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Introduction

There has been much interest in the study of non-commutative Iwasawa theory over the
last few years. Nevertheless, there is still no satisfactory understanding of the explicit
consequences for Hasse–Weil L-functions that are implied by a ‘main conjecture’ of the
kind formulated by Coates, Fukaya, Kato, Sujatha and the second named author in [15].
Indeed, while explicit consequences of such a conjecture for the values (at s = 1) of
twisted Hasse–Weil L-functions have been studied by Coates et al . in [15], by Kato
in [21] and by Dokchister and Dokchister in [17], all of these consequences become
trivial whenever the L-functions vanish at s = 1. Further, the conjecture of Birch and
Swinnerton-Dyer implies that these L-functions should vanish whenever the relevant
component of the Mordell–Weil group has strictly positive rank and by a recent result of
Mazur and Rubin [23], which is itself equivalent to a special case of an earlier result of
Nekovář [25, Theorem 10.7.17], this should often be the case. It is therefore of interest
to understand what a main conjecture of the kind formulated in [15] predicts concerning
the values of derivatives of Hasse–Weil L-functions at s = 1.

In this article we take the first step towards developing such a theory by describing a
general formalism of descent in non-commutative Iwasawa theory. In a subsequent article
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it will be shown that the results proved here can indeed be combined with techniques
developed by the first named author in [7] to derive from the main conjecture of non-
commutative Iwasawa theory a variety of explicit (and highly non-trivial) congruence
relations between values of derivatives of twisted Hasse–Weil L-functions. In other direc-
tions, the descent theory developed here has also played a key role in obtaining the first
verification of the equivariant Tamagawa number conjecture (for certain Tate motives)
for an interesting class of non-abelian extensions of number fields and in the proof of a
long-standing conjecture of Chinburg in the setting of global function fields (for more
details see [9] and [8] respectively).

However, as preparation for the above applications, we must first develop several
aspects of the theory that appear themselves to be of some independent interest. These
include proving a natural Weierstrass Preparation Theorem for Whitehead groups of Iwa-
sawa algebras, defining a canonical ‘characteristic series’ for torsion modules over (local-
ized) Iwasawa algebras, satisfactorily resolving the descent problem in non-commutative
Iwasawa theory and formulating a main conjecture in the spirit of Coates et al . that
deals with interpolation properties of the ‘leading terms at Artin representations’ (in the
sense introduced in [13]) of analytic p-adic L-functions.

In a little more detail, the main contents of this article are as follows. In § 1 we recall
some useful preliminaries concerning localization of Iwasawa algebras, K-theory, virtual
objects and derived categories. In § 2 we state the main K-theoretical results that are
proved in this article. In § 3 we define a suitable notion of µ-invariant and in § 4 we
combine this notion with a result of Schneider and the second named author from [28]
and the formalism developed by Fukaya and Kato in [18] to define canonical ‘character-
istic series’ in non-commutative Iwasawa theory (this construction extends the notion of
‘algebraic p-adic L-functions’ introduced by the first named author in [6] and hence also
refines the notion of ‘Akashi series’ introduced by Coates, Schneider and Sujatha in [14]).
As a first application of these characteristic series we use them in § 5 to prove an explicit
formula for the ‘leading terms at Artin representations ’ of elements of Whitehead groups
of non-commutative Iwasawa algebras: this result provides a suitable ‘descent formalism’
in non-commutative Iwasawa theory and in particular plays a crucial role in proving the
arithmetic results discussed in the remainder of the article. In § 6 we present a result of
Kato that allows reduction to a convenient special class of extensions when formulating
main conjectures and, in particular, shows that the main result of § 5 is indeed a sat-
isfactory resolution of the descent problem in the context of non-commutative Iwasawa
theory. In § 7 we formulate explicit main conjectures of non-commutative Iwasawa theory
for both Tate motives and certain critical motives. The approach here is finer than that
of [15] since we consider interpolation properties for leading terms of analytic p-adic L-
functions. In § 8 we combine the descent formalism described in § 5 with the main results
of our earlier article [13] to prove that, under suitable hypotheses, the main conjectures
formulated in § 7 imply the relevant special cases of the equivariant Tamagawa number
conjecture formulated by Flach and the first named author in [10, Conjecture 4(iv)].
These results are both a converse to the result of Fukaya and Kato in [18] which asserts
that, under suitable hypotheses, the ‘non-commutative Tamagawa number conjecture’
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of [18] implies the main conjecture of Coates et al . [15] and can also be used to derive
explicit consequences of the main conjecture. Finally, in several appendices, we review
relevant aspects of the algebraic formalism of localized K1-groups and Bockstein homo-
morphisms and clarify certain normalizations used in [13].

Part I. K-theory

1. Preliminaries

1.1. Iwasawa algebras

We fix a prime p. For any compact p-adic Lie group G we write Λ(G) and Ω(G) for the
‘Iwasawa algebras’ lim←−U

Zp[G/U ] and lim←−U
Fp[G/U ] where U runs over all open normal

subgroups of G and the limits are taken with respect to the natural projection maps
Zp[G/U ] → Zp[G/U ′] and Fp[G/U ] → Fp[G/U ′] for U ⊆ U ′. The rings Λ(G) and Ω(G)
are both noetherian and, if G has no element of order p, they are also regular in the
sense that their (left and right) global dimensions are finite. We write Q(G) for the
total quotient ring of Λ(G). If O is any subring of Qc

p that contains Zp, then we set
ΛO(G) := O ⊗Zp Λ(G) and write QO(G) for its total quotient ring.

We assume throughout that the following condition is satisfied.

• G has a closed normal subgroup H for which the quotient group Γ := G/H is
isomorphic (topologically) to the additive group of Zp.

We write πΓ : G → Γ for the natural projection and fix a topological generator γ of
Γ . We use γ to identify Λ(Γ ) with the power series ring Zp[[T ]] in an indeterminate T

(via the identification T = γ − 1).
We recall from [15, §§ 2–3] that there are canonical left and right denominator sets

SG,H and S∗
G,H of Λ(G) where

SG,H := {λ ∈ Λ(G) : Λ(G)/(Λ(G) · λ) is a finitely generated Λ(H)-module}

and S∗
G,H :=

⋃
i�0 piSG,H . When G and H are clear from context we usually abbreviate

SG,H to S. We also write MS(G) and MS∗(G) for the categories of finitely generated
Λ(G)-modules M with Λ(G)S ⊗Λ(G) M = 0 and Λ(G)S∗ ⊗Λ(G) M = 0 respectively.

For any Zp-module M we write Mtor for its Zp-torsion submodule and set Mtf :=
M/Mtor. We recall from [15, Proposition 2.3] that a finitely generated Λ(G)-module
M belongs to MS(G), respectively MS∗(G), if and only if it is a finitely generated
Λ(H)-module (by restriction), respectively when Mtf belongs to MS(G). This means in
particular that MS∗(G) coincides with the category MH(G) introduced in [15].

