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We introduce and analyse a class of quasi-self-similar solutions of the thin film equation to

describe the dynamics of expanding liquid films on a solid surface. Using these solutions as

intermediate asymptotics profiles, we obtain a quantitative expression for the shape of the film

and a relation between the speed of the contact line and the macroscopic and microscopic

contact angles.

1 Introduction

The basic equation which describes the spreading of a liquid film – assumed to be uniform

in one space direction – along a solid surface is given by

ht + κ(h3hxxx)x = 0, (1.1)

where h(x, t) is the film thickness, t is the time, x the spatial coordinate and κ = γ/(3µ),

where γ is the surface tension and µ is the viscosity of the liquid. Equation (1.1) is derived

on the basis of three assumptions: the applicability of the lubrication approximation [2], the

no-slip condition (vanishing velocity of the fluid at the solid surface), and the applicability

of the Laplace formula p = −γK , where p is the hydrodynamic pressure and K the

curvature, approximated by hxx.

The main difficulty in the modelling of thin films is the following: from a straightforward

asymptotic expansion near the contact lines, i.e. the boundaries of the spatial support of

h, it follows that the film can only be nonexpanding. In other words, accepting the validity

of (1.1), an infinite force is needed to make contact lines advance (cf. Dussan & Davis [18]).

Several attempts have been made to modify equation (1.1) to describe the dynamics of

expanding liquid films. A small, positive effective slip parameter, β > 0, was introduced by

several authors [18, 21, 22, 24–27] (see Oron et al. [28] for a complete list of references);

this correction leads to the modified equation

ht + κ
[
(h3 + βhn)hxxx

]
x

= 0, (1.2)

where 1 6 n < 3 is a constant depending on the slip model under consideration (when
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n = 1, (1.2) reduces to that derived by Greenspan [21]). We shall hereafter be concerned

with this approach, but we also mention a recent proposal by Barenblatt et al. [1] of a

new model, based on the introduction of a small and autonomous region near the contact

lines where the lubrication approximation and the Laplace formula are not necessarily

valid.

It is well known that equation (1.2) admits solutions with advancing contact lines if

n < 3. In particular, after the paper by Bernis & Friedman [8], a series of recent papers

has been dedicated to the development of a PDE theory for equations similar to (1.2) (see,

for example, [3–11, 15, 19, 23, 29] and references therein). All these papers, except for

that by Otto [29], deal with the construction and properties of solutions with zero-contact

angle at the contact lines, i.e. hx → 0 as h → 0. In this context, we observe that this is a

free-boundary problem and, since the equation is of fourth order, at a contact line three

conditions are expected to be needed to determine a solution uniquely. Two of them are

obvious: h = 0 and vanishing mass flux, (h3 + βhn)hxxx = 0, but the choice of the third

condition is less obvious and could possibly involve the contact angle hx or the pressure,

which is proportional to hxx.

In the present paper, we study equation (1.2), discussing a particular problem which

arises if one wants to use the contact angle to formulate the third boundary condition

at the contact line. To explain this problem, we need several preliminary observations.

It is often the case that the dynamics of thin films is governed by the dynamics of the

contact lines, in the sense that, given the position of the contact lines, equilibrium is

established in a relatively short period of time in most of the film (i.e. hxxx ≈ 0 away

from the contact lines; as a matter of fact we shall prove that the approximate solutions

which we construct in the present paper satisfy this property). Consequently, the profile

of most of the film is a parabola, determined by its height (or, almost equivalently, by the

position of the contact lines) and the mass of the liquid. This fact makes it possible to

define a so-called effective contact angle, θeff , of the film as the angle of the corresponding

parabola. Actually, θeff can be measured using global properties of the film, such as its

focal properties (cf. De Gennes [16]). In the literature, empirical laws have been proposed

for θeff , normally written in the form

θeff = f(V ), (1.3)

where f is an empirical function of the speed V of the contact line. In particular, one

often encounters for perfect spreading the dynamic law

θeff = CV
1
3 (1.4)

for some constant C > 0 (where V is thought as a nonnegative quantity; we consider a

contact line at the right of the film, cf. Figure 1). Such a relation has also been proposed

by Tanner [30] as a first-order approximation for solutions of (1.1).

Now we arrive at the core of the problem. Assuming that equation (1.2) is valid up to

the contact line, we need to know how to translate the law (1.4) for the effective contact

angle θeff into a law for the ‘real’, say microscopic contact angle

θ := −hx(xc(t), t),
where x = xc(t) is the position of the contact line at the right border of the film (since |hx|
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θ
θeff

V y

contact line xc(t)

hxxx ≈ 0

----

Figure 1. Contact angle θ and effective contact angle θeff .

is assumed to be small in the lubrication approximation, we may identify angles with their

tangents). We note that the word microscopic refers to the context of lubrication theory,

and is not meant to involve detailed microscopic modelling or molecular dynamics.

Given certain assumptions [25, 14], it is possible to estabilish the relation between θ and

θeff from matched asymptotic expansions. Instead, here we propose to use approximate

self-similar solutions, motivated by the fact that, assuming h(x, t) = tλH(xtλ) – which

is the proper scaling for mass conservation – then both equation (1.2) with β = 0 and

condition (1.4) give λ = −1/7. More precisely, let us consider a solution h(x, t) of equation

(1.2) with initially bounded support, and let

h(x, t) = t−
1
7H(y, t), y =

xt− 1
7

(7κ)
1
4

;

equation (1.2) then transforms into

7tHt − (yH)y +
[
(H3 + βt

3−n
7 Hn)Hyyy

]
y

= 0. (1.5)

Based both on qualitative considerations and on experience with nonlinear diffusion

equations, we expect that the term 7tHt will be negligible after a time t0 of order O(κ−1).

