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Abstract

In this paper we develop the theory of the W and Z scale functions for right-continuous
(upwards skip-free) discrete-time, discrete-space random walks, along the lines of the
analogous theory for spectrally negative Lévy processes. Notably, we introduce for the
first time in this context the one- and two-parameter scale functions Z, which appear
for example in the joint deficit at ruin and time of ruin problems of actuarial science.
Comparisons are made between the various theories of scale functions as one makes
time and/or space continuous.
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1. Introduction

First passage theory for random walks is a classic topic, excellently treated in, for example,
[10], [15], [31], and [33], and this includes the right-continuous random walk, or what is
the upwards skip-free compound binomial model of the actuarial literature. However, in light
of recent developments in the parallel continuous-time theory of spectrally negative/upwards
skip-free Lévy and Markov additive processes (see, for example, [2], [4], [5], [19], [20], and
[35]) it seems worthwhile to revisit this topic.

Recall that in the Lévy case the scale functions W(q) and Z(q) have been known since [5]
and [32], and that these functions intervene in important optimization problems. For example,
W(q) provides the value function of the classic de Finetti problem of optimizing expected
dividends until ruin with discount factor q [6], while Z(q)(·, θ ) appears for instance in the
moment generating function (with θ as argument) of the capital injections [20] and in the
combined dividend payout-capital injections problem for a doubly reflected process [1], [6].
These are just two examples from an ever increasing list of problems [4], [23], [28], which
can now be tackled by simple lookup in the list and using off-shelf packages computing the
functions W and Z [19].

It was expected that the first passage theory developed in the world of spectrally negative
Lévy processes, which we call the scale functions—or the �,W, Z—paradigm, should have

Received 22 January 2018; revision received 26 February 2019.
∗ Postal address: Laboratoire de Mathématiques Appliquées, Université de Pau, Avenue de l’Université, 64012 Pau,
France.
∗∗ Postal address: Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana,
Jadranska ulica 21, 1000 Ljubljana, Slovenia.

408

https://doi.org/10.1017/apr.2019.17 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.17
http://www.appliedprobability.org
https://doi.org/10.1017/apr.2019.17


First passage problems for upwards skip-free random walks via the �,W, Z paradigm 409

parallels for other classes of spectrally negative/skip-free Markov processes. In particular, the
three cases listed below, being precisely the processes with stationary independent increments
that exhibit nonrandom overshoots [34] (modulo processes with monotone paths), were
expected to be very similar:

(i) (discrete-time, discrete-space) right-continuous (i.e. skip-free to the right) random
walks, also known in insurance as the compound binomial model;

(ii) (continuous-time, discrete-space) compound Poisson processes that live on a lattice hZ,
h ∈ (0,∞), jumping up only by h (what were called upwards skip-free Lévy chains in
[35]);

(iii) (continuous-time, continuous-space) spectrally negative Lévy processes.

However, important steps were missing for the fully discrete setup. Notably, the second scale
function Zv(·,w) was absent from the previous literature and we provide below for the first time
its generating function (z-transform) (14). Another contribution of our paper is spelling out the
connections between the three types of first passage problems listed above. In particular, in
Appendix B we provide a concise table featuring side-by-side some of the salient features of
the �,W, Z theory for the three types of process (i)-(ii)-(iii) delineated above. It may serve as
an inexhaustive summary and a quick reference; for the complete exposition, the main body of
the text must be consulted.

Now, the doubly discrete (in time and space) random walk risk model [16], [30] is defined by

Xn = X0 + cn −
n∑

i=1

Ci, n ∈N0 = {0, 1, 2, . . .},

where X0, taking values in Z, is the initial capital, c ∈N is the premium rate and the claims
Ci, i ∈N, take values in N0 and are independent, identically distributed random variables with
probability mass function pk = P(C1 = k) for k ∈N0.

One advantage of the discrete setup over the more popular continuous-time models is the
possibility to replace the Wiener–Hopf factorization by the conceptually simpler factorization
of Laurent series (see, for example, [8] and [37]); another advantage is that one has access to
Panjer recursions for computing compound distributions.

The results simplify considerably for the upwards skip-free compound binomial model
obtained when c = 1 (see [11], [13, Section 4.1], [26], [29], [31], among others),

Xn = X0 + n −
n∑

i=1

Ci, n ∈N0, (1)

that we now consider as having been fixed and to which we specialize all discussion henceforth.
Ignoring its interpretation as an actuarial model, X = (Xn)n∈N0 is nothing but a right-continuous
random walk, and while our motivation for this investigation comes chiefly from risk models
in the insurance context, and some actuarial-motivated vocabulary has (e.g. claims) and will
(e.g. ruin probabilities) be used, the results presented are completely general and, hence, more
widely applicable.

We insist throughout that p0 > 0 and we let

p̃(z) :=E[zC1 ] =
∞∑

k=0

pkzk, z ∈ (0, 1],
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denote the probability generating function of the claims. Then, for n ∈N, (in the obvious
notation) E[z

∑n
i=1 Ci] = [p̃(z)]n = (p0 + (1 − p0) p̃C|C ≥ 1(z))n, which makes it manifest that∑n

i=1 Ci, the total claims arising from n time periods, has a compound binomial distribution,
explaining the name compound binomial model: at each instant in discrete time, a positive
claim either occurs or not, with probability 1 − p0 and p0, respectively, independently of the
sizes of the positive claims.

Remark 1. By the independence of the claims we may also write, for n ∈N0,

E[z
∑n

i=1 (Ci−1)] =
(

p̃(z)

z

)n

�⇒
∞∑

m=0

vm
E[z

∑m
i=1 (Ci−1)] = 1

1 − ṽp(z)/z
, v ∈ (0, z/̃p(z)).