We write M⊗̂Λ(G)N for the completed tensor product of compact Λ(G)-modules M

and N and we recall that if either M or N is a finitely generated Λ(G)-module, then
M⊗̂Λ(G)N identifies with the usual tensor product M ⊗Λ(G) N .
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1.2. K-groups

For any ring homomorphism R → R′ we write K0(R, R′) for the associated rela-
tive algebraic K0-group. We recall that this group is generated by symbols of the form
(P, λ, Q) where P and Q are finitely generated projective (left) R-modules and λ is an
isomorphism of R′-modules R′ ⊗R P → R′ ⊗R Q (for more details see [31, p. 215]). For
any ring homomorphisms R → R′ → R′′ there is a natural commutative diagram of long
exact sequences

K1(R) �� K1(R′)
∂R,R′

��

��

K0(R, R′) ��

��

K0(R)

K1(R) �� K1(R′′)
∂R,R′′

�� K0(R, R′′) �� K0(R)

(1.1)

If G has no element of order p and Σ denotes either S or S∗, then Λ(G) is a noethe-
rian regular ring and K0(Λ(G), Λ(G)Σ) can be identified with the Grothendieck group
K0(MΣ(G)) of the category MΣ(G). To be precise we normalize this isomorphism as
follows: if g = s−1h with s ∈ Σ and h ∈ Λ(G)∩Λ(G)×

Σ , then the element (Λ(G), rg, Λ(G))
of K0(Λ(G), Λ(G)Σ) corresponds to [cok(rh)]− [cok(rs)] in K0(MΣ(G)) where [X] is the
element of K0(MΣ(G)) associated to an object X of MΣ(G) and rg, rh and rs denote
the automorphisms of Λ(G)Σ that are induced by right multiplication by g, h and s

respectively. In particular, with respect to this isomorphism, the upper row of (1.1) with
R = Λ(G) and R′ = Λ(G)S∗ identifies with the exact sequence of [15, (24)].

If R = Λ(G) and R′ = Λ(G)S∗ , respectively R = Zp[G] and R′ = Qc
p[G] for a finite

group G, then we often abbreviate the connecting homomorphism ∂R,R′ in diagram (1.1)
to ∂G, respectively ∂Ḡ.

1.3. Virtual objects

We let P0 denote the Picard category with unique object 1P0 and AutP0(1P0) = 0.
For any associative unital ring R we also write V (R) for the Picard category of virtual
objects associated to the category of finitely generated projective R-modules and we fix
a unit object 1R in V (R). For any homomorphism of such rings R → R′ we then define
V (R, R′) to be the fibre product category in the diagram

V (R, R′) ��

��

P0

F2

��
V (R)

F1 �� V (R′)

where F2 is the (monoidal) functor sending 1P0 to 1R′ and F1(L) = R′ ⊗R L for each
object L of V (R). We regard the canonical isomorphism

π0(V (R, R′)) ∼= K0(R, R′) (1.2)
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of [3, Lemma 5.1] (and [10, Proposition 2.5]) as an identification. In particular, for each
object L of V (R) and each morphism µ : F1(L) → 1R′ in V (R′) we write [L, µ] for the
associated element of K0(R, R′).

1.4. Euler characteristics

For any ring R we write D(R) for the derived category of R-modules. If R is noetherian,
then we also write Dfg,−(R), respectively Dfg(R) for the full triangulated subcategory
of D(R) comprising complexes that are isomorphic to a bounded above, respectively
bounded, complex of finitely generated R-modules and we let Dp(R) denote the full
subcategory of Dfg(R) comprising complexes that are isomorphic to an object of the
category Cp(R) of bounded complexes of finitely generated projective R-modules.

If Σ denotes either S or S∗, then we write Dp
Σ(Λ(G)) for the full triangulated subcat-

egory of Dp(Λ(G)) comprising those complexes C such that Λ(G)Σ ⊗̂L

Λ(G) C is acyclic.
For each such C we write χ(C) for the inverse of the element of K0(Λ(G), Λ(G)S∗)
that corresponds under (1.2) (with R = Λ(G) and R′ = Λ(G)S∗) to the pair ([P •], ιP •)
with [P •] the object of V(Λ(G)) associated to any P • in Cp(Λ(G)) that is isomorphic
in Dp(Λ(G)) to C and ιP • the morphism in V(Λ(G)S∗) associated to the isomorphism
Λ(G)S∗ ⊗Λ(G) P • ∼= Λ(G)S∗⊗̂L

Λ(G)C
∼= 0 in Dp(Λ(G)S∗). This element χ(C) is the inverse

of the Euler characteristic χΛ(G),Λ(G)S∗ (C, t) that is defined in [3, Definition 5.5] with t

equal to the isomorphism⊕
i∈Z

H2i(Λ(G)S∗⊗̂L

Λ(G)C) ∼= 0 ∼=
⊕
i∈Z

H2i+1(Λ(G)S∗⊗̂L

Λ(G)C).

(We prefer to define χ(C) in terms of the inverse in order to ensure that if G has no
element of order p, then the isomorphism K0(Λ(G), Λ(G)S∗) ∼= K0(MS∗(G)) discussed
in § 1.2 sends χ(C) to

∑
i∈Z(−1)i[Hi(C)].)

1.5. Wedderburn decompositions

We fix an algebraic closure Qc
p of Qp. For any finite group G we write Irr(G) for the set

of irreducible finite-dimensional Qc
p-valued characters of G. Then the Wedderburn decom-

position of the (finite-dimensional semisimple) Qc
p-algebra Qc

p[G] induces a decomposition
of its centre

ζ(Qc
p[G]) ∼=

∏
Irr(G)

Qc
p. (1.3)

The natural reduced norm map NrdQc
p[G] : K1(Qc

p[G]) → ζ(Qc
p[G])× is bijective and

we often (and without explicit comment) combine this map with (1.3) to regard ele-
ments of

∏
Irr(G) Qc,×

p as elements of the Whitehead group K1(Qc
p[G]). In particular, we

write ∂G :
∏

Irr(G) Qc,×
p → K0(Zp[G], Qc

p[G]) for the connecting homomorphism of relative
K-theory (normalized as per the discussion following diagram (1.1)).

For each ρ ∈ Irr(G) we fix a minimal idempotent eρ in Qc
p[G] for which the left action

of G on Qc
p[G] given by x �→ xg−1 for g ∈ G induces upon restriction an isomorphism of

(left) Qc
p[G]-modules eρQc

p[G] ∼= Vρ∗ where Vρ∗ ∼= (Qc
p)

nρ is the representation space of
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the contragredient ρ∗ of ρ over Qc
p. Then for each complex D in Dp(Zp[G]) the theory of

Morita equivalence induces an identification of morphism groups

MorV (Qc
p[G])(dQc

p[G](Qc
p[G] ⊗L

Zp[G] D),1Qc
p[G])

∼=
∏

Irr(G)

MorV (Qc)(dQc
p
(eρQc

p[G] ⊗L
Zp[G] D),1Qc

p
). (1.4)

Details of the ‘non-commutative determinants’ dQc
p[G](−) and dQc

p
(−) that are used here

are recalled in Appendix A.

2. Statement of the main results in Part I

The first main result we prove in Part I is the following decomposition theorem for
Whitehead groups.

Theorem 2.1. If G has no element of order p, then there is a natural isomorphism of
abelian groups

K0(Ω(G)) ⊕ K0(MS(G)) ⊕ im(K1(Λ(G)) → K1(Λ(G)S∗)) ∼= K1(Λ(G)S∗).

Our proof of Theorem 2.1 will show that if G = Γ , then the above isomorphism reduces
to the assertion that every element of Q(Γ )× can be written uniquely in the form pmdu

where m is an integer, d is a quotient of distinguished polynomials and u a unit in
Λ(Γ ) (see Remark 4.2 and § 4.3). Theorem 2.1 is therefore a natural generalization of the
classical Weierstrass Preparation Theorem. For an alternative approach to generalizing
the latter result see [34].

