then its interior is a non-dense open invariant set; we
must show it is not empty.

Forx € X put F(x) = n—1(x) N F. Recall that are-separated subset ifi(x) is a
set{y1, ..., »} C F(x) with d(y;, y;) = € whenever 1< i # j < k. Call N(x) the
maximum cardinality of ar-separated subset ifi(x). For anyx one hasF'(x) # ¥ and
1 < N(x) < oo; moreover sincé is closed the sdlly, = {x € X : N(x) < k} is open for
any integetk. Choose the smallest valéesuch that; # ¢ and putU;, = U; thusU is a
non-empty open set and(x) = k forx e U.
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CLAIM . Givene > 0, for anyx € U there is a neighbourhood of x, V c U, such that
Vy € F(x),Vx' € V,3z € F(x") withd(y, z) < e.

Assume the claim is not true: there arec U, a sequencéx,) in U converging to
x, and for anyn a pointy, € F(x) with d(y,,z) > € forall z € F(x,). For eachn
let {zn.1, ..., zn.k} De ane-separated subset &f(x,). By taking a subsequence one may
suppose that for eache {1,..., k} the sequencéz, ;) converges to somg € F(x),
and that(y,) converges toy € F(x). We assumed thak(y,, z,;) > ¢ for all i, n, thus
d(y,zi) = €, we also assumed thadl(z, ;,z, ;) > e for 1 < i # j < k, this implies
d(zi,zj) = €. Thus{y, z1, ..., zx} is ane-separated subset 8f(x), which contradicts the
definition of U: this proves the claim.

Lety € F with #(y) € U, and letV be the neighbourhood associatednrt@y) for
the valuee/2 by the claim. There is a neighbourho®d C B(y, €/2) of y such that
7 (W) C V. By the claim fory’ € W there is a point € F(w(y")) with d(y, z) < €/2,
whenced(y’, z) < € andy’ € F.. ThusW C Fg, so that the interior of, is not empty
and(Y, S) is not transitive. O

LEMMA 4.4. Suppos€X, T) is scattering and letr : (Y, S) — (Z, R) be an isometric
extension with(Y, S) minimal. If (X, T) and(Z, R) are disjoint so arg X, T) and (Y, S).

Proof. Let J ¢ X x Y be any joining. (Id xz)(J) is a joining of (X, T) and (Z, R)
so by disjointness it is equal t§ x Z. On the other hand Iz : (X x Y, T x §) —
(X x Z, T x R) is an isometric extension. By Proposition 4XL.x Y, T x S) is transitive;
applying Lemma 4.3 one gefis= X x Y. m|

Remark 4.5 With the help of Proposition 4.1 above and the proof@¥2, Lemma 2.2] it
is not too hard to obtain the following result: any scattering system with an equicontinuity
point contains only one minimal system which is a fixed point.

5. Complexity pairs and the regionally proximal relation
Let us define a relation between points¥hf A couple of pointgx, y) in X2\ Ay is said
to be acomplexity pairif for every standard covef that separates them(C, n) tends
to infinity. We denote by CoitX, T') the set of complexity pairs afX, 7). This notion
is analogous to that of entropy pair introducedBi]. One easily sees th&k, T) is 2-
scattering if and only if all couples of different pointsXnare complexity pairs. An entropy
pair (x, y), i.e. one such that any standard cover separatitagd y has exponentially
growing complexity, is a complexity pair.

In the next proposition we gather all of the relevant facts about covers with unbounded
complexity and complexity pairs. The proofs are left to the reader: they are practically
identical to those of analogous properties of entropy pairBi]|[

ProOPOSITIONS.1. Let(X, T) be a dynamical system.

(1) LetC be an open cover with unbounded complexity. Then there exists a standard
cover with unbounded complexity.

(2) LetC = (U, V) be an open cover (not necessarily standard).c(f, n) is not
bounded there is a complexity pairff x Ve.
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(3) TheseCom(X, T)U Ay is closed.