The last expression, called the ‘unrestricted generating function’ in [8, Equation (8)], identifies
already potential singularities as the roots of the Lundberg equation [25] p̃(z)/z = v−1.
The smallest (positive) root of this equation plays a central role in our story; see the next
section.

Next, let
τ−

b = inf{t ≥ 0: Xt ≤ b} and τ+
b = inf{t ≥ 0: Xt ≥ b} (2)

respectively denote the first passage times below and above a level b (with inf ∅= ∞).

Remark 2. Note that this differs slightly from the usual definition of these quantities for a
spectrally negative Lévy process, say U. Here one replaces t ≥ 0 by t> 0 and ≤ b (≥ b) by< b
(> b); and, of course, X by U. When considering τ±

b for a spectrally negative Lévy process U,
we shall mean these quantities with the latter replacements in effect.

Lastly, for convenience, we assume that a family of measures (Px)x∈Z is given with
corresponding expectation operators (Ex)x∈Z, for which: (i) Px[X0 = x] = 1 for all x ∈Z; and
(ii) the Ci, i ∈N, have the same law under all the Px, x ∈Z, as they do under P= P0.

Remark 3. The discrete-time, discrete-space compound binomial model is embedded into
continuous time via subordination (time-change) by an independent homogeneous Poisson
process N. In precise terms, allowing also a scaling of space, we have the following
correspondence between the right-continuous random walk X of (1) and the upwards skip-free
Lévy chain of [35, Section 2], which we denote by Y ,

X � Y : Yt := hXNt , t ∈ [0,∞),

where h ∈ (0,∞) is space scaling. In particular, denoting the intensity of N by γ , the Lévy
measure λ of Y is given by λ= γ

∑
i∈N0\{1} piδh(1−i), and if we denote the Laplace exponent

of Y by ψ (so ψ(β) = log E[eβYt ]/t for β ∈ [0,∞)) then ψ(β) = γ [eβh̃p(e−βh) − 1]. Note that
the mass of the Lévy measure λ is γ (1 − p1), which may be strictly less than γ .

Remark 4. In the following, when the τ±
b appear in the context of the upwards skip-free Lévy

chain Y , they are to be interpreted in the sense of (2) with Y replacing X.

The remainder of the paper is organised as follows. In Sections 2, 3, and 4, we respectively
review (with v indicating discounting) the smooth (i.e. upwards; hence, skip-free) one-sided
first passage problem, which introduces the Lundberg root ϕv (analogue of�(q) from the Lévy
theory); the nonsmooth (i.e. downwards) one-sided first passage problem, which involves the
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ruin and survival probabilities �v and �̄v; the smooth (i.e. exiting at the upper boundary)
two-sided first passage problem, where the fundamental scale function Wv first appears.

We then turn to original contributions in Section 5, computing the generating function
(z-transform) of the second hero of the first passage theory: the Zv(·,w) scale function. This
is introduced via the problem of position on the nonsmooth two-sided exit. We provide the
analogue (12) of the following two-sided exit identity for a spectrally negative Lévy process U
(in standard notation, see below):

Ex[e−qτ−
0 +θU(τ−

0 );τ−
0 < τ+

b ] = Z(q)(x, θ ) − W(q)(x)

W(q)(b)
Z(q)(b, θ ).

Ivanovs and Palmowski [20, Corollary 3] provide its beautiful probabilistic interpretation. We
also determine the analogue (17) of the formula [23, Equation (8.9)] (again for a spectrally
negative Lévy process, in standard notation, see below)

Ex[e−qτ−
0 ;τ−

0 <∞] = Z(q)(x) − q

�(q)
W(q)(x), q> 0,

which is interesting, for example, since it reveals that the two protagonists of the ‘reflected’
and ‘absorbed’ smooth passage problems, Z(q) and W(q), have the same asymptotics at ∞, up
to a constant. (For definiteness, let us mention that, in the preceding formulae, for q ∈ [0,∞):
�(q) is the largest root of κ − q, where κ is the Laplace exponent of the underlying Lévy
process U; W(q) is the unique function mapping R→R, vanishing on (−∞, 0), continuous on
[0,∞), and having Laplace transform

∫ ∞
0 e−λxW(q)(x) dx = (κ(λ) − q)−1 for λ ∈ (�(q),∞);

finally, Z(q)(x, θ ) = eθx + (q − κ(θ ))
∫ x

0 eθ(x−y)W(q)(y) dy for x ∈R.) A distinguishing element
of the scale functions Wv and Zv(·,w), in the present context, are explicit recursions available
for their computation, see (9) and (13), respectively.

For applications of this theory to combined capital injections-dividend payout-penalty at
ruin optimization problems, see an earlier version of this paper [3, Sections 6 and 7].

2. Smooth one-sided first passage problem: the Lundberg equation

The first key observation is that, for the first passage upwards, the stationary independent
increments and skip-free properties imply a multiplicative structure. For integer x ≤ b and
v ∈ (0, 1], we have

Ex[vτ
+
b ;τ+

b <∞] = ϕb−x
v , (3)

where

ϕv := E[vτ
+
1 ;τ+

1 <∞] =
∞∑

k=1

vk
P[τ+

1 = k] ∈ (0, v].

Conditioning at time 1, we obtain

ϕv = v E[E1−C1 [vτ
+
1 ;τ+

1 <∞]] = v
∞∑

k=0

pkϕ
k
v = ṽp(ϕv),

which reveals that ϕv in (3) satisfies the Lundberg equation [12, Equation (3.3)], [18, Equation
(6.8)]

ϕv

p̃(ϕv)
= v. (4)
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Alternatively, this relation may be derived by looking for exponential martingales of the form
(vtξ−Xt )t∈N0 , for fixed v, and ξ from (0, 1]: (vtξ−Xt )t∈N0 is a martingale if and only if ξ/̃p(ξ ) =
v; and then applying optional sampling.

