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Abstract

We derive a q-supercongruence modulo the third power of a cyclotomic polynomial with the help of Guo
and Zudilin’s method of creative microscoping [‘A q-microscope for supercongruences’, Adv. Math. 346
(2019), 329–358] and the q-Dixon formula. As consequences, we give several supercongruences including
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where p is a prime with p ≡ 5 (mod 6).
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1. Introduction

For any complex variable x, define the shifted-factorial by

(x)0 = 1 and (x)n = x(x + 1) · · · (x + n − 1) for n ∈ Z+,

and let Γp(x) denote the p-adic Gamma function. Throughout the paper, p denotes an
odd prime. In 1997, Van Hamme [9, (H.2)] proved that
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(mod p2) if p ≡ 1 (mod 4),

0 (mod p2) if p ≡ 3 (mod 4).
(1.1)

In 2016, Long and Ramakrishna [6] gave an extension of (1.1):
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(1.2)
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In the same year, Deines et al. [1] discovered the nice supercongruence: for p ≡
1 (mod 6),

p−1∑
k=0

( 2
3 )3

k

(1)3
k

≡ −Γp

(1
3

)3
(mod p3).

Several years later, Mao and Pan [7] (see also Sun [8, Theorem 1.3]) found a result
similar to (1.1): for p ≡ 1 (mod 4),

(p+1)/2∑
k=0

(− 1
2 )3

k

(1)3
k

≡ 0 (mod p2). (1.3)

For any complex numbers x and q, define the q-shifted factorial by

(x; q)0 = 1 and (x; q)n = (1 − x)(1 − xq) · · · (1 − xqn−1) for n ∈ Z+.

For simplicity, we also adopt the compact notation

(x1, x2, . . . , xm; q)n = (x1; q)n(x2; q)n · · · (xm; q)n,

where m ∈ Z+ and n ∈ Z+ ∪ {0,∞}. Let [n] = (1 − qn)/(1 − q) be the q-integer and let
Φn(q) stand for the nth cyclotomic polynomial in q:

Φn(q) =
∏

1�k�n
gcd(k,n)=1

(q − ζk),

where ζ is a primitive nth root of unity. Recently, Wei [11] and Wang [10] established
q-analogues of (1.2) for the first case: if n ≡ 1 (mod 4), then modulo Φn(q)3,
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Guo and Zudilin [5] and Guo [3] gave q-analogues of (1.2) for the second case: if
n ≡ 3 (mod 4), then
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Guo and Zudilin [5] also found the q-supercongruence: for any positive integer n > 1
with n ≡ 1 (mod 4),
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q(n−3)/2 (mod Φn(q)3). (1.5)

Setting n = p and then letting q→ 1 in (1.5), they obtain the extension of (1.3): for
p ≡ 1 (mod 4),
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k=0
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k

k!3 ≡ p
( 1

4 )(p−1)/2

( 7
4 )(p−1)/2

(mod p3).

Motivated by the results just mentioned, we shall establish the following theorem.

THEOREM 1.1. Let n, d be positive integers such that n − dn + 2d ≤ r ≤ n + d,
gcd(n, d) = 1 and n ≡ r (mod 2d). Then

(n−r+d)/d∑
k=0

1 + qr−d+2dk

1 + qr−d

(q2r−2d; q2d)3
k

(q2d; q2d)3
k

q(5d−3r)k

≡ 1 − q2n
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(q3r−3d; q2d)(n−r+d)/d

(qr+d; q2d)(n−r+d)/d
q(d−r)(n−r+d)/d (mod Φn(q)3).

Obviously, the d = 2, r = 3 case of Theorem 1.1 is exactly (1.4). When d = 2, r = 1,
Theorem 1.1 reduces to (1.5). Taking n = p and then letting q→ 1 in Theorem 1.1
gives the following supercongruence.

PROPOSITION 1.2. Let p be an odd prime and let d be a positive integer such that
p − dp + 2d ≤ r ≤ p + d and p ≡ r (mod 2d). Then

(p−r+d)/d∑
k=0

( r−d
d )3

k

(1)3
k

≡ p
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( 3r−3d
2d )(p−r+d)/d
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2d )(p−r+d)/d

(mod p3).

Specialising the parameters d and r, Proposition 1.2 can produce many concrete
supercongruences. Six of these are given in the following corollaries.

COROLLARY 1.3. Let p be a prime with p ≡ 1 (mod 6). Then
(p+2)/3∑

k=0

(− 2
3 )3

k

(1)3
k

≡ 0 (mod p3).

PROOF. Take d = 3, r = 1 in Proposition 1.2. �

COROLLARY 1.4. Let p be a prime with p ≡ 5 (mod 6). Then
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( 4
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(mod p3).

PROOF. Take d = 3, r = 5 in Proposition 1.2. �
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COROLLARY 1.5. Let p be a prime with p ≡ 1 (mod 8). Then
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COROLLARY 1.8. Let p be a prime with p ≡ 7 (mod 8). Then
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PROOF. Take d = 4, r = 7 in Proposition 1.2. �

We shall prove Theorem 1.1 in the next section by means of the creative microscop-
ing method recently introduced by Guo and Zudilin [4].

