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The compressibility effects on energy exchange mechanisms in a three-dimensional,
spatially developing plane free shear layer are investigated via data produced by direct
numerical simulation. The compressible shear layer is simulated using a high-order
discontinuous spectral element method for convective Mach numbers Mc = 0.3, 0.5
and 0.7. The energy exchange mechanisms in the flow are examined by analysing the
budget terms of mean kinetic, internal and turbulent kinetic energy transport equations,
in both transition and turbulent regions. The results show that turbulent production,
turbulent viscous dissipation, mean viscous dissipation, pressure dilatation and enthalpic
production are the main mechanisms responsible for energy exchange among different
forms of energy. The effects of compressibility on energy transfer mechanisms are studied
based on the analyses of those five budget terms. The primary budget terms evolve
differently in the transition and turbulent regions and change significantly for varying
compressibility. In the transition region, a double-peak variation becomes a single peak in
the streamwise profile of the turbulent production as Mc increases from 0.3 to 0.7, due to
significant changes in the vortex pairing structures. The shear layer centre slightly shifts
to the high-speed side due to the appearance of the velocity deficit. The velocity deficit
presence distance (VDPD) becomes longer as compressibility increases. However, in the
turbulent region, the cross-stream profiles of the main budget terms significantly shift to
the low-speed side because of the asymmetric mass entrainment and shift even further as
Mc increases.

Key words: compressible turbulence, free shear layers, flow–structure interactions

1. Introduction

Understanding the compressibility effects on energy exchange in turbulent plane shear
layers can provide useful insights into the physical processes such as those involved in
supersonic combustion and propulsion (Elliott & Samimy 1990; Lele 1994; Pope 2000).
Turbulent energy exchange is achieved through two main mechanisms: energy exchange
among turbulent kinetic energy (TKE), mean kinetic energy (MKE) and mean internal
energy (MIE); and energy redistribution in space. These two mechanisms are often studied
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through the turbulent energy budgets. The compressibility effects on turbulent energy
budgets are often examined in terms of the convective Mach number, Mc = ΔU/(c1 + c2)

(Bogdanoff 1983). Here, ΔU = U1 − U2, where U1 and U2 are the velocities of the high-
and low-speed streams, respectively. Also, c1 and c2 are the speeds of sound on the high-
and low-speed sides of the free shear layer (FSL), respectively.

The early studies on compressible flows were performed using linearized governing
equations, or two-dimensional (2-D) direct numerical simulation (DNS), due to their low
computational resource requirements (Kovasznay 1953; Chu & Kovasznay 1958; Passot &
Pouquet 1987; Erlebacher et al. 1990). Kovasznay (1953) and Chu & Kovasznay (1958)
conducted theoretical studies applying the linearized governing equations to identify the
vorticity, acoustic and entropy modes in a compressible flow. Later, Passot & Pouquet
(1987) carried out a 2-D DNS study for compressible turbulence. They found that the
change in the turbulent viscous dissipation is related to the change of Mach number,
and the energy exchange between the compressive components and internal energy is
oscillating over time. Passot & Pouquet (1987) also suggested that shocks could produce
shear turbulence in supersonic flows.

Due to the drawbacks of the 2-D turbulent simulation, such as unphysical turbulence,
researchers tended to favour three-dimensional (3-D) compressible turbulent flows. Early
3-D DNS studies were performed for isotropic compressible turbulent flows (Kida
& Orszag 1990, 1992). The authors decomposed the dissipation into solenoidal and
dilatational dissipation components, and the pressure fluctuations into compressible
and incompressible parts. Zeman (1990) suggested that the dilatational dissipation is
a function of both the TKE and the turbulence Mach number. Sarkar et al. (1991b)
and Sarkar & Lakshmanan (1991) concluded that the compressible dissipation and
pressure dilatation need to be modelled in a compressible turbulent flow. Later, 3-D
homogeneous compressible shear flows were utilized to investigate the compressibility
effects on the flow properties (Chen, Cantwell & Mansour 1989; Sandham & Reynolds
1990; Sarkar, Erlebacher & Hussaini 1991a; Blaisdell, Mansour & Reynolds 1993; Sarkar
1995; Blaisdell, Coleman & Mansour 1996; Simone, Coleman & Cambon 1997; Hamba
1999). The authors discovered several compressibility effects on turbulent flows, such as
the stabilization of the turbulent shear flow, the reduction in the growth rate of the shear
layer, and the decrease in turbulent production and TKE. They also found that the ratio
of the dilatational dissipation to solenoidal dissipation increases as the convective Mach
number increases. Sarkar & Lakshmanan (1991) reported that the dilatation of the velocity
field produces the pressure dilatation and the compressible dissipation, which facilitate
the transfer of energy between kinetic and internal forms. Huang, Coleman & Bradshaw
(1995) conducted DNS of temporally evolving compressible channel flows to investigate
the effects of compressibility on turbulence energy budgets. The authors observed that
the turbulent density and pressure fluctuation yield insignificant compressibility effects.
The study by Day, Mansour & Reynolds (2001), on the compressible shear layer with
heat release in a reacting flow, examined the effect of heat release and compressibility on
the structure of the flow. Livescu, Jaberi & Madnia (2002) studied the effect of the heat
release on the turbulent energy exchange in reacting, temporally evolving, homogeneous
shear flow using DNS. They showed that the pressure dilatation transfers energy from the
internal energy to the kinetic energy. The authors also found that the temporal growth rate
of TKE is primarily influenced by the heat release through variations of pressure dilatation
and dilatational-dissipation terms.

Foysi & Sarkar (2010) studied the effect of the compressibility on the evolution
of the temporal mixing layer using large eddy simulation (LES). They reported that
the impact of the compressibility on the pressure–strain correlation is significant.
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Atoufi, Fathali & Lessani (2015) carried out LES of a temporally developing compressible
mixing layer. The authors suggested that the pressure-dilatation term is responsible for
transferring MIE into MKE, while the mean pressure-dilatation term transfers TKE
into MIE. They also reported that the magnitude of the dynamic Smagorinsky model
coefficient, the subgrid-scale dissipation of TKE, and the subgrid-scale pressure dilatation
decrease with increasing convective Mach number.

According to the literature, in a spatially developing turbulent plane FSL with naturally
developing inflow condition, the role played by compressibility on energy exchange is
not fully understood. There are no available DNS data or studies for energy exchange
among different forms of energy in such a flow for different convective Mach numbers.
In this context, we investigate the energy exchange among TKE, MKE and MIE, and the
compressibility effects on such energy transfer mechanisms using DNS with a high-order
discontinuous spectral element method (DSEM) (Kopriva & Kolias 1996; Kopriva 1998;
Jacobs, Kopriva & Mashayek 2005). This method has been used for DNS and LES of
compressible flows (Li et al. 2016; Ghiasi et al. 2016, 2019; Li et al. 2019; Komperda
et al. 2020b) as well as turbulent reacting flows (Komperda et al. 2020a). The two
primary objectives of this work are: (i) to identify the energy exchange mechanisms
responsible for energy exchange among TKE, MKE and MIE; (ii) to investigate the effects
of compressibility on the energy exchange mechanisms. The remainder of this paper is
organized as follows. First, the governing equations and the numerical methodology are
briefly described. Then, we present and discuss the problem set-up and results of the
simulations. Finally, we present a summary of significant findings.

2. Simulation details

2.1. Governing equations
The governing equations are the full Navier–Stokes equations and solved in conservative
form. In non-dimensional form with Cartesian vector notation, they are expressed as
(Jacobs, Kopriva & Mashayek 2004; Jacobs et al. 2005)

∂Q
∂t

+ ∂F a
i

∂xi
= 1

Ref

∂F v
i

∂xi
, (2.1)

where

Q =

⎛
⎜⎜⎜⎝

ρ
ρu1
ρu2
ρu3
ρe

⎞
⎟⎟⎟⎠ , F a

i =

⎛
⎜⎜⎜⎝

ρui
pδi1 + ρu1ui
pδi2 + ρu2ui
pδi3 + ρu3ui
ui(ρe + p)

⎞
⎟⎟⎟⎠ , F v

i =

⎛
⎜⎜⎜⎝

0
σi1
σi2
σi3

−qi + ukσik

⎞
⎟⎟⎟⎠ . (2.2a–c)

Here, Q, F a
i and F v

i are the solution, advective flux and viscous flux vectors, respectively.
The total energy, heat flux vector, and viscous stress tensor are defined as

ρe = p
γ − 1

+ 1
2
ρukuk, (2.3)

qi = − 1
(γ − 1) Prf M2

f

∂T
∂xi

, (2.4)

σik = ∂ui

∂xk
+ ∂uk

∂xi
− 2

3
∂uj

∂xj
δik, (2.5)
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respectively. Here, p, γ , ρ, u, δij and T are the pressure, specific heats ratio,
density, velocity, Kronecker delta and temperature, respectively. The reference Reynolds
number, reference Prandtl number and reference Mach number, are generated from
non-dimensionalizing the Navier–Stokes equations, and are, respectively, defined as

Ref = ρ∗
f U∗

f L∗
f

μ∗ , Prf = μ∗c∗
p

κ∗ , Mf = U∗
f√

γ R∗T∗
f

, (2.6a–c)

where U, L, μ, cp, κ and R are the velocity, length, dynamic viscosity, specific heat at
constant pressure, thermal conductivity and gas constant, respectively. The superscript ∗
denotes dimensional quantities, and the subscript f indicates reference values. In this work,
the dynamic viscosity, specific heat and thermal conductivity of the fluid are assumed to
be independent of temperature because the temperature variations encountered in all cases
are not significant (<6 %). The equation of state closes the aforementioned equations and
is defined as

p = ρT
γ M2

f
. (2.7)

2.2. Numerical method
In this study, we use the DSEM code as the compressible flow solver (Jacobs et al. 2004,
2005). The computational domain is partitioned into hexahedral elements. Each element
is mapped onto a unit cube over the interval [0, 1] in each direction applying isoparametric
mapping. After the mapping, (2.1) reads

∂Q̃
∂t

+ ∂F̃a
i

∂Xi
= 1

Ref

∂F̃v
i

∂Xi
, (2.8)

where

Q̃ = JQ, F̃a
i = ∂Xi

∂xj
F a

j , F̃v
i = ∂Xi

∂xj
F v

j . (2.9a–c)

Here, the solution vector, Q and flux vectors, F , are in the physical space, while Q̃
and F̃ are in the mapped space, and J is the determinant of the Jacobian matrix of the
isoparametric transformation (Jacobs 2003). The term, ∂Xi/∂xj, is the metrics matrix,
where xj and Xi denote the coordinates of the physical and mapped spaces, respectively.