Remark 5. The function (0, 1] 
 ξ �→ p̃(ξ )/ξ =E[ξC1−1] is strictly convex, equal to 1 at 1,
and tending to ∞ at 0. It follows that the equation (in ξ ∈ (0, 1]) p̃(ξ )/ξ = v−1 has as its
unique solution ϕv ∈ (0, 1), when v< 1 (furthermore, in this case, ϕv < v), whereas in the
v = 1 case, this equation has one or two solutions (one of which is always 1), according
as to whether E[C1] ≤ 1 or E[C1]> 1. In the latter case X drifts to −∞, and ϕ1 ∈ (0, 1) is
the smallest solution to ξ = p̃(ξ ) (in ξ ∈ (0, 1]). Altogether, this gives a continuous strictly
increasing bijection ϕ : (0, 1] → (0, ϕ1].

Remark 6. If, for q ∈ [0,∞), we let �(q) be the largest zero of ψ − q, then we see from
Remark 3 that ϕv = e−h�(γ (v−1−1)) for all v ∈ (0, 1].

Remark 7. Note that (4) identifies τ+
1 as a Lagrangian type distribution [14]. Indeed the

distribution of τ+
1 may be obtained using the Lagrange inversion formula [14, Paragraph 1.2.6]

ϕv =
∞∑

n=1

vn

n!
[(

d

dw

)n−1

p̃(w)n
]

w=0
=

∞∑
n=1

vn

n
pn∗(n − 1),

where, for n ∈N, pn∗ is the n-fold convolution of the distribution p with itself (the second
equality follows from the fact that, for n ∈N, p̃n is the probability generating function of the
probability mass function pn∗, viz. of the sum of n independent random variables, all distributed
as C1). More generally, for b ∈N,

ϕb
v = b

∞∑
n=b

vn

n
pn∗(n − b),

yielding Kemperman’s formula [21] for the distribution of τ+
b ,

P[τ+
b = n] = b

n
pn∗(n − b) = b

n
P[Xn = b], n ∈N≥b.

3. Nonsmooth one-sided first passage problem: ruin and survival probabilities; the
Lundberg recurrence

For initial capital x ∈Z, the finite time and eventual ruin probabilities are defined by

�(n; x) := Px[τ−
−1 ≤ n] for n ∈N0, �(x) := lim

n→∞�(n; x) = Px[τ−
−1 <∞];

similarly, we introduce the finite time and perpetual survival probabilities

�̄(n; x) := Px[τ−
−1 > n] for n ∈N0, �̄(x) := lim

n→∞ �̄(n; x) = Px[τ−
−1 = ∞].
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Of course, �(n; x) + �̄(n; x) = 1, �(x) + �̄(x) = 1, and we have the recursions, valid for all
integers x ≥ 0, n ≥ 1,

�̄(n; x) =
x+1∑
i=0

pi�̄(n − 1; x + 1 − i), �̄(0; x) = 1, (5)

�(n; x) =
x+1∑
i=0

pi�(n − 1; x + 1 − i) +
∞∑

k=x+2

pk, �(0; x) = 0.

These two recurrences may, for a sequence of functions fn : Z→ [0, 1], standing in lieu of
�(n; · ) and �̄(n; · ), be written symbolically as

fn = K p̃(K−1)fn−1 on N0,

which passes to the limit (as n → ∞)

f = K p̃(K−1)f on N0,

where K is the translation operator, Kg(x) := g(x + 1), and f (x) := limn→∞ fn(x). This
limiting recurrence (satisfied by the eventual ruin and perpetual survival probabilities �
and �̄) may be called the ‘Lundberg recurrence’. It constitutes a linear difference equation
for f , whose characteristic equation is (in x �= 0) 1 = x̃p(1/x). The latter is (formally) just
the Lundberg equation (4) with v = 1 upon substituting x−1 for ϕ1. When the distribution
p has a finite support, then from the theory of finite-order linear difference equations with
constant coefficients, this implies that f , in particular the ultimate ruin and perpetual survival
probabilities, may be expressed as combinations of powers of the roots of the characteristic
equation (in x �= 0)

1 = x p̃

(
1

x

)
.

Classical ruin theory proceeds by computing double (generating function) transforms,
briefly reviewed in Appendix A. For example, one useful result, similar to the Pollaczek–
Khinchine formula for the Cramér–Lundberg model, is

˜̄�(z) :=
∞∑

x=0

zx�̄(x) = (1 −E[C1]) ∨ 0

p̃(z) − z
, z ∈ (0, 1); (6)

see [36, Equation (3.5)]. Another is

�̃v(z) :=
∞∑

x=0

∞∑
n=0

zxvn�(n; x)

= 1

z − ṽp(z)

(
v(z − p̃(z))

(1 − v)(1 − z)
+ ϕv

1 − ϕv

)
, v, z ∈ (0, 1), z �= ϕv. (7)

We will follow next an alternate approach, which focuses on the two-sided exit problem
from an interval.
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4. Smooth two-sided first passage problem: the W scale functions

In the context of Lévy processes, the W(q) scale function is often defined first for q = 0, in
the case when the underlying process drifts to ∞, by proportionality to the survival probability,
and then in the remainder of the cases by an Esscher transform/approximation [9, Section
VII.2], [23, Section 8.2], [35, Section 4.2].