4) Letm : (X,T) — (¥,S) be a factor map. If(x,x’) € Com(X,T) and
n(x) # w(x’), then(z(x), 7 (x")) € ComY,S). If (y,y) € ComY,S), then
there is(x,x’) € Com(X, T) such thatr(x) = y, #(x’) = y’. In particular,
ComX,T)U Ax isT x T-invariant.

In view of Proposition 5.1(2) observe that many systems have non-standard covers with
unbounded complexity.

Example 5.2.SupposeX has no isolated points and&, T) is transitive but not minimal
with T invertible; letx be a transitive point. Using the invertibility assumption it is not
hard to prove that if all preimages af entered any of its neighbourhoods in bounded
time then(X, T)) would be minimal; so there exists some neighbourhdaf x such that
the entrance time for preimages.ofs unbounded: more precisely for any> 0 there
are infinitely many pointy in the negative orbit ok such thatT/y ¢ V,j < n. Put

U = {x}°andC = (U, V). Assume that for some positivg there are already points

in {T~x,i < ng} such that two of them can never be in the same open set of the cover
Co'; there exists > ny such thatl'(T~/x) ¢ V for 0 < i < n. Settingni41 = j and
addingT ~/ x to our collection we now havie+ 1 points in{7 ~'x, i < nx1} such that two

of them can never be in the same element of the oﬁé’/@ﬁ. Therefore the non-standard
open cover has unbounded complexity.

Remark 5.3.The relation ComiX, T') U Ay is closed and invariant but not, in general, an
equivalence relation: see Example 5.9 below.

A first consequence of the properties of complexity pairs is a disjointness theorem; it
is not contained in Proposition 4.2, under the condition that 2-scattering and scattering are
distinct properties.

PROPOSITIONS.4. 2-scattering dynamical systems are disjoint from minimal equicontin-
uous dynamical systems.

Proof. Again the proof is close to that oBJ2, Proposition 6]. We show that {fX, T') is 2-
scattering andY, S) is minimal, and there is a non-trivial joiningbetween the two, there
exists a complexity pair igY, S): then by Proposition 2.2, S) cannot be equicontinuous.

Call J.(x) the closed sety € Y : (x,y) € J}. Suppose there are # x’ € X
such that/,(x) N J.(x") = @. Letx andx’ be the projections of on X andY. As
(x,x") € Com(X, T) by Proposition 5.1(4) applied to, there existy, y’ € Y such that
((x,y), (x', y)) € Com(J, T x §): our assumption thak,(x) N J.(x") = ¥ ensures that
y # y’. Then, by Proposition 5.1(4) applied #d in the reverse directiony, y') is a
complexity pair.

So we must only show that there existx’ € X with J.(x) N J.(x') = #. We can
assume/ is minimal as a joining, i.e. no proper subset/ois a joining of X andY. Now
suppose/,(x) N J.(x") # @ for x, x’ € X; consider the subset df.

= ) x () N (T0) = [ J () x (@) N SEax) = 7 01 (1d x $)().

xeX xeX
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One easily checks that it is closed and invariant, and by our assumftieh = @ for
x € X, son(J') = X; by minimality of (¥, S), #'(J’) = Y. If one hadJ’ = J this
would mean that for every J.(x) = J.(Tx), and as a non-empty closed invariant subset
of the minimal sett, the setJ,(x) would beY itself, hence/ = X x Y. ThusJ'is a
proper subjoining off, soJ cannot be minimal as a joining. So there has ta ke X with
Jo(x) N J(x") = @, which finishes the proof. |

A transitive dynamical system on which there exists an invariant measure with full
support is called ak-system

PROPOSITIONS.5. For an E-system 2-scattering is equivalent to scattering and also to
disjointness from all minimal equicontinuous systems.