2. Proof of Theorem 1.1

Following Gasper and Rahman [2], define the basic hypergeometric series by

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z
]
=

∞∑
k=0

(a1, a2, . . . , ar+1; q)k

(q, b1, b2, . . . , br; q)k
zk.

To prove Theorem 1.1, we require the q-Dixon formula:

4φ3

[
a, −qa1/2, b, c
−a1/2, aq/b, aq/c

; q,
qa1/2

bc

]
=

(aq, aq/bc, qa1/2/b, qa1/2/c; q)∞
(aq/b, aq/c, qa1/2, qa1/2/bc; q)∞

, (2.1)

where |qa1/2/bc| < 1.

PROOF OF THEOREM 1.1. Setting a = q−1−2n in (2.1), we obtain

4φ3

[
q−1−2n, −q1/2−n, b, c
−q−1/2−n, q−2n/b, q−2n/c

; q,
q1/2−n

bc

]
= 0.
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Performing the simultaneous replacements n �→ (n − r)/2d, q �→ q2d, b �→ bq2r−2d,
c �→ q2r−2d/b in the above identity, we get

4φ3

⎡⎢⎢⎢⎢⎢⎣ q2r−2d−2n, −qr+d−n, bq2r−2d, q2r−2d/b

−qr−d−n, q2d−2n/b, bq2d−2n
; q2d, q5d−3r−n

⎤⎥⎥⎥⎥⎥⎦ = 0.

This gives the following congruence: modulo (a2 − q2n),

(n−r+d)/d∑
k=0

1 + qr−d+2dk/a
1 + qr−d/a
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(q2d, q2d/a2b, q2db/a2; q2d)k

(q5d−3r

a

)k
≡ 0. (2.2)

However, taking c = q−1−2n in (2.1), we obtain

4φ3

⎡⎢⎢⎢⎢⎢⎣ a, −qa1/2, b, q−1−2n

−a1/2, aq/b, aq2+2n
; q,

q2+2na1/2

b

⎤⎥⎥⎥⎥⎥⎦ = (aq, qa1/2/b; q)1+2n

(aq/b, qa1/2; q)1+2n
.

Employing the substitutions n �→ (n − r)/2d, q �→ q2d, a �→ q2r−2d/a2, b �→ q2r−2d+2n,
we arrive at

4φ3
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; q2d,
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a

⎤⎥⎥⎥⎥⎥⎦

= (aqd−r)(n−r+d)/d (q2r/a2, aq3r−3d; q2d)(n−r+d)/d

(qr+d/a, a2q2r−2d; q)(n−r+d)/d
.

This gives the following congruence: modulo (b − q2n)(1 − bq2n),

(n−r+d)/d∑
k=0

1 + qr−d+2dk/a
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(q2r−2d/a2, bq2r−2d, q2r−2d/b; q2d)k
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a

)k

≡ (aqd−r)(n−r+d)/d (q2r/a2, aq3r−3d; q2d)(n−r+d)/d

(qr+d/a, a2q2r−2d; q)(n−r+d)/d
. (2.3)

Note that the right-hand side of (2.2) can also be written as that of (2.3),
since (q2r/a2, aq3r−3d; q2d)(n−r+d)/d contains the factor a2 − q2n. It is clear that the
polynomials (a2 − q2n) and (b − q2n)(1 − bq2n) are relatively prime. Therefore, from
(2.2) and (2.3) we deduce that, modulo (a2 − q2n)(b − q2n)(1 − bq2n),

(n−r+d)/d∑
k=0

1 + qr−d+2dk/a
1 + qr−d/a

(q2r−2d/a2, bq2r−2d, q2r−2d/b; q2d)k

(q2d, q2d/a2b, q2db/a2; q2d)k

(q5d−3r

a

)k

≡ (aqd−r)(n−r+d)/d (q2r/a2, aq3r−3d; q2d)(n−r+d)/d

(qr+d/a, a2q2r−2d; q)(n−r+d)/d
. (2.4)

Letting a→ 1, b→ 1 in (2.4), we are led to the q-supercongruence in Theorem 1.1. �
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3. Two open problems

Numerical calculations indicate the following two open problems related to Corol-
laries 1.3 and 1.5.

CONJECTURE 3.1. Let p be a prime with p ≡ 1 (mod 6) and let s be a positive integer.
Then

(ps+2)/3∑
k=0

(− 2
3 )3

k

(1)3
k

≡ 0 (mod p3s).

CONJECTURE 3.2. Let p be a prime with p ≡ 1 (mod 8) and let s be a positive integer.
Then

(ps+3)/4∑
k=0

(− 3
4 )3

k

(1)3
k

≡ − ps

3
(− 9

8 )(ps+3)/4

( 5
8 )(ps+3)/4

(mod ps+2).
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