In our setting of the right-continuous random walk X, we introduce, for v ∈ (0, 1], the
discrete-time analogue Wv of W(q), by setting Wv(y) := (p0E[vτ

+
y ;τ+

y < τ−
−1])−1 for y ∈N0

and Wv(y) = 0 for y ∈ −N. For integer 0 ≤ x ≤ N, the Markov property at the time τ+
x and the

skip-free property (yielding Xτ+
x

= x on {τ+
x <∞}) then imply that

E[vτ
+
N ; τ+

N < τ−
−1] =E[vτ

+
x EX

τ
+
x

[vτ
+
N ;τ+

N < τ−
−1]; τ+

x < τ−
−1]

=Ex[vτ
+
N ; τ+

N < τ−
−1]E[vτ

+
x ; τ+

x < τ−
−1],

i.e. the ‘gambler’s winning’ relation [17], [26]

Ex[vτ
+
N ; τ+

N < τ−
−1] = Wv(x)

Wv(N)
, (8)

which is valid for all integers N ≥ 0 and x ≤ N (it is trivial for x< 0 as both sides are then 0).
We call Wv the v-scale function and we simply write W for the 1-scale function W1.

(The choice of the normalization Wv(0) = 1/p0 is somewhat arbitrary, though it is guided by
obtaining the simplest possible form for the z-transform of Wv (see (10) below); by comparison
to the W scale function of [35] (see Remark 10 below); and the simplicity of subsequent
formulae in which Wv features.)

Remark 8. We use the subscript notation Wv for the scale functions of X, reserving the
superscript version W(q) for the corresponding quantities from the Lévy setting. When only
W appears, it will be clear from the context which of the two is meant. We will adhere to a
similar convention with respect to the scale functions Z(q)(·, θ ), Z(q) := Z(q)(·, 0) and (hence
the notation) their discrete-time analogues Zv(·,w), Zv.

Conditioning on the first jump, (8) implies the harmonic recursion

Wv(x) = v
x∑

y=−1

Wv(x − y)py+1, x ∈N0; (9)

see [26, Equation (3.1)]
Taking the z-transform yields

W̃v(z) :=
∞∑

x=0

zxWv(x) = 1

p̃(z) − z/v
, z ∈ (0, ϕv); (10)

see [26, Equation (3.2)]
Since the z-transform (10) of Wv is known, the computation of the scale function Wv finally

reduces to Taylor coefficient extraction of (10) expanded in a power series.

Remark 9. It is seen from (9), or directly from (8), that we have Wv/v = vW, where vW is the
1-scale function of the process X geometrically killed with probability 1 − v, i.e. of the process
which has, ceteris paribus, the sub-probability mass function (vpk)k∈N0 governing the sizes of
the Cn, n ∈N.
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Remark 10. For X embedded into continuous time as an upwards skip-free Lévy chain,
i.e. for the process Y of Remark 3, (9) and (10) become, respectively, [35, Equations (20)
and (16)]. This is seen through the identification W(q)(mh) = (1/γ h)Wγ /(γ+q)(m) for m ∈N0,
q ∈ [0,∞), where W(q) is the q-scale function of [35]. Note also that the normalization
Wv(0) = p−1

0 is consistent with W(q)(0) = 1/(hλ({h})) = 1/(γ hp0) of [35, Proposition 5]. On
the other hand, in the spectrally negative case, there is no direct analogue of recursion (9),
though one can consider the heuristic relation (it is rigorous in the upwards skip-free case
[35, Remark 8]) (L − q)W(q) = 0 on (0,∞) [22, p. 136], L being the infinitesimal generator
of the underlying Lévy process, to be a close relative. (10) has the Laplace transform
equivalent [22, Equation (8.8)] that formally differs from [35, Equation (16)] only by the factor
(eβh − 1)/(βh) → 1 as h ↓ 0 (with β the argument of the Laplace transform).

Remark 11. An alternative form of recursion (9) is

Wv(n + 1) = Wv(0) +
n+1∑
k=1

1/v − ∑k
l=0 pl

p0
Wv(n + 1 − k), n ∈N0;

see [35, Equation (23)]. In particular, we see via induction that, for each fixed integer x, the
map [1,∞) 
 ξ �→ W1/ξ (x) extends to a polynomial function defined on the whole complex
plane.

Remark 12. When X drifts to ∞, i.e. when E[C1]< 1, then with v = 1, (10) coincides up to a
multiplicative constant with the perpetual survival transform (6). We conclude that

�̄(x) = (1 −E[C1])W(x).

Remark 13. It follows from (10), i.e. by inspecting the equality of generating functions, that
vW(x) = (ϕv/v)Wv(x)ϕx

v , where vW is the 1-scale function of the Esscher transformed process
in which C1 has the geometrically tilted probability mass function N0 
 k �→ (v/ϕv)pkϕ

k
v (and

so the probability generating function (0, 1] 
 z �→ (v/ϕv) p̃ (zϕv)). Furthermore, we see that

lim
x→∞ Wv(x)ϕx+1

v = v lim
x→∞ vW(x)

= vW(∞)v

= v lim
z↑1

∞∑
x=0

(1 − z)zx
vW(x)

= v lim
z↑1

(1 − z)ṽW(z)

= v lim
z↑1

1 − z

(v/ϕv)p̃(zϕv) − z

= v

1 − ṽp′(ϕv − )
,

where we understand 1/0 = ∞ (the equality vW(∞) = limz↑1
∑∞

x=0 (1 − z)zx
vW(x) is seen to

hold, for instance, by monotone convergence, because one can view
∑∞

x=0 (1 − z)zx
vW(x) as

the expectation of vW(gz), where gz is a geometric random variable with success parameter
1 − z, and the gz can be defined on a common probability space so as to be increasing to ∞ as
z ↑ 1). This confirms [35, Proposition 6(1)]. For a more detailed study of the behaviour of W1
in the case when X oscillates, i.e. when p̃′(1 − ) = 1 and ϕ1 = 1, and so when the preceding
does not yield the precise asymptotics of W at infinity, see [35, Proposition 6(2)].
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Remark 14. We note the following interesting observation of [26] that the scale function is
essentially a determinant. For an arbitrary homogeneous Markov chain (Vn)n∈N0 on a countable
state space, let (V ′

n)n∈N0 denote the chain killed outside a finite nonempty set M, and let Q
denote the corresponding restriction of the transition matrix to M. For v ∈ (0, 1), denote by Dv

the determinant of the matrix I − vQ. Then the killed resolvent expresses as

∞∑
n=0

Pi[V
′
n = j]vn = ((I − vQ)−1)ij = Nij(v)