Proof. Let (X, T) be anE-system. By Proposition 4.1 it is scattering if and only if its
product with any minimal homeomorphis(, S) is transitive. Following the proof of

[Au, Theorem 7, Chapter 11] such a cartesian product is transitive whenever the maximal
equicontinuous factor afY, S) is disjoint from(X, T) (see the Appendix). This obviously
holds when X, T) is disjoint from all minimal equicontinuous systems, and this is true for
2-scattering systems by Proposition 5.4. |

Question 5.6 Here are, in fact, two in a series of natural questions, some of which are
distinct only if scattering and 2-scattering are different properties. Is 2-scattering also a
necessaryondition for a transitive system to be disjoint from all minimal isometries? Is
scattering a necessary condition for a transitive system to be disjoint from all minimal
distal systems?

Let us now examine the connection between C&n¥') and the well-known maximal
equicontinuous factor of a dynamical system.

PROPOSITIONS.7. LetCony(X, T) be the smallest closed invariant equivalence relation
containingCom(X, T) U Ay, andng : (X, T) — (Xo, To) be the factor map obtained
by identifying points in the same equivalence class of this relation. Then X, T) —
(Xo, To) is the maximal equicontinuous factor@f, 7).

Proof. First (Xo, To) is equicontinuous. Suppose it is not. By Proposition 2.2 it has an
open cover with unbounded complexity, then by Proposition 5.1(1) and (2), there exists a
complexity pair for(Xo, Tp), i.e. by Proposition 5.1(4), two distinct points such that there
is a complexity pair in their preimage farg. This is a contradictionzg collapses all
complexity pairs ofx?.

Now assume that : (X, T) — (Y, S) is another equicontinuous factor, themmust
collapse all complexity pairs afX, T) and the corresponding equivalence relation must
contain the one associatedrtg, which meansr factors throughro. O

For a homeomorphisitX, T') theregionally proximalrelation is defined as

RP(X, T) = {(x,y) € X?: (YUy)(VUy)(¥e > 0)
Ax' e U3y € Uy)(3n € Z)d(T"(x"), T" (")) < €}

https://doi.org/10.1017/50143385700000341 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700000341

Topological complexity 657

such that a pairx, y) is regionally proximal if givene > 0 one can find in any
neighbourhood ofx, y) a pair(x’, y") such that the orbits of’ andy’ get within e of
each other for some € Z. This relation is closed and invariant, and in the minimal case
it is an equivalence relation; the maximal equicontinous factor is the factor induced by the
smallest closed invariant equivalence relation containing®?) [Au].

There are strong links between complexity pairs and regionally proximal pairs. When
a pair is not regionally proximal, one can find a standard cover with bounded complexity
separating it.

PROPOSITIONS.8. Let(X, T) be a homeomorphism. Th&@om(X, T) € RP(X, T).

Proof. Suppose thatx, y) ¢ RP(X, T). Then there are neighbourhootls andU, of
x andy, respectively, and > 0 such that for every’ € U,, y’ € Uy andn € Z,
d(T"(x"), T"(y")) > €. By compactness, there is a covén, ..., Ci) with the following
properties:

() Ci,i=1,..., k, isclosed with interior and dia€@;) < €/2;

(i) x e Int(C1) andy € Int(Cy);

(i) C1cU,andCy C U,.

We claimthatfoi € {1,...,k}andn € N, eitherT"(C;)NC1 # @ orT"(C;)NCy # 0
but not both: if for someé € {1, ..., k} there are two points, z’ € C; andn € N such that
T"(z) € C1andT" (') € Cx thend(T(T"(z)), T""(T"(Z"))) > e, this contradicts the
factthat dianiC;) < €/2. PutC = (C{, C;): one can thus find a unique infinifename for
each set;. Then the standard covér which by (ii) separates from y, has complexity
bounded by and(x, y) cannot be a complexity pair. |

The converse inclusion is not, in general, true. The following property helps us prove
this claim.

LEMMA 5.9. Let(X, T) be a transitive homeomorphism containing a fixed peinthen
RP(X, T) = X2.