Hence, we replace (1.5) by [
(H3 + βt

3−n
7 Hn)Hyyy − yH

]
y

= 0. (1.6)

Note that, if β = 0, then (1.6) would correspond to considering exactly self-similar

solutions of (1.2). On the other hand, since

H3 � βt
3−n

7 Hn ⇐⇒ h3−n � β,

the contribution of βt
3−n

7 Hn will be small on most of the support of H provided

1

|{h(·, t) > 0}|
∫ ∞
−∞

h3−n(x, t) dx � β; (1.7)

therefore, if (1.7) holds then (1.6) corresponds to considering quasi-steady states in the

(y, t) variables. In order to analyse (1.6), we assume that

t� β−
7

3−n , (1.8)
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and replace βt
3−n

7 by a positive constant ε� 1; thus, we are led to consider the following

model problem:

(I)



[
(u3 + εun)u′′′ − yu]′ = 0 in (−a, a)
u > 0, u(y) = u(−y) in (−a, a)∫ a

−a
u(y) dy = 2M

u = 0 u′ = −α, (u3 + εun)u′′′ = 0, at y = a.

Here M > 0, 0 < n < 3, ε > 0 and α > 0 are given constants, a > 0 is an unknown

constant, and u(y) is an unknown function. We observe that one integration gives(
u2 + εun−1

)
u′′′ = y, y ∈ (−a, a);

the equation is therefore degenerate at u = 0 if 1 < n < 3, and singular if 0 < n < 1.

This implies sensible differences in the mathematical analysis between the two cases:

for this reason we shall hereafter restrict ourselves to the physically more relevant case

1 6 n < 3, though a theory similar to the the one we are going to illustrate could be

developed also for 0 < n < 1. We also note, in the contexts of numerical simulation and

formal asymptotic analysis of thin viscous flows, that comparable approaches have been

introduced [12–13, 17, 20], based on the same idea of overcoming the lack of self-similarity

via suitable concepts of approximately selfsimilar solutions.

We shall prove for any M > 0, 1 6 n < 3, ε > 0 and α > 0 that Problem (I) has a

unique solution (uε,α(y), aε,α) (cf. Theorem 2.1), and that for small ε > 0 the shape of uε,α(y)

is a parabola, in the sense that

1

uε,α(0)
uε,α(aε,αr) −→ 1− r2 in C([0, 1]) ∩ C∞loc([0, 1))

aε,αuε,α(0) −→ 3M

2

as ε→ 0 (1.9)

(cf. Theorem 3.1). Given αε > 0 for ε > 0, we may define

hε(x, t) := t− 1
7 uε,αε

(
xt− 1

7

(7κ)
1
4

)
, (1.10)

xεc(t) := (7κ)
1
4 aε,αε t

1
7 , Vε := ẋεc(t); (1.11)

note that hε(·, t) are supported in (−xεc(t), xεc(t)), and∫ aε,αε

0

uε,αε (y) dy = M ⇐⇒
∫ xεc(t)

0

hε(x, t) dx = M = (7κ)
1
4M. (1.12)

Relations (1.9) justify, for small ε > 0, the introduction of an effective contact angle θeff
ε

of hε(x, t) as the slope of the corresponding parabola (i.e. the parabola having the same

central height hε(0, t) and the same mass M) at its zero; in other words, since from (1.9)

it follows that

hε(x, t)

hε(0, t)
∼
[

1−
(

2hε(0, t)

3M

)2

x2

]
+

as ε→ 0,
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we may define

θeff
ε :=

4h2
ε (0, t)

3M
, θε := −hεx(xεc(t), t). (1.13)

Then there exists the following relation between Vε, θ
eff
ε and θε:(

θeff
ε

)3 − θ3
ε

Vε ln
1

ε

−→ 3

κ(3− n) as ε→ 0; (1.14)

more precisely (cf. Corollary 4.1), we shall prove that there exists a parameter λ such that

for any λ ∈ [0, 1) we may choose αε > 0 such that

θε

θeff
ε

−→ λ as ε→ 0 (1.15)

and (
θeff
ε

)3

Vε ln
1

ε

−→ 3

κ(3− n)(1− λ3)
as ε→ 0. (1.16)

In addition, we shall prove that the distance between the contact line xεc(t) and the zero

of the corresponding parabola is indeed small, in the sense that

lim
ε→0

xεc(t)− 3M

2hε(0, t)

xεc(t)
= 0. (1.17)

Note that, in view of (1.17), we could have almost equivalently defined θeff
ε as θeff

ε =

3M/(xεc(t))
2: indeed we shall see (cf. Corollary 4.1) that (1.15) and (1.16) continue to

hold with this definition. It is also worth remarking that, in proving (1.15)–(1.17), we use

neither any hypothesis concerning the parabolic shape of the solution (which instead we

prove), nor do we assume any relation between θeff and V such as (1.3) or (1.4).

Returning to our original equation (1.2), we would like to give an interpretation to

(1.14) by setting ε = βt(3−n)/7; of course ε is no longer a constant, but on the other hand

(1.14) only depends logarithmically on ε. We conjecture that for a large class of solutions

of (1.2) the solutions hε(x, t) may be used as intermediate asymptotics, and (1.14) holds

for t large enough, but not too large (we recall that the decay rate t−1/7 cannot hold for

t→∞, since for very large times the term βhn in (1.2) becomes dominant with respect to

h3 in all the support of h).

To be more precise we first consider the case of perfect spreading:

θ = 0.