Dv
, {i, j} ⊂ M,

where Nij(v) are the entries of the adjoint matrix adj(I − vQ) (see, for example, [26, Corollary
2.2]). Restricting now to the upwards skip-free case (while [26] considers the downwards skip-
free case), for v ∈ (0, 1], let Dv(N),N ∈N, denote the determinant corresponding (in the above
sense) to the restriction of X to {0, 1, 2, . . . ,N − 1}, and set Dv(0) := 1. From [26, Proposition
3.3],

Ei[v
τ+

N , τ+
N < τ−

−1] = (p0v)N−i Dv(i)

Dv(N)
, {i,N} ⊂N0, v ∈ (0, 1).

It follows that
Wv(i) = p−1

0 (p0v)−iDv(i) for all i ∈N0, v ∈ (0, 1].

Remark 15. For N ∈N, the resolvent of the process X killed on exiting IN : = {0, . . . ,N − 1},
denoted by X′, is given by

∞∑
n=0

Pi[X
′
n = j]vn = v−1

(
Wv(N − 1 − j)Wv(i)

Wv(N)
− Wv(i − j − 1)

)
,

where {i, j} ⊂ IN, v ∈ (0, 1]; see [26, Proposition 3.2]. For the analogue of the latter in the
spectrally negative case, see, e.g. [23, Theorem 8.7].

We conclude this section with the following important observation.

Proposition 1. For every v ∈ (0, 1], (vn∧τ−
−1 Wv(Xn∧τ−

−1
))n∈N0 is a martingale under each Px,

x ∈Z.

Proof. This follows from the harmonic recurrence (9). �
Remark 16. The analogue of Proposition 1 in the setting of upwards skip-free Lévy chains are
the martingales, for q ∈ [0,∞), (e−q(t∧τ−

−h)W(q)(Yt∧τ−
−h

))t∈[0,∞) [35, Corollary 2]. In the case

of a spectrally negative Lévy process U, (e−q(t∧τ−
0 )W(q)(Ut∧τ−

0
))t∈[0,∞) is a local martingale

with localizing sequence (τ+
n )n∈N [23, Example 8.12]. There are no issues with integrability in

the discrete space case, because thanks to the skip-free property, Px-a.s. for any x ∈Z, by any
deterministic time, the stopped process Xτ

−
−1 is automatically bounded from above (and, for the

upwards skip-free Lévy chain Y , the further subordination by the independent homogeneous
Poisson process N does not ruin this).

Corollary 1. For each v ∈ (0, 1] and integer x ≤ N, b ≤ N,

Ex[Wv(Xτ−
b−1

)vτ
−
b−1 ;τ−

b−1 < τ
+
N ] = Wv(x) − Wv(x − b)

Wv(N − b)
Wv(N).

In particular,

Ex[Wv(Xτ−
b−1

)vτ
−
b−1 ;τ−

b−1 <∞] = Wv(x) − Wv(x − b)ϕb
v .

https://doi.org/10.1017/apr.2019.17 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.17


First passage problems for upwards skip-free random walks via the �,W, Z paradigm 417

Proof. For any integer x, by optional sampling, the skip-free property and spatial
homogeneity

Wv(x) =Ex[Wv(X(τ−
b−1))vτ

−
b−1 ;τ−

b−1 < τ
+
N ] +Ex[Wv(X(τ+

N ))vτ
+
N ;τ+

N < τ−
b−1]

=Ex[Wv(X(τ−
b−1))vτ

−
b−1 ;τ−

b−1 < τ
+
N ] + Wv(N)Ex[vτ

+
N ;τ+

N < τ−
b−1]

=Ex[Wv(X(τ−
b−1))vτ

−
b−1 ;τ−

b−1 < τ
+
N ] + Wv(N)Ex−b[vτ

+
N−b ;τ+

N−b < τ
−
−1].

The first identity then follows from (8). In particular, letting N ↑ ∞ and using Remark 13, we
obtain the second identity (for instance, first for v< 1 and then taking the limit v ↑ 1). �
Remark 17. For the analogue of Corollary 1 in the spectrally negative Lévy setting, see [24,
Lemma 2.1, Equation (19) and Lemma 2.2(i)].

5. Nonsmooth two-sided first passage problem: the Z scale functions

Let v ∈ (0, 1], w ∈ (0, 1]. For integer x ≤ b, b ≥ 0, by the Markov property at time τ+
b and

the skip-free property (yielding Xτ+
b

= b on {τ+
b <∞}),

Ex[vτ
−
−1 w−X(τ−

−1); τ−
−1 < τ

+
b ]

=Ex[vτ
−
−1 w−X(τ−

−1); τ−
−1 <∞] −Ex[vτ

−
−1 w−X(τ−

−1); τ+
b < τ−

−1 <∞]

=Ex[vτ
−
−1 w−X(τ−

−1); τ−
−1 <∞] −Ex[vτ

+
b ; τ+

b < τ−
−1]Eb[vτ

−
−1 w−X(τ−

−1); τ−
−1 <∞].

Setting �v(x,w) :=Ex[vτ
−
−1 w−X(τ−

−1); τ−
−1 <∞], we then have from the preceding and

using (8), the neat identity Ex[vτ
−
−1 w−X(τ−

−1); τ−
−1 < τ

+
b ] =�v(x,w) − (Wv(x)/Wv(b))�v(b,w).