Proof. Let xg and yp be two distinct points ofX, and letU be a neighbourhood ofy
andV be a neighbourhood ofy. There is a transitive point in U, and there i% € Z
with y = T*x € V. Thereis a sequende ;) of integers such thal*/x — a. Thus
T"y - T"%a=aandd(T" x, T" y) — 0. O

Here is a very simple symbolic system for which G@m7) is not an equivalence
relation and CortX, T') £ RP(X, T).

Example 5.10Consider the transitive sofic subshiftc {0, 1}% defined by the condition

that there is an odd number of zeros between any two occurrences of oné. =P <

S/wo, = 1forsomen € Z}, B = {w € S/wz,+1 = 1for somen € Z} and letC be the

closed cove(A€, B¢). One easily checks tha} (C) = 2 for all n, and deduces from this

that one pointind and one point irB can never form a complexity pair. On the other hand

S is a factor of the cartesian produ¢®, 1}%, o) x (Z/2Z, +1); applying Proposition 4.1(4)

itis easy to check that any standard cover separating the unique fixed point on the letter zero
from any other point has infinite complexity. These two facts prove that@psm U Ag
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is not transitive. Lemma 5.9 shows that@Po) = X2. Thus ContsS, o) is a strict subset
of RP(S, o).

This example also shows that systems witH RPT') = X? are not necessarily disjoint
from group rotations(S, o) has an obvious joining with the exchange of two points.
In the minimal case no system with these properties exists.

PrROPOSITIONS.11. If (X, T) is a minimal homeomorphisl@om(X, T) = RP(X, T).

Proof. By Proposition 5.7 it is enough to prove thatRR 7) ¢ Com(X, T). Letx1 # x2
be in X and assume thatc1, x2) ¢ Com(X, T). Let (U1, Uz) be a standard cover of
bounded complexity separating these points and fiut= Uy, F» = Uy; the cover
R = (F1, F») also has bounded complexity. P2t = {1,2}% and letJ (the joining
associated t®-names),J*(w) (the sets of points iX having the name) andJ..(x) (the
set of names of) be as defined in §1.

The coverR has bounded complexity, which by Lemma 2.1 implies that covered by
a finite union of setg*(w). These sets are closed and at least one of them must have non-
empty interior. Thus there atee Q and a non-empty open sBt C X with W C J*(«).
Put

K ={(x,y) € X*: L) N L) #B) = [ T" x T"(F1 x F) U (F2 X F2).
nez

K is a closedl' x T-invariant subset ok2. If x andy are in W they have a common
namew; thusW x W C K, which means thak has a non-empty interior. Finally, by
invariance one also hd8'W x T"W C K for anyn; this fact and minimality imply that
K is a neighbourhood of the diagonal kf: there isc > 0 such that

d(x,y) <€ = (x,y) € K. (3

Choose arbitrary pointg; € F5 andy, € Fy. ThenJ,(y1) C [1] andJ«(y2) C [2],
therefore/, (y1) N J.(y2) = @ and(y1, y2) ¢ K. SinceK is invariant, for every: € Z one
has(T"y1, T"y2) ¢ K, hence by (3} (T"y1, T"y2) > €, but FJ is a neighbourhood of;
andFy is a neighbourhood of;: this implies thai(x1, x2) ¢ RP(X, T). O

Remark 5.12In the minimal case, complexity pairs are exactly those that are collapsed
by projection to the maximal equicontinuous factor. In the case of a Sturmian symbolic
system this permits one to describe easily all complexity pairs, and to tell which standard
covers have unbounded complexity; this would be a hard job by straight computation.