In the remainder of Part I we apply the decomposition in Theorem 2.1 to help resolve
the ‘descent problem’ in non-commutative Iwasawa theory. Before stating our main result
in this regard we recall that for each Artin representation ρ : G → GLn(O) the ring
homomorphism Λ(G)S∗ → Mn(QO(Γ )) that sends each element g of G to ρ(g)πΓ (g)
induces a homomorphism of groups

Φρ : K1(Λ(G)S∗) → K1(Mn(QO(Γ ))) ∼= K1(QO(Γ )) ∼= QO(Γ )× ∼= Q(O[[T ]])×, (2.1)

where the first isomorphism is induced by the theory of Morita equivalence, the second
by taking determinants (over QO(Γ )) and the third by the identification γ − 1 = T . The
‘leading term’ ξ∗(ρ) at ρ of an element ξ of K1(Λ(G)S∗) is then defined to be the leading
term (Φρ(ξ))∗(0) at T = 0 of the power series Φρ(ξ) (this definition can also be interpreted
as a leading term at zero of a p-adic meromorphic function; see [13, Lemma 3.17]).

The problem of descent in (non-commutative) Iwasawa theory is then the following:
given an element ξ of K1(Λ(G)S∗) and a finite quotient Ḡ of G, can one use knowledge
of the image of ξ under the connecting homomorphism ∂G to give an explicit formula for
the image of (ξ∗(ρ))ρ∈Irr(Ḡ) ∈ K1(Qc

p[G]) under the connecting homomorphism ∂Ḡ? This
has been known for some time to be an important and delicate problem.
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Before stating our main result in this regard we quickly recall some terminology
from [13]. For a complex C in Dp(Λ(G)) and representation ρ as above we define a
complex in Dp(ΛO(Γ ))

Cρ := (ΛO(Γ ) ⊗O On) ⊗L
Λ(G) C ∼= ΛO(Γ ) ⊗L

ΛO(G) C(ρ∗) (2.2)

(see § 3.1 for details about the G-actions) and an associated Euler characteristic

rG(C)(ρ) :=
∑
i∈Z

(−1)i+1 dimQc
p
(Hi(Qc

p ⊗O Cρ)Γ ).

(In our arithmetic applications the integer rG(C)(ρ) corresponds to the ‘algebraic
Mordell–Weil rank of the ρ-component’ of the motive under consideration.) As a natural
generalization of the classical notion of ‘semisimplicity at zero’ of Zp[[T ]]-modules we also
say that C is ‘semisimple at ρ’ if a certain associated complex is acyclic and in such a
case we obtain a canonical morphism in V (Qc

p) of the form

t(Cρ) : dQc
p
(eρQc

p[Ḡ]⊗̂L

Λ(G)C) → 1Qc
p
.

Finally, we define an Ore set

S̃ :=

{
S, if G has an element of order p,

S∗, otherwise.
(2.3)

Theorem 2.2. Let Ḡ be a finite quotient of G. Let ξ be an element of K1(Λ(G)S∗) with
∂G(ξ) = χ(C) where C is a complex that belongs to Dp

S̃
(Λ(G)) and is semisimple at each

representation ρ in Irr(Ḡ). Then in K0(Zp[Ḡ], Qc
p[Ḡ]) one has

∂Ḡ((ξ∗(ρ))ρ∈Irr(Ḡ)) = −[dZp[Ḡ](Zp[Ḡ] ⊗L
Λ(G) C), t(C)Ḡ],

where t(C)Ḡ denotes the morphism dQc
p[Ḡ](Qc

p[Ḡ]⊗̂L

Λ(G)C) → 1Qc
p[Ḡ] in V (Qc

p[Ḡ])
that corresponds via (1.4) (with G = Ḡ and D = Zp[Ḡ] ⊗L

Λ(G) C) to the tuple
((−1)rG(C)(ρ)t(Cρ))ρ∈Irr(Ḡ), and on the right-hand side of the displayed equality we use
the notation introduced after (1.2).

Remark 2.3. The homomorphism Φρ, leading term ξ∗(ρ) and morphisms t(Cρ) and
t(C)Ḡ all depend upon the precise choice of γ but for typographic simplicity we do not
indicate this dependence. For more details about the invariants rG(C)(ρ), the morphisms
t(Cρ) and the concept of semisimplicity at ρ see § 5.2.4.

Remark 2.4. In the case that the complex eρQc
p[Ḡ]⊗̂L

Λ(G)C is acyclic one knows that C

is automatically semisimple at ρ, that rG(C)(ρ) = 0 and that t(Cρ) is the inverse of the
canonical morphism that is induced by property A(e) in Appendix A of the determinant
functor described in Appendix A. In particular, if G = Γ , C = M [0] for a finitely gener-
ated torsion Λ(Γ )-module M for which both MΓ and MΓ are finite and ρ is the trivial
character, then the equality of Theorem 2.2 is equivalent to the classical descent formula
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discussed in [36, p. 318, Example 13.12]. Upon appropriate specialization, Theorem 2.2
also recovers the descent formalism proved in certain commutative cases by Greither and
the first named author in [11, § 8] and is therefore related to the earlier (commutative)
work of Nekovář in [25, § 11].

In § 6 we will prove that it suffices to consider main conjectures of non-commutative
Iwasawa theory in the case that G has no element of order p. Theorem 2.2 therefore
represents a satisfactory resolution of the descent problem in this context. Indeed, in
Part II (§§ 6–8) of this article we shall combine Theorem 2.2 with the main results of [13]
to describe the precise connection between main conjectures of non-commutative Iwasawa
theory (in the spirit of Coates et al . [15]) and the appropriate cases of the equivariant
Tamagawa number conjecture. Other interesting arithmetic applications of Theorem 2.2
are described in [8] and [9].

3. Generalized µ-invariants

The key ingredient in our proof of Theorem 2.1 is the construction of canonical ‘char-
acteristic series’ in non-commutative Iwasawa theory. In this section we prepare for this
construction by generalizing the classical notion of µ-invariant.

3.1. The definition

Below we write µΓ (M) for the ‘µ-invariant’ of a finitely generated Λ(Γ )-module M .
For each complex C in Dp(Λ(Γ )) we also set

µΓ (C) :=
∑
i∈Z

(−1)iµΓ (Hi(C)).

For modules or complexes over ΛO(G) we similarly write µΓ,O for the corresponding
µ-invariant.

Let ρ : G → GLn(O) be a continuous representation of G and write Eρ
∼= On for the

associated representation module, where O = OL denotes the ring of integers of a finite
extension L of Qp. We denote the corresponding L-linear representation L ⊗O Eρ by Vρ.
We fix a uniformizing parameter π of O and denote the residue class field of O by κ. We
write ρ̄ for the reduction of ρ modulo π and denote the associated representation space
by Eρ.