We introduce now, for some αv(w) ∈ [0,∞) that we shall specify later on,

Zv(x,w) := �v(x,w) + αv(w)Wv(x), (11)

a slightly modified �v(·,w), which also satisfies the identity

Ex[vτ
−
−1 w−X(τ−

−1); τ−
−1 < τ

+
b ] = Zv(x,w) − Wv(x)

Wv(b)
Zv(b,w) (12)

(easy to check). The first motivation for preferring to use Zv(·,w) with a suitable choice of
αv(w) instead of �v(·,w) appears below in (14); many other formulae where the analogue of
Zv(·,w) is preferable are known in the literature on spectrally negative Lévy processes, see, for
example, [4] and [20].

Remark 18. Note that Zv(x,w) =�v(x,w) = w−x for all integer x ≤ −1.

We compute now the z-transform of Z. Conditioning on the first jump, we obtain from (11)
and the definition of �v(·,w), via (9), the recurrence relation

Zv(x,w)

v
=

x∑
k=−1

pk+1Zv(x − k,w) +
∞∑

k=x+1

wk−xpk+1, x ∈N0. (13)

Hence, the generating function

Z̃v(z,w) :=
∞∑

x=0

zxZv(x,w)
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satisfies, for z ∈ (0, ϕv)\{w},
Z̃v(z,w)

v

= p0
Z̃v(z,w) − Zv(0,w)

z
+

∞∑
x=0

zx
x∑

k=0

Zv(x − k,w)pk+1 +
∞∑

x=0

zx
∞∑

k=x+1

wk−xpk+1

= p0
Z̃v(z,w) − Zv(0,w)

z
+

∞∑
k=0

pk+1zk
∞∑

x=k

zx−kZv(x − k,w)

+
∞∑

k=1

pk+1wk
k−1∑
x=0

(
z

w

)x

= p0
Z̃v(z,w) − Zv(0,w)

z
+ Z̃v(z,w)

∞∑
k=0

pk+1zk +
∞∑

k=1

pk+1wk 1 − (z/w)k

1 − z/w

= p0
Z̃v(z,w) − Zv(0,w)

z
+ Z̃v(z,w)

p̃(z) − p0

z
+ (̃p(w) − p0)/w − (̃p(z) − p0)/z

1 − z/w
,

i.e. in view of (10),

Z̃v(z,w) = −p0(1 − Zv(0,w))W̃v(z) + z̃p(w) − w̃p(z)

(z − w)(̃p(z) − z/v)
.

Recall now that in the Lévy case, Z(q)(0, θ ) is chosen so as to ensure a ‘smooth fit’ [7,
Definition 5.8] to the boundary condition exθ for x ∈ (−∞, 0). The analogue in the discrete case
is to insist on Zv(0,w) = 1, which we may do by choosing (cf. (11)) αv(w) = p0(1 −�v(0,w)).
Furthermore, this choice (that we assume henceforth) leads to the simple expression

Z̃v(z,w) = 1

p̃(z) − z/v

z̃p(w) − w̃p(z)

z − w
, z ∈ (0, ϕv), v ∈ (0, 1], w ∈ (0, 1] (14)

(where the quotient must be understood in the limiting sense when z = w).
Extracting the coefficients of the z-power series yields finally an expression similar to that

of the Dickson–Hipp type representation in the Lévy case (see [20])

Zv(x,w) =
(̃

p(w) − w

v

) ∞∑
k=0

wkWv(x + k), w ∈ (0, ϕv), v ∈ (0, 1], x ∈N0

(it is easy to check that this expression has z-transform (14)).
In the special case w = 1 we set Zv(x) := Zv(x, 1), (14) simplifies to

Z̃v(z) :=
∞∑

x=0

zxZv(x) = p̃(z) − z

(̃p(z) − z/v)(1 − z)
, z ∈ (0, ϕv), v ∈ (0, 1], (15)

and we have the representation

Zv(x) = 1 +
(

1

v
− 1

) x−1∑
y=0

Wv(y), v ∈ (0, 1], x ∈N0. (16)
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Remark 19. Using (7) in the form

�̃v(z) = 1

z/v − p̃(z)

(
z − p̃(z)

(1 − v)(1 − z)
+ ϕv

v(1 − ϕv)

)
, v, z ∈ (0, 1), z �= ϕv,

it follows from (10) and (15) that

�v(x) :=
∞∑

n=0

vn�(n; x) = 1

1 − v
Zv(x) − ϕv

v(1 − ϕv)
Wv(x),

i.e.

Ex[vτ
−
−1 ; τ−

−1 <∞] = Zv(x) − ϕv(1 − v)

v(1 − ϕv)
Wv(x)

= Zv(x) − αvWv(x), x ∈N0, v ∈ (0, 1), (17)

where we have set αv := αv(1) (recall that we have chosen αv(1) so that Zv(0) =
1 =E[vτ

−
−1 ; τ−

−1 <∞] + αv(1)Wv(0)). Passing to the limit v ↑ 1, we find that Px(τ−
−1 <∞) =

1 − W(x)(1 − p̃′(1 − ) ∧ 1).

Remark 20. It is seen from (16), Remark 10, and [35, Definition 4] that we have the
identification Z(q)(mh) = Zγ /(γ+q)(m) for q ∈ [0,∞), m ∈Z, where Z(q) is the Z q-scale
function of [35]. Then (14), (12) and (13), with w = 1, become [35, Equation (19), Proposition
8, and Equation (21)], respectively; (17) becomes [35, Equation (4.8)]. For an alternative form
of (13) (when w = 1), see [35, Equation (18)].

Proposition 2. For all v ∈ (0, 1], w ∈ (0, 1], the process (vn∧τ−
−1 Zv(Xn∧τ−

−1
,w))n∈N0 is a

martingale.

