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We consider the following equation:

−∆u = λ
u

d(x)2
− d(x)θf(u) in Ω,

where d(x) = d(x, ∂Ω), θ > −2 and Ω is a half-space. The existence and
non-existence of several kinds of positive solutions to this equation when λ � 1

4 ,
f(u) = up(p > 1) and Ω is a bounded smooth domain were studied by Bandle, Moroz
and Reichel in 2008. Here, we study exact the behaviour of positive solutions to this
equation as d(x) → 0+ and d(x) → ∞, respectively, and the symmetry of positive
solutions when λ > 1

4 , Ω is a half-space and f(u) is a more general nonlinearity term
than up. Under suitable conditions for f , we show that the equation has a unique
positive solution W , which is a function of x1 only, and W satisfies

lim
x1→0+

W (x)x(2+θ)/(p−1)
1 =

[
λ +

2 + θ

p − 1

(
1 +

2 + θ

p − 1

)]1/(p−1)

and

lim
x1→∞

W (x)x(2+θ)/(q−1)
1 =

[
λ +

2 + θ

q − 1

(
1 +

2 + θ

q − 1

)]1/(q−1)
.
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1. Introduction

We shall investigate the asymptotic behaviour and symmetry of positive solutions
to the following equation:

−∆u = λ
u

d(x)2
− d(x)θf(u) in T, (1.1)

where d(x) = d(x, ∂T ), θ > −2, T ⊂ R
N (N � 2) and

T = {x = (x1, x2, . . . , xN ) : x1 > 0}.

Elliptic equations with singular potentials have been studied extensively for many
years. When λ = 0, problem (1.1) with T replaced by a general bounded domain
Ω becomes

−∆u = −d(x)θf(u) in Ω,
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where d(x) = d(x, ∂Ω) and θ > −2. For such equations, the corresponding problems
with boundary blow-up condition have attracted a great deal of attention, and some
well-known results can be found in [14].

In [5], Bandle et al . consider

−∆u = λ
u

d(x)2
− d(x)θup in Ω, (1.2)

where θ > −2, p > 1, d(x) = d(x, ∂Ω) and Ω ⊂ R
N (N � 2) is a bounded

smooth domain. They mainly establish the existence and non-existence of several
kinds of positive solutions to (1.2) when λ � 1

4 , and pose some open questions. The
third open question is ‘what is the asymptotic behaviour near the boundary of the
solutions for arbitrary λ > 1

4?’. In order to answer the open question, in a recent
paper, Du and Wei [20] prove that (1.2) has a unique positive solution u, and that
u satisfies

lim
d(x)→0+

d(x)(2+θ)/(p−1)u(x) =
[
λ +

2 + θ

p − 1

(
1 +

2 + θ

p − 1

)]1/(p−1)

when Ω is a ball and λ > 1
4 . Du and Wei also prove that when Ω is a bounded

smooth domain there exists λ∗ > 1
4 such that for any λ > λ∗ (1.2) has a unique

positive solution, which has similar asymptotic behaviour. The constant 1
4 is a

Hardy constant on a convex domain and plays an important role in [5, 20]. Some
well-known information about the Hardy constant can be found in [8, 28, 29]. In
contrast to [20], in this paper the domain becomes a half-space and the nonlinearity
term is also more general. In other words, on a half-space and for the more general
nonlinearity term, we shall give complete answers to the third open question in [5].

For elliptic equations with another classic Hardy potential, Ĉırstea [9] considered

−∆u = λ
u

|x|2 − |x|θf(u) in Ω \ {0}, (1.3)

where θ > −2 and Ω is a bounded smooth domain (0 ∈ Ω). Ĉırstea gives a complete
classification of positive solutions of (1.3) when λ � 1

4 (N −2)2. Ĉırstea and Du [11]
give exact behaviour of positive solutions of (1.3) near the singular point when
λ = 0. For the corresponding p-Laplacian problem, Ĉırstea and Du [12] also obtain
the exact behaviour of positive solutions. In [31], Wei and Feng considered

−∆u = λ
u

|x|2 − b(x)up, x ∈ Ω \ {0},

u = 0, x ∈ ∂Ω,

⎫⎬
⎭ (1.4)

where p > 1 and b(x) is a non-negative continuous function over Ω̄. Specially, when
the parameter is supercritical, i.e. λ > 1

4 (N − 2)2 and b(x) is a positive function,
the existence of the minimal and maximal positive solutions was proved, and a
rough estimate of positive solutions near the origin was established. This estimate
shows that any positive solution of (1.4) must blow up at the origin. Let Ω0 = {x ∈
Ω : b(x) = 0} be C2 and Ω0 ⊂ Ω. If 0 �∈ Ω0 and 1

4 (N − 2)2 < λ < λ1[1/|x|2, Ω0],
(1.4) has a positive solution, and any positive solution of (1.4) must blow up at
the origin. In recent work, Wei and Du [30] prove that (1.3) with the Dirichlet
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boundary condition has a unique positive solution and obtain that any positive
solution of (1.3) has the same asymptotic behaviour near a singular point origin
when λ > 1

4 (N − 2)2 and f(u) = up.
Problem (1.2) is a singularity problem. From our research in this paper, we see

that it is related to boundary blow-up problems. Problem (1.3) is also a singularity
problem. There are many important articles with respect to boundary singularity
or isolated singularity problems, and the interested reader should refer to [3, 4, 6,
10,18,23–27] and the references therein.

When λ = 0 and θ = 0 in (1.1) with the Dirichlet boundary condition, the
corresponding problem becomes

−∆u = f(u) in T,

u = 0 on ∂T.

}
(1.5)

This problem is well known and has some important results. Under suitable con-
ditions for f , a well-known result of Angenent [2] says that any bounded positive
solution of (1.5) is a function of x1 only. There are some interesting conjectures
and results that can be found in [1, 7]. Some results for (1.5) were extended to
the p-Laplacian case in [16]. Moreover, these symmetry results remain valid if the
boundary condition u = 0 is replaced by u = α, where α is a positive constant or
∞ (see [13] for details). In this paper, we shall prove that such a symmetry result
is valid under some light conditions for f , although problem (1.1) has no boundary
condition and contains a Hardy potential.