For each C in Dp(Λ(G)) we set C(ρ∗) := On⊗Zp
C, regarded as an object of Dp(ΛO(G))

via the action g(x ⊗Zp ci) = ρ∗(g)(x) ⊗Zp g(ci) for each g in G, x in On and ci in Ci. We
then set

Cρ := (ΛO(Γ ) ⊗O On) ⊗L
Λ(G) C ∼= ΛO(Γ ) ⊗L

ΛO(G) C(ρ∗) (3.1)

and also

µ(C, ρ) := µΓ,O(Cρ) ∈ Z. (3.2)
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3.2. Basic properties

For each complex C we write H(C) for the complex which has H(C)i = Hi(C) in each
degree i and for which all differentials are zero. If H(C) belongs to Dp(Λ(G)), then we
shall say that C is ‘cohomologically perfect’.

Lemma 3.1. Fix a continuous representation ρ : G → GLn(O).

(i) If C1 → C2 → C3 → C1[1] is an exact triangle in Dp
S∗(Λ(G)), then

µ(C2, ρ) = µ(C1, ρ) + µ(C3, ρ).

(ii) If C ∈ Dp
S∗(Λ(G)) is cohomologically perfect, then µ(C, ρ) = µ(H(C), ρ).

(iii) If C ∈ Dp
S(Λ(G)) is cohomologically perfect, then µ(C, ρ) = 0.

(iv) If U is any closed normal subgroup of G such that U ⊆ H ∩ ker(ρ), then for any C

in Dp(Λ(G)) we have

µ(C, ρ) = µ(Λ(G/U) ⊗L
Λ(G) C, ρ).

Here the first µ-invariant is formed with respect to the group G and the second
with respect to G/U .

(v) If U is any open subgroup of G, then for any continuous representation ψ : U →
GLn(O) and any C ∈ Dp(Λ(G)) one has

µ(C, IndG
Uψ) = µ(ResG

UC, ψ)

where the first µ-invariant is formed with respect to G and the second with respect
to U . Here ResG

U denotes the restriction functor from Λ(G)-modules to Λ(U)-
modules.

Proof. For each D in Dp
S∗(Λ(G)) all of the ΛO(Γ )-modules Hi(Dρ) are both finitely

generated and torsion. Since µΓ,O(−) is additive on exact sequences of finitely gener-
ated torsion ΛO(Γ )-modules, claim (i) therefore follows from the long exact sequence of
cohomology of the exact triangle C1,ρ → C2,ρ → C3,ρ → C1,ρ[1] in Dp(ΛO(Γ )) that is
induced by the given triangle.

If C ∼= Hi(C)[i] for some i, then claim (ii) is clear. The general case can then be proved
by induction with respect to the cohomological length: indeed, one need only combine
claim (i) together with the exact triangles given by the (non-naive) truncation functor.

In order to prove claim (iii) it is sufficient by claim (ii) to consider the case C = M [0]
with M a Λ(G)-module that is finitely generated over Λ(H). But then Hi(Cρ) is a finitely
generated Zp-module in each degree i and so it is clear that µ(C, ρ) = 0.

In the situation of claim (iv) there is a canonical isomorphism in Dp(ΛO(G/U)) of the
form

ΛO(G/U) ⊗L
ΛO(G) C(ρ∗) ∼= (Λ(G/U) ⊗L

Λ(G) C)(ρ∗),
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from which the claim follows immediately. Similarly, in the situation of claim (v) we
have a canonical isomorphism IndG

U ((ResG
UC)(ψ∗)) ∼= C(IndG

Uψ∗) in Dp(ΛO(G)) which
corresponds to

ΛO(G) ⊗ΛO(U) (On ⊗Zp ResG
UC) ∼= (Λ(G) ⊗Λ(U) On) ⊗Zp C,

g ⊗ (a ⊗ c) �→ (g ⊗ a) ⊗ g(c).

Now we write ΓU for the image of U in Γ under the natural projection and obtain

µ(C, IndG
Uψ) = µΓ (ΛO(Γ ) ⊗L

ΛO(G) C(IndG
Uψ∗))

= µΓ (ΛO(Γ ) ⊗L
ΛO(G) IndG

U ((ResG
UC)(ψ∗)))

= µΓ (ΛO(Γ ) ⊗ΛO(ΓU ) (ΛO(ΓU ) ⊗L
ΛO(U) (ResG

UC)(ψ∗)))

= µΓU
(ΛO(ΓU ) ⊗L

ΛO(U) (ResG
UC)(ψ∗))

= µ(ResG
UC, ψ),

as had to be shown. �

3.3. Modules and idempotents

In order to make a closer examination of the µ-invariant defined in (3.2) we recall some
standard module theory. This section is inspired by [1], where further details can also be
found.

We write Jac(Λ(G)) for the Jacobson radical of Λ(G) and
∏

i∈I Ai for the Wed-
derburn decomposition of the finite-dimensional semisimple Fp-algebra A := A(G) :=
Λ(G)/ Jac(Λ(G)). The set I is therefore finite and it is convenient to regard I as the
set of integers {m : 1 � m � |I|}. We then fix a set of mutually orthogonal primitive
idempotents {ai : i ∈ I} of A in such a way that for each i ∈ I the module Ri = Aai is
a representative of the unique isomorphism class of simple Ai-modules. In making such
a choice we assume that A1 = Fp = R1. For each i ∈ I we denote the corresponding
representation by ψi : G → GL(Ri). We also fix a set of mutually orthogonal primitive
idempotents {ei : i ∈ I} of Λ(G) such that, for each i ∈ I, the image of ei in A(G) is
equal to ai.

For each i ∈ I we define a projective Λ(G)-module Xi := Λ(G)ei and a pro-
jective Ω(G)-module Yi := Xi/pXi. These modules are projective hulls of Ri since
A(G) ⊗Λ(G) Xi = A(G) ⊗Ω(G) Yi = Ri. Further, every finitely generated projective Λ(G)-
module X, respectively Ω(G)-module Y , decomposes in a unique way as a direct sum

X =
⊕
i∈I

X
〈X,Xi〉
i , respectively Y =

⊕
i∈I

Y
〈Y,Yi〉
i ,

for suitable natural numbers 〈X, Xi〉, respectively 〈Y, Yi〉. For each i ∈ I we write
lRi(ψ) for the multiplicity with which Ri occurs in an Fp-linear representation ψ. For a
Λ(G)-module M we also write

χ(G, M) :=
∏
j∈Z

|Hj(G, M)|(−1)j

,

if this is finite, for the Euler–Poincaré characteristic of M .
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Finally, we note that similar constructions to the above can be made, mutatis mutandis,
if Λ(G) and Ω(G) are replaced by ΛO(G) and Ωκ(G) := ΛO(G)/ΛO(G)π respectively.

Lemma 3.2. Let Y be a finitely generated projective Ωκ(G)-module.

(i) ΛO(Γ ) ⊗ΛO(G) Y is naturally isomorphic to Ωκ(Γ ) ⊗Ωκ(G) Y = Ωκ(Γ )〈Y,Y1〉 and
thus χ(G, Y ) = p[κ:Fp]〈Y,Y1〉.

(ii) 〈Y (ψ∗), Y1〉 =
∑

i∈I lRi(ψ) dimκ(EndΩκ(G)(Ri))〈Y, Yi〉.

Proof. For each index i the finitely generated projective Ωκ(Γ )-module Ωκ(Γ ) ⊗Ωκ(G) Yi

is isomorphic to Ωκ(Γ )ni for some natural number ni. Since then κni ∼= κ ⊗Ωκ(G) Yi
∼=

A1 ⊗Ωκ(G) Yi = a1Ri is isomorphic to R1 ∼= κ if i = 1 and is zero if i �= 1, the first claim
follows.