In each element of the mapped space, high-order Lagrange basis functions approximate
the solution values, Q̃, and the fluxes, F̃i, (in (2.8)) on the Gauss quadrature points and
Lobatto quadrature points, defined as

Xj+1/2 = 1
2

{
1 − cos

[
(2j + 1)π

2N

]}
, j = 0, . . . , N − 1 (2.10)

and

Xj = 1
2

{
1 − cos

[
πj
N

]}
, j = 0, . . . , N, (2.11)

respectively, within the interval [0, 1]. Here, N − 1 indicates the polynomial order of the
spectral element. The solution on the Gauss quadrature points is approximated as

Q̃ (X, Y, Z) =
N−1∑
i=0

N−1∑
j=0

N−1∑
k=0

Q̃i+1/2,j+1/2,k+1/2hi+1/2 (X) hj+1/2 (Y) hk+1/2 (Z) . (2.12)
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Non-reflecting boundary

Buffer zone

Splitter

Inflow

Turbulence

Outflow

Non-reflecting boundary

Ly
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U1 y

x

U2

U1 > U2

FIGURE 1. Schematic of the computational domain.

Here, X, Y and Z denote the mapped space coordinates, while hj+1/2 indicates the Lagrange
interpolating polynomial on the Gauss points. After computing the viscous and inviscid
fluxes, a fourth-order low-storage Runge–Kutta scheme is utilized for time integration
(Carpenter & Kennedy 1994).

2.3. Simulation conditions
The computational domain is bounded with inflow and outflow boundaries in the
streamwise (x) direction (Jacobs, Kopriva & Mashayek 2003), non-reflecting boundaries
in the cross-stream (y) direction (Thompson 1987, 1990; Poinsot & Lele 1992; Jacobs
et al. 2003) and periodic boundaries in the spanwise (z) direction. To damp any
high-wavenumber oscillations produced at the outlet boundary, a buffer zone near the
boundary is adopted, and a damping-sponge is achieved by grid stretching. A schematic of
such a domain is shown in figure 1. For the detailed description of the boundary conditions,
we refer to our previous work (Li et al. 2019) – hereinafter referred to as ‘part I’.

The necessary parameters are chosen to analyse the compressibility effects on the
turbulent FSL. For all simulations, the free stream speeds at the high- and low-speed sides
are specified to satisfy the ratio, R = 0.54, which is defined as

R = U1 − U2

U1 + U2
. (2.13)

The following computations employ both Reynolds and Favre averaging. Angled brackets,
〈〉, denote Reynolds average, while curly brackets, {}, indicate density-weighted (Favre)
average. For any variable f , the Reynolds decomposition is defined as (Favre 1969)

f = 〈f 〉 + f ′, (2.14)

where f ′ is the turbulent fluctuation with respect to Reynolds average denoted by the
superscript ′. The Reynolds average, 〈f 〉, can be found from an average in time or an
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Mc R ΔU M1 M2 Ma Mt Mg xR xE

0.3 0.54 2.1 0.8556 0.2556 0.581 0.12 0.67 30 340
0.5 0.54 3.5 1.4259 0.4259 0.990 0.19 1.11 170 550
0.7 0.54 4.9 1.9963 0.5963 1.423 0.26 1.54 230 670

TABLE 1. Simulation parameters and approximated flow properties. Here M1 = U1/c1 and
M2 = U2/c2 are the inflow Mach numbers; Ma = {u}/c0, Mt = √

k/c0 and Mg = Sl/c0 are the
local Mach number, turbulent Mach number and gradient Mach number, respectively, evaluated
at the centreline of the FSL in turbulent region; k is the TKE; S is the mean shear rate in the
cross-stream direction; l is the integral length scale of the streamwise velocity in the shear
direction; c0 = (c1 + c2)/2 is the mean speed of sound; xR is the location where the roll-up
of vortex sheet originates, while xE indicates the location where the transition completes (see
part I for more detail).

ensemble average in space. Similarly, the Favre decomposition is defined as (Favre 1969)

f = {f } + f ′′, (2.15)

where f ′′ is the turbulent fluctuation from Favre average indicated by the superscript ′′. The
Favre average, {f } can be computed by

{f } = 〈ρf 〉/〈ρ〉. (2.16)

The role of compressibility in the FSL flow can be expressed in terms of the convective
Mach number, Mc, for the flow with the same specific heat ratios (Bogdanoff 1983).
Three simulations are carried out for three different convective Mach numbers and inflow
Mach numbers, which are presented in table 1. The inflow Mach numbers of the high-
and low-speed sides of the shear layer are denoted by M1 = U1/c1 and M2 = U2/c2,
respectively. Besides the convective Mach number, we also estimate the roles of the
local Mach number, Ma, gradient Mach number, Mg, and turbulent Mach number, Mt
(Sarkar 1995; Pantano & Sarkar 2002) in the conducted cases. The local Mach number,
Ma = {u}/c0, is based on the mean streamwise velocity, {u}; the gradient Mach number,
Mg = Sl/c0, is determined by mean velocity gradient, S = d{u}/dy, and the integral length
scale in the shear direction, l; the turbulent Mach number, Mt = √

k/c0, is based on the
TKE, k (Sarkar 1995). The mean speed of sound is c0 = (c1 + c2)/2.

The Ma and Mg are similar to Mc in the sense that they are determined by the mean
velocity field. The Ma is the ratio of mean velocity ({u}) to the speed of sound (c0). The
Mg can be viewed as a ratio of the mean velocity difference (Sl) across a large eddy to
the speed of sound (Sarkar 1995). The Mc is determined by the ratio of the mean velocity
difference between two free streams (ΔU) in an FSL to the speed of sound. However, Mg
and Mt have key differences with respect to Mc. The Mg and Mt are field quantities, which
vary across an inhomogeneous FSL. Moreover, the Mt is based on the velocity fluctuation
field, unlike Mc.

The maximum values of Mg and Mt are located along the centreline of the shear layer
since the centreline has the largest mean velocity gradient S and TKE k in the cross-stream
direction. In contrast, the maximum value of the local Mach number Ma appears in the
high-speed free stream, which equals M1. The value of Ma then gradually decreases across
the shear layer until reaching a minimum value of M2 in the low-speed side. Figure 2
presents a comparison of the values of Ma, Mg and Mt at x − xE = 300 at the centreline of
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Mt Mg

Ma Mc = 0.3
1.6

1.2

0.8

0.4

0

Mc = 0.5

Mc = 0.7

FIGURE 2. Comparison of Ma, Mg and Mt at x − xE = 300 at the centre of the shear layer for
Mc = 0.3, 0.5 and 0.7.

the shear layer for Mc = 0.3, 0.5 and 0.7. The corresponding values are also tabulated in
table 1. The xE is defined in the caption of table 1. Figure 2 shows that for each case, the
values of Ma and Mg are nearly two times of the corresponding Mc, while the value of Mt is
approximately 40 % of the corresponding Mc. It is important to note that the values of Ma,
Mg and Mt are proportional to the corresponding Mc at the centreline of the shear layer in
the turbulent region (also see table 1). Hence, based on these considerations, the difference
of using Mc, Ma, Mg and Mt to interpret the role of compressibility at the centreline of the
shear layer is expected to be small. However, for the area near the edges of the shear layer
(the high- and low-speed edges), there is a significant differentiation between using Mc
and other Mach numbers (e.g. the values of Mg and Mt are close to zero). In conclusion,
Mc may better suit a spatially developing FSL than other Mach numbers for representing
the role of compressibility.

The momentum thickness Reynolds number, Reθ , based on ΔU and δθ1, is chosen as
140, since it is large enough for transition to turbulence and small enough for resolving the
flow. Here, δθ1 is the initial momentum thickness of the upper boundary layer (high-speed
side), and is evaluated just upstream of the trailing edge. The momentum thickness of a
spatially developing compressible plane FSL is defined as (Jiménez 2004)

δθ = 1
ρo

∫ +∞

−∞
〈ρ〉 {u} − U2

ΔU

(
1 − {u} − U2

ΔU

)
dy, (2.17)

where ρo denotes the initial inflow density. The microscale Reynolds number is defined as
(Tennekes & Lumley 1972)

Reλ = 2k

√
5
νε

, (2.18)

where ν and ε are kinematic viscosity and turbulent viscous dissipation, respectively. The
values of Reλ are presented in table 2, evaluated at the centreline of the shear layer in the
self-similar turbulent region. Other parameters are the ratio of specific heats γ = 1.4 and
the reference Prandtl number Prf = 0.7.
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Mc
dδθ

dx
Reλ

Lη

Δxave

Lη

Δxmin

Lη

Δxmax

Lη

Δyave

Lη

Δymin

Lη

Δymax

Lη

Δzave

Lη

Δzmin

Lη

Δzmax

0.3 0.0137 184 0.458 4.665 0.298 0.398 3.854 0.258 0.489 4.835 0.316
0.5 0.0121 216 0.487 4.958 0.317 0.423 4.096 0.275 0.519 5.138 0.336
0.7 0.0106 208 0.484 4.929 0.315 0.421 4.072 0.273 0.516 5.108 0.334

TABLE 2. Values of parameters for the cases with Mc = 0.3, 0.5 and 0.7 evaluated at the
centreline of the shear layer in the self-similar turbulent region. Here dδθ/dx is the momentum
thickness growth rate.