Proof. This follows, for instance, by linearity, from Proposition 1, and from the definition
of Zv(·,w) via the Markov property and the terminal time property of τ−

−1. �

Remark 21. For the w = 1 case, the analogue of Proposition 2 in the setting of up-
wards skip-free Lévy chains are the martingales (e−q(t∧τ−

−h)Z(q)(Yt∧τ−
−h

))t∈[0,∞) for q ∈
[0,∞) [35, Corollary 2]. In the case of a spectrally negative Lévy processes U,
(e−q(t∧τ−

0 )Z(q)(Ut∧τ−
0

))t∈[0,∞) is a local martingale with localizing sequence (τ+
n )n∈N [23,

Example 8.12]. See also [7], in which Gerber–Shiu functions are defined as solutions to
martingale problems [7, Definition 5.1], and the Z(q)(·, θ ) function is the Gerber-Shiu function
with boundary condition eθx for x ∈ (−∞, 0) [7, Definition 5.8].

Remark 22. Assume that E[C1]<∞. Let v ∈ (0, 1], x ∈Z. We can obtain the expected
undershoot at ruin by differentiating (12) with respect to w from the left at 1. Setting

Z1,v(x) := − ∂Zv(x,w)

∂w

∣∣∣∣
w=1−

,

we find that, for b ∈N0,

Ex[X(τ−
−1) vτ

−
−1 ; τ−

−1 < τ
+
b ] = Z1,v(x) − Wv(x)

Wv(b)
Z1,v(b), x ≤ b.
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The generating function transform of Z1,v is given by

Z̃1,v(z) :=
∞∑

k=0

zkZ1,v(k) = z

1 − z

1

p̃(z) − z/v

(
p̃(z) − z

1 − z
− (1 − p̃′(1 − ))

)
, z ∈ (0, ϕv).

Setting for f : N0 →R and y ∈N0, f̄ (y) := ∑y−1
z=0 f (z) (in particular, f̄ (0) = 0), and using

∞∑
k=0

zkf (k) =
(

z

1 − z

) ∞∑
k=0

zkf (k) for z ∈ (0, 1],

we see that this coincides with the generating function of

N0 
 x �→ Z̄v(x) − (1 − p̃′(1 − ))W̄v(x),

i.e.
Z1,v(x) = Z̄v(x) − (1 − p̃′(1 − ))W̄v(x), x ∈N0, (18)

Note also that when x< 0, Z1,v(x) = x.

Appendix A. Double (generating function) transforms of ruin probabilities

Recall the notation of Section 3. From [36, Equations (2.7) and (2.13)], we can deduce the
double transform

˜̄�v(z) :=
∞∑

n=0

vn�̄z(n)

:=
∞∑

n=0

vn
( ∞∑

x=0

zx�̄(n;x)

)

= z/(1 − z) − ϕv/(1 − ϕv)

z − ṽp(z)
, v, z ∈ (0, 1), z �= ϕv, (19)

where ϕv ∈ (0, 1) is the Lundberg root (4) (note that z = ϕv is a removable singularity). Indeed,
from (5), for all n ∈N,

z�̄z(n) = p̃(z)�̄z(n − 1) − p0�̄(n − 1; 0)

(see [36, Equation (2.3)]), and summing over n after multiplication by vn yields

z(˜̄�v(z) − (1 − z)−1) = ṽp(z)˜̄�v(z) − p0v
∞∑

n=0

vn�̄(n; 0)

⇒ (z − ṽp(z))˜̄�v(z)

= z

1 − z
− p0v

∞∑
n=0

vn�̄(n; 0)

(see [36, Equation (2.7)]), from where (19) is obtained by requiring that the root z = ϕv on the
left-hand side annihilates also the right-hand side.
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Equation (19) implies the transform (for v, z ∈ (0, 1), z �= ϕv)

�̃v(z) :=
∞∑

x=0

∞∑
n=0

zxvn�(n; x)

= 1

(1 − z)(1 − v)
− ˜̄�v(z)

= 1

z − ṽp(z)

(
v(z − p̃(z))

(1 − v)(1 − z)
+ ϕv

1 − ϕv

)
.

Remark 23. Note the single transforms

˜̄�(z) :=
∞∑

x=0

zx�̄(x) = lim
v↑1

(1 − v)˜̄�v(z) = (1 −E[C1]) ∨ 0

p̃(z) − z
, z ∈ (0, 1),

�̃(z) :=
∞∑

x=0

zx�(x) = 1

1 − z
− (1 −E[C1]) ∨ 0

p̃(z) − z
, z ∈ (0, 1)

(see [36, Equation (3.5)]), which are similar to the Pollaczek–Khinchine formulae of the
Cramér–Lundberg model. We also have

�̄(0) = lim
z↓0

˜̄�(z) = (1 −E[C1]) ∨ 0

p0
;

see [30, Equation (2.14)].

Appendix B

See Table 1 for a summary of the features of the �,W, Z theory for the three types of
processes (i)-(ii)-(iii) as discussed in the introduction.

Remark 24. Every spectrally negative Lévy process may be seen as a (weak) limit of a net
Yh of upwards skip-free Lévy chains, as h ↓ 0 [27]. This means that a great many relations in
the spectrally negative Lévy setting may be obtained (at least naively) by simply passing to the
limit h ↓ 0 (formally, one must of course pay attention to whether or not the relevant functional
is continuous with respect to such a weak limit).

Remark 25. One of the important contributions of having a unified�,W, Z theory developed
in all three settings featured in Table 1 is that whenever a result is available for one of them, it
may often be simply ‘guessed’ in the others, by ‘translating’ one set of quantities into the other
(though ultimately it still needs to be proved). We have seen this time and again in the results
of this paper.
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TABLE 1: Summary table.

Right-continuous random walk Upwards skip-free Lévy chain Spectrally negative Lévy process

{n, b} ⊂N0, x ∈Z, x ≤ b, v ∈ (0, 1] {q, β} ⊂ [0,∞), {b, x} ⊂ hZ, x ≤ b, b ≥ 0 {q, β} ⊂ [0,∞), {b, x} ⊂R, x ≤ b, b> 0

Xn = X0 + n − ∑n
i=1 Ci Y = hXN , N independent homogeneous Poisson Lévy process U having a.s. nonmonotone paths and no positive jumps

processes of intensity γ , {γ, h} ⊂ (0,∞)

Cn i.i.d., N0-valued; PMF p, p0 ∈ (0, 1); PGF p̃ Lévy measure λ= γ
∑

i∈Z\{1} piδh(1−i); Laplace Laplace exponent ψ ; δ is the drift when X has bounded variation
exponent ψ , where ψ(β) = γ [eβhp̃(e−βh) − 1]

τ−
b = inf{m ∈N0 : Xm ≤ b}; τ+

b = inf{m ∈N0 : Xt ≥ b} τ−
b = inf{t ∈ [0,∞) : Yt ≤ b}; τ+

b = inf{t ∈ [0,∞) : Yt ≥ b} τ−
b = inf{t ∈ (0,∞) : Ut < b}; τ+

b = inf{t ∈ (0,∞) : Ut > b}
ϕv = smallest root of p̃(ξ )/ξ = v−1 (in ξ ∈ (0, 1]) �(q) = largest root of ψ(λ) − q (in λ ∈ [0,∞)); �(q) = largest root of ψ(λ) − q (in λ ∈ [0,∞))

e−h�(q) = ϕγ/(γ+q)

Ex[v
τ
+
b ;τ+

b <∞] = ϕb−x
v Ex[e

−qτ+b ;τ+
b <∞] = e−�(q)(b−x)

∑∞
y=0 zyWv(y) = 1/(̃p(z) − z/v), z ∈ (0, ϕv)

∫ ∞
0 e−βyW(q)(y) dy = (eβh − 1)/(βh(ψ(β) − q)),

∫ ∞
0 e−βyW(q)(y) dy = 1/(ψ(β) − q), β ∈ (�(q),∞);

β ∈ (�(q),∞); W(q) càdlàg & constant on each W(q) continuous on [0,∞)
interval [x, x + h); W(q)(x) = Wγ /(γ+q)(x/h)/(γ h)

Ex[vτb ;τ+
b < τ−

−1] = Wv(x)/Wv(b) Ex[e
−qτ+b ;τ+

b < τ−
−h] = W(q)(x)/W(q)(b) Ex[e

−qτ+b ;τ+
b < τ−

0 ] = W(q)(x)/W(q)(b)

Px(τ−
−1 <∞) = 1 − W1(x)(1 − p̃′(1 − ) ∧ 1) Px(τ−

−h <∞) = 1 − W(0)(x)(ψ ′(0 + ) ∨ 0) Px(τ−
0 <∞) = 1 − W(0)(x)(ψ ′(0 + ) ∨ 0)

Wv(x) = 0, x< 0; Wv(0) = 1/p0 W(q)(x) = 0, x< 0; W(q)(0) = 1/(hλ({h})) W(q)(x) = 0, x< 0; W(q)(0) = 0 if U has unbounded variation,
W(q)(0) = 1/δ otherwise

limy→∞ Wv(y)ϕy+1
v = v/(1 − ṽp′(ϕv − )) limy→∞ W(q)(y)e−�(q)(y+h) = 1/ψ ′(�(q) + ) limy→∞ W(q)(y)e−�(q)(y) = 1/ψ ′(�(q) + )

Zv(x) = 1 + (1/v − 1)
∑x−1

y=0 Wv(y), x ≥ 0 Z(q)(x) = 1 + q
∑x/h−1

k=0 W(q)(kh), x ≥ 0; Z(q)(x) = 1 + q
∫ x

0 W(q)(y) dy, x ≥ 0

Z(q)(x) = Zγ /(γ+q)(x/h)

Zv(x) = 1, x ≤ 0 Z(q)(x) = 1, x ≤ 0∑∞
y=0 zyZv(y) = (̃p(z) − z)/((1 − z)(̃p(z) − z/v)), z ∈ (0, ϕv)

∫ ∞
0 Z(q)(y)e−βy dy =ψ(β)/(β(ψ(β) − q)), β ∈ (�(q),∞)

Ex[v
τ
−
−1 ;τ−

−1 < τ
+
b ] = Zv(x) − (Wv(x)/Wv(b))Zv(b) Ex[e

−qτ−−h ;τ−
−h < τ

+
b ] = Z(q)(x) − (W(q)(x)/W(q)(b))Z(q)(b) Ex[e

−qτ−0 ;τ−
0 < τ+

b ] = Z(q)(x) − (W(q)(x)/W(q)(b))Z(q)(b)

Ex[v
τ
−
−1 ;τ−

−1 <∞] Ex[e
−qτ−−h ;τ−

−h <∞] Ex[e
−qτ−0 ;τ−

0 <∞] = Z(q)(x) − qW(q)(x)/�(q), q> 0

= Zv(x) − (ϕv(1 − v)/(v(1 − ϕv)))Wv(x), v< 1 = Z(q)(x) − (qh/(e�(q)h − 1))W(q)(x), q> 0

v
m∧τm−1 Wv(X

m∧τ−−1
) is a martingale in m ∈N0 e

−q(t∧τ−−h)
W(q)(X

t∧τ−−h
) is a martingale in t ∈ [0,∞) e

−q(t∧τ−0 ∧τ+b )
W(q)(X

t∧τ−0 ∧τ+b
) is a martingale in t ∈ [0,∞)
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