Fixing 0 < β � 1 and 1 6 n < 3, let h0
β,n(x, t) be a solution of equation (1.2) with mass

2M (
∫
R h

0
β,n(x, t) dx = 2M) and with initially bounded support. The existence of such a

solution has been established [3, 10], and it has been proved [5, 6] that for all positive

times t the spatial support is a bounded set. Based on the results in these papers we

conjecture that, for t large enough, but such that (1.7) and (1.8) hold, h0
β,n(x, t) behaves

approximately as

3M

2x̃3
c(t)

[
x̃2
c(t)− x2

]
+
,
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where [s]+ = max{s, 0} and

x̃7
c(t) = (7κ)32M3

(
1

3− n ln
1

β
− 1

7
ln t

)−1

t

(note that here x̃c(t) does not necessarily satisfy h0
β,n(x̃c(t), t) = 0, and represents an

‘approximate’ contact line). In particular the effective contact angle θeff and the speed V

of the right interface satisfy approximately

(θeff)3

V
=

3

κ

(
1

3− n ln
1

β
− 1

7
ln t

)
. (1.18)

Up to the first order in time, these results reproduce ‘Tanner’s law’; [30]

x̃c(t) = c1t
1
7 , θeff = CV

1
3 .

Of course, it is not surprising that V → 0 as β → 0 or n→ 3.

Concerning solutions with non-zero contact angles we conjecture that for any λ ∈ (0, 1)

there exist families of solutions hλβ,n(x, t) such that

θ

θeff
= λ (1.19)

and hλβ,n(x, t) behaves like

3M

2x̃3
c,λ(t)

[
x̃2
c,λ(t)− x2

]
+

for t large enough but such that (1.7) and (1.8) hold, where

x̃7
c,λ(t) =

(
1− λ3

)
x̃7
c(t).

In this case we have that, approximately,

(θeff)3

V
=

3

κ(1− λ3)

(
1

3− n ln
1

β
− 1

7
ln t

)
. (1.20)

Using (1.19), (1.18) and (1.20) can be rewritten as

(θeff)3 − θ3 =
3V

κ

[
1

3− n ln
1

β
− 1

7
ln t

]
. (1.21)

Relations similar to (1.21) have been previously derived through matched asymptotic

expansions with a double boundary layer near the contact line. In the radially symmetric

case with n = 2 and θ > 0, Hocking [25] finds

(θeff)3 − θ3 =
3V

κ

(
ln

1

β
+ ln

θrc(t)

2e

)
, (1.22)

where rc(t) is the radius of the contact line. In the one-dimensional case, Cox [14] analysed

the case of a rough solid surface; if the surface is smooth, his results reduce to

g(θeff)− g(θ) =
3V

κ

(
ln

1

β
+

Q∗i
f(θ)

− Q∗0
f(θeff)

)
, (1.23)

where

f(s) =
2 sin s

s− sin s cos s
, g(s) = 9

∫ s

0

dζ

f(ζ)
∼ s3 as s↘ 0
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and Q∗0 = Q∗0(θeff , dθ
eff

dt
), Q∗i = Q∗i (θ). The lower-order term in (1.21) coincides with the

corresponding one in (1.22) if n = 2 and θ > 0, and with the corresponding one in

(1.23) if n = 2. The higher order corrections (for (1.21), ln t−1/7) are different in the three

relations; it is not clear whether these differences are real or due to the technique used

(i.e. a remnant of the choice of the model problems).

2 The self-similar problem with fixed ε > 0

In this section we discuss the following result:

Theorem 2.1 Let 1 6 n < 3, ε > 0 and M > 0. For any α > 0 Problem (I) has a unique

solution (uα, aα), and the following properties are satisfied:

(i) uα(0), u′′α(0) and aα depend continuously on α;

(ii) α1 > α2 > 0 =⇒
{
uα1

(0) > uα2
(0),

aα1
< aα2

;

(iii) uα1
and uα2

have exactly one intersection point if α1 � α2, i.e. there exists a unique

y > 0 such that uα1
(y) = uα2

(y) > 0;

(iv) uα(0)→∞ and aα → 0 as α→∞.

Since the proof of Theorem 2.1 is quite technical and lengthy, we prefer to focus on

the proofs of the properties (i)–(iv). For the existence of uα, which is based on a standard

shooting procedure, we only give the main ideas. Introducing the shooting parameters

s > 0 and γ < 0, we consider the following initial value problem:

(IIs,γ)

{
(u2 + εun−1)u′′′ = y for y > 0

u(0) = s, u′(0) = 0, u′′(0) = γ.

By classical ODE theory, for any s > 0 and γ problem (IIs,γ) admits a unique maximal

solution us,γ ∈ C3([0, a)), where

a = as,γ := sup{y ∈ R+ : us,γ(y) > 0}.
In addition there holds:

Claim 1 For any s > 0 and γ, and for any sequence (sn, γn)→ (s, γ) we have

usn,γn −→ us,γ in C3
loc([0, as,γ)).

Following the ideas of Bernis et al. [9], it is possible to prove that:

Claim 2 For all s > 0 and α > 0, there exists a unique γs,α < 0 and a > 0 such that the

solution of Problem (IIs,γs,α ) satisfies

u > 0 in [0, a), u(a) = 0, u′(a) = −α;
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yaα2
aα1

u

uα1

uα2

6

-

=

=

Figure 2. Two solutions of Problem I with the same M and ε and with different contact angles:

α1 > α2 > 0.

Claim 3 For all M > 0 and α > 0 there exists a unique sM > 0 such that the solution u

of Problem (IIsM,γsM ,α
) satisfies ∫ a

0

u(y) dy = M.

Note that (u3 + εun)u′′′|x=a = au(a) = 0, hence the even extension of the solution to (−a, a)
is the unique solution of Problem (I).

To prove the remaining part of Theorem 2.1 we need some preliminary results.

Lemma 2.1 Let s > 0 and γ < 0 be such that the solution us,γ of Problem (IIs,γ) vanishes at

some a > 0 and is positive in [0, a). If γ < γ, then the solution us,γ of Problem (IIs,γ) vanishes

at some a > 0, is positive in [0, a) and

a < a,

us,γ < us,γ in (0, a],

u′s,γ(a) < u′s,γ(a).

Proof Setting u = us,γ and

ϕ(u) := u2 + εun−1, (2.1)

we have

u′′′ =
y

ϕ(u)
if u > 0, (2.2)

whence

u′′ ↗ as long as u exists and u > 0. (2.3)
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In particular,
u > 0 in [0, a)

u(a) = 0

}
=⇒ u↘ in [0, a).

Hence we may use u as an independent variable, and the function

z(u) :=
(
u′(y)

)2

satisfies the equation

z′′ = − 2y(u)

ϕ(u)
√
z

in (0, s), (2.4)

with boundary conditions

z(s) = 0, z′(s) = 2γ. (2.5)

Setting u = us,γ , we may use u as an independent variable as long as u is decreasing and

positive. Setting

z(u) :=
(
u ′(y)

)2
,

y0 = sup {y > 0 : u > 0 and u ′ < 0 in (0, y)} ,
s0 = u(y−0 ),

we obtain that z is well defined in (s0, s), and z ′′ = − 2y(u)

ϕ(u)
√
z

in (s0, s),

z(s) = 0, z ′(s) = 2γ.

Since γ < γ, z > z in a left neighbourhood of s. We claim that

z > z in [s0, s)

which implies at once the desired result. Arguing by contradiction, we suppose that

z > z in (s1, s) and z(s1) = z(s1)

for some s1 ∈ [s0, s). Since y(u) < y(u) in (s1, s), it follows that

z ′′ = − 2y(u)

ϕ(u)
√
z
> − 2y(u)

ϕ(u)
√
z

= z′′ in (s1, s).

Therefore, since z(s) = z(s) and z(s1) = z(s1), we conclude that z < z in (s1, s), and we

have obtained a contradiction. q

The following lemma, which we shall often use in the sequel, gives an a priori lower

bound for solutions of (IIs,γ).

Lemma 2.2 Let A and B be positive constants and let u ∈ C3([0, B)) ∩ C([0, B]) satisfy

u > 0, u′ 6 0, u′′′ > 0 in [0, B)

u(0) > A.

Then there exists a function f ∈ C([0, B]), which depends only upon A and B, such that

u(y) > f(y) > 0 in [0, B).

For the proof we refer to the appendix.

https://doi.org/10.1017/S0956792599004015 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599004015


190 M. Bertsch et al.

By Lemma 2.1 and Claim 2, the point

as,γ < ∞ : us,γ > 0 in [0, as,γ), us,γ(as,γ) = 0

is well defined for γ 6 γs,0. In addition, the following property holds:

Corollary 2.1 For all s > 0, as,γ depends continuously upon γ for γ 6 γs,0.

Proof It follows from Lemma 2.1 that as,γ is strictly inceasing with respect to γ. Let

γ < γs,0 and suppose by contradiction that

a+ = lim
γ→γ+

as,γ > as,γ.

Since u′s,γ 6 0, by Claim 1 we have

us,γ(as,γ)→ 0 as γ → γ+

in contradiction to Lemma 2.2 (A = s, B = a+). On the other hand, Claim 1 immediately

implies

lim
γ→γ−

as,γ = as,γ, γ 6 γs,0,

which completes the proof. q

Remark 2.1 Following the ideas of Bernis et al. [9], we observe that if γ > γs,0 the solution

us,γ is strictly positive and definitely increasing as y →∞.

Lemma 2.3 Let u1 and u2 be, respectively, solutions of Problems (IIs1 ,γ1
) and (IIs2 ,γ2

), vanish-

ing at a1 and a2. If

s1 < s2 and u′1(a1) 6 u′2(a2)

then

a1 < a2 and u1 < u2 in [0, a1].

Proof Let us,γ denote the solution of Problem (IIs,γ) and let

γ = sup {γ? < 0 : us1 ,γ < u2 (as long as

us1 ,γ exists and is positive) ∀γ < γ?}
By a standard argument (cf. Bernis et al. [9]), γ ∈ (−∞, 0), and by continuous dependence

u := us1 ,γ vanishes at a 6 a2. We distinguish three possibilities:

I. there exists y? ∈ (0, a) such that u < u2 in [0, y?) and u(y?) = u2(y?);

II. u < u2 in [0, a];

III. a = a2, u ′(a) = u′2(a2) and u < u2 in [0, a2).

In case II one can easily prove that u ′(a) = 0, since by Corollary 2.1 u ′(a) < 0 and

a < a2 would contradict the definition of γ. Therefore, it follows from Lemma 2.1 that

a1 6 a < a2 and u1 6 u in (0, a1), the desired result.

The proof is complete if we can exclude cases I and III, since the only possibility left is

a = a2, u
′(a) > u′2(a2) and u < u2 in [0, a2),
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and the result follows from Lemma 2.1. We begin with case I. Setting

v = u2 − u and Φ(v) = vv′′ − 1
2
(v′)2,

it follows that v′(y?) = 0, Φ(v(y?)) = 0 and since ϕ is increasing,

(Φ(v))′ = (u2 − u)(u2 − u)′′′ = (u2 − u)y
(

1

ϕ(u2)
− 1

ϕ(u)

)
< 0 if u2� u.

Since v > 0 in [0, y?), this implies at once that Φ(v) > 0 in [0, y?), i.e.

v′′ >
(v′)2

2v
> 0 in [0, y?).

But this is impossible, since v′(0) = v′(y?) = 0.

It remains to eliminate case III. Arguing as above (with y? replaced by a2), Φ(v) is

decreasing in (0, a2) and we obtain a contradiction if we prove that

lim
y→a2

Φ(v(y)) > 0.

Since v′(y)→ 0 as y → a2, it is enough to prove that

lim
y→a2

v(y)v′′(y) > 0.

Indeed, this inequality follows at once, since otherwise v′′(y) → −∞ as y → a2, which is

impossible since v(a2) = v′(a2) = 0 and v > 0 in (0, a2). q

Proof of Theorem 2.1 By Lemma 2.1 and Lemma 2.3,

α1 > α2 > 0 =⇒ uα1
(0) > uα2

(0). (2.6)

To prove (i) we claim that, as n→∞,

sn → s ∈ (0,∞)

γn → γ ∈ (−∞, 0)

an < ∞ ∀n
−u′sn,γn(asn,γn)→ α > 0

 =⇒


as,γ < ∞
usn,γn −→ us,γ in C3

loc([0, as,γ))

asn,γn −→ as,γ
u′s,γ(as,γ) = −α.

(2.7)

Claim 1 immediately implies the first two assertions, and Lemma 2.2 yields asn,γn → as,γ .

It follows easily from (2.3) that there exist two constants C > 0 and δ > 0 such that

u′sn,γn 6 −C if 0 < usn,γn < δ, which immediately implies that u′s,γ(as,γ) < 0. It is now

possible to prove that u′s,γ(as,γ) = −α; since the argument is very similar to the one used

in the proof of Lemma 4.8 of Bernis et al. [9], we omit it here.

Now we are ready to prove (i) for α > 0. Let αn ↗ α > 0. By (2.6), uαn (0)→ s ∈ (0, uα(0)],

and extracting a subsequence we may assume that u′′αn (0) → γ. Mass constraint implies

aαn > a > 0 and γ < 0, and we have γ > −∞ since, by Lemma 2.2, uαn and u′′′αn are

uniformly bounded in [0, a/2]. Thus, by (2.7), uαn converges to the solution u of Problem

(IIs,γ), aαn → as,γ < ∞ and u′(as,γ) = −α; hence u coincides with the unique solution uα
of Problem (I). In particular, s = uα(0) and γ = u′′α(0). Repeating the same argument if

αn ↘ α > 0, we obtain (i) for α > 0.

Arguing by contradiction and proceeding as above, it is not difficult to prove that

uα(0)→ ∞ as α→ ∞. Using Lemma 2.2 and the constraint of fixed M it follows at once

that aα → 0 as α→∞ and we have proved (iv).
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To prove (iii) for α1 > α2 > 0, we argue by contradiction and suppose that uα1
and

uα2
have at least two intersection points. By (iv) and (2.3) there exists α0 > α1 such that

aα0
< aα2

and uα0
and uα2

have exactly one intersection point. Let

α = inf
{
α? ∈ (α2, α0) such that ∀ α ∈ (α?, α0) ∃ ! y : uα(y) = uα2

(y)
}
.

Then α ∈ [α1, α0),

uα(0) > uα2
(0), aα < aα2

,

and there exists y0 ∈ (0, aα) such that

uα > uα2
in (0, y0) and uα 6 uα2

in (y0, aα).

In addition it follows easily that

u′α(y0) < u′α2
(y0).

Indeed, if u′α(y0) = u′α2
(y0) then uα−uα2

has an inflection point at y0, so u′′α(y0) = u′′α2
(y0); but

then, by uniqueness, uα(y) = uα2
(y) for y ∈ [0, aα) and we have obtained a contradiction.

It remains to distinguish the following two situations:

I. There exists y1 ∈ (y0, aα) such that

uα < uα2
in (y0, y1), uα(y1) = uα2

(y1), u′α(y1) = u′α2
(y1).

II. There exists y2 ∈ (0, y0) such that

uα > uα2
in (y2, y0), uα(y2) = uα2

(y2), u′α(y2) = u′α2
(y2).

In case I we define v = uα2
−uα and Φ(v) = vv′′ − 1

2
(v′)2, arguing as in the proof of Lemma

2.3 we have that Φ(v(y1)) < Φ(v(y0)). On the other hand,

Φ(v(y1)) = 0 and Φ(v(y0)) = − 1
2

(
u′α2

(y0)− u′α(y0)
)2
< 0

and we have obtained a contradiction. In case II we use u as an independent variable and

define

z(u) =
(
u′α2

)2
and z(u) =

(
u′α
)2

;

since (z − z)′ = 2(uα2
− uα)′′ < 0 at u = uα(y2), we have z > z in a left neighbourhood

of uα(y2) (the first inequality is strict since otherwise uα2
and uα would coincide). On the

other hand, z > z at u = uα(y0), and therefore there exists u? ∈ (uα(y0), uα(y2)) such that

z(u?) = z(u?) and z > z in (u?, uα(y2)). Arguing as in Lemma 2.3, we obtain (z − z)′′ > 0

and again we have found a contradiction.

Using (2.6), (iii) and the mass constraint, (ii) now follows immediately for α > 0.

It remains to prove (i) if α = 0, and (ii) and (iii) if α1 > α2 = 0. To prove (i) if α = 0,

it is enough to take the limit α → 0 and use the monotonicity of uα(0) and aα for α > 0.

Hence also (ii) and (iii) follow at once if α2 = 0. This completes the proof of Theorem

2.1. q

3 The effective contact angle

In this section we prove that the solutions of Problem (I) behave as a parabola for small

values of ε:
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Theorem 3.1 Let M > 0, 1 6 n < 3, α > 0 and ε > 0, and let (uε,α(y), aε,α) denote the

unique solution of Problem (I). Then

uε,α(0) −→ ∞ and aε,αuε,α(0) −→ 3M

2
as ε→ 0 (3.1)

and

1

uε,α(0)
uε,α(aε,αr) −→ 1− r2 in C([0, 1]) ∩ C∞loc([0, 1)) as ε→ 0; (3.2)

the limits in (3.1) and (3.2) are uniform with respect to α > 0.

Theorem 3.1 justifies, for small ε, the introduction of an effective contact angle of uε,α
as minus the slope of the corresponding parabola at its zero:(

αeff
)
ε,α

:=
4

3M
u2
ε,α(0). (3.3)

Remark 3.1 It follows from Theorem 2.1 that for any S ∈ [1,∞] and for any ε > 0 there

exists αε > 0 such that

uε,αε (0)

uε,0(0)
−→ S as ε→ 0. (3.4)

Denoting by αeff
ε and αeff

ε,0 the effective contact angles of uε,αε and uε,0, i.e.

αeff
ε :=

(
αeff
)
ε,αε

and αeff
ε,0 :=

(
αeff
)
ε,0
, (3.5)

we find that

αeff
ε

αeff
ε,0

−→ S2 as ε→ 0. (3.6)

In § 4 we shall prove the main result of this paper, which establishes a relation between

αε and αeff
ε in terms of S .

Proof of Theorem 3.1 We first show that

uε,0(0) −→ ∞ as ε→ 0. (3.7)

In view of Theorem 2.1 (ii) this implies that

uε,α(0) −→ ∞ uniformly with respect to α as ε→ 0. (3.8)

To prove (3.7), we argue by contradiction and suppose that there exists C > 0 and a

sequence εn → 0 such that

uεn,0(0) 6 C ∀n.
Using Lemma 2.2 and the constraint of fixed M, it is straightforward to prove, successively,

the following claims: there exist positive constants C1, . . . , C5 such that
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(i) uεn,0(0) > C1;

(ii) aεn,0 > C2;

(iii) u′′εn,0(0) 6 −C3;

(iv) u′′εn,0(0) > −C4;

(v) aεn,0 6 C5.

Passing to a subsequence, we may assume without loss of generality that

aεn,0 → a > 0, uεn,0(0)→ s > 0, u′′εn,0(0)→ γ < 0 as n→∞.
Hence uεn,0 converges to the unique solution u of Problem (IIs,γ) in which ε = 0 as long

as u > 0. On the other hand (cf. Bernis et al. [9]) u > 0 in [0,∞), and we have found a

contradiction.

Since M > 0 is fixed, Lemma 2.2 and (3.7) imply that aε,0 → 0 as ε→ 0, and it follows

from Theorem 2.1 (ii) that

aε,α −→ 0 uniformly with respect to α > 0 as ε→ 0. (3.9)

We define

vε,α(r) =
1

uε,α(0)
uε,α(aε,αr) for 0 6 r 6 1. (3.10)

Then vε,α satisfies
v′′′ =

a4
ε,α

u3
ε,α(0)

r

v2 + εun−3
ε,α (0)vn−1

and v > 0 for 0 < r < 1

v(0) = 1, v′(0) = v′′′(0) = 0, v(1) = 0.

We claim that

v′′ε,α(0) −→ −2 as ε→ 0, uniformly with respect to α > 0. (3.11)

Arguing by contradiction, we suppose that there exist sequences εn → 0 and αn > 0, and

γ ∈ [0,∞], γ� 2, such that

v′′εn,αn (0) −→ −γ as n→∞.
Since a4

ε,α/u
3
ε,α(0)→ 0 as ε→ 0, uniformly with respect to α > 0, it follows that, if γ < ∞,

vεn,αn (r) −→ 1− 1
2
γr2 (3.12)

uniformly on compact subsets of [0,
√

2/γ)∩[0, 1]. Since vεn,αn (1) = 0 for any n, γ cannot be

smaller than 2. On the other hand, if 2 < γ < ∞, vεn,αn → 0 in [
√

2/γ, 1], in contradiction

with Lemma 2.2. A similar argument excludes the possibility that γ = ∞, and we have

proved (3.11).

Of course (3.2) follows at once from (3.11) and (3.12) (with γ = 2). To complete the

proof of Theorem 3.1 we observe that the second limit in (3.1) follows from (3.10) and

(3.2): ∫ 1

0

vε,α(r) dr =
M

uε,α(0)aε,α
−→

∫ 1

0

(1− r2) dr = 2
3

as ε→ 0, uniformly with respect to α > 0. q
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4 The main result

In this section we prove our main result which relates effective and microscopic contact

angles for small ε.

Theorem 4.1 Let M > 0, 1 6 n < 3 and S > 1. Let, for any ε > 0, αε > 0 be a given

contact angle and let the effective contact angles αeff
ε and αeff

ε,0 be defined by (3.5). If

αeff
ε

αeff
ε,0

−→ S2 as ε→ 0, (4.1)

then

αε

αeff
ε

−→
(

1− 1

S7

) 1
3

as ε→ 0. (4.2)

In addition, the solution uε,0 of Problem (I) with α = 0 satisfies

u7
ε,0(0)

ln(1/ε)
−→ 35M4

27(3− n) as ε→ 0. (4.3)

Once Theorem 4.1 is proved, letting λ = (1− S−7)
1
3 and using Theorem 3.1 and Remark

3.1, it is straightforward to draw the following conclusions concerning the approximate

solutions hε(x, t) which have been defined in the introduction.

Corollary 4.1 Let M > 0, 1 6 n < 3 and let hε(x, t), θ
eff
ε , θε, x

ε
c(t), Vε and M be defined by

(1.10)–(1.13). Then for every λ ∈ [0, 1) there exists {αε}ε>0, αε > 0 such that

θε

θeff
ε

−→ λ, (4.4)(
θeff
ε

)3

Vε ln 1
ε

−→ 3

κ(3− n)(1− λ3)
, (4.5)

xεc(t)− 3M

2hε(0, t)

xεc(t)
−→ 0, (4.6)

as ε→ 0; (4.4) and (4.5) continue to hold if θeff
ε is replaced by 3M/(xεc(t))

2.

The rest of the section will be concerned with the proof of the theorem.

Remark 4.1 Let vε(r) := vε,αε (r) be defined by (3.10) for 0 6 r 6 1. Since vε,αε is decreasing

we may use v as an independent variable and introduce

wε(v) :=
(
v′ε(r)

)2
, r = rε(v). (4.7)

Since

wε(0) =
aε,αε

2

u2
ε,αε

(0)
α2
ε ,

https://doi.org/10.1017/S0956792599004015 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599004015


196 M. Bertsch et al.

recalling the definition (3.5) of αeff
ε and (3.1), we obtain that

αε

αeff
ε

∼ 1

2

√
wε(0) as ε→ 0. (4.8)

Therefore, wε(0) turns out to be the relevant quantity to consider in order to prove (4.2).

Proof of Theorem 4.1 Let wε(v) be defined by (4.7). Setting

δε =
2aε,αε

4

u3
ε,αε

(0)
and σε = εun−3

ε,αε
(0), (4.9)

wε satisfies

√
ww′′ + δε

rε(v)

v2 + σεvn−1
= 0 for 0 < v < 1 (4.10)

and

w(1) = 0, w′(1) = 2v′′ε (0), w(0) =
aε,αε

2

u2
ε,αε

(0)
α2
ε . (4.11)

In view of Theorem 3.1,

wε(v)→ 4(1− v) and rε(v)→
√

1− v in C∞loc((0, 1]) as ε→ 0 (4.12)

and

δεu
7
ε,αε

(0) −→ 34M4

23
as ε→ 0. (4.13)

Multiplying equation (4.10) by v and integrating, we obtain that

−
∫ 1

0

v
√
wεw

′′
ε dv = δε

∫ 1

0

rε(v)

v + σεvn−2
dv. (4.14)

Let us consider the left-hand side of (4.14). Since wε is concave in (0, 1), there exists a

unique vε ∈ [0, 1), vε → 0 as ε→ 0, such that

wε(vε) = max
[0,1]

wε

and we write, integrating by parts,

−
∫ 1

0

v
√
wεw

′′
ε dv = −v√wεw′ε

]1
0

+ 2
3
w

3/2
ε

]1

0
+

∫ 1

0

v(w′ε)2

2
√
wε

dv

= − 2
3
w

3/2
ε (0) +

∫ vε

0

v(w′ε)2

2
√
wε

dv +

∫ 1

vε

v(w′ε)2

2
√
wε

dv

=: − 2
3
w

3/2
ε (0) + I1 + I2.

(4.15)

We claim that

I1 −→ 0 and I2 −→ 16
3

as ε→ 0. (4.16)

To prove that I1 → 0 we may assume that vε > 0. Setting

p = − ln v, pε = − ln vε, ωε(p) = wε(e
−p),
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ωε(p) satisfies 
ω′′ + ω′ + δε

rε(e
−p)

1 + σεep(3−n)
ω−1/2 = 0 for p > pε

ω(pε) = wε(vε)→ 4 as ε→ 0

ω′(pε) = 0.

Observe that ω′ε < 0 in (pε,∞). Since ω′ε(p)→ 0 as p→ ∞, ω′ε has an absolute minimum,

say at p0ε. We claim that

ω′ε(p0ε) −→ 0 as ε→ 0, (4.17)

which implies that I1 → 0:

I1 =

∫ ∞
pε

(ω′ε)2

2
√
ωε
dp < (min

p>pε
ω′ε(p))

∫ ∞
pε

ω′ε
2
√
ωε
dp

=
(√

wε(0)−√wε(vε))ω′ε(p0ε) −→ 0 as ε→ 0.

To prove (4.17) we multiply the equation for ωε by ω′ε and integrate by parts:

1

2

(
ω′ε(p0ε)

)2
=

∫ p0ε

pε

ω′εω′′ε = −
∫ p0ε

pε

(ω′ε)2 − δε
∫ p0ε

pε

rε(e
−p)

1 + σεep(3−n)
ω′ε√
ωε
dp

< δε

(
max
p>pε

rε(e
−p)

1 + σεep(3−n)

)(√
ωε(pε)−

√
ωε(p0ε)

)→ 0 as ε→ 0.

To complete the proof of (4.2) we consider I2. Since, by the concavity of wε,

w′ε(1) 6 w′ε(v) 6 0 if vε 6 v 6 1

and

wε(v) >
wε(vε)

1− vε (1− v) if vε 6 v 6 1,

and since vε → 0 as ε → 0, it follows from Lebesgue’s dominated convergence Theorem

and (4.12) that

I2 →
∫ 1

0

16v

2
√

4(1− v) dv =
16

3
.

In view of (4.14), (4.15) and (4.16), we have that

lim
ε→0

(
δε

∫ 1

0

rε(v)

v + σεvn−2
dv +

2

3
w3/2
ε (0)

)
=

16

3
. (4.18)

Let ρ > 0 be a small, fixed number. Then there exists vρ ∈ (0, 1) and ερ > 0 such that

1− ρ 6 rε(v) 6 1 if 0 < ε < ερ and 0 6 v 6 vρ.

Setting ∫ 1

0

rε(v)

v + σεvn−2
dv = J1 + J2 :=

∫ vρ

0

rε(v)

v + σεvn−2
dv +

∫ 1

vρ

rε(v)

v + σεvn−2
dv

it follows at once that

δεJ2 −→ 0 as ε→ 0.
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On the other hand,

(1− ρ)

∫ vρ

0

1

v + σεvn−2
dv 6 J1 6

∫ vρ

0

1

v + σεvn−2
dv if 0 < ε < ερ,

and, since for all ρ > 0 fixed,∫ vρ

0

1

v + σεvn−2
dv =

1

3− n ln

(
v3−n
ρ + σε

σε

)
=

1

3− n ln
1

σε
(1 + o(1)) as ε→ 0,

we obtain from (4.18) that for all ρ > 0

lim sup
ε→0

(
δε

3− n ln
1

σε
+

2

3
w3/2
ε (0)

)
6

16

3(1− ρ)
,

and

lim inf
ε→0

(
δε

3− n ln
1

σε
+

2

3
w3/2
ε (0)

)
>

16

3
.

By the arbitrariness of ρ we conclude that

δε

3− n ln
1

σε
+

2

3
w3/2
ε (0) −→ 16

3
as ε→ 0. (4.19)

We observe that if αε = 0, then wε(0) = 0, and (4.19) becomes, in view of (4.9) and (4.13),

34M4
(
ln 1

ε
+ (3− n) ln uε,0(0)

)
23u7

ε,0(0)(3− n) −→ 16

3
as ε→ 0,

and hence we obtain (4.3):

u7
ε,0(0)

ln 1
ε

−→ 35M4

27(3− n) as ε→ 0.

If (4.1) is satisfied, then (cf. (3.4))

u7
ε,αε

(0)

ln 1
ε

−→ 35M4S7

27(3− n) as ε→ 0,

and, by (4.9) and (4.13),

lim
ε→0

δε ln
1

σε
=

34M4

23
lim
ε→0

ln 1
ε

u7
ε,αε

(0)
=

16(3− n)
3S7

. (4.20)

We obtain from (4.19) and (4.20) that

w3/2
ε (0) −→ 8

(
1− 1

S7

)
as ε→ 0, (4.21)

and (4.2) follows from (4.8) and (4.21). q

5 Conclusions

For the evolution of an expanding liquid film h over a solid surface at intermediate time

scales O(κ−1) 6 t� β− 7
3−n (β represents the slip coefficient and n depends upon the choice

of the slip condition), we have obtained a relation between the effective (macroscopic)
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contact angle θeff , the microscopic contact angle θ and the speed V of the contact line,

and a quantitative expression for the shape of h. More precisely,

(θeff)3 − θ3 ∼ 3V

κ

[
1

3− n ln
1

β
− 1

7
ln t

]
,

h(x, t) ∼ 3M

2x̃3
c(t)

[
x̃2
c(t)− x2

]
+
,

where [s]+ = max{s, 0} and

x̃7
c(t) = (7κ)32M3

(
1−

(
θ

θeff

)3
)(

1

3− n ln
1

β
− 1

7
ln t

)−1

t

The derivation of these formulae has been based on rigorous results concerning the

behaviour as ε↘ 0 of solutions u(y) of the nonlinear ODE[(
u3 + εun

)
u′′′ − yu]′ = 0

(cf. Problem (I) in the introduction). The agreement with previous results by Hocking

[25] and Cox [14] – obtained through matched asymptotic expansions – and the self-

consistency indicate that solutions of Problem (I) represent a useful tool in the description

of the dynamics of thin films.

Appendix A

Proof of Lemma 2.2 Let

f(y) := inf
u∈C u(y),

where

C =
{
u ∈ C3([0, B)) ∩ C([0, B]) : u(0) > A and u > 0, u′ 6 0, u′′′ > 0 in [0, B)

}
.

The function f is decreasing and f(0) = A, f(B) = 0. We claim that

f ∈ C([0, B]).

For y0 ∈ (0, B), for a contradiction let

f−(y0) := lim
y→y−0

f(y) > lim
y→y+

0

f(y) =: f+(y0);

then for all ε > 0 there exists uε ∈ C and ξε ∈ (y0 − ε, y0 + ε) such that

uε(y0 − ε) > f−(y0), uε(y0 + ε) 6
f+(y0) + f−(y0)

2
(A 1)

u′ε(ξε)→ −∞ as ε→ 0. (A 2)

Let now y0 < y1 < y2 < B; positivity and monotonicity of uε and (A 1) imply that

∃ ηε ∈ (y1, y2) : u′ε(ηε) > −f
+(y0) + f−(y0)

2(y2 − y1)
. (A 3)
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Therefore (A 2), (A 3) and monotonicity of u′′ε yield

u′′ε (y)→∞ uniformly in [y2, B) as ε→ 0,

in contradiction with (A 3) and u′ 6 0. Hence f+(y) = f−(y) in (0, B). By the same

argument it follows that f(y) = f+(y) in [0, B), and therefore f ∈ C([0, B)). Continuity in

B is trivial since 0 6 f(y) 6 A
B

(B − y), and the claim is proved.

It remains to show that f(y) > 0 in [0, B). If not, let y0 < B and {uε} ∈ C such that

uε(y0) → 0 as ε → 0. Let y0 < y1 < B; since uε is decreasing, there exist ξε ∈ (y0, y1) and

ηε ∈ (ξε, B) such that

u′ε(ξε)→ 0 and u′′ε (ηε)→ 0 as ε→ 0,

and a contradiction follows for ε small enough using the monotonicity of u′′ε and the

inequality

A 6 uε(0) = uε(ξε)− u′ε(ξε)ξε + 1
2
u′′ε (ζε)ξ2

ε , ζε ∈ (0, ξε).

q
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