2.4. Computational domain and grid
All dimensions of the computational domain are normalized by the initial shear layer
momentum thickness, δθ1. The size of the domain for each case is set to Lx × Ly × Lz =
1982 × 1600 × 140. The subscripts x , y and z denote the streamwise, cross-stream and
spanwise directions, respectively. The region of interest for all cases is 0 � x � 1300,
which is used for studying the properties of the compressible FSL. The rest of the domain
is employed as a large buffer zone to prevent solution contamination from the outlet
boundary (see figure 1). A detailed description of the computational domain is reported
in part I. A non-uniform grid distribution is utilized to fulfil a finer grid in the FSL. For
x � 1300, the grid in the x-direction attains an average spacing Δxave = 0.580 with a
minimum spacing Δxmin = 0.057 and a maximum spacing Δxmax = 0.892 due to the
non-uniform nature of the Chebyshev grid used in this study. The average vertical grid
size is Δyave = 0.668 in the shear layer area while the minimum and maximum vertical
grid sizes reach Δymin = 0.069 and Δymax = 1.029. The 2-D element grid on the x–y
plane is uniformly extruded in the spanwise direction to construct a 3-D grid. The average
spanwise grid size is Δzave = 0.544, and the minimum and maximum are Δzmin = 0.055
and Δzmax = 0.841, respectively. The evaluated ratios of the Kolmogorov scales to grid
sizes for all three cases are listed in table 2, where the Kolmogorov scale, Lη, is defined as
(Landahl & Mollo-Christensen 1992)

Lη = (ν3/ε)0.25. (2.19)

The average grid size is slightly smaller than that used by Pantano & Sarkar (2002) in
their DNS study of a periodic shear flow. In this work, the grid consists of 1 368 260
elements. A polynomial order of five is used resulting in a total of 295 544 160 solution
points. The numbers of solution points in the x-, y- and z-directions are 2580, 444 and
258, respectively. As shown in part I, the resolution of the current grid is high enough to
calculate all relevant turbulent scales and energy budget terms accurately.

2.5. Initial conditions
In this work, we use the inlet boundary layer thicknesses reported by Monkewitz & Heurre
(1982). The inflow conditions are carefully set to be nearly identical for all three cases.
The two laminar boundary layers, specified to a 99 % thickness ratio, λ = δ2/δ1 = 1.6 at
the inflow section of the computational domain, evolve along both sides of the splitter
plate (Monkewitz & Heurre 1982; McMullan, Gao & Coats 2009). The subscripts 1 and
2 indicate the high- and low-speed sides, respectively. The two fully developed Blasius
boundary layers traverse the trailing edge of the splitter plate and merge into an FSL

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

93
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.932


Compressibility effects on energy exchange mechanisms 910 A9-9

downstream (Li et al. 2019). The configuration of the splitter plate is illustrated in figure 1
(for the detailed description of the FSL initial conditions, readers are referred to Li et al.
(2019)).

Note that Laizet & Lamballais (2006) observed unrealistic flow dynamics when they
employed two laminar streams to initialize a mixing layer without any inflow perturbations.
The authors later concluded that the unrealistic results are due to the lack of 3-D
instabilities downstream of the trailing edge (Laizet, Lardeau & Lamballais 2010). Based
on the insights from the previous studies (Laizet & Lamballais 2006; Laizet et al. 2010),
we conducted extensive tests to obtain the optimal level of instabilities. Consequently, a
small perturbation is superimposed on the upper boundary layer (Li et al. 2019). This
perturbation allows a realistic initial development of disturbances, ensuring a naturally
developing destabilization in the boundary layer at the trailing edge of the splitter (Laizet
et al. 2010). A stochastic model proposed by Gao & Mashayek (2004) is utilized to
generate perturbations. The stream in the low-speed side is laminar and lacks perturbations
(Sandham & Sandberg 2009). Note that no forcing mechanism is applied in either inflow
boundary layers (Sandham & Sandberg 2009; Laizet et al. 2010; Sharma, Bhaskaran &
Lele 2011; Pirozzoli et al. 2015).

The Reynolds numbers of the two inlet boundary layers are Reθ1 = 200 (based on U1
and δθ1) and Reθ2 = 60 (based on U2 and δθ2), respectively (Li et al. 2019). Here, δθ2
is the initial momentum thickness of the lower boundary layer (low-speed side), and is
evaluated just upstream of the trailing edge. With the artificially generated perturbation
(Laizet et al. 2010), both these Reynolds numbers are not sufficiently large for a laminar
boundary layer to develop any turbulence. The dimensionless temperature and density are
uniformly initialized to (ΔU/2Mc)

2 and 1.0, respectively. The length of the splitter plate
is sufficiently long (Ls = 182), so that the fully developed Blasius profiles at the end of the
splitter plate are nearly identical to the boundary layer inlet conditions used by Monkewitz
& Heurre (1982). Note that when the flow reaches self-similarity, the trace of the initial
conditions has been completely purged (Bradshaw 1966).

To obtain the necessary statistics, all cases undergo the following processes. Each
simulation is initially run for 64 000 time steps to purge the transient flow and reach
a quasi-stationary state. Another 64 000 time steps are used to compute the first-order
statistics. Next, 128 000 time steps are required to obtain sufficient information for the
second-order statistics. Finally, we implement post-processing for ensemble averages in
the spanwise direction to enhance the accuracy of the statistics. All simulations are
performed using 2048 cores on AMD Opteron 6276 Interlagos (Bode et al. 2013; Kramer
et al. 2015). The computational time steps are fixed at Δt = 0.0446, 0.0268, 0.0192 for the
cases with Mc = 0.3, 0.5, 0.7, respectively.

3. Energy exchange

Following the work of Huang et al. (1995), the TKE, MKE and MIE transport equations
for a stationary flow are, respectively, expressed as

∂〈ρ〉{uk}{k}
∂xk

= −〈ρ〉{u′′
i u′′

k}
∂{ui}
∂xk︸ ︷︷ ︸

P

−∂〈ρ〉{u′′
k k′′}

∂xk
− ∂〈p′u′

k〉
∂xk

+ ∂〈τ ′
iku

′
i〉

∂xk
−
〈
τ ′

ik
∂u′

i

∂xk

〉
︸ ︷︷ ︸

ε

−〈u′′
k〉

∂〈p〉
∂xk︸ ︷︷ ︸

Ψ

+〈u′′
i 〉

∂〈τik〉
∂xk

+
〈
p′ ∂u′

k

∂xk

〉
︸ ︷︷ ︸

Π

, (3.1)
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∂〈ρ〉{uk}{K}
∂xk

= 〈ρ〉{u′′
i u′′

k}
∂{ui}
∂xk︸ ︷︷ ︸

−P

−∂〈ρ〉{u′′
k K ′′}

∂xk
− ∂〈p〉〈uk〉

∂xk
+ ∂〈τik〉〈ui〉

∂xk

− 〈τik〉∂〈ui〉
∂xk︸ ︷︷ ︸

Φ

+〈p〉∂〈uk〉
∂xk

+ 〈u′′
k〉

∂〈p〉
∂xk︸ ︷︷ ︸

Ψ

−〈u′′
i 〉

∂〈τik〉
∂xk

(3.2)

and

∂〈ρ〉{uk}{e}
∂xk

= 〈τik〉∂〈ui〉
∂xk︸ ︷︷ ︸

Φ

+
〈
τ ′

ik
∂u′

i

∂xk

〉
︸ ︷︷ ︸

ε

−∂〈ρ〉cv{u′′
k T ′′}

∂xk

− ∂〈qk〉
∂xk

− 〈p〉∂〈uk〉
∂xk

−
〈
p′ ∂u′

k

∂xk

〉
︸ ︷︷ ︸

Π

. (3.3)

The molecular mean stress and fluctuating stress are, respectively,

〈τik〉 =
[
μ

(
∂〈ui〉
∂xk

+ ∂〈uk〉
∂xi

)
− 2

3
μ

∂〈ul〉
∂xl

δik

]
(3.4)

and

τ ′
ik =

[
μ

(
∂u′

i

∂xk
+ ∂u′

k

∂xi

)
− 2

3
μ

∂u′
l

∂xl
δik

]
, (3.5)

with the assumption that the dynamic viscosity of the fluid is independent of temperature
(see § 2.1).

Based on the common literature (Favre 1965, 1969; Lele 1994; Huang et al. 1995;
Pope 2000), the term on the left-hand side (LHS) of (3.1) represents kinetic energy
convection. The first term on the right-hand side (RHS) is the turbulent production; the
second, turbulent convection; the third, pressure transport; the fourth, viscous diffusion;
the fifth, turbulent viscous dissipation; the sixth, enthalpic production; the seventh, a
compressibility term resulting from turbulent fluctuations; the last, a pressure-dilatation
correlation. The last three terms on the RHS of (3.1) are compressibility related terms
due to turbulent fluctuations. Terms one (−〈ρ〉{u′′

i u′′
k}∂{ui}/∂xk), six (〈u′′

k〉∂〈p〉/∂xk) and
seven (〈u′′

i 〉〈τik〉/xk) on the RHS of (3.1) are also in (3.2) but with an opposite sign. They
are responsible for the energy exchange between the mean and turbulent kinetic energies.
Terms five (〈τ ′

ik(∂u′
i/∂xk)〉) and eight (〈p′(∂u′

k/∂xk)〉) in (3.1) correspond to terms two and
six in (3.3), which account for the energy exchange between the internal and turbulent
kinetic energies. Besides the common terms in (3.1) and (3.2), the term on the LHS of (3.2)
is MKE convection. The second term on the RHS of (3.2) is mean turbulent convection;
the third, mean pressure transport due to mean velocity–pressure interaction; the fourth,
mean viscous diffusion; the fifth, mean energy dissipation; and the sixth, mean pressure
dilatation. The mean energy dissipation and mean pressure dilatation of (3.2) also appear
in (3.3) with an opposite sign. These two terms account for the energy exchange between
internal and mean kinetic energies. For the rest of the terms in (3.3), the third and fourth
terms on the RHS are internal energy diffusion and heat conduction, respectively; the term
on the LHS represents MIE convection (Favre 1969; Lele 1994; Huang et al. 1995).
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FIGURE 3. Cross-stream profiles of all the budget terms in (3.1) for Mc = 0.3 at (a) x − xR =
200 and (b) x − xE = 500. All terms are normalized by (ΔU)3/δθ .

Turbulent energy exchange can be accomplished through energy redistribution in space
and energy conversion among different forms of energy (budget terms in TKE, MKE and
MIE transport equations). Turbulent transport budget terms account for convection and
diffusion of TKE and play significant roles in spatial energy redistribution. These terms
have nearly the same order of magnitude as turbulent production and dissipation, and
therefore balance the budget equations. One such example is shown in figure 3 for (3.1).
Figure 3 reveals the cross-stream profiles of all the budget terms in (3.1) for Mc = 0.3
at two streamwise locations, x − xR = 200 and x − xE = 500. All the budget terms are
normalized by (ΔU)3/δθ . As expected, the kinetic energy convection, −∂〈ρ〉{uk}{k}/∂xk,
the turbulent convection, −∂〈ρ〉{u′′

k k′′}/∂xk and the pressure transport, −∂〈p′u′
k〉/∂xk, have

significant energy contributions along the cross-stream direction, and mainly balance the
turbulent energy at the edge of the FSL, where the production goes to zero. However, in
this work, we focus on the kinetic energy conversion among various forms of energy in
the three kinetic energy transport equations, rather than the kinetic energy redistribution
in space.

Based on our DNS results of all the budget terms in the three transport equations,
five terms are found to be mainly responsible for the turbulent energy conversion among
TKE, MKE and MIE: turbulent production, P = −〈ρ〉{u′′

i u′′
k}∂{ui}/∂xk; turbulent viscous

dissipation, ε = 〈τ ′
ik(∂u′

i/∂xk)〉; mean viscous dissipation, Φ = 〈τik〉∂〈ui〉/∂xk; turbulent
pressure dilatation, Π = 〈p′(∂u′

k/∂xk)〉; and enthalpic production, Ψ = 〈u′′
k〉∂〈p〉/∂xk.

Figure 4 shows the simplified schematic of the kinetic energy transfer corresponding to
the current DNS results (for the detailed schematic of kinetic energy balance, readers
are referred to Lele (1994) and Mittal & Girimaji (2019)). In the figure, we only present
the dominant terms responsible for energy exchange among TKE, MKE and MIE. The
directions of energy exchange are also illustrated in the figure corresponding to the positive
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Internal

energy

Turbulent kinetic

energy

Mean kinetic

energy

Φ

Ψ

EP
Π

FIGURE 4. Direction of energy exchange among TKE, MKE and MIE, assuming the budget
term is positive in the FSL flow study in this work.

values of budget terms in the FSL flow. For instance, if the value of P is positive, then
following the corresponding arrow in figure 4, the direction of energy transfer is from
MKE to TKE.

Turbulent and enthalpic production transfer energy between the mean and turbulent
kinetic energies. The turbulent production is the product of Reynolds stresses and the
gradients of mean velocity components. This budget term is mainly responsible for
transferring kinetic energy from the mean shear flow to the turbulent fluctuating shear flow.
When P is positive, the energy is converted from MKE (mainly large-scale structures) to
TKE (primarily small-scale structures), and vice versa. Therefore, this term represents no
net loss or gain of kinetic energy but a transfer between mean and turbulent components.
The enthalpic production term, Ψ , produces enthalpic energy and causes a gain or loss
of TKE. Here Ψ can have either sign; a negative value represents a loss from MKE and
gain of TKE. This energy conversion alters the mean entropy and thus is regarded as
irreversible. The mean entropy, Υ , is defined as (Favre 1969; Lele 1994)

Υ = ∂〈ρ〉〈s〉〈uk〉
∂xk

+ ∂〈ρ〉{s′′u′′
k}

∂xk
+ ∂〈qk/T〉

∂xk
, (3.6)

where s is specific entropy.
The turbulent viscous dissipation and pressure-dilatation terms convert energy between

TKE and MIE. Here ε is mainly responsible for the energy exchange from turbulent kinetic
to internal energies through molecular viscosity. On the other hand, Π is the net rate of
work done by pressure fluctuations due to the simultaneous fluctuations in dilatation (Lele
1994). Here Π may manifest either sign, and when negative, it represents a loss from TKE
and gain of MIE. This energy exchange does not change the mean entropy and thus can
be regarded as reversible. In regions with negligible mean acceleration and insignificant
mean volume change, Π can also be interpreted as an exchange with acoustic potential
energy (Lele 1994). The mean viscous dissipation, Φ, transfers energy between internal
and mean kinetic energies. Here Φ is the dissipation due to the mean flow and transfers
the MKE to MIE through molecular viscosity.

The growth of the plane FSL primarily consists of two stages: the laminar–turbulent
transition stage (the rapidly evolving stage) and the self-similar turbulent stage (the steady
growing stage). In the first stage, the fundamental mode of instability, Kelvin–Helmholtz
instability, begins to develop, and the vortex starts to roll up (Rogers & Moser 1992).
Then, the adjacent vortices begin to pair and the 2-D primary spanwise coherent structures
become dominant. In the braid region of the 2-D spanwise coherent structures, the 3-D
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secondary streamwise vortex structures appear and stretch the 2-D primary spanwise
structures to break them down to small-scale vortex structures (Olsen & Dutton 2003).
The interaction between the 2-D primary and 3-D secondary instabilities promotes the
transition from laminar to turbulent flow, leading to a self-similar state (Pierrehumbert &
Widnall 1982; Hussaini & Voigt 1990; Sandham & Reynolds 1991). In the second stage,
the self-similarity is achieved, and the flow has forgotten the inflow conditions (Bradshaw
1966). Due to the large difference in the behaviours of the two stages, we separately
investigate the compressibility effect on the energy exchange in the transition and turbulent
regions. Based on our previous work, part I, the locations (xR), where the turbulence
transition starts, are approximated as 30, 170 and 230, while the locations (xE), where the
turbulent transition completes are estimated as 340, 550 and 670, for Mc = 0.3, 0.5 and
0.7, respectively (see table 1). The remainder of this section is structured as follows. First
we discuss the energy exchange among TKE, MKE and MIE in the transition region, then
in the turbulent region. Finally, the components of the turbulent production and viscous
dissipation, as well as the energy exchange are examined.

3.1. Laminar–turbulent transition region
We study the energy exchange among TKE, MKE and MIE, and the compressibility effect
on them in the transition region via both qualitative and quantitative analyses. Figures 5–7
show the contours of P , ε, Φ, Π and Ψ for Mc = 0.3, 0.5 and 0.7, respectively, with a
break at x = xE separating the transition and turbulent regions. Since the initial velocity
field is laminar (see part I for more detail), the normalized values of P , ε, Π and Ψ
are relatively small at the beginning of the shear layer. In contrast, Φ starts with a large
value due to the considerable mean shear of two mean streams at the trailing edge of the
splitter. As the shear layer develops, the flow instability increases; the turbulent production
significantly outweighs the turbulent viscous dissipation, such that the kinetic energy
grows. The extrema of P , ε, Π and Ψ shift to downstream, except Φ, which remains
somewhat insensitive to the variation of the convective Mach number.

The cross-stream profiles of P , ε, Φ, Π and Ψ are considered for the examination of
the energy exchange and the compressibility effect on energy exchange. Figure 8 compares
the normalized cross-stream profiles of the aforementioned five terms for Mc = 0.3, 0.5
and 0.7, respectively, at x − xR = 200 near the middle of the laminar–turbulent region.
Two peaks can be observed for Ψ over the cross-stream direction. One peak appears near
the centre of the low-speed side of the shear layer, while another is approximately in the
middle of the high-speed side. The centre of the shear layer becomes a valley and has
the lowest value. These might be because the mean pressure gradients with respect to the
cross-stream direction are larger at the edges of the high- and low-speed sides of the shear
layer, and the magnitudes of 〈v′′〉 are higher as well, compared with the centre of the shear
layer. However, the mean pressure gradient with respect to the streamwise direction is
insignificant, due to the nature of the compressible FSL flow, i.e. zero pressure gradient
with respect to the flow direction. When the mean pressure gradient with respect to the
cross-stream direction acts on the flow, the work done by the mean pressure gradient
becomes a gain in the kinetic energy, resulting in two peaks along the cross-stream
direction. The compressibility effect on the cross-stream variations of five budget terms
is also demonstrated in figure 8. The peaks of the normalized P , ε and Π decrease with
increasing Mc, indicating that in the transition region, the normalized energy that transfers
through P , ε and Π decreases with increasing compressibility. However, the magnitudes
of the normalized Φ for all cases remain nearly constant with the change of Mc,
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FIGURE 5. Contours of P , ε, Φ, Π and Ψ for Mc = 0.3 in the transition and turbulent regions
separated by a vertical line at x = xE. All terms are normalized by (ΔU)3.
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FIGURE 6. Contours of P , ε, Φ, Π and Ψ for Mc = 0.5 in the transition and turbulent regions
separated by a vertical line at x = xE. All terms are normalized by (ΔU)3.
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FIGURE 7. Contours of P , ε, Φ, Π and Ψ for Mc = 0.7 in the transition and turbulent regions
separated by a vertical line at x = xE. All terms are normalized by (ΔU)3.

suggesting that the normalized energy exchange through Φ is almost unaffected by
compressibility. With increasing Mc, the value of the normalized Ψ at the centre of
the shear layer is unchanged, while the magnitudes of the two adjacent peaks increase,
implying that the energy transferred through Ψ from TKE to MKE increases at the two
sides of the shear layer.

Figure 9(a) compares the magnitudes of the normalized P , ε, Φ, Π and Ψ , at the lower
edge (y = −18.63), centre (y = y0.5) and upper edge (y = 17.53) along the cross-stream
direction of the shear layer at xR = 200 for Mc = 0.3. Here, y0.5 is the lateral position
at which the streamwise velocity reaches the convective velocity, Uc, in the cross-stream
direction, where Uc is defined as

Uc = U1 + U2

2
. (3.7)

At the lower and upper edges of the shear layer, the magnitudes of all five terms are
insignificant, while at the shear layer centre, the turbulent production and turbulent viscous
dissipation terms have significant contributions to the energy exchange. Note that the ratio
of P to ε at the centre of the shear layer is approximately 3.5, meaning that in the transition
region, the turbulent production considerably outweighs the turbulent viscous dissipation;
hence the kinetic energy significantly grows. Figure 9(b) compares the magnitudes of the
normalized P , ε, Φ, Π and Ψ , for various Mc at the centre of the shear layer. It is clearly
shown that both the normalized P and ε are significantly affected by compressibility;
the normalized P and ε decrease as Mc increases. However, other terms appear nearly
unchanged with various Mc, because of the adopted scale in the figure and their smaller
contributions to the kinetic energy exchange, compared with that of P and ε.
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FIGURE 9. Comparisons of P , ε, Φ, Π and Ψ , (a) at the lower edge (y = −18.63), centre (y =
y0.5) and upper edge (y = 17.53) of the shear layer for Mc = 0.3, (b) at the centre of the shear
layer for Mc = 0.3, 0.5 and 0.7, in transition region at x − xR = 200. All terms are normalized
by (ΔU)3/δθ × 10−4.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

93
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.932


Compressibility effects on energy exchange mechanisms 910 A9-17

The influence of compressibility on energy exchange is further investigated by
considering the evolution of the cross-stream integral, φI , which is defined as

φI =
∫ +∞

−∞
φ dy. (3.8)

Here, φ represents any budget term that transfers energy among TKE, MKE and MIE. The
superscript I represents the cross-stream (y-line) integration. Since the aforementioned
budget terms evolve in the streamwise direction and expand in the cross-stream direction,
their cross-stream integral can provide information about their bulk behaviour and help to
understand their energy exchange contributions along the streamwise direction.

Figure 10 presents the normalized P I , εI , Φ I , Π I and Ψ I as a function of x − xR in
the transition region, for various Mc. As a result, we can compare the evolution of these
budget terms for different Mach numbers with the same start locations of the turbulent
transition region. Note that this streamwise evolution can only be observed in the spatially
developing FSL but not in the temporally developing numerical simulations. The terms
P I , εI , Π I and Ψ I start with a nearly zero magnitude, until perturbations grow, and
their magnitudes increase. In contrast, Φ I initiates with an extremum followed by a slow
decline towards an asymptotic value. This means that the energy exchange from MKE to
other forms of energy through Φ I mainly occurs at the beginning of the shear flow. The
evolutions of budget terms for different cases are significantly affected by the change of
Mc, as observed in figure 10. The influence of compressibility for the normalized P I , εI , Π I

and Ψ I becomes more significant as the flow advances downstream, but the normalized
Φ I remains nearly unchanged. The peaks of the normalized P I , εI and Π I decrease as
Mc increases, while the peak of the normalized Ψ I increases. We can conclude that, in
the transition region with increasing compressibility, the energy that transfers through P ,
ε and Π decreases; energy exchange through Φ is nearly unchanged; energy exchange
through Ψ increases.

We can observe a double-peak variation of P I for Mc = 0.3 and 0.5 in figure 10(a).
This phenomenon can be explained with the flow vortex structures. To inspect further, we
present the corresponding enlarged area in figure 11(a). It can be seen that the magnitude
of turbulent production rapidly rises at the position near the trailing edge, where the large
structures dominate the flow. The value at the first peak (x ≈ 130) is roughly 2.6 times
that at x ≈ 1000 in the self-similar region, while the second peak value is roughly 94 % of
the first peak value. Note that the double peak spans from x ≈ 130 to 240, which is within
the transition area. To the best of our knowledge, this double-peak phenomenon has not
been reported in the literature for planar free shear flows. We propose that two significant
vortex pairings cause this kind of phenomenon.

We can relate the double-peak profile directly to the rise of the pairing vortex, based
on the visualization of the flow structures presented in figure 11(b). Careful observation
shows that the positions of the peaks, at x ≈ 130 and 240, are in the same streamwise
areas where the pairings occur, illustrated in the vorticity contours. This observation hints
at the connection between the double peak and the behaviour of the vortex pairings. We
further examine the evolution of the 3-D structures in the flow to understand how the vortex
pairing leads to a peak of turbulent production. Figure 11(c) presents a 3-D representation
of the turbulent structures via the isosurface of the second invariant of the velocity gradient
tensor. From figure 11(c), the newly generated 2-D primary spanwise coherent structures
near the trailing edge of the splitter form the first pairing at roughly x = 130. The first
pairing generates a large vortex structure (which does not break into small vortices)
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for Mc = 0.3, 0.5 and 0.7 in the transition region. All terms are normalized by (ΔU)3.
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streamwise velocity, for Mc = 0.3 in transition region.
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FIGURE 12. (a) Evolution of P I normalized by (ΔU)3, (b) spanwise vorticity contours and
(c) isosurface of the second invariant of the velocity gradient tensor (Q2 = 0.02), coloured by
streamwise velocity, for Mc = 0.7 in transition region.

(Ho & Huang 1982; Moser & Rogers 1993). A large paired vortex structure maintains
more kinetic energy than an unpaired roller vortex structure, and less dissipation than a
paired vortex with broken-down structures (Sandham 1989). Therefore, the first peak of
turbulent production occurs due to the appearance of the first pairing.

The large vortex structure formed by the first pairing continues rotating, twisting and
stretching. As the intensity of the instability grows and reaches a triggering threshold
level, the second pairing occurs and leads to the second peak of the turbulent production
(Sandham 1989). At the same time, large vortex structures swirl into flower-shaped
vortices, which start to play a dominant role in the breakdown of the mixing layer. The
slender petals of the flower-shaped vortices develop with intense vorticity and break down
into small vortices. These small vortices facilitate more dissipation and preserve less
kinetic energy, making the second peak of turbulent production lower than the first peak.
Subsequently, the flower-shaped vortices then evolve into hairpin vortices downstream, and
more and more small vortices are generated near the centre of the hairpin vortices. The
turbulent production gradually decreases as the flow advances downstream because the
rate of turbulent viscous dissipation increases as the number of small vortices increases.

For the Mc = 0.7 case, only one peak appears in the profile of turbulent production,
shown in figure 12(a). The single peak is because the 3-D secondary streamwise vortex
structures become dominant in the roll-up region of the shear layer, which is demonstrated
in figure 12(c) as well. The streamwise vortex structures then develop into lambda-shaped
vortices (Sandham & Reynolds 1990, 1991; Lui & Lele 2001; Fu & Li 2006; Zhou, He &
Shen 2012; Zhang, Tan & Yao 2019), which are subjected to longitudinal elongation due
to the high compressibility. These elongated vortex structures have less tendency to roll or
pair in the streamwise direction (see figure 12b). The unpaired vortex structures directly
evolve into hairpin vortices without experiencing rolling. The kinetic energy grows as
the flow advances downstream. Prior to the point that the turbulent viscous dissipation
becomes significant, the magnitude of turbulent production peaks. Next, small vortices
dominate the flow, leading to a smooth decay of turbulent production.
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FIGURE 13. Comparison of cross-stream profiles from the present work and the results by
Rogers & Moser (1994) for (a) turbulent production and (b) turbulent viscous dissipation at
x − xE = 300 in the self-similar turbulent region for Mc = 0.3. All terms are normalized by
(ΔU)3/δθ .

3.2. Self-similar turbulence region
In this section, we investigate the evolutions of P , ε, Φ, Π and Ψ , as well as
the compressibility effects on them in the self-similar turbulent region. We compare
the evolutions of the budget terms for different Mc using a shifted streamwise axis,
x − xE. Consequently, we are able to examine the behaviours of the budget terms by
eliminating the effect from the unequal laminar–turbulent transition lengths. Contours of
the normalized P , ε, Φ, Π and Ψ for all cases are presented in figures 5–7. We can see
that the start of the turbulent region significantly shifts to downstream with increasing
Mc (see part I for more details). As the flow advances downstream, P , ε, Φ, Π and Ψ

decrease gradually, while expanding in the cross-stream direction, especially for P , ε and
Φ, which grow linearly. This is attributed to the self-similarity nature of the FSL flow in
the turbulent region.

In figures 13(a) and 13(b), we compare the cross-stream profiles of the normalized
turbulent production and turbulent viscous dissipation from present simulations with the
results by Rogers & Moser (1994), generated from the DNS of a temporally evolving shear
layer. Both results are extracted from the self-similar turbulent region for Mc = 0.3. The
profiles from the present work noticeably shift to the low-speed side (y < 0) of the shear
layer, compared with the result of Rogers & Moser (1994). Despite the profiles shifting, the
normalized values of turbulent production and dissipation are in agreement, confirming
that the turbulent shear layer is correctly resolved. Note that the shear-layer bending is
only captured in the spatially evolving turbulent shear layer simulations. We discuss the
shear-layer bending in detail next.

To further investigate the shear-layer bending phenomenon, we start from the velocity
isolines at the centre (Uc), upper-edge (95 %U1) and lower-edge (105 %U2) of the shear
layer along the streamwise direction. As a result, the outline of the shear layer in
the x–y plane can be inspected. Figure 14(a) shows the velocity isolines of 95 %U1,
Uc and 105 %U2 for various Mc. We can see that as the convective Mach number
increases, the growth rate of the shear layer decreases, resulting in a narrower shear
layer contour. Moreover, the momentum thickness growth rates, dδθ/dx , in the turbulent
region are computed as 0.0137, 0.0121 and 0.0106 for convective Mach numbers of 0.3,
0.5 and 0.7, respectively (see table 2). This trend confirms that the momentum thickness
growth rate decreases as Mc increases (Birch & Eggers 1972; Papamoschou & Roshko
1988; Jackson & Grosch 1989; Goebel & Dutton 1991; Grosch & Jackson 1991; Hall,
Dimotakis & Rosemann 1993; Clemens & Mungal 1995; Vreman, Sandham & Luo 1996;
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FIGURE 14. (a) Mean velocity isolines and (b) isolines of Uc for various Mc, as a
function of x .

Day, Reynolds & Mansour 1998; Freund, Lele & Moin 2000; Pantano & Sarkar 2002;
Foysi & Sarkar 2010; Javed, Rajan & Chakraborty 2013; Wang et al. 2015). In figure 14(a),
the Uc contours are qualitatively similar for any given Mc, although there are some small
differences in the contours in the transition region of the shear layer.

A closer look at the Uc contours helps to identify the compressibility effect on
shear-layer bending, as shown in figure 14(b). The shift to the low-speed side starts from
x ≈ xR. For a more explicit comparison, we normalize the streamwise axis as x − xR and
add trendlines to all cases, shown in figure 15. The figure reveals that the centre of the shear
layer extends further into the low-speed side as the convective Mach number increases (see
figure 15b). This finding may help to explain the phenomenon in the backward-facing step
(known as BFS) flow, where the reattachment length decreases as the inflow Mach number
increases (Chen et al. 2012; Liu et al. 2013). This shifting of the mean velocity profile in
the FSL has been reported in previous studies, both experimental and numerical (Elliott
& Samimy 1990; Goebel & Dutton 1991; Fu & Li 2006). However, a detailed explanation
of such behaviour is not available. In this work, we explain this behaviour quantitatively
in terms of the asymmetry mass flux entrainment of the shear layer.

In a plane FSL with different free stream speeds, the flow field can be classified into
two regions: in one region the flow is primarily irrotational; in the another one the flow
is mainly turbulent and rotational. Entrainment is the process that the mass flux traverses
from the irrotational region into the rotational area (Corrsin & Kistler 1955). The mass
flux entrainment ratio (RM) is defined as the ratio of the fluid from the high-speed side to
the fluid from the low-speed side into the shear layer. The mass flux entrainment ratio for
an incompressible, plane FSL can be estimated by (Dimotakis 1986)

RM = 1 + 3.9
δw

x
, (3.9)
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FIGURE 15. (a) Isolines of Uc and (b) trendlines of the isolines for Mc = 0.3, 0.5 and 0.7, as a
function of x − xR.

where δw = ΔU/(d{u}/dy)max is the vorticity thickness. The empirical constant 3.9 was
suggested by Koochesfahani et al. (1979). Dimotakis (1986) also proposed a simplified
equation to determine the mass flux entrainment ratio in the turbulent region of the shear
layer, i.e.

RM = 1 + 0.68R, (3.10)

where R is the velocity ratio defined by (2.13). The results calculated by (3.9) and (3.10) are
plotted in figure 16(a) as a function of x for Mc = 0.3. We can see that the result estimated
by (3.9) starts with a relatively low value of 1.2 at x ≈ 100. As advancing downstream, the
magnitude gradually increases and overtakes the result calculated by (3.10) at x ≈ 200 in
the transition region. It means that the entrainment ratio in the transition region is slightly
higher than that in the turbulent region. There are two different entrainment mechanisms
in turbulent FSL flow, namely, entrainment by engulfment in the transition region and by
nibbling in the turbulent area (Mathew & Basu 2002; Jahanbakhshi & Madnia 2016). The
results of figure 16(a) indicate that compared with entrainment by nibbling, entrainment
by engulfment may yield higher mass entrainment ratio. After the RM estimated by (3.9)
reaches a maximum at x ≈ 350, where the flow turns into turbulence, the magnitude of RM
by (3.9) gradually matches with the asymptotic value estimated by (3.10). In the turbulent
area, the entrainment ratio is relatively steady, and the mass, momentum and energy are
mainly entrained by nibbling. The mass flux entrainment from the high-speed side is
significantly more than that from the low-speed side, leading to the momentum difference
across the shear layer in the cross-stream direction, therefore causing the bending.

We have concluded that the asymmetric entrainment leads to the shear-layer bending.
In this context, we further investigate this bending by the estimation of the bending angle.
Dimotakis (1986) proposed a method to estimate the angle between the upper edge and
the x-axis of the shear layer, indicated by α1, and the angle between the lower edge and
the x-axis, denoted by α2. The corresponding angles are also demonstrated in figure 16(b).
Angles α1 and α2 can be estimated by (Dimotakis 1986)

1 + R
1 − R

(
tan α1

tan α2 + tan β

)
= RM, (3.11)

tan α1 + tan α2 = dδvis

dx
, (3.12)

where tan β = V2/U2 and V2 is the cross-stream component of the low-speed mean
velocity at the shear layer edge. Here δvis is the visual thickness and has been suggested
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FIGURE 16. (a) Mass flux entrainment ratios estimated by (3.9) and (3.10) for Mc = 0.3 and
(b) shear layer and bending angle schematic.

to be approximately two times the vorticity thickness δw (Brown & Roshko 1974). Thus,
(3.12) can be modified as

1
2
(tan α1 + tan α2) = dδw

dx
. (3.13)

After obtaining angles α1 and α2, the bending angle α can be calculated by

α = 1
2
(α2 − α1). (3.14)

Conversely, using the current results shown in figure 14(a), we can estimate the angles
α1 and α2, which can be used to calculate α and RM by employing (3.14) and (3.11),
respectively, for different Mc. The results are tabulated in table 3. Through data fitting,
the data in table 3 can be used to modify (3.10) for the RM estimation of the compressible
planar FSL flow, i.e.

RM = 1 + 0.46R + 0.18Mc + 0.08M2
c , (3.15)

for Mc � 0.7, due to the limited convective Mach numbers used in this work. Furthermore,
we can use the angles in table 3 to verify (3.13). The vorticity thickness growth rates
are calculated as 0.058, 0.055 and 0.051 for Mc = 0.3, 0.5 and 0.7, respectively, from
(3.13). The computed results have excellent agreements with the corresponding results,
0.060, 0.055 and 0.050, estimated by dδw/dx with δw = ΔU/(d{u}/dy)max . This confirms
that, for the conditions considered in this study, (3.13) can accurately predict the relation
between angles α1 and α2 with the vorticity growth rate.

The asymmetric entrainment in the turbulent region is also reflected from the
cross-stream profiles of kinetic energy budget terms, such as kinetic energy convection
and transport terms. Brown & Roshko (1974) proposed that entrainment is composed
of three mechanisms: mean velocity engulfment, turbulent convection and turbulent
transport; and the entrainment includes mass, momentum and energy entrainment. In the
transition regions, the engulfment is the dominant mechanism for entrainment. In contrast,
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Mc α1 α2 α RM

0.3 2.20 4.38 1.09 1.30
0.5 2.00 4.30 1.15 1.37
0.7 1.75 4.11 1.18 1.41

TABLE 3. Shear-layer bending angles in degrees for Mc = 0.3, 0.5 and 0.7.
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FIGURE 17. Cross-stream profiles of the normalized (a) turbulent convection and (b) turbulent
transport at x − xE = 300 in the turbulent region for Mc = 0.3. All terms are normalized by
(ΔU)3/δθ .

the turbulent convection and transport are the leading mechanisms in the turbulent region
(Brown & Roshko 1974). The turbulent convection (TC), ∂〈ρ〉{uk}{k}/∂xk, is the first term
of (3.1), while the turbulent transport (TT) is

TT = −∂〈ρ〉{u′′
k k′′}

∂xk
− ∂〈p′u′

k〉
∂xk

+ ∂〈τ ′
iku

′
i〉

∂xk
, (3.16)

where ∂〈ρ〉{u′′
k k′′}/∂xk, ∂〈p′u′

k〉/∂xk and −∂〈τ ′
iku

′
i〉/∂xk are the second, third and fourth

terms on the RHS of (3.1). Turbulent convection and transport play crucial roles in the
lateral and longitudinal transport of mass, momentum and energy. Figures 17(a) and 17(b)
show the cross-stream profiles of the turbulent convection and transport at x − xE = 300
in the turbulent region for Mc = 0.3. The kinetic energy from the free streams entrains
into the shear layer often through two regions. One region is laterally above the centre
of the shear layer, between the high-speed free stream and the upper shear layer; another
region is laterally below the shear layer, between the low-speed free stream and the lower
shear layer. Both turbulent convection and turbulent transport profiles are double peaked,
and the peaks are located in the two regions mentioned above. Note that the gain of the
kinetic energy by convection and transport from the high-speed side outweighs that from

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

93
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.932


Compressibility effects on energy exchange mechanisms 910 A9-25

–20

0

20

y
Mc = 0.3

x = 1.28

x = 22.2

x = 43.2

x = 82.0

x = 131.5

Mc = 0.7

x = 1.28

x = 67.8

x = 120.9

x = 240.6

x = 425.6

–20

0

20

y

–20

0

20

y

–20

0

20

y

–20
0 1 2 3 0 2 4 6 8

0 1 2 3 0 2 4 6 8

0 1 2 3 0 2 4 6 8

0 1 2 3 0 2 4 6 8

0 1 2 3 0 2 4 6 8

0

20

–20

0

20

–20

0

20

–20

0

20

–20

0

20

–20

0

20

y

{u}{u}

(b)(a)

FIGURE 18. Cross-stream profiles of the streamwise Favre-averaged velocity at five
streamwise locations for (a) Mc = 0.3 and (b) Mc = 0.7.

the low-speed side. This again demonstrates the asymmetric entrainment from the edges
of the shear layer.

It is worth noting that, in figure 14(b), in the region x < 150, the lateral position of Uc
locates at y ≈ 2.5, rather than y ≈ 0. This higher position is due to the rise of the velocity
deficit. In the experiment, boundary layers develop along two sides of the splitter plate,
then meet at the trailing edge, resulting in a velocity deficit. In this work, the velocity
deficit in the shear layer follows two laminar boundary layers along the two sides of
the splitter. In other words, two laminar boundary layers meet at the trailing edge while
maintaining their laminar flow behaviours due to the inertia of the fluid. As a result, a
layer of fluid with near-zero velocity (stagnation area) is formed downstream of the trailing
edge. The cross-stream Favre-averaged velocity profiles of the shear layer are presented in
figure 18 for five selected locations. We can see how the confluence initially results in a
velocity deficit that decreases in the streamwise direction. The flow eventually evolves into
a self-similar shear layer.

For the case with Mc = 0.3 in figure 18(a), the velocity deficit is observable up to x =
131.5 downstream of the trailing edge, beyond which the flow displays the features of a
classical FSL. An estimate of the velocity deficit magnitude with downstream distance is
shown in table 4. The velocity deficit, Ud, is calculated as

Ud = (
Uerf

)
c − {u}min, (3.17)
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Downstream distance Minimum velocity Velocity deficit

1.279 0.1547 0.7487
22.18 0.3961 0.5073
43.18 0.5319 0.3715
82.04 0.6884 0.2150
131.5 0.9027 0.0007

TABLE 4. Velocity deficit with downstream distance for Mc = 0.3.
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FIGURE 19. Evolution of the velocity deficit along the streamwise direction for (a) Mc = 0.3
and (b) Mc = 0.7. The red dashed line is the added trendline for each case.

where (Uerf )c is the velocity at the centre (y = y0.5) of the classical error function
profile, and {u}min is the minimum velocity of the cross-stream profile of the streamwise
Favre-averaged velocity from the current study. The classical error function profile was
derived by Gortler (1942), assuming constant viscosity and density across the shear layer,
defined as

Uerf = U2 + ΔU
2

[1 + erf(η)]. (3.18)

Here, η is the similarity variable, expressed as

η = ( y − y0.5)

(x − x0)
, (3.19)

where x0 is the origin of the FSL. The data in table 4 can be extrapolated to predict that
the velocity deficit should disappear approximately at x = 132 after the confluence, also
demonstrated in figure 19(a). Similarly, we calculate the velocity deficit for Mc = 0.7,
shown in figure 18(b) and tabulated in table 5. Again, we can predict that the classic
shear-layer profile can be recovered approximately at x = 428, presented in figure 19(b)
as well. For convenience, we call the distance between the initial emergence and the final
disappearance of the velocity deficit the VDPD. Furthermore, based on the trend observed
in figure 19, we can deduce that the VDPD increases as the convective Mach number
increases.

To examine the energy contributions of budget terms in the cross-stream direction, we
compare the normalized P , ε, Φ, Π and Ψ at the lower edge (y = −62.45), centre and
upper edge (y = 41.47) of the shear layer at x − xE = 300 in the turbulent region, shown
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Downstream distance Minimum velocity Velocity deficit

1.279 0.3982 1.7677
67.84 1.3128 0.8531
120.9 1.5631 0.6028
240.6 1.8313 0.3346
425.6 2.1651 0.0008

TABLE 5. Velocity deficit with downstream distance for Mc = 0.7.
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FIGURE 20. Comparisons of P , ε, Φ, Π and Ψ , (a) at the lower edge (y = −62.45), centre
and upper edge (y = 41.47) of the shear layer for Mc = 0.3, (b) at the centre of the shear layer
for Mc = 0.3, 0.5 and 0.7, at x − xE = 300 in turbulent region. All terms are normalized by
(ΔU)3/δθ × 10−4.

in figure 20(a). At the lower and upper edges of the shear layer, the magnitudes of all
normalized terms are near zero, while at the shear layer centre, the turbulent production
and turbulent viscous dissipation have considerable contributions to the energy exchange.
Note that the ratio of P to ε at the centre of the shear layer is approximately 1.3. This near
unity ratio indicates that in the turbulent region, the energy contribution of the turbulent
viscous dissipation almost overtakes that of the turbulent production; hence the growth
rate of the kinetic energy gradually decreases. Figure 20(b) compares the magnitudes of
the five normalized terms for different Mc at the centre of the shear layer. We can see
that the normalized P and ε significantly decrease with increasing Mc, whereas the other
terms show only small changes, due to the employed scale and their relatively small energy
contributions.

The evolutions of the normalized P I , εI , Φ I , Π I and Ψ I in the turbulent region
are shown in figure 21. The magnitudes of the five normalized terms decay gradually
to asymptotic values, due to the turbulent viscous dissipation and the shear layer
cross-stream diffusion. With increasing Mc, the normalized P I and εI decrease, as shown
in figures 21(a) and 21(b), due to the reductions of Reynolds stresses and velocity
fluctuations, respectively. In the turbulent region, the value of Φ I becomes very small
(see figure 21c), meaning that most large vortex structures have turned into small
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FIGURE 21. Evolution of the cross-stream integrals (a) P I , (b) εI , (c) ΦI , (d) Π I and (e) Ψ I

for Mc = 0.3, 0.5 and 0.7 in turbulent region. All terms are normalized by (ΔU)3.

vortex structures. Also, the value of Φ I is not significantly affected by compressibility.
This is attributed to the insensitive mean velocity field with respect to the change of Mc.
In contrast, the normalized value of Ψ I increases with increasing Mc (see figure 21e),
owing to the sensitive cross-stream pressure gradient with respect to compressibility.
Figure 21(d) shows that the normalized value of Π I decreases significantly from Mc = 0.3
to 0.5, while remains almost the same from Mc = 0.5 to 0.7. As the flow advances
downstream, the magnitudes of the normalized Π I for all cases become very close to
zero, suggesting that the contribution of the pressure dilatation to the TKE is insignificant.
This is attributed to the self-cancellation of temporal oscillations when averaging the
instantaneous pressure dilatation, p′(∂u′

k/∂xk) over time. Thus, we examine the importance
of p′(∂u′

k/∂xk), instead.
The evolution of p′(∂u′

k/∂xk) at a typical location (x − xE, y, z) = (300,−6.5, 40) is
presented as a function of flow-through-time and compared with the budget term turbulent
production, shown in figure 22. The flow-through-time is defined as the time required for
the flow to travel from the inlet to the outlet with the convective velocity, i.e.

flow-through-time = Lx

Uc
. (3.20)

From figure 22, we can see that p′(∂u′
k/∂xk) develops oscillations in time with relatively

large amplitudes; its negative and positive extrema are nearly symmetric; the magnitude of
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FIGURE 22. Evolution of the instantaneous pressure dilatation (known as IPD) and the
turbulent production at x − xE = 300, y = −6.5 and z = 40 in the self-similar turbulent region,
normalized by (ΔU)3/δθ .

its extremum increases from 1.08 × 10−4 to 1.47 × 10−4 and 3.11 × 10−4 as Mc increases
from 0.3 to 0.5 and 0.7. The fluctuations of the pressure dilatation are also comparable
to the value of turbulent production. Thus, the fluctuations of pressure dilatation have
a significant contribution to the evolution of TKE, and increase in magnitude with
increasing Mc.

The effect of compressibility on the fluctuations of pressure dilatation is also evidenced
by a marked difference in the probability density functions (p.d.f.s) of the normalized
instantaneous pressure dilatation. The p.d.f.s at x − xE = 300, y = −6.5 and z = 40 in
the self-similar turbulent region for cases with Mc = 0.3, 0.5 and 0.7 are presented in
figure 23. In all cases, the expected exponential roll-off of the p.d.f. is obvious. However,
the p.d.f. from the high convective Mach number case is slightly less symmetric about
zero. The right- and left-hand tails of the p.d.f. become longer with increasing convective
Mach number, suggesting that the range of the pressure-dilatation fluctuations increases
monotonically with Mc, which is consistent with the conclusion from figure 22. Note
that the increased range of fluctuations is smaller as Mc increases from 0.5 to 0.7,
compared with that from 0.3 to 0.5. Moreover, the peak of the p.d.f. at zero is more
pronounced in the low convective Mach number cases, implying that more small values
of pressure-dilatation fluctuations are present in such cases. The impact of compressibility
on turbulent production and dissipation terms are further examined in the next section by
analysing their components.

3.3. Components of turbulent production and viscous dissipation
The previous section shows that the turbulent production and viscous dissipation make
the most significant contributions to the energy exchange among TKE, MKE and MIE.
To further investigate the compressibility effects on the energy exchange in the shear layer,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

93
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.932


910 A9-30 D. Li, A. Peyvan, Z. Ghiasi, J. Komperda and F. Mashayek

–0.006 –0.003 0 0.003 0.006

104

p
.d

.f
.

103

102

101

100

Mc = 0.3

Mc = 0.5

Mc = 0.7 

p′(∂u′
k /∂xk)/(�U3/δθ)

FIGURE 23. Probability density functions of instantaneous pressure dilatation at x − xE =
300, y = −6.5 and z = 40 in the self-similar turbulent region, normalized by
(ΔU)3/δθ .

we decompose these terms and analyse their components and the compressibility effects
on them. The turbulent production term can be decomposed into

P = −〈ρ〉{u′′u′′}∂{u}
∂x

− 〈ρ〉{v′′v′′}∂{v}
∂y

− 〈ρ〉{w′′w′′}∂{w}
∂z

− 〈ρ〉{u′′v′′}∂{u}
∂y

− 〈ρ〉{u′′w′′}∂{u}
∂z

− 〈ρ〉{v′′u′′}∂{v}
∂x

− 〈ρ〉{v′′w′′}∂{v}
∂z

− 〈ρ〉{w′′u′′}∂{w}
∂x

− 〈ρ〉{w′′v′′}∂{w}
∂y

. (3.21)

Here, the third, fifth, seventh, eighth and ninth terms on the RHS of (3.21) are negligible
since the current shear layer is statistically homogeneous in the spanwise direction.
Consequently, the expression for turbulent production can be reduced to

P ≈ −〈ρ〉{u′′u′′}∂{u}
∂x︸ ︷︷ ︸

P1

−〈ρ〉{v′′v′′}∂{v}
∂y︸ ︷︷ ︸

P2

−〈ρ〉{u′′v′′}∂{u}
∂y︸ ︷︷ ︸

P3

−〈ρ〉{v′′u′′}∂{v}
∂x︸ ︷︷ ︸

P4

. (3.22)

For brevity, −〈ρ〉{u′′u′′}∂{u}/∂x , −〈ρ〉{v′′v′′}∂{v}/∂y, −〈ρ〉{u′′v′′}∂{u}/∂y and −〈ρ〉
{v′′u′′}∂{v}/∂x are referred to as P1, P2, P3 and P4, respectively. The cross-stream
variations of these terms are shown in figure 24 for various Mc. The dominant component
in the turbulent production equation, (3.22), is P3, indicating that the planar FSL behaves
statistically as a 2-D flow, as shown in the previous studies. Thus, as Mc increases, the
decrease of the normalized turbulent production is attributed to the reduction of P3. On
the other hand, the normalized {u} is not considerably affected by compressibility. Hence,
the reduction of P3 is mainly due to the reduction of {u′′v′′}, which is demonstrated in
figure 25. Vreman et al. (1996) showed that the growth rate of a temporal mixing layer is
proportional to the integrated turbulence production component, P I

3, in the fully developed
turbulent region. In a temporally evolving plane FSL, such relation can be expressed as
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(Vreman et al. 1996)

dδθ

dt
= − 2

ρo(ΔU)2

∫ +∞

−∞
〈ρ〉{u′′v′′}∂{u}

∂y
dy. (3.23)

Combining (3.8) with (3.23), the relation between the temporal growth rate and turbulent
production is further simplified to

dδθ

dt
= 2P I

3

ρo(ΔU)2
. (3.24)
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The relation between the momentum thickness growth rates of temporally and spatially
developing FSLs can be expressed as (Brown & Roshko 1974)

dδθ

dt
= ΔU

2R
dδθ

dx
. (3.25)

Then, the corresponding momentum thickness growth rate of a spatially developing FSL
in the turbulent region becomes

dδθ

dx
= 4RP I

3

ρo(ΔU)3
. (3.26)

It is clear that the growth rate of a spatial FSL is proportional to the integrated
turbulence production component, P I

3, and the growth rate can be calculated from
(3.26). At x − xE = 300 in the turbulent region, the normalized integral of turbulent
production is P I

3/(ΔU)3 = 0.00641, 0.00581 and 0.00495 for Mc = 0.3, 0.5 and 0.7,
respectively. Consequently, the momentum thickness growth rates are dδθ/dx = 0.0138,
0.0125 and 0.0107 by employing (3.26). These results have excellent agreements with the
corresponding results, dδθ/dx = 0.0137, 0.0121 and 0.0106, listed in table 2 computed
using (2.17). This suggests that, for the conditions considered in this study, temporal
simulation is capable of predicting the compressible FSL growth rate, despite the fact
that temporal simulation possesses some significant drawbacks for simulating turbulent
FSL, such as the lack of ability in capturing the effects of the velocity ratio across the FSL
and the asymmetry of entrainment (Ho & Huerre 1984; Hussaini & Voigt 1990; Lui &
Lele 2001; Pickett & Ghandhi 2002; Fu & Li 2006).

Besides the dominant component P3, the component P1 shows noticeable variations
across the shear layer in figure 24. The value of P1 is negative in the low-speed side of the
shear layer and slightly positive in the high-speed side. Note that {u′′u′′} is always positive,
thus, does not affect the sign of P1. The sign of P1 is determined by ∂{u}/∂x . Note that
a negative value of ∂{u}/∂x means a compression in the streamwise direction while a
positive value does the opposite. Consequently, fluid elements in the low- and high-speed
sides experience compression and expansion, respectively. This is a further evidence of
the commonly recognized phenomenon that the mixing layer bends towards the side with
lower speed. Furthermore, the value of P1 is almost unaffected by the change of Mc. As
mentioned above, {u} is nearly not influenced by compressibility. Based on the result from
part I, {u′′u′′} is not sensitive to the change of Mc either. Therefore, P1 is not a function
of Mc.

The compressibility effect on the turbulent viscous dissipation term is also further
investigated by considering its components (Huang et al. 1995),

ε ≡
〈
τ ′

ik
∂u′

i

∂xk

〉
= ε1 + ε2 + ε3, (3.27)

where

ε1 = 〈μ〉
〈
∂u′

i

∂xk

(
∂u′

i

∂xk
+ ∂u′

k

∂xi

)〉
− 2

3
〈μ〉

〈
∂u′

i

∂xk

∂u′
l

∂xl

〉
δik, (3.28)

ε2 =
〈
μ′ ∂u′

i

∂xk

(
∂u′

i

∂xk
+ ∂u′

k

∂xi

)〉
− 2

3

〈
μ′ ∂u′

i

∂xk

∂u′
l

∂xl

〉
δik, (3.29)

ε3 =
〈
μ′ ∂u′

i

∂xk

〉 (
∂〈ui〉
∂xk

+ ∂〈uk〉
∂xi

)
− 2

3

〈
μ′ ∂u′

i

∂xk

〉
∂〈ul〉
∂xl

δik. (3.30)
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FIGURE 26. Cross-stream profiles of (a) normalized solenoidal dissipation, εs/((ΔU)3/δθ ),
(b) normalized dilatational dissipation, εd/((ΔU)3/δθ ). (c) Ratios of dilatational dissipation to
solenoidal dissipation, εd/εs, as a function of y/δθ at x − xE = 300.

When fluctuations in viscosity are neglected, only ε1 is significant. This term
can be decomposed into solenoidal dissipation, εs, dilatational dissipation, εd, and
inhomogeneous dissipation, εI ,

ε ≈ ε1 = εs + εd + εI, (3.31)

where

εs = 2〈μ〉〈ω′
ijω

′
ij〉, (3.32)

εd = 4
3
〈μ〉

〈
∂u′

l

∂xl

∂u′
k

∂xk

〉
, (3.33)

εI = 2〈μ〉
(

∂2〈u′
iu

′
j〉

∂xi∂xj
− 2

∂

∂xi

〈
u′

i

∂u′
j

∂xj

〉)
, (3.34)

with

ω′
ij = 1

2

(
∂u′

i

∂xj
− ∂u′

j

∂xi

)
. (3.35)

Figures 26(a) and 26(b) show the normalized cross-stream profiles of the solenoidal
dissipation and the dilatational dissipation, respectively, as a function of y/δθ at
x − xE = 300 in the turbulent region for all three cases. The magnitude of the normalized
solenoidal dissipation decreases with increasing Mc, while the normalized dilatational
dissipation shows the opposite trend. Figure 26(c) presents the ratio of the dilatational
dissipation to the solenoidal dissipation in the same location, which reveals the following
findings: the dilatational dissipation is approximately three orders of magnitude smaller
than the solenoidal dissipation for Mc = 0.5 and 0.7; for Mc = 0.3, the magnitude of
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the dilatational dissipation is nearly four orders of magnitude smaller than that of the
solenoidal dissipation; the ratio of the dilatational dissipation to the solenoidal dissipation
increases as the Mc increases. For the convective Mach numbers used in the present study,
the dilatational dissipation seems to play an insignificant role in the TKE budget. This
conclusion is consistent with the temporal simulation results by Blaisdell & Zeman (1992)
and Vreman et al. (1996). The inhomogeneous dissipation component results from the
shear between the shear layer (parallel to the wall) and the wall (Lele 1994; Huang et al.
1995; Cadiou, Hanjalic & Stawiarski 2004; Brown et al. 2017). Thus, inhomogeneous
dissipation approaches zero when far away from the wall. As expected, the inhomogeneous
dissipation term is near zero in the turbulent region based on the current DNS results.
Therefore, the inhomogeneous dissipation has insignificant contribution to the energy
exchange between TKE and MIE.

4. Summary and conclusions

Direct numerical simulations have been conducted using a high-order DSEM for a 3-D,
spatially developing compressible plane FSL. The shear layer is formed by two parallel
streams, under naturally developing inflow condition and separated by a splitter plate. The
initial momentum thickness Reynolds number is set to 140 for convective Mach numbers
of 0.3, 0.5 and 0.7.

A large buffer zone surrounds the large computational domain. Consequently, the FSL
flow can reach the self-similar turbulent state in the streamwise direction and can grow
freely in the cross-stream and spanwise directions. The buffer zone prevents solution
contamination from the boundaries. Within the shear layer, the average grid size is
smaller than those used by Pantano & Sarkar (2002) and Zhou et al. (2012) in their
DNS studies. The resolution of the current grid is sufficient to accurately calculate all
relevant turbulent scales and energy budget terms. A detailed validation against published
theoretical, experimental and numerical results is performed and found to agree well with
the convective Mach numbers used in this work (see part I of this work).

The energy exchanges among TKE, MKE and MIE are examined, and the effects of
compressibility on such exchanges are assessed. By considering the transport equations
of TKE, MKE and MIE, the roles of different budget terms in the energy transfer
are identified. It is confirmed that the energy exchange between TKE and MKE is
through turbulent production and enthalpic production terms (Lele 1994). With increasing
compressibility, the energy exchange from MKE to TKE through turbulent production
decreases, while the enthalpic production that converts energy from TKE to MKE
increases. The contribution of enthalpic production is smaller than that of turbulent
production. The component, −〈ρ〉{u′′v′′}∂{u}/∂y, of turbulent production is the dominant
one, and is mainly responsible for the decrease in turbulent production with increasing
convective Mach number, as previously reported by Vreman et al. (1996).

Turbulent viscous dissipation and pressure-dilatation terms are responsible for the
energy exchange between TKE and MIE. Increasing the compressibility decreases
the energy exchange from TKE to MIE through turbulent viscous dissipation and
pressure dilatation. Among the components of the turbulent viscous dissipation, the
dilatational dissipation is approximately three orders of magnitude smaller than the
solenoidal dissipation for Mc = 0.5 and 0.7, and nearly four orders of magnitude for
Mc = 0.3. The ratio of the dilatational dissipation to the solenoidal dissipation increases
as the Mc increases. For the convective Mach numbers used in the present study, the
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dilatational dissipation is insignificant in the TKE budget, as previously shown by Blaisdell
& Zeman (1992) and Vreman et al. (1996) in the temporal simulations.

Pressure dilatation contribution to energy exchange is small compared with that of
turbulent viscous dissipation. However, the fluctuations of pressure dilatation are relatively
large and comparable to the magnitudes of turbulent production and viscous dissipation
at the same location. The p.d.f.s of the normalized instantaneous pressure dilatation
show that the range of the pressure-dilatation fluctuations increases monotonically with
convective Mach number. The energy exchange between MKE and MIE is mainly through
mean viscous dissipation. The mean viscous dissipation has a positive sign and always
converts energy from MKE to MIE. Also, the normalized mean viscous dissipation is
nearly insensitive to the change of convective Mach number.

The variations of the five budget terms in the cross-stream direction are also analysed.
For the turbulent production, turbulent viscous dissipation, mean viscous dissipation and
turbulent pressure dilatation, their peaks are located near the centre of the shear layer,
while enthalpic production shows two peaks near the edges of the shear layer and a valley
at the centre, mainly due to the variation of the mean pressure gradient with respect to
cross-stream direction. We show that the cross-stream profiles of the turbulent production
and turbulent viscous dissipation noticeably shift to the low-speed side of the shear layer.
This bending of the shear layer is only captured in the spatially evolving turbulent shear
layer simulations. In this work, the bending behaviour is explained quantitatively in terms
of the asymmetry mass flux entrainment of the shear layer. The mass flux entrainment
from the high-speed side is more than that from the low-speed side, leading to the
momentum difference across the shear layer in the cross-stream direction, hence causing
the shear-layer bending. The bending angle estimation for the compressible shear layer is
also introduced.

The evolutions of the cross-stream integrals of the five budget terms are examined.
The profiles of turbulent production for Mc = 0.3 and 0.5, appear to have a double-peak
variation, due to the emergence of the first and second pairings. With increasing Mc to
0.7, the double-peak variation turns into single peak. This is attributed to the appearance
of the streamwise elongated vortex structures, which have less tendency to roll and pair
in the streamwise direction. The cross-stream integrals of the five budget terms in the
transition region are more sensitive to the change of Mc than that in the turbulent area. In
the turbulent region, the magnitudes of the integrals decay gradually to asymptotic values,
due to the turbulent dissipation and the cross-stream diffusion.
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