Bull. Aust. Math. Soc. 106 (2022), 236-242
doi:10.1017/S0004972722000636

A ¢-SUPERCONGRUENCE MODULO THE THIRD POWER
OF A CYCLOTOMIC POLYNOMIAL

CHUANAN WEI

(Received 18 December 2021; accepted 25 May 2022; first published online 18 July 2022)

Abstract

We derive a g-supercongruence modulo the third power of a cyclotomic polynomial with the help of Guo
and Zudilin’s method of creative microscoping [‘A g-microscope for supercongruences’, Adv. Math. 346
(2019), 329-358] and the g-Dixon formula. As consequences, we give several supercongruences including

(P=2)/3 (2
2 1
3) 2[7( )(p -2)/3 ( od 3),

= D3 ( )p-2)/3

where p is a prime with p = 5 (mod 6).
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1. Introduction
For any complex variable x, define the shifted-factorial by
xX)p=1 and x),=x(x+1)---(x+n-1) forneZ",

and let I',(x) denote the p-adic Gamma function. Throughout the paper, p denotes an
odd prime. In 1997, Van Hamme [9, (H.2)] proved that

- 1
(p-1)/2 %)]3{ T ( ) (mod p?) if p =1 (mod 4),

—— = (1.1
- (1) 2 ifp =
k=0 k 0 (mod p~) if p = 3 (mod 4).
In 2016, Long and Ramakrishna [6] gave an extension of (1.1):
1
(p-1)/2 (13 - ( ) (mod p?) if p =1 (mod 4),
27k~ (1.2)

(12 1
im0 (i i’6r ( ) (mod p*) if p =3 (mod 4).
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In the same year, Deines et al. [1] discovered the nice supercongruence: for p =
1 (mod 6),

23k = —1“,,(%)3 (mod p3).

Several years later, Mao and Pan [7] (see also Sun [8, Theorem 1.3]) found a result
similar to (1.1): for p = 1 (mod 4),

(p+1)/2 1\3
(_E)k

_ 2
Z o = 0 (mod p?). (1.3)

k=0

For any complex numbers x and g, define the g-shifted factorial by
(go=1 and (x@,=0-x)1-xq9)---(1-xg"") forneZ".
For simplicity, we also adopt the compact notation

(15 X2, -+ o5 X @ = (15 (%25 P+ (Kms Qs
where m € Z* and n € Z* U {0, oo}. Let [n] = (1 — ¢")/(1 — g) be the g-integer and let
®,,(¢) stand for the nth cyclotomic polynomial in ¢:
o= [] @-,

1<k<n
ged(k,n)=1

where £ is a primitive nth root of unity. Recently, Wei [11] and Wang [10] established
g-analogues of (1.2) for the first case: if n = 1 (mod 4), then modulo ®,(q)°,

(n=1)/2 c2N2( 2. 4 2. 4\2 (n—-1)/4 -
(Q»q )k(q 5q )k qZk = (n=1)/2 (q . q )(,1_1)/4{1 N 2[n]2 Z q4t 2 },
(590G g @542 1)4 L [4i - 2P
(n=1)/2

(@ a)d* 4 o= (@54 -1
(P gt g (@ qH -1

(n=3)/2 2k+1N 3. A4
1+ ;
P Z A +47)q"5 9"k 2t

2k + 11%(q% g

Guo and Zudilin [5] and Guo [3] gave g-analogues of (1.2) for the second case: if
n = 3 (mod 4), then

(n—-1)/2

1+¢"* (q*:q%);

. (@501 4w
4. 4\3
= 1+a (9%

(mod @,(¢)*),
(¢ 114)(n—1)/2q 1

= [I’l]qz

-1)/2
R O A C s TR

(@5 -1y
Gt D A

o (mod ®,(¢)%). (1.4)

= [n]
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Guo and Zudilin [5] also found the g-supercongruence: for any positive integer n > 1
with n = 1 (mod 4),

1)/2 _
g a4

7 = [n],e (@ ¢ n-1)2 (n=3)/2
= nly

Gt med &) (15)

o 1+q  (ghqY);

Setting n = p and then letting ¢ — 1 in (1.5), they obtain the extension of (1.3): for
p =1 (mod4),

(p+D)/2 143 1
=2k _ @o-n2

= (mod p3).
= k! (%)(p—l)/Z

Motivated by the results just mentioned, we shall establish the following theorem.

THEOREM 1.1. Let n,d be positive integers such that n—dn+2d <r<n+d,
ged(n,d) = 1 and n = r (mod 2d). Then

(n—r+d)/d —d+2dk (2r-2d. ,2d\3
L+ g2 (g7 q7); (5d=3r)k

r—d 2d. ,2d\3
o l+g (@5 ¢*);

3r-3d. ,2d
L= @5 Yamredid anioersadid (mod @, (g))
(@),

1= @2 (¢ P rva
Obviously, the d = 2, r = 3 case of Theorem 1.1 is exactly (1.4). Whend = 2,r =1,

Theorem 1.1 reduces to (1.5). Taking n = p and then letting ¢ — 1 in Theorem 1.1
gives the following supercongruence.

PROPOSITION 1.2. Let p be an odd prime and let d be a positive integer such that
p—dp+2d <r<p+dandp =r(mod2d). Then

(p—r+d)/d (ﬂ)3 (3r73d)
=5 ) (p-r+d)/d
dk _ _P 2d_/(p—r+d)/a (mod p3).

= (1y; r—d (%l)(p—mz)/d

Specialising the parameters d and r, Proposition 1.2 can produce many concrete
supercongruences. Six of these are given in the following corollaries.

COROLLARY 1.3. Let p be a prime with p = 1 (mod 6). Then
(P+2)/3 _2\3
(=3

k=0 (mod p3).
Z (1

k=0

PROOF. Take d = 3,r = 1 in Proposition 1.2. ]

COROLLARY 1.4. Let p be a prime with p = 5 (mod 6). Then
(p=2)/3

213
H 1)
Z % = E—(4)(p 203 (mod p?).
() 2(F)e-os
PROOF. Take d = 3,7 = 5 in Proposition 1.2. ]
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COROLLARY 1.5. Let p be a prime with p = 1 (mod 8). Then

3)/4 9
vy (—%)i _B(_g)(p+3)/4

=y 3 Dpraya

PROOF. Take d = 4,r = 1 in Proposition 1.2. |

(mod p3).

COROLLARY 1.6. Let p be a prime with p = 3 (mod 8). Then

(p+D)/4 (_l 3 (_§)
Z 42k - _ 78 (p+D/4 (mod p3).
— ) (Dp+1y/4
PROOF. Take d = 4,r = 3 in Proposition 1.2. ]

COROLLARY 1.7. Let p be a prime with p =5 (mod 8). Then

(p-1)/4 1)3 (2) 5
Z (4—}3‘ = p—g i (mod p3).
= (3)p-1)/4
PROOF. Take d = 4,r = 5 in Proposition 1.2. |

COROLLARY 1.8. Let p be a prime with p =7 (mod 8). Then

(p-3)/4 (§)3 (2) .
4—’3‘ = l—)—f‘l sl (mod p*).
o Wi 3o
PROOF. Take d = 4,r = 7 in Proposition 1.2. ]

We shall prove Theorem 1.1 in the next section by means of the creative microscop-
ing method recently introduced by Guo and Zudilin [4].

2. Proof of Theorem 1.1
Following Gasper and Rahman [2], define the basic hypergeometric series by

ap, d,...,dryl - (ar,az,...,0,41; Q) X
r 1¢r 5q, 2| = Z.
* [ bl,bz,...,br ] kz:(;(q,bl,bZ,-~~’br;Q)k

To prove Theorem 1.1, we require the g-Dixon formula:

a, —=qa'?, b, c qal/z] _(aq,aq/bc,qa'? /b, qa"?c; @)oo oD

4¢3[ —-a'’?, aq/b, aq/c A (aq/b,aq/c,qa'?,ga'?/bc; )
where |ga'/?/bc| < 1.
PROOF OF THEOREM 1.1. Setting a = ¢~'=?" in (2.1), we obtain
g gl b e gl
GV g b, g 4T

4¢3[ B
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Performing the simultaneous replacements n + (n —r)/2d, g+ ¢*¢, b+ bg* 4,
¢ = ¢?72/b in the above identity, we get

2r—2d—2n’ r+d—n’ qur_Zd, q2r—2d/b

q el qu—3r—n:| -0

-q

4¢3 _qr—d—n’ qu—Zn/b’ bq2d—2n

This gives the following congruence: modulo (a*> — ¢*"),

(n—-r+d)/d

1+ qr—d+2dk/a (qu—2d/a2’ qur_Zd, q2r—2d/b; q2d)k(q5d—3r )k o (2 2)
— 1+ qr—d/a (qu, q2d/a2b, qub/az; qu)k a =Y. .

—-1-2n

However, taking ¢ = ¢ in (2.1), we obtain

a, _qal/z, b’ q_1_2" ‘ q2+2na1/2] B (aq’ qal/z/b; q)l+2n

4¢3[ 2 T T  (aq/b,qa'\%; @)140n

—al’?, aq/b, aq
Employing the substitutions n + (n — r)/2d, g — ¢*¢, a — ¢* 2 /a?, b s g¥ =24+,
we arrive at

2d 4

;qv

qu—Zd/aZ, _qr+d/a, qu—2d+2n, qu—Zd—Zn S5d-3r
_qr—d/a’ q2d—2n/a2, q2d+2n/a2 a

4¢3[

2 2 3r-3d. ,2d
(aqd_r)(n_r+d)/d (g7 /a”, aq” ™% q" ) n-r+a)ja

(q*)a, ¢ Qn-r+aryja

This gives the following congruence: modulo (b — ¢g*")(1 — bg*™"),

(n—r+d)/d

1+ qr—d+2dk/a (q2r—2d/a2’ bqu—Zd’ q2r—2d/b; q2d)k (q5d—3r )k
a

o 1+q7la  (¢.q*]a*b.q*'b]a’; )

22 o 3r-3d. 2d
= (ag~yr+/d (g~ /a”,aq” " ¢ Yn-r+ayja 23)

(q*/a,aq* " Qn-r+aya

Note that the right-hand side of (2.2) can also be written as that of (2.3),
since (qzr/az,aq3"3d;qz‘l)(,,,,+d)/d contains the factor a®> — ¢*". It is clear that the
polynomials (a> — ¢**) and (b — ¢*")(1 — bg*") are relatively prime. Therefore, from

(2.2) and (2.3) we deduce that, modulo (a*> — ¢*")(b — ¢*")(1 — bg*"),

(n—r+d)/d 1+ qr—d+2dk Ja( q2r—2d |, bqu—Zd’ q2r—2d /b; q2d)k ( q5d—3r )k
o 1+qa  (¢*,¢*/a*b,q*'b]a* ¢* ) a
(@12, ag 3 P vy a

= (aqdfr)(nfrer)/ (24)

(q*/a,aq* > Qn-r+ayja

Lettinga — 1, b — 1 in (2.4), we are led to the g-supercongruence in Theorem 1.1. O
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3. Two open problems

Numerical calculations indicate the following two open problems related to Corol-
laries 1.3 and 1.5.

CONJECTURE 3.1. Let p be a prime with p = 1 (mod 6) and let s be a positive integer.

Then
P32y
3% 3s
= 0 (mod p™).
3
= ()
CONJECTURE 3.2. Let p be a prime with p = 1 (mod 8) and let s be a positive integer.
Then
P34 313 c(_9
(_ng __P 58)(1’“+3)/4 (mod p**?).
= )y 3 Rpreaya
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