Remark 5.13Suppose there is an ergodic measurwith full support on(X, T), such

that its Kronecker factor (its maximal factor with completely discrete spectrum) is trivial.
Does this imply that(X, T) is scattering? The answer is almost obviously yes: a
trivial Kronecker factor is equivalent to measure-theoretic weak mixing; this and full
support imply weak topological mixing, which in turn implies th@at, T) is scattering

by Proposition 3.4. On the contrary, it requires some real work to prove that any system on
which there exists & -measure with support has uniform positive entraW3].
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6. Some remarks about determinism and chaos

Here we very briefly address the most heuristic motivation of this article. One can consider
equicontinuity as a good candidate for a mathematical definition of complete topological
determinism: in an equicontinuous system when one knows precisely enough where a
point lies, every point of its orbit is determined updo This is especially patent for a
symbolic systens. Supposeps(n) is bounded; then when one knows a long enough block

of coordinates oft € S this point is completely determined; whes (n) is unbounded

there are always blocks of coordinates with arbitrary length that can be prolonged by two
different letters, hence containing at least two points. Granting that chaos is the opposite of
determinism, by Proposition 2.2 it must have some relation with the complexity of covers.

In 1989 Devaney proposed to call chaotic any topological dynamical system that is
transitive, sensitive to initial conditions, and contains a dense set of periodic pDints [
previously Auslander and Yorke had called chaotic all transitive sensitive systems and
determined some properties of such syste&s][ Several other tentative definitions of
topological chaos are reviewed iIK$, §7]; although they are quite interesting we shall not
examine them here.

It was later observed that transitivity and dense periodic points imply sensitivity
[BB, GW1]. Sensitivity, nevertheless, remains a very interesting notion because it globally
contradicts equicontinuity; it even does so locally in the transitive case: any transitive
system that is not sensitive has equicontinuity points (actually coinciding with its transitive
points) [AAB].

The scattering and 2-scattering properties also globally contradict equicontinuity. They
do soin a way that is more closely connected with the point of view of Information Theory.
By Proposition 3.10 both imply transitivity of all powers. Thedein the theory of chaos
cannot be compared with that of sensitivity: scattering does not imply sensi#\}; pn
the other hand sensitivity and transitivity do not even imply total transitivity.

Example 6.1.There exist non-scattering systems that are chaotic in the sense of Devaney.
The cartesian product of a full shift and a 2-point set endowed with the exchange of points
is obviously chaotic in this sense. It also has a clopen partititan C1) with TCo = C1
andT C1 = Co.

Another instance is the syste(f, o) of Example 5.10: it is also chaotic; the closed
coverC is a partition except for the fixed point, and its elements also have period two. The
following interval mapf has the same property:

f@y=2c+3 onfo, 1,
f)=—-2x—-H+3 onfi 3,

f)=2(x-32) on[3 1]

In the three examples there exist almost continuous eigenfunctions—a not very chaotic
feature that Devaney'’s definition does not exclude in general.

Let us now conclude with a very short discussion, partly inspired by the results in this
article.
Actually, rather than competing definitions of chaos what one needs is a theory of
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chaoticity, inside which various degrees might be accepted. The really important point
is not the definitions but their relations and fields of application.

Some definitions arétted to particular classes of transformatian¥he existence of
a dense set of periodic points certainly looks a real feature of chaos when dealing with
interval maps (see for instandé€$]), and Devaney’s definition is satisfactory in this class,
if one does not mind its allowing the existence of eigenfunctions. It is possible that it is
also valid for cellular automata. On the other hand, in the symbolic setting the assumption
of dense periodic points excludes some systems that are highly chaotic in a sense, while
accepting others that can be considered chaotic in a very weak sense only. For a less
sketchy discussion of this hypothesis s&&\[1].

There are indeedeveral possible degrees of chaoticity the field of topological
dynamical systems. One may suggest a set of weak definitions: for instance scattering
(because it implies total transitivity and contradicts equicontinuity), or sensitivity and
total transitivity (for similar reasons); these definitions are not equivalent. Weak mixing
is strictly stronger than both previous definitions and may thus be considered as a mild
degree of chaoticity. An example of a very strong definition is uniform positive entropy
[BI1]; there may be many others.