Claim (ii) is true because dimκ(EndΩκ(G)(Ri))〈Y, Yi〉 = dimκ(HomΩκ(G)(Y, Ri)) and
HomΩκ(G)(Y, Ri) is isomorphic to HomΩκ(G)(Y (ψ∗

i ), R1) (cf. [1, Proposition 4.1 and
Lemma 4.4]). �

3.4. The regular case

In this section we study the µ-invariants of § 3.1 in the case that G has no element of
order p.

3.4.1. Pairings

For a field K we write RK(G) for the Grothendieck group of the category of finite-
dimensional continuous K-linear representations of G which have finite image. The tensor
product induces a structure of rings on both RL(G) and Rκ(G) and there exists a canon-
ical surjective homomorphisms of rings RL(G) � Rκ(G) that is induced by reducing
modulo π any G-stable O-lattice of a representation of the above type (cf. [30]).

Proposition 3.3. Assume that G has no element of order p.

(i) If C ∈ Dp
S∗(Λ(G)), then for each continuous representation ρ : G → GLn(O) one

has
µ(C, ρ) =

∑
i∈Z

(−1)iµΓ (Λ(Γ ) ⊗L
Λ(G) (Eρ

∗ ⊗Fp
gr(Hi(C)tor)[0])),

where Eρ
∗

denotes the contragredient module Homκ(Ēρ, κ) while for a Zp-module
M endowed with the p-adic filtration we denote by gr(M) the associated graded
Fp-module.

(ii) The µ-invariant induces a Z-bilinear pairing

µ(−,−) : K0(D
p
S∗(Λ(G))) × RL(G) → Z.

This pairing induces a Z-bilinear pairing of the form

µ(−,−) : K0(D
p
S∗(Λ(G))) × Rκ(G) → Z.
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(iii) If C ∈ Dp
S∗(Λ(G)) and i ∈ I, then the integer µ(C, ψi) defined by claim (ii) is

divisible by dimFp(EndΩ(G)(Ri)).

(iv) If C ∈ Dp
S(Λ(G)), then µ(C, ψi) = 0 for all i ∈ I.

Proof. To prove claim (i), we write µ′(C, ρ̄) for the term on the right-hand side of the
claimed equality. Then µ′(C, ρ̄) = µ′(H(C), ρ̄) by definition and µ(C, ρ) = µ(H(C), ρ) by
Lemma 3.1 (ii) and so we need only consider the case where C ∼= M [0] with M in MS∗(G).
Further, since both µ-invariants are additive on exact triangles (cf. Lemma 3.1 (i)), it is
actually sufficient to prove the following two special cases (recall that M/Mtor belongs
to MS(G) for all M in MS∗(G)):

(1) If M is in MS(G), then both Hi(Λ(Γ ) ⊗L
Λ(G) (Eρ ⊗Fp

gr(Mtor)[0])) and Hi(Cρ) are
finitely generated Zp-modules (in all degrees i) and so µ(C, ρ) = 0 = µ′(C, ρ̄).

(2) If pnM = 0 for some n, we argue by induction on n. For n = 1 the isomor-
phism Eρ

∗ ⊗Fp
gr(Mtor) ∼= Eρ

∗ ⊗Fp M ∼= E∗
ρ ⊗Zp M implies the equality of the µ-

invariants. For n > 1 one uses dévissage and again the additivity of both µ-
invariants.

This proves claim (i).
To prove the existence of the first pairing in claim (ii) it suffices to show that µ(C, ρ)

depends only on the space Vρ. To this end we assume that Eρ′ is another G-stable lattice
in Vρ and we have to show that µ(C, ρ) = µ(C, ρ′). By Lemma 3.1 (ii) and dévissage we
may assume that C ∼= M [0] with pM = 0 and similarly that E∗

ρ′ ⊆ E∗
ρ with πT = 0 for

T := E∗
ρ/E∗

ρ′ . In this situation there is an exact sequence

0 → M ⊗Fp T → M ⊗Fp E∗
ρ → M ⊗Fp E∗

ρ → M ⊗Fp T → 0

of Λ(G)-modules. The required claim now follows from the known additivity of µ-invari-
ants and the fact that the Λ(G)-modules M ⊗Fp E∗

ρ and M ⊗Fp E∗
ρ are isomorphic to

M(ρ∗) and M((ρ′)∗) respectively. The second assertion of claim (ii) then follows from
claim (i).

To prove claim (iii) we may assume that C ∼= M [0] with M a finitely generated
Ω(G)-module. After choosing a finite resolution P of M by finitely generated pro-
jective Ω(G)-modules and using the additivity of µ(−, ψi) on short exact sequences
the proof is immediately reduced to the case of a projective Ω(G)-module because
µ(P, ψi) =

∑
j∈Z(−1)jµ(P j , ψi). But for every projective Ω(G)-module Y , considered

also as a Λ(G)-module, and for each i ∈ I we have

µ(Y, ψi) = µΓ,O(Ωκ(Γ ) ⊗Ωκ(G) Y (ψ∗
i )) = µΓ,O(Ωκ(Γ )〈Y (ψ∗

i ),Y1〉)

= 〈Y (ψ∗
i ), Y1〉 = dimFp(EndΩ(G)(Ri))〈Y, Yi〉

by Lemma 3.2.
Claim (iv) follows from Lemma 3.1 (iii). �
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If G has no element of order p, then Proposition 3.3 (iii) allows us to define an integer
µi

Λ(G)(C) for each complex C in Dp
S∗(Λ(G)) and each index i in I by setting

µi
Λ(G)(C) := µ(C, ψi) · dimFp(EndΩ(G)(Ri))−1.

We note in particular that for each index a in I this definition ensures that

µi
Λ(G)(Ya[0]) =

{
1, if i = a,

0, otherwise.
(3.3)

3.4.2. K-groups

We continue to assume that G has no element of order p and write D(G) for the
category of finitely generated Λ(G)-modules that are annihilated by a power of p. Then,
by dévissage and lifting of idempotents, one obtains the following isomorphisms

K0(D(G)) ∼= K0(Ω(G)) ∼= K0(A(G)) ∼= ZI , (3.4)

where the ith basis vector of the free Z-module on the right corresponds to the classes of
Yi in K0(D(G)) and K0(Ω(G)). Lemma 3.2 (ii) implies that if M belongs to D(G), then
the map in (3.4) sends the class of M to the vector

µ(M) := (µi
Λ(G)(M [0]))i∈I . (3.5)

The proof of the following result is a natural generalization of that given by Kato
in [21, Proposition 8.6].

Proposition 3.4. If G has no element of order p, then there are isomorphisms

K0(MS∗(G)) ∼= K0(MS(G)) ⊕ K0(Ω(G)),

K1(Λ(G)S∗) ∼= K1(Λ(G)S) ⊕ K0(Ω(G)).

The first of these isomorphisms is induced by the embeddings of categories MS(G) ⊂
MS∗(G) and D(G) ⊂ MS∗(G) combined with the first isomorphism in (3.4). The second
isomorphism depends on the choice of a splitting of K1(Λ(G)S∗) � K0(D(G)) ∼= ZI ; once
we have fixed an idempotent ei for each i ∈ I a ‘natural’ choice is induced by sending
the ith basis vector of ZI to the class of the element 1 + (p − 1)ei in K1(Λ(G)S∗).