Since T is a half-space, obviously, d(x, ∂T ) = x1. Therefore, problem (1.1) is
equivalent to

−∆u = λ
u

x2
1

− xθ
1f(u), x1 > 0. (1.6)

Throughout this paper, we assume that λ > 1
4 and that the following conditions

hold:

(f1) f ∈ C1([0,∞)) and f(s)/s is increasing in (0,∞);

(f2) lims→∞ f(s)/sp = a, where p > 1 and a > 0;

(f3) lims→0+ f(s)/sq = b, where q > 1 and b > 0.

For convenience, we define

�p =
[
λ

a
+

2 + θ

a(p − 1)

(
1+

2 + θ

p − 1

)]1/(p−1)

, �q =
[
λ

b
+

2 + θ

b(q − 1)

(
1+

2 + θ

q − 1

)]1/(q−1)

.

In order to obtain some information on positive solutions of (1.1), we first need to
establish an important result for the corresponding ordinary differential equation.
In fact, the corresponding problem is just (1.1) with N = 1. The information can
be given by the following theorem.
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Theorem 1.1. Suppose that λ > 1
4 and θ > −2. Then the ordinary differential

equation

−u′′ = λ
u

s2 − sθf(u) in (0,∞) (1.7)

has a unique positive solution w. Moreover, w satisfies

lim
s→0+

w(s)s(2+θ)/(p−1) = �p, lim
s→∞

w(s)s(2+θ)/(q−1) = �q. (1.8)

For problem (1.1), our main conclusions can be given by the following theorem.

Theorem 1.2. Suppose that λ > 1
4 and θ > −2. Then problem (1.1) has a unique

solution W (x). Moreover, W is a function of x1 only and satisfies

lim
x1→0+

W (x)x(2+θ)/(p−1)
1 = �p and lim

x1→∞
W (x)x(2+θ)/(q−1)

1 = �q. (1.9)

This paper is organized as follows. In § 2, we give some preliminaries. In § 2.1,
we recall an important comparison principle and establish the relationship between
the Hardy constant and the first eigenvalue. In § 2.2, we prove the existence of
the minimal and maximal positive solutions of (1.7), and show that any positive
solution of (1.7) blows up at the origin and converges to 0 as s → ∞. In § 3, we
mainly prove theorem 1.1. In § 4, we give the proof of theorem 1.2.

2. Preliminaries

2.1. Several lemmas

The following comparison principle will be used frequently; it can be found in [14,
15,19].

Lemma 2.1. Suppose that Ω is a bounded domain in R
N , α(x) and β(x) are contin-

uous functions in Ω with ‖α‖∞ < ∞ and β(x) is non-negative and not identically
zero. Let u1, u2 ∈ C1(Ω) be positive in Ω and satisfy in the weak sense

∆u1 + α(x)u1 − β(x)g(u1) � 0 � ∆u2 + α(x)u2 − β(x)g(u2), x ∈ Ω,

and
lim sup
x→∂Ω

(u2 − u1) � 0,

where g(u) is continuous and such that g(u)/u is strictly increasing and non-
negative for u in the range min{u1, u2} < u < max{u1, u2}. Then u2 � u1 in Ω.

In one-dimensional space, let λ1[(δ, L), 1/s2] define the first eigenvalue of

−u′′ = λ
u

s2 , s ∈ (δ, L),

u = 0, s = L or δ.

For any bounded Ω ⊂ R
N (N � 2), let λ1[Ω, α(x)] denote the first eigenvalue of

−∆u = λα(x)u, x ∈ Ω,

u = 0, x ∈ ∂Ω,
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where α(x) is a positive continuous function over Ω. Define

TR := BR(0) ∩ R
N
+ = {x ∈ BR(0) : x1 > 0} and T δ

R := {x ∈ TR : d(x, ∂TR) > δ}.

For convenience, define DR(x) := d(x, ∂TR). Obviously, we have DR(x) � x1 when
x ∈ TR.

Lemma 2.2. With respect to the Hardy constant and the first eigenvalue, it follows
that

(i) for any L > 0,

lim
δ→0+

λ1

[
(δ, L),

1
s2

]
=

1
4
; (2.1)

(ii) for any l0 > 0,

lim
L→∞

λ1

[
(l0, L),

1
s2

]
=

1
4
; (2.2)

(iii) limR→∞ limδ→0 λ1[T δ
R, 1/x2

1] = 1
4 .

Proof. By [8,28], we have

1
4

= inf
φ∈H1

0 (0,L)\{0}

( ∫ L

0
φ′(s)2 ds

)( ∫ L

0

φ(s)2

s2 ds

)−1

.

By a similar method to that in [30,31], we can obtain (i).

By (i), for any γ ∈ (0, l0),

lim
δ→0+

λ1

[
(δ, γ),

1
s2

]
=

1
4
.

Since

λ1

[
(δ, γ),

1
s2

]
= λ1

[(
l0,

l0γ

δ

)
,

1
s2

]
,

we easily obtain (2.2).

Now we prove (iii). Since TR is convex, from [28,29] it follows that, for R > 0,

inf
φ∈H1

0 (TR)\{0}

( ∫
TR

|∇φ|2 dx

)( ∫
TR

φ(x)2

DR(x)2
dx

)−1

=
1
4
.

By [20], we have

λ1

[
T δ

R,
1

DR(x)2

]
>

1
4

and lim
δ→0+

λ1

[
T δ

R,
1

DR(x)2

]
=

1
4
.

By the monotone property of the first eigenvalue, λ1[T δ
R, 1/x2

1] is decreasing when
R increases or δ decreases. Therefore,

λR := lim
δ→0+

λ1

[
T δ

R,
1
x2

1

]
and λ∗ := lim

R→∞
λR.
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are well defined. Obviously, DR(x) � x1 implies that

λ1

[
T δ

R,
1
x2

1

]
� λ1

[
T δ

R,
1

DR(x)2

]
.

So we have λR � 1
4 . Further, we have λ∗ � 1

4 . Suppose that λ∗ > 1
4 . Then, there

exist ε0 > 0, Rn, δn with Rn → ∞ and δn → 0 such that

λ1

[
T δn

Rn
,

1
x2

1

]
>

1
4

+ ε0. (2.3)

From [28,29], there exists φ ∈ C∞
0 (T ) such that( ∫

T

|∇φ|2 dx

)( ∫
T

φ2

x2
1

dx

)−1

<
1
4

+
ε0

2
.

Since φ ∈ C∞
0 (T ), for sufficiently large n, the support set of φ is a subset of T δn

Rn
.

Thus, it follows that, for sufficiently large n,

φ ∈ C∞
0 (T δn

Rn
) and

( ∫
T δn

Rn

|∇φ|2 dx

)( ∫
T δn

Rn

φ2

x2
1

dx

)−1

<
1
4

+
ε0

2
.

By virtue of the variational form of the first eigenvalue, we can derive

λ1

[
T δn

Rn
,

1
x2

1

]
<

1
4

+
ε0

2
for sufficiently large n,

which contradicts (2.3).

2.2. Minimal positive solution and maximal positive solution of (1.7)

In this subsection, we shall prove the existence of the minimal and maximal
positive solutions of (1.7). We shall also approximately describe the behaviour of
positive solutions of (1.7) near the origin and at infinity. Here and in the following
sections, we need to use some arguments of elliptic equations with boundary blow-
up conditions, which can be found in [14,17,21,22].

Proposition 2.3. For any λ > 1
4 , (1.7) has a minimal positive solution w0 and a

maximal positive solution w∞.

Proof. For positive integers n, m, consider the following two problems:

−u′′ = λ
u

s2 − sθf(u), s ∈
(

1
n

, m

)
,

u = 0, s = m or
1
n

⎫⎪⎪⎬
⎪⎪⎭ (2.4)

and

−u′′ = λ
u

s2 − sθf(u), s ∈
(

1
n

, m

)
,

u = ∞, s = m or
1
n

.

⎫⎪⎪⎬
⎪⎪⎭ (2.5)
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By referring to standard results of boundary blow-up problems, (2.5) has a unique
solution un,m. By lemma 2.1, un,m is decreasing in m, and un,m is decreasing in
n. Therefore, um(s) := limn→∞ un,m(s) is well defined in (0, m), and um(s) �
um+1(s) for s ∈ (0, m). Hence, w∞(s) := limm→∞ um(s) is well defined in (0,∞).
By regularity arguments of elliptic equations, w∞ satisfies

−w′′
∞ = λ

w∞
s2 − sθf(w∞) in (0,∞).

Suppose that v is an arbitrary positive solution of (1.7). By lemma 2.1, un,m(s) �
v(s) in (1/n, m). Letting n → ∞ and m → ∞ in turn, we see that v(s) � w∞(s) in
(0,∞). This implies that w∞ is the maximal positive solution of (1.7).

Since λ > 1
4 , by lemma 2.2, there exist n0 and m0 such that

λ > λ1

[(
1
n

, m

)
,

1
s2

]
for any n � n0 and m � m0.

By the standard arguments of logistic equations (see [14]), (2.4) has a unique posi-
tive solution wn,m when n � n0 and m � m0. By lemma 2.1, wn,m is increasing in
m and wn,m is increasing in n. Therefore, wm(s) := limn→∞ wn,m(s) is well defined
in (0, m), and wm(s) � wm+1(s) for s ∈ (0, m). Further, w0(s) := limm→∞ wm(s)
is well defined in (0,∞). By regularity arguments of elliptic equations, w0 satisfies

−w′′
0 = λ

w0

s2 − sθf(w0) in (0,∞).

Suppose that v is an arbitrary positive solution of (1.7). By lemma 2.1, wn,m(s) �
v(s) in (1/n, m). Letting n → ∞ and m → ∞ in turn, we see that v(s) � w0(s) in
(0,∞). This implies that w0 is the minimal positive solution of (1.7).

Since it is not obvious whether positive solutions of (1.7) are bounded near the
origin and at infinity, we need to determine approximate behaviours of positive
solutions near the origin and at infinity. It suffices to determine behaviours of w0
and w∞ near the origin and at infinity.

Proposition 2.4. Let w0 be the minimal positive solution of (1.7). Then w′
0(s) � 0

and w0 blows up at the origin.

Proof. As the proof of proposition 2.3, we see w0 = limm→∞ wm and, by regularity
arguments of elliptic equations, wm satisfies

−w′′
m = λ

wm

s2 − sθf(wm), 0 < s < m,

wm(m) = 0.

⎫⎬
⎭ (2.6)

If w′
m(s) � 0 for any m and all s ∈ (0, m], then since {wm} has a subsequence

converging to w0 in C2
loc(0,∞), we derive w′

0(s) � 0 for all s ∈ (0,∞). Now, for any
m, we prove that w′

m(s) � 0 for all s ∈ (0, m]. By Hopf’s lemma, w′
m(m) < 0. By

the continuity of w′
m(s) with respect to s, w′

m(s) < 0 when s < m and is close to
m. Define

t0 = inf{t : w′
m(s) � 0 for all s ∈ (t, m]}.

It suffices to show t0 = 0. Assume to the contrary that t0 ∈ (0, m).
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Case 1. Suppose that there exists t̃ ∈ (0, t0) such that w′
m(t̃) < 0. In this case, we

can always take s1 ∈ (t̃, t0) such that

w′′
m(s1) � 0, w′

m(s1) = 0 and wm(s1) < wm(t0).

From the equation in (2.6), it follows that

f(wm(s1))
wm(s1)

� λs−θ−2
1 . (2.7)

From the definition of t0, it follows that w′
m(t0) = 0 and w′′

m(t0) � 0, which implies
that

f(wm(t0))
wm(t0)

� λt−θ−2
0 . (2.8)

Since (−θ − 2) < 0 and t0 > s1, (2.7) and (2.8) imply

f(wm(t0))
wm(t0)

<
f(wm(s1))

wm(s1)
. (2.9)

Since f(u)/u is increasing in u, (2.9) is a contradiction to wm(s1) < wm(t0).

Case 2. Suppose that w′
m(s) � 0 holds for all s ∈ (0, t0). In this case, there must

be
lim

s→0+
wm(s) ∈ [0,∞).

Since θ > −2, we have

−s2w′′
m = λwm − s2+θf(wm) = (λ + o(1))wm as s → 0+.

So, by virtue of λ > 1
4 , there exists τ ∈ (0, m) such that

−s2w′′
m >

4λ + 1
8

wm when s ∈ (0, τ). (2.10)

From (2.10), for any ε ∈ (0, τ), wm satisfies

−w′′
m >

4λ + 1
8

wm

s2 , s ∈ (ε, τ),

wm(ε) > 0, wm(τ) > 0.

⎫⎬
⎭ (2.11)

By (2.11), wm is a strictly positive supersolution of

−u′′ =
4λ + 1

8
u

s2 in (ε, τ), u(ε) = u(τ) = 0.

So, we have λ1[(ε, τ), 1/s2] > 1
8 (4λ + 1) > 1

4 for all ε ∈ (0, τ), which is in contradic-
tion with λ1[(ε, τ), 1/s2] → 1

4 as ε → 0+.
We claim that w0 blows up at s = 0. Otherwise, by w′

0(s) � 0 for all s > 0,
lims→0 wm(s) ∈ (0,∞) is well defined. Similar to case 2, we can derive a contradic-
tion.
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Proposition 2.5. Let w∞ be the maximal positive solution of (1.7). Then

lim
s→∞

w∞(s) = 0.

Proof. By proposition 2.4, we have w∞(s) → ∞ as s → 0+. We suppose that
lims→∞ w∞(s) �= 0.

Case 1. Suppose that lims→∞ w∞(s) does not exist. Then, there are s2 > s1 > 0
such that

w∞(s1) < w∞(s2), w′′
∞(s1) � 0 and w′′

∞(s2) � 0.

By the equation for w∞, we can obtain

f(w∞(s1))
w∞(s1)

� λs−θ−2
1 and

f(w∞(s2))
w∞(s2)

� λs−θ−2
2 ,

which imply
f(w∞(s2))

w∞(s2)
<

f(w∞(s1))
w∞(s1)

.

Since f(u)/u is increasing in u and w∞(s2) > w∞(s1), we derive a contradiction
immediately.

Case 2. Suppose that lims→∞ w∞(s) ∈ (0,∞]. By condition (f2), there exist r0 >
0 and a0 ∈ (0, a) such that

f(w∞(s)) � a0w∞(s)p when s � r0.

So,
−w′′

∞ � λ
w∞
s2 − a0s

θwp
∞ in (r0,∞).

Let r1 > 2r0 and define

φ(s) := r
(2+θ)/(p−1)
1 w∞(r1 + 1

2r1s) when s ∈ (−1, 1).

By calculation,

−φ′′ �

⎧⎪⎪⎨
⎪⎪⎩

λφ − a0

22+θ
φp, θ � 0, s ∈ (−1, 1),

λφ −
(

3
2

)θ
a0

4
φp, θ < 0, s ∈ (−1, 1).

Let φ∞(s) denote the unique positive solution (see [14]) of

−u′′ = λu − a0

22+θ
up, s ∈ (−1, 1),

u(−1) = u(1) = ∞.

By the comparison principle, for θ � 0, we have

φ(s) � φ∞(s) for s ∈ (−1, 1).

Let s = 0. Then we see that

w∞(r1) � φ∞(0)r−(2+θ)/(p−1)
1 .
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So, when θ � 0, by the arbitrariness of r1 we have lims→∞ w∞(s) = 0, which
contradicts lims→∞ w∞(s) ∈ (0,∞]. Similarly, when θ < 0, we can also derive a
contradiction.

From cases 1 and 2, we derive lims→∞ w∞(s) = 0. Thus, the proof is complete.

Theorem 2.6. Suppose that u is an arbitrary positive solution of (1.7). Then,

lim
s→0+

u(s) = ∞ and lim
s→∞

u(s) = 0. (2.12)

Proof. For an arbitrary positive solution u of (1.7), we have

w0(s) � u(s) � w∞(s) for s ∈ (0,∞).

By propositions 2.4 and 2.5, we obtain (2.12) directly.

3. The exact behaviour of a positive solution to (1.7)

3.1. Some rough estimates and the uniqueness of positive solutions

In this subsection we shall give some estimates of positive solutions of (1.7). In fact,
we only need to give some estimates for the maximal positive solution w∞ and the
minimal positive solution w0 of (1.7).

Proposition 3.1. There exist C1 > 0, s0 and S0 > 0 such that

C1s
−(2+θ)/(p−1) � w0(s) for s ∈ (0, s0) (3.1)

and

C1s
−(2+θ)/(q−1) � w0(s) for s ∈ (S0,∞). (3.2)

Proof. By theorem 2.6 and (f2), there exist l > 0 and c > 0 such that

f(w0(s)) � cw0(s)p for s ∈ (0, l).

So,

−w′′
0 � λ

w0

s2 − csθwp
0 for s ∈ (0, l). (3.3)

Similarly to the proof of [20, proposition 3.2],

−u′′ = λ
u

s2 − csθup, s ∈ (0, l),

u(l) = 0,

has a unique positive solution ul and

ul(s) = lim
τ→0+

uτ,l(s), s ∈ (0, l),

where uτ,l is the unique positive solution of

−u′′ = λ
u

s2 − csθup, s ∈ (τ, l),

u(τ) = u(l) = 0.

⎫⎬
⎭ (3.4)
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By (3.3), w0 is a supersolution of (3.4). The comparison principle implies

uτ,l(s) � w0(s) in (τ, l).

Letting τ → 0+, we have

ul(s) � w0(s) in (0, l).

Similarly to the proof of [20, proposition 3.2], it follows that

lim
s→0+

s(2+θ)/(p−1)ul(s) =
(

λ

c
+

2 + θ

c(p − 1)

(
2 + θ

p − 1
+ 1

))1/(p−1)

.

So, there exist s0 > 0 and C1 > 0 such that (3.1) holds.
By theorem 2.6 and (f3), there exist L > 0 and c1 > 0 such that

f(w0(s)) � c1w0(s)q in (L,∞).

Then,

−w′′
0 � λ

w0

s2 − c1s
θwq

0 in (L,∞). (3.5)

By lemma 2.2(i), for a given γ0 > 0, there exists τ0 ∈ (0, 1
2γ0) such that, for any

τ ∈ (0, τ0], λ > λ1[(τ, γ0), 1/s2]. By the standard arguments of logistic equations,

−u′′ = λ
u

s2 − c1s
θuq, s ∈ (τ, γ0),

u(τ) = u(γ0) = 0,

has a unique positive solution Vγ0,τ . Define r∗ = γ0L/τ0 and, for r > r∗,

Φr(s) =
(

γ0

r

)(2+θ)/(q−1)

Vγ0,γ0L/r

(
γ0

r
s

)
for L � s � r.

Then, Φr solves

−u′′ = λ
u

s2 − c1s
θuq, s ∈ (L, r),

u(L) = u(r) = 0.

⎫⎬
⎭ (3.6)

By (3.5), w0 is a supersolution of (3.6). By the comparison principle, we have

w0(s) � Φr(s) for all s ∈ (L, r). (3.7)

Now, for arbitrary r > r∗ = max{2L, r∗} and s satisfying s = 1
2r, (3.7) implies

w0

(
r

2

)
�

(
γ0

r

)(2+θ)/(q−1)

Vγ0,γ0L/r

(
γ0

2

)
.

Since τ0 � γ0L/r and Vγ0,γ0L/r is non-decreasing in r, for the s = 1
2r above, we

derive

w0(s) � Vγ0,τ0

(
γ0

2

)(
γ0

2

)(2+θ)/(q−1)

s−(2+θ)/(q−1).
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By the arbitrariness of r, letting S0 = 1
2r∗ and

C1 = Vγ0,τ0

(
γ0

2

)(
γ0

2

)(2+θ)/(q−1)

,

we have (3.2).

Proposition 3.2. There exist C2 > 0, s0 and S0 > 0 such that

C2s
−(2+θ)/(p−1) � w∞(s) for s ∈ (0, s0) (3.8)

and

C2s
−(2+θ)/(q−1) � w∞(s) for s ∈ (S0,∞). (3.9)

Proof. By theorem 2.6, there exist c > 0, l > 0 and L > 0 such that

f(w∞(s)) � cw∞(s)p for all s ∈ (0, l)

and

f(w∞(s)) � cw∞(s)q for all s ∈ (L,∞).

So, we have

−w′′
∞ � λ

w∞
s2 − csθwp

∞ in s ∈ (0, l) (3.10)

and

−w′′
∞ � λ

w∞
s2 − csθwq

∞ in s ∈ (L,∞). (3.11)

For arbitrary t0 ∈ (0, l/2), define

D(t0) = {s ∈ (0,∞) : |s − t0| < 1
2 t0}.

Obviously, D(t0) ⊂ (0, l). Define

U(s) := t
(2+θ)/(p−1)
0 w∞(t0 + 1

2 t0s) when s ∈ (−1, 1).

Suppose that θ � 0. Then, by (3.10), we have

−U ′′ � λU − c

22+θ
Up in (−1, 1).

From [14],

−u′′ = λu − c

22+θ
up, s ∈ (−1, 1),

u(−1) = u(1) = ∞,

⎫⎬
⎭ (3.12)

has a unique positive solution U∞,p. By the comparison principle, we have

U∞,p(s) � U(s) for all s ∈ (−1, 1).

In particular, let s = 0. Then

U∞,p(0) � t
(2+θ)/(p−1)
0 w∞(t0).
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By the arbitrariness of t0, we let s0 = 1
2 l, and then derive (3.8). When −2 < θ < 0,

we can similarly obtain (3.8).
Now, we prove (3.9). Choose r > 2L and define

V (s) := r(2+θ)/(q−1)w∞(r + 1
2rs) when s ∈ (−1, 1).

Suppose θ � 0. Then, by calculating, we see

−V ′′ � λV − c

22+θ
V q in (−1, 1).

By the comparison principle and letting s = 0,

r(2+θ)/(q−1)w∞(r) � U∞,q(0),

where U∞,q is the unique positive solution of (3.12) with p replaced by q. By the
arbitrariness of r, let S0 = 2L, and then we derive (3.9). When −2 < θ < 0, we can
similarly obtain (3.9).

Theorem 3.3. Suppose that (f1)–(f3) hold. Then (1.7) has a unique positive solu-
tion w. Moreover, there are positive constants C1, C2, s0, S0 such that

C1s
−(2+θ)/(p−1) � w(s) � C2s

−(2+θ)/(p−1) when s ∈ (0, s0) (3.13)

and

C1s
−(2+θ)/(q−1) � w(s) � C2s

−(2+θ)/(q−1) when s ∈ (S0,∞). (3.14)

Proof. From propositions 3.1 and 3.2, it follows that the inequalities (3.13) and
(3.14) hold for any positive solution of (1.7). So, there exists C > 1 such that

w0(s) � w∞(s) � Cw0(s) for s ∈ (0,∞).

Condition (f1) implies that f(u) is a convex function in (0,∞). Therefore, the proof
of uniqueness is standard, and thus we omit it.

3.2. Exact behaviour near a singular point

In this subsection, we consider the exact behaviour of the unique positive solution
w of (1.7). Obviously, w = w0 = w∞ and

w(s) = lim
m→∞

lim
n→∞

wn,m(s) = lim
m→∞

lim
n→∞

un,m(s) for s ∈ (0,∞).

Theorem 3.4. Let w be the unique positive solution of (1.7). Then

lim
s→0+

s(2+θ)/(p−1)w(s) = �p. (3.15)

Proof. We shall establish suitable local super- and subsolutions of (1.7). First, we
establish a suitable local supersolution of (1.7). For any ε > 0, we choose large
M > 0 such that f(u) > (a − ε)up when u � M . Define

ξ̃ε =
(

λ

a − ε
+

2 + θ

(p − 1)(a − ε)

(
1 +

2 + θ

p − 1

))1/(p−1)
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and v̄ε = ξ̃εs
−(2+θ)/(p−1) + M . By calculation,

− v̄′′
ε − λ

v̄ε

s2 + sθf(v̄ε)

= λ
ξ̃εs

−(2+θ)/(p−1)

s2 − (a − ε)sθ(ξ̃εs
−(2+θ)/(p−1))p − λ

v̄ε

s2 + sθf(v̄ε)

� (a − ε)sθ(M + ξ̃εs
−(2+θ)/(p−1))p − (a − ε)sθ(ξ̃εs

−(2+θ)/(p−1))p − λ
M

s2

= pM(a − ε)sθ

∫ 1

0
(ξ̃εs

−(2+θ)/(p−1) + Mτ)p−1 dτ − λ
M

s2

� pM(a − ε)s−2ξ̃p−1
ε − λMs−2

> 0.

By the comparison principle, for any large n, m,

v̄ε(s) � wn,m(s) in
(

1
n

, m

)
.

Letting n → ∞ and m → ∞ in turn, we derive

v̄ε(s) � w0(s) for all s ∈ (0,∞).

By the uniqueness of positive solutions of (1.7), we see that

lim sup
s→0+

s(2+θ)/(p−1)w(s) � ξ̃ε.

By the arbitrariness of ε, we obtain

lim sup
s→0+

s(2+θ)/(p−1)w(s) � �p. (3.16)

For arbitrary ε > 0, there exists Z > 0 such that

f(u) � (a + ε)up when u > Z.

So, there exists t0 > 0 such that, for sufficiently large n, m,

f(un,m(s)) � (a + ε)un,m(s)p when s ∈
(

1
n

, t0

)
,

where un,m is given by proposition 2.3. Further, for sufficiently large n, m, we see

−u′′
n,m � λ

un,m

s2 − (a + ε)up
n,m in

(
1
n

, t0

)
.

Define

ξ
ε

=
(

λ

a + ε
+

2 + θ

(p − 1)(a + ε)

(
1 +

2 + θ

p − 1

))1/(p−1)

, β = −2 + θ

p − 1
,

and

vε(s) = ξ
ε
sβη(s), where η(s) =

(
1 − s

t0

)
.
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Then,
v′′

ε = ξ
ε
β(β − 1)sβ−2η(s) + 2ξ

ε
βsβ−1η′(s) and vε(t0) = 0.

By calculating, for s ∈ (0, t0),

− v′′
ε − λ

vε

s2 + (a + ε)sθvp
ε

= ξ
ε
sβ−2[η(s)((a + ε)ξp−1

ε
η(s)p−1 − λ − β(β − 1)) − 2βsη′(s)]

� ξ
ε
sβ−2η(s)[(a + ε)ξp−1

ε
− λ − β(β − 1)]

= 0.

So, by the comparison principle, for sufficiently large m, n,

vε(s) � un,m(s) for s ∈
(

1
n

, t0

)
.

Letting n → ∞ and m → ∞ in turn,

vε(s) � w∞(s) = w(s) for s ∈ (0, t0).

This implies
lim inf
s→0+

s(2+θ)/(p−1)w(s) � ξ
ε
.

By the arbitrariness of ε,

lim inf
s→0+

s(2+θ)/(p−1)w(s) � �p. (3.17)

Obviously, (3.16) and (3.17) imply (3.15).

3.3. Exact asymptotic behaviour of positive solutions at ∞
In this subsection, we give the exact behaviour of the unique positive solution w

when s → ∞. It is possible that the exact behaviour of the unique positive solution
at infinity cannot be derived by using the method of proving theorem 3.4, so we
need give a different method to show the behaviour at infinity. Here, the method is
inspired by the proof of [20, proposition 3.2].

Theorem 3.5. Let w be the unique positive solution of (1.7). Then

lim
s→∞

s(2+θ)/(q−1)w(s) = �q. (3.18)

Proof. For any ε > 0, define

ρ̄ε =
(

λ

b − ε
+

2 + θ

(b − ε)(q − 1)

(
1 +

2 + θ

q − 1

))1/(q−1)

,

ρ
ε

=
(

λ

b + ε
+

2 + θ

(b + ε)(q − 1)

(
1 +

2 + θ

q − 1

))1/(q−1)

.

By (f3), there exists l0 > 0 such that

−w′′ � λ
w

s2 − (b + ε)sθwq in (l0,∞) (3.19)
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and

−w′′ � λ
w

s2 − (b − ε)sθwq in (l0,∞). (3.20)

From (3.19) and (3.20), we shall prove that

lim inf
s→∞

s(2+θ)/(q−1)w(s) � ρ
ε
,

lim sup
s→∞

s(2+θ)/(q−1)w(s) � ρ̄ε.

⎫⎬
⎭ (3.21)

If (3.21) holds, by the arbitrariness of ε, (3.18) holds. Here, we only prove the
first inequality in (3.21). Since the second inequality can be proved by the similar
method, we omit the proof.

Step 1. We claim that w(s) � V (s) for all s ∈ [l0,∞), where V is the unique
positive solution of

−u′′ = λ
u

s2 − (b + ε)sθuq, s ∈ (l0,∞),

u(l0) = 0.

⎫⎬
⎭ (3.22)

By lemma 2.2(ii) and λ > 1
4 , there exists L0 > l0 so that λ > λ1[(l0, L), 1/s2] holds

for any L > L0. By the standard arguments of logistic equations,

−u′′ = λ
u

s2 − (b + ε)sθuq, s ∈ (l0, L),

u(l0) = u(L) = 0

⎫⎬
⎭ (3.23)

has a unique positive solution VL. From the standard arguments of boundary blow-
up problems, it follows that

−u′′ = λ
u

s2 − (b + ε)sθuq, s ∈ (l0, L),

u(l0) = 0, u(L) = ∞

has a unique positive solution WL. By the comparison principle,

VL(s) � WL(s) for s ∈ (l0, L),

VL is non-decreasing in L and WL is non-increasing in L. So,

V (s) := lim
L→∞

VL(s) and W (s) := lim
L→∞

WL(s) is well defined in (l0,∞).

By regularity arguments of elliptic equations, V and W solve (3.22). By the com-
parison principle and (3.19), VL(s) � w(s) in [l0, L]. Letting L → ∞, we have
w(s) � V (s) in [l0,∞).

To complete step 1, we now prove the uniqueness of positive solutions to (3.22).
By the comparison principle, it can easily be seen that V is the minimal positive
solution of (3.22) and W is the maximal positive solution of (3.22). Similar to the
proof of propositions 3.1 and 3.2, there exist S0 > L0, C1 > 0, C2 > 0 such that

C1s
−(2+θ)/(q−1) � V (s) � W (s) � C2s

−(2+θ)/(q−1) when s � S0.
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Further, by Hopf’s lemma, without loss of generality, we have

C1s
−(2+θ)/(q−1) � V (s) � W (s) � C2s

−(2+θ)/(q−1) when s � l0.

By the standard method, we can obtain the uniqueness of positive solutions to
(3.22).

Define φ(s) = ρ
ε
s−(2+θ)/(q−1). Then

−φ′′ = λ
φ

s2 − (b + ε)sθφq in (0,∞).

Similarly, from the comparison principle, it follows that φ(s) � VL(s) for s ∈ [l0, L].
Letting L → ∞, we have φ(s) � V (s) in [l0,∞). By the strong maximum principle,
φ(s) > V (s) in [l0,∞). Define

α := inf
s∈(l0,∞)

φ(s)
V (s)

.

Then, α � 1. If lims→∞ φ(s)/V (s) = 1, then as w(s) � V (s), for all s � l0, we can
obtain

lim inf
s→∞

s(2+θ)/(q−1)w(s) � ρ
ε
.

Step 2. We claim α = 1. Suppose that this is not true. Then, there must be α > 1.
By the definition of α, we have

φ(s) � αV (s) for s ∈ [l0,∞). (3.24)

We claim that

φ(s) > αV (s) for s ∈ [l0,∞). (3.25)

If the inequality does not hold, then there exists r0 > l0 such that φ(r0) = αV (r0).
Since αV is a supersolution of

−u′′ = λ
u

s2 − (b + ε)sθuq, s ∈ (r0, L),

u(r0) = φ(r0), u(L) = 0,

⎫⎬
⎭ (3.26)

by the comparison principle, αV (s) � φL(s) in (r0, L), where φL is the unique
positive solution of (3.26). Similarly to the proof of uniqueness, we can derive φ(s) =
limL→∞ φL(s) in [r0,∞). So, we have αV (s) � φ(s) in [r0,∞). By the strong
maximum principle,

αV (s) > φ(s) in (r0,∞),

which is a contradiction to (3.24).
By (3.25) and the definition of α, we have lim infs→∞ φ(s)/V (s) = α. We claim

lim
s→∞

φ(s)
V (s)

= α. (3.27)

Otherwise, there exists r0 > l0 such that r0 is a minimal point of φ(s)/V (s) and
φ(r0)/V (r0) > α > 1. Hence, we see that

φ′(r0) − φ(r0)
V (r0)

V ′(r0) = 0. (3.28)
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Since φ(r0)V (s)/V (r0) is a supersolution of (3.26), by the comparison principle,

φ(r0)
V (r0)

V (s) � φL(s) for s ∈ (r0, L).

Letting L → ∞, we see that

φ(r0)
V (r0)

V (s) � φ(s) for s ∈ (r0,∞).

By the strong maximum principle,

φ(r0)
V (r0)

V (s) > φ(s) for s ∈ (r0,∞).

By Hopf’s lemma and (3.28), we obtain a contradiction.
Define γ = 1

2 (1 + α) and c ∈ (0, 1) to be determined later. Let

w̄ = γV − φ − γV

c
,

i.e.
c

c + 1
w̄ +

1
c + 1

φ = γV.

By the property of convex functions and setting γ > 1, we have

−w̄′′ � λ
w̄

s2 − (b + ε)sθw̄q in (r0,∞). (3.29)

Since lims→∞ φ(s)/V (s) = α for sufficiently small µ > 0, there exists L1 > r0
such that φ(s) < (α + µ)V (s) for all s � L1. Now, we restrict c to satisfy c ∈
((α + 2µ − 1)/(α + 1), 1). Then we see that 1

2 (c + 1)(α + 1) > α + µ. So, we derive

w̄ = γV − φ − γV

c
> 0 when s � L1. (3.30)

By (3.29) and (3.30), w̄ is a supersolution of

−u′′ = λ
u

s2 − (b + ε)sθuq, s ∈ (L1,∞),

u(L1) = 0.

⎫⎬
⎭ (3.31)

Define

V (s; L1) :=
(

l0
L1

)(2+θ)/(q−1)

V

(
l0
L1

s

)
.

Then by calculation, V (s; L1) solves (3.31). For sufficiently large L > max{L1, L0},
let ṼL(s; L1) denote the unique positive solution of

−u′′ = λ
u

s2 − (b + ε)sθuq, s ∈ (L1, L),

u(L1) = u(L) = 0.

By the comparison principle, ṼL(s; L1) � w̄(s) for s ∈ (L1, L), and Ṽ (s; L1) :=
limL→∞ ṼL(s; L1) is well defined in [L1,∞). By the regularity arguments, Ṽ (s; L1)
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solves (3.31). Similarly, we can show that (3.31) has a unique positive solution.
Hence, there must exist Ṽ (s; L1) = V (s; L1). Further, we see that

V (s; L1) � w̄(s) for s ∈ (L1,∞).

Therefore, by the definition of w̄,

γ
V (s)

V (s; L1)
− 1

c

[
φ(s)

V (s; L1)
− γ

V (s)
V (s; L1)

]
� 1 when s > L1. (3.32)

Obviously,

φ(s; L1) :=
(

l0
L1

)(2+θ)/(q−1)

φ

(
l0
L1

s

)
≡ φ(s).

From (3.27), it follows that

lim
s→∞

φ(s)
V (s; L1)

= α, lim
s→∞

V (s)
V (s; L1)

= lim
s→∞

V (s)
φ(s)

φ(s; L1)
V (s; L1)

= 1.

Letting s → ∞ in (3.32), we see that γ − (α − γ)/c � 1, which is equivalent to
c � 1. But this is a contradiction to c ∈ ((α + 2µ − 1)/(α + 1), 1).

Step 3. We claim that

lim
s→∞

φ(s)
V (s)

= 1.

Since α = 1 and φ(s) > V (s) for s > l0, we deduce that lim infs→∞ φ(s)/V (s) = 1.
It suffices to show that lim sups→∞ φ(s)/V (s) � 1. Assume on the contrary that

lim sup
s→∞

φ(s)
V (s)

> 1.

Then there exists δ0 > l0 such that δ0 is a minimal point of φ(s)/V (s) and
φ(δ0)/V (δ0) > 1. Hence, we have

φ′(δ0) − φ(δ0)
V (δ0)

V ′(δ0) = 0.

Similarly to the proof in step 2, we obtain a contradiction.

4. Proof of theorem 1.2

In a half-space, (1.1) is equivalent to (1.6). Consider the following problem:

−∆u = λ
u

x2
1

− xθ
1f(u), x ∈ T δ

R,

u = 0, x ∈ ∂T δ
R,

⎫⎬
⎭ (4.1)

and
−∆u = λ

u

x2
1

− xθ
1f(u), x ∈ T δ

R,

u = ∞, x ∈ ∂T δ
R.

⎫⎬
⎭ (4.2)
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For fixed λ > 1
4 , by lemma 2.2, there exist R0 > 0 and δ0 such that λ1[T δ0

R0
, 1/x2

1] <
λ. By the monotone property of the first eigenvalue with respect to domains, for
arbitrary δ ∈ (0, δ0] and R � R0, λ1[T δ

R, 1/x2
1] < λ. By the standard arguments

of logistic equations and boundary blow-up problems, both (4.1) and (4.2) have
unique positive solutions, and we denote these by vR,δ and VR,δ, respectively. By
the comparison principle, we have that

vR,δ(x) � VR,δ(x) for all x ∈ T δ
R.

From the comparison principle, we also see that vR,δ is non-decreasing when R
increases or δ decreases, and VR,δ is non-increasing when R increases or δ decreases.
So,

v∗(x) := lim
R→∞

lim
δ→0

vR,δ(x) and V∗(x) := lim
R→∞

lim
δ→0

VR,δ(x)

are well-defined in T . As in the proof of proposition 2.3, it is easily proved that
v∗ is the minimal positive solution of (1.6) and V∗ is the maximal positive solution
of (1.6).

To complete the proof of theorem 1.2, it suffices to show that v∗ = V∗ is a function
of x1 only, and satisfies (1.9). Since v∗ and V∗ are the minimal positive solution
and the maximal positive solution of (1.6), respectively, the invariance-of-rotation
transformation for the Laplacian operator implies that both v∗ and V∗ are functions
of x1 only. For convenience, we also define v∗(x1) = v∗(x) and V∗(x1) = V∗(x). Then,
both v∗(x1) and V∗(x1) solve (1.7). The uniqueness in theorem 1.1 implies v∗ = V∗.
Defining W (x) := v∗(x) = V∗(x), (1.8) in theorem 1.1 implies that W satisfies (1.9).

Acknowledgements

This work was carried out while the author was visiting the University of New
England, Australia. Specially, he thanks Professor Yihong Du for valuable advice,
and the referee for a very careful reading of the manuscript and some suggestions.
The author is partly supported by the NSF of China (Grant no. 11271167), and the
Natural Science Fund for Distinguished Young Scholars of Jiangsu Province (Grant
no. BK20130002).

References

1 G. Alberti, L. Ambrosio and X. Cabré. On a long-standing conjecture of E. DeGiorgi:
symmetry in 3D for general nonlinearities and a local minimality property. Acta Appl.
Math. 65 (2001), 9–33.

2 S. B. Angenent. Uniqueness of the solutions of a semilinear boundary value problem. Math.
Annalen 272 (1985), 129–138.

3 C. Bandle and M. Marcus. Asymptotic behaviour of solutions and their derivatives, for semi-
linear elliptic problems with blowup on the boundary. Annales Inst. H. Poincaré Analyse
Non Linéaire 12 (1995), 155–171.

4 C. Bandle and M. Marcus. Dependence of blowup rate of large solutions of semilinear elliptic
equations, on the curvature of the boundary. Complex Variables 49 (2004), 555–570.

5 C. Bandle, V. Moroz and W. Reichel. ‘Boundary blowup’ type sub-solutions to semilinear
elliptic equations with Hardy potential. J. Lond. Math. Soc. 77 (2008), 503–523.

6 C. Bandle, V. Moroz and W. Reichel. Large solutions to semilinear elliptic equations
with Hardy potential and exponential nonlinearity. In Around the research of Vladimir
Maz ′ya II, International Mathematical Series, vol. 12, pp. 1–22 (Springer, 2012).

https://doi.org/10.1017/S0308210515000876 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210515000876


Asymptotic behaviour and symmetry of positive solutions 1263

7 H. Berestycki, L. Caffarelli and L. Nirenberg. Further qualitative properties for elliptic
equations in unbounded domains. Annali Scuola Norm. Sup. Pisa IV 25 (1997), 69–94.
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22 J. Garćıa-Melián, R. Letelier Albornoz and J. Sabina de Lis. Uniqueness and asymptotic

behaviour for solutions of semilinear problems with boundary blow-up. Proc. Am. Math.
Soc. 129 (2001), 3593–3602.
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