One should also distinguish betwemguirements of complete or partial chaoticity
An illustration of what we mean by partial chaos is to be found@W[1], where the
authors suggest that a chaotic system might b& a&ystem with positive entropy; these
requirements do not exclude deterministic features but they ensure that there exist covers
with exponentially growing complexity, and no equicontinuity points. A natural further
step is to introduce various degrees of partial chaos.

Finally, one question: does the complexity of covers provide a scale of chaoticity?
Presently the answer is far from obvious.
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Appendix
The following result generalizesAll, Theorem 7, Chapter 11] to the transitive case.
Auslander’s proof is for the minimal case only.

PrROPOSITIONA.L. Let (X, T) be a transitive system and be an invariant measure
with full support. Let(Y, S) be a minimal homeomorphism. (X, T) is disjoint from
the maximal equicontinuous factor@f, S), then(X x Y, T x S) is transitive.

Proof. Assuming that(X x Y, T x §) is not transitive we construct an equicontinuous
factor (Z, t) of (¥, S) and a non-trivial joining(K, T x t) of (X, T) and (Z, ). It
follows that(X, T) is not disjoint from(Z, t), anda fortiori not disjoint from the maximal
equicontinuous factor af, S).
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Step 1. (Construction ofZ, t).) There exists an open invariant subgetof X x Y,
such thatF = U # (X x Y). By transitivity the projections of to X andY are
onto: (F,T x S) is a non-trivial joining of(X, T) and (Y, S). For everyy € Y put
F(y) ={x € X : (x,y) € F}, and letf, = 1r(,) be the characteristic function &f(y),
considered as an elementi¥(u).

We show that the map — f; is continuous front to LY(1). Fixa € Y ande > 0.
There exists an open sBtwith V > F(a) andu(V \ F(a)) < €. As F is closed, there
exists a neighbourhoo of a such thatF(y) c V for everyy € W. Thus fory e W
one hasu(F(y) \ F(a)) < €. In particular,u(F(y)) < u(F(a)) + ¢; it follows that
the mapy — w(F(y)) is upper semicontinuous. A simple computation shows that it is
S~Linvariant, hence constant by minimality.

Leta,e, V, W be as above. Foreverye W, u(F(y) \ F(a)) < € andu(F(y)) =
w(F(a)), thusu(F(y)AF(a)) < 2¢,i.e.| fy — fall1 < 2¢: this proves our claim thaf,
is continuous.

Denote byr : ¥ — LY(w) the mapy +— f,, and consideZ = m(Y) C L(w),
endowed with the topology df(u). As 7 is continuousZ is compact. Ag is invariant,
we havefs-1, = fy o T andZ is invariant under the map : g — g o 7. Consider
(Z, 1) as a dynamical system: thenis a factor map, andZ, t) is minimal. Moreover,
this system is clearly isometric.

Step2.Writep = (ldxm) : (X x Y) - (X x Z) andK = p(F): pis a factor map and
K is ajoining of X andZ. We only have to prove that this joining is not trivial.

Let (x,y) € p~Y(p(U)). There existsy € Y with (x,y") € U andn(y) = n(y')
which implies thatf, = f,/, i.e. u(F(y)AF(y")) = 0. Asu has full supportF(y) and
F(y") have the same interior, butbelongs to the interior of'(y’), hence toF(y), and
finally we get that(x, y) € F: we have shown that

p L (pU)) C F.

As F # (X x Y), there exists a non-empty open subBeatf X and a non-empty open
subsetW of Y with (V x W) N F = @. By minimality,

Usw=y, thus [Jr"z(W)=2

n>0 n>0
and by Baire’s theorem the interigrof 7 (W) is notempty. AV x W)Np~L(p(U)) = 9,
we have(V x Q)N p(U) = @. Sincep(F) = p(U), we get(V x Q)N p(F) = ¥, and the
joining K = p(F) is not equal tqX x Z). |

With a few technical changes one can prove the same result without assumiSgshat
a homeomorphism.
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