Proof. For a closed normal subgroup N of G we denote by Ω(G/N)S the localization of
Ω(G/N) with respect to the image of S under the natural projection map (which coincides
with the localization of Ω(G/N) considered as Λ(G)-module, whence the notation!). We
first prove the surjectivity of the homomorphism ∂2 in the long exact localization sequence
of K-theory

K2(Λ(G)S∗) ∂2−→ K1(Ω(G)S) → K1(Λ(G)S) → K1(Λ(G)S∗) ∂1−→ K0(Ω(G)S).

But, since Ω(G)S is semi-local by [15, Proposition 4.2], the natural homomorphism
Ω(G)∗

S � K1(Ω(G)S) is surjective and hence K1(Ω(G)S) is generated by the image
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of S. The surjectivity of ∂2 thus follows from the fact that for each f ∈ S one has
∂2({f, p}) = [f ] ∈ K1(Ω(G)S), where {f, p} denotes the symbol of f and p in K2(Λ(G)S∗)
(indeed, the latter equality is proved by the argument of [19, Proposition 5]). From the
above exact sequence we therefore obtain an exact sequence

0 → K1(Λ(G)S) → K1(Λ(G)S∗) ∂1−→ K0(Ω(G)S). (3.6)

We next consider the composite map

ZI → K1(Λ(G)S∗) ∂1−→ K0(Ω(G)S) α−→ K0(B(G)) ∼= ZJ . (3.7)

Here the first map is given by sending the ith basis vector of ZI to the class of the
element fi := 1 + (p − 1)ei (note that Λ(G)/Λ(G)fi is isomorphic to Yi), we set B(G) :=
Ω(G)S/ Jac(Ω(G)S), the canonical map α is injective by [2, Chapter IX, Proposition 1.3]
and the index set J parametrizes the isomorphism classes of simple modules over the
semisimple Artinian ring B(G). Let N be any closed normal subgroup of G which is
both pro-p and open in H. Then it is straightforward to check that (3.7) factorizes
through the surjective composite map

ZI ∼= K0(Ω(G/N))
β−→ K0(Ω(G/N)S)

γ−→ K0(B(G)). (3.8)

Here the (surjective) map β comes from the exact localization sequence and γ is induced
from the fact that Ω(G)S � B(G) factors as the composite Ω(G)S � Ω(G/N)S �
B(G) by the proof of [15, Lemma 4.3]. By [15], Ω(G/N)S is an Artinian ring and
thus Jac(Ω(G/N)S) is a nilpotent ideal with Ω(G/N)S/ Jac(Ω(G/N)S) = B(G). Hence,
by [15, Lemma 4.1], the map γ is an isomorphism. It follows that the map in (3.7) is
surjective and hence that α is bijective and ∂1 is surjective.

If DS(G) denotes the category of finitely generated Λ(G)S-modules which are Zp-
torsion, then we have shown that the composite map

K0(DS(G)) ∼= K0(Ω(G)S) ∼= K0(B(G)) = ZJ (3.9)

is bijective and that |J | � |I|.
By combining (3.6) with the surjectivity of ∂1, the bijectivity of (3.9) and the assertion

of Lemma 3.5 (i) below we obtain an exact sequence

0 → K1(Λ(G)S) → K1(Λ(G)S∗)
∂′
1−→ K0(D(G)) → 0. (3.10)

Further, it is straightforward to show that, with respect to the isomorphism K0(D(G)) ∼=
ZI of (3.4), this sequence is split by the map which sends the ith basis vector of ZI to
the class of fi in K1(Λ(G)S∗). This proves the final assertion of Proposition 3.4.

We next consider the following diagram with exact rows

0 �� im(ιS∗) �� K1(Λ(G)S) ��

��

K0(MS(G)) ��

δ

��

0

0 �� im(ιS∗) �� K1(Λ(G)S∗) �� K0(MS∗(G)) �� 0

(3.11)

https://doi.org/10.1017/S147474800900022X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800900022X


Non-commutative main conjectures 73

where ιS∗ is the natural map K1(Λ(G)) → K1(Λ(G)S∗), δ is induced by the embedding
of categories MS(G) ⊂ MS∗(G) and [15, Proposition 3.4] implies that each row is indeed
exact. By applying the snake lemma to this diagram and comparing with the sequence
(3.10) we obtain an exact sequence of the form

0 → K0(MS(G)) δ−→ K0(MS∗(G)) → K0(D(G)) → 0.

The first assertion of Proposition 3.4 now follows because this sequence is split by the
homomorphism K0(D(G)) → K0(MS∗(G)) that is induced by the embedding of cate-
gories D(G) ⊂ MS∗(G). �

Lemma 3.5.

(i) The exact scalar extension functor from Λ(G)-mod to Λ(G)S-mod identifies D(G)
with a full subcategory of DS(G) and induces an isomorphism K0(D(G)) ∼=
K0(DS(G)).

(ii) The natural map ι : K0(D(G)) → K0(MS∗(G)) is injective.

(iii) The natural map K0(Ω(G/N)) → K0(Ω(G/N)S) is bijective.

Proof. The assignment M �→ (µi
Λ(G)(M [0]))i∈I induces a homomorphism

µ : K0(MS∗(G)) → ZI .

Now from (3.4) and (3.5) we know that µ ◦ ι is bijective while from Lemma 3.1 (iii) we
know δ(K0(MS(G))) ⊆ ker(µ) where δ is the homomorphism in diagram (3.11). This
implies that ι is injective (so proving claim (ii)), that µ is surjective and that |I| � |J |.
But |J | � |I| (see just after (3.9)) and so |I| = |J |.

Since |I| = |J | the isomorphisms of (3.4) and (3.8) combine to imply that the natural
map K0(D(G)) → K0(DS(G)) is bijective (proving claim (i)).

In a similar way, claim (iii) follows by combining the equality |I| = |J | together with
the surjectivity of the map β in (3.8) and the definition of the index set J (in (3.7)). �

4. Characteristic series

In this section we associate a canonical ‘characteristic series’ to each complex in
Dp

S̃
(Λ(G)). This construction extends the notion of ‘algebraic p-adic L-functions’ intro-

duced by the first named author in [6] and hence refines the ‘Akashi series’ introduced
by Coates, Schneider and Sujatha in [14]. It will also play a key role in our proof of
Theorem 2.1 (see in particular the proof of Lemma 5.7).

4.1. The definition

If M is any compact (left) Λ(G)-module, then the completed tensor product

IGH(M) := Λ(G)⊗̂Λ(H)ResG
H(M)
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has a natural structure as a compact Λ(G)-module via multiplication on the left. With
respect to this action, one obtains a (well-defined) endomorphism ∆γ of IGH(M) by setting

∆γ(x ⊗Λ(H) y) := xγ̃−1 ⊗Λ(H) γ̃(y)

for each x ∈ Λ(G) and y ∈ M , where γ̃ is any lift of γ through the natural projection
G → Γ . It is easily checked that ∆γ is independent of the precise choice of γ̃. Further, if
M belongs to MS∗(G), then [6, Lemma 2.1] implies that

δγ := idIG
H(M) − ∆γ

induces an automorphism of the (finitely generated) Λ(G)S∗ -module IGH(M)S∗ .
Now the ring Λ(G)S∗ is both noetherian and regular [18, Proposition 4.3.4] and so

K1(Λ(G)S∗) is naturally isomorphic to the group G1(Λ(G)S∗) that is generated (mul-
tiplicatively) by symbols 〈α | M〉 where α is an automorphism of a finitely generated
Λ(G)S∗ -module M (cf. [31, Theorem 16.11]). For each complex C in Dp

S∗(Λ(G)) we may
therefore define an element of K1(Λ(G)S∗) by setting

char∗
G,γ(C) :=

∏
i∈Z

〈δγ | IGH(Hi(C))S∗〉(−1)i

.

For each C in Dp
S̃
(Λ(G)) we also define an ‘equivariant multiplicative µ-invariant’ in

the image of the natural map

K1

(
Λ(G)

[
1
p

])
→ K1(Λ(G)S∗)

by setting

χµ
G(C) :=

⎧⎪⎨
⎪⎩

〈
1 +

∑
i∈I

(pµi
Λ(G)(C) − 1)ei

∣∣∣∣ Λ(G)S∗

〉
, if G has no element of order p,

1, if C belongs to Dp
S(Λ(G)),

where the integer µi
Λ(G)(C) is as defined at the end of § 3.4.1. We note this definition is

both consistent (because if G has no element of order p and C belongs to Dp
S(Λ(G)),

then Proposition 3.3 (iv) implies µi
Λ(G)(C) = 0 for all i ∈ I) and also applies to all C in

Dp
S̃
(Λ(G)) (because Dp

S̃
(Λ(G)) = Dp

S(Λ(G)) if G has an element of order p).

Definition 4.1. For each C in Dp
S̃
(Λ(G)) the characteristic series of C is the element

charG,γ(C) := χµ
G(C) · char∗

G,γ(C)

of K1(Λ(G)S∗).

Remark 4.2. If G = Γ , then Λ(G)S∗ = Q(Γ ) and so there is a natural isomorphism
ι : K1(Λ(G)S∗) ∼= Q(Γ )×. Further, if M is any finitely generated torsion Λ(Γ )-module,
then ι(charG,γ(M [0])) = (1 + T )−λ(M)charT (M) where λ(M) is the Iwasawa λ-invariant
of M and charT (M) is the characteristic polynomial of M with respect to the variable
T = γ − 1. (For a proof of this fact see [6, Lemma 2.3].)
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Remark 4.3. In Proposition 4.7 (i) we will prove that if G has no element of order p,
then charG,γ(C) is a ‘characteristic element for C’ in the sense of [15, (33)] (and see also
Remark 6.2 in this regard). In [6, Theorem 4.1] it is proved that this is also true if G

has rank one as a p-adic Lie group. In these cases it therefore seems reasonable to regard
charG,γ(C) as a canonical ‘algebraic p-adic L-function’ associated to C.

4.2. Basic properties

Lemma 4.4. If C1 → C2 → C3 → C1[1] is an exact triangle in Dp
S̃
(Λ(G)), then

charG,γ(C2) = charG,γ(C1)charG,γ(C3).

Proof. We claim first that χµ
G(C2) = χµ

G(C1)χ
µ
G(C3). This is obvious if G has an element

of order p since then each complex Cj belongs to Dp
S(Λ(G)) and so χµ

G(Cj) = 1. If on
the other hand G has no element of order p, then the claimed equality is a consequence
of Lemma 3.1 (i). Indeed, if for each j ∈ {1, 2, 3} we set xj := 1+

∑
i∈I(p

µi
Λ(G)(Cj) − 1)ei,

then χµ
G(Cj) = 〈xj | Λ(G)S∗〉 and, since

xj =
(

1 −
∑
i∈I

ei

)
+

∑
i∈I

pµi
Λ(G)(Cj)ei

and the idempotents ei are mutually orthogonal, Lemma 3.1 (i) implies an equality x2 =
x1x3.

Finally, we note that the equality char∗
G,γ(C2) = char∗

G,γ(C1)char∗
G,γ(C3) is equivalent

to that of [6, Proposition 3.1]. �

Let U be a closed subgroup of H that is normal in G and set G1 := G/U ,
H1 := H/U and S1 := SG1,H1 . Then there exists a natural ring homomorphism
πG1 : Λ(G)S∗ → Λ(G1)S∗

1
and hence an induced homomorphism of groups

πG1,∗ : K1(Λ(G)S∗) → K1(Λ(G1)S∗
1
).

Lemma 4.5. Let G1, H1 and S1 be as above. Fix C in Dp
S̃
(Λ(G)) and assume that either

C belongs to Dp
S(Λ(G)) or that G1 has no element of order p. Then C1 := Λ(G1) ⊗L

Λ(G) C

belongs to Dp
S̃1

(Λ(G1)) and πG1,∗(charG,γ(C)) = charG1,γ(C1).

Proof. We claim first that πG1,∗(χ
µ
G(C)) = χµ

G1
(C1). If C belongs to Dp

S(Λ(G)), then
C1 belongs to Dp

S1
(Λ(G1)) and so πG1,∗(χ

µ
G(C)) = πG1,∗(1) = 1 = χµ

G1
(C1). If on the

other hand C does not belong to Dp
S(Λ(G)), then, by assumption, neither G or G1 has

an element of order p and the claimed equality follows from Lemma 3.1 (iv). To show this
we may regard the index set I1 corresponding to the irreducible representations of G1

as a subset of I by considering them as representations of G via the natural projection:
then, for each i ∈ I1 Lemma 3.1 (iv) implies µi

Λ(G)(C) = µi
Λ(G1)(C1). Furthermore, we

can assume that the image under the natural projection of ei for each i ∈ I1 coincides
with the corresponding idempotent chosen with respect to G1 while the image of ei in
Λ(G1) is zero for i ∈ I \ I1. The claimed equality πG1,∗(χ

µ
G(C)) = χµ

G1
(C1) is therefore

clear.
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Finally, we note that the equality πG1,∗(char∗
G,γ(C)) = char∗

G1,γ(C1) is equivalent to
that of [6, Proposition 3.2]. �

In the next result we fix an open subgroup U of G and set HU := H ∩ U and ΓU :=
U/HU . We use the natural isomorphism ΓU

∼= HU/H to regard ΓU as an open subgroup
of Γ , we set dU := [Γ : ΓU ] and write γU for the topological generator γdU of ΓU . We
set SU := SU,HU

and note that Λ(G), respectively Λ(G)S , respectively Λ(G)S∗ is a free
Λ(U)-module, respectively Λ(U)SU

-module, respectively Λ(U)S∗
U
-module, of rank [G : U ].

In particular, restriction of scalars gives natural functors Dp
S(Λ(G)) → Dp

SU
(Λ(U)) and

Dp
S∗(Λ(G)) → Dp

S∗
U
(Λ(U)) and a natural homomorphism

resU,∗ : K1(Λ(G)S∗) → K1(Λ(U)S∗
U
).

Lemma 4.6. Let G and U be as above and fix C in Dp
S̃
(Λ(G)). Then C1 := resG

UC

belongs to Dp
S̃U

(Λ(U)) and one has resU,∗(charG,γ(C)) = charU,γU
(C1).

Proof. We prove first that resU,∗(χ
µ
G(C)) = χµ

U (C1). The complex C belongs to
Dp

S(Λ(G)) if and only if C1 belongs to Dp
SU

(Λ(U)) and in this case one has

resU,∗(χ
µ
G(C)) = resU,∗(1) = 1 = χµ

U (C1).

We may thus assume that C belongs to Dp
S∗(Λ(G)) \ Dp

S(Λ(G)) and hence that G (and
therefore also U) has no element of order p. By the same argument as used in the proof
of Proposition 3.3 (iii), we can also assume that C = Ya[0] for some index a in I. Then
for each index i in I one has µi

Λ(G)(C) = 〈Ya, Yi〉 = δai and so

resU,∗(χ
µ
G(C)) = resU,∗(〈(1 − ea) + pea | Λ(G)S∗〉) = resU,∗(〈p | Λ(G)S∗ea〉).

We write {êj : j ∈ J} for the idempotents of Λ(U) that are analogous to the idempotents
ei of Λ(G) defined in § 3.3 and {X(U)j : j ∈ J}, respectively {Y (U)j : j ∈ J}, for the
submodules of Λ(U), respectively Ω(U), that are analogous to the modules Xi, respec-
tively Yi, defined in § 3.3. For each j in J we set mj := 〈Λ(G)ea, X(U)j〉 = 〈Ya, Y (U)j〉.
Then the Λ(U)S∗

U
-module Λ(G)S∗ea is isomorphic to

⊕
j∈J(Λ(U)S∗

U
êj)mj and so the last

displayed expression is equal to∏
j∈J

〈p | Λ(U)S∗
U
êj〉mj =

∏
j∈J

〈(1 − êj) + pmj êj | Λ(U)S∗
U
〉

=
〈 ∏

j∈J

((1 − êj) + pmj êj)
∣∣∣∣ Λ(U)S∗

U

〉

=
〈(

1 −
∑
j∈J

êj

)
+

∑
j∈J

pmj êj

∣∣∣∣ Λ(U)S∗
U

〉

= χµ
U (resG

UYa[0]),

where the third equality is valid because∏
j∈J

((1 − êj) + pmj êj) = (1 −
∑
j∈J

êj) +
∑
j∈J

pmj êj .

This completes the proof that resU,∗(χ
µ
G(C)) = χµ

U (C1).
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It remains to prove that resU,∗(char∗
G,γ(C)) = char∗

U,γU
(C1). To do this we may assume

that C = M [0] for a module M in MS∗(G) so that char∗
G,γ(C) is equal to 〈δγ | IGH(M)S∗〉.

Now the Λ(U)S∗
U
-module IGH(M)S∗ is equal to the direct sum

i=dU −1⊕
i=0

∆γi(IUHU
(M)S∗

U
) ∼=

i=dU −1⊕
i=0

IUHU
(M)S∗

U
,

where the isomorphism identifies each translate ∆γi(IUHU
(M)S∗

U
) with IUHU

(M)S∗
U

in the
natural way. With respect to this decomposition δγ is the automorphism given by the
dU × dU matrix ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

id −id 0 · · · · · · · · · 0
0 id −id 0 · · · · · · 0
0 0 id −id 0 . . . 0
...

...
...

...
...

...
...

0 · · · · · · · · · 0 id −id
−∆γdU 0 · · · · · · · · · 0 id

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Elementary row and column operations show that this automorphism represents the same
element of K1(Λ(U)S∗

U
) as does the automorphism α of

⊕i=dU −1
i=0 IUHU

(M)S∗
U

that acts as
id − ∆γdU on the last direct summand and as the identity on all other summands. The
required result thus follows because, since δγU

:= id − ∆γdU , the class of α in K1(Λ(U)S∗
U
)

is equal to 〈δγU
| IUHU

(M)S∗
U
〉 =: char∗

U,γU
(C1). �

4.3. The proof of Theorem 2.1

We deduce Theorem 2.1 as a consequence of the following result.

Proposition 4.7. Assume that G has no element of order p.

(i) For each C in Dp
S∗(Λ(G)) one has ∂G(charG,γ(C)) =

∑
i∈Z(−1)i+1[Hi(C)].

(ii) There exists a (unique) homomorphism χG,γ from K0(MS∗(G)) to K1(Λ(G)S∗)
that simultaneously satisfies the following conditions.

(a) For each M in MS∗(G) one has χG,γ([M ]) = charG,γ(M [1]).

(b) χG,γ is right inverse to ∂G.

(c) χG,γ respects the isomorphisms of Proposition 3.4.

(d) Let U be a closed subgroup of H that is normal in G and such that Ḡ := G/U

has no element of order p. Set H̄ := H/U and S̄ := SḠ,H̄ . Then there is a
commutative diagram

K0(MS∗(G))
χG,γ ��

��

K1(Λ(G)S∗)

��
K0(MS̄∗(Ḡ))

χḠ,γ �� K1(Λ(Ḡ)S̄∗)

where the vertical arrows are the natural projection homomorphisms.
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Remark 4.8. Proposition 4.7 (i) shows that charG,γ(C) is a ‘characteristic element for
C’ in the sense of [15, (33)]. The surjectivity of ∂G (which follows directly from Propo-
sition 4.7 (ii)(b)) was first proved in [15, Proposition 3.4].

The proof of Proposition 4.7 will be the subject of § 4.4. However, we now show that
it implies Theorem 2.1. To do this we consider the map

ιG : K0(Ω(G)) ⊕ K0(MS(G)) ⊕ im(K1(Λ(G)) → K1(Λ(G)S∗)) → K1(Λ(G)S∗),

which for each M in Ω(G), N in MS(G) and u in im(K1(Λ(G)) → K1(Λ(G)S∗)) satisfies
ιG(([M ], [N ], u)) = charG,γ(M [1])charG,γ(N [1])u. Then Proposition 4.7 (ii) implies that
ιG is a well-defined homomorphism which, upon restriction to the summand K0(Ω(G))⊕
K0(MS(G)), gives a right inverse to the composite K1(Λ(G)S∗) → K0(MS∗(G)) →
K0(Ω(G)) ⊕ K0(MS(G)) where the first arrow is ∂G and the second is the isomorphism
of Proposition 3.4. The exactness of the lower row of (3.11) thus implies that ιG is
bijective. This completes the proof of Theorem 2.1.

Remark 4.9. The characteristic series of a module M in MS∗(G) and hence also the
splitting χG,γ of ∂G in Proposition 4.7 can be defined just in terms of modules instead
of using derived categories. One can therefore avoid the use of derived categories in the
proof of Theorem 2.1. However, since our applications involve complexes we prefer to use
this language from the outset.

4.4. The proof of Proposition 4.7

In addition to proving Proposition 4.7 we shall also now translate Definition 4.1 into
the language of localized K1-groups introduced by Fukaya and Kato in [18]. We therefore
use the notation of Appendix A.

4.4.1. S-acyclic complexes

In [28, Proposition 2.2, Remark 2.3] Schneider and the second named author have
proved that for each bounded complex P of projective Λ(G)-modules in Dp

S(Λ(G)) there
exists an exact sequence of complexes in Dp(Λ(G))

0 → IGH(P )
δγ(P )−−−−→ IGH(P )

π(P )−−−→ P → 0, (4.1)

where in each degree i the morphisms δγ(P )i and π(P )i are equal to δγ : IGH(P i) →
IGH(P i) and the natural projection IGH(P i) → P i respectively. We may therefore define a
morphism

1Λ(G) → dΛ(G)(IGH(P ))dΛ(G)(IGH(P ))−1 → dΛ(G)(P ),

where the first arrow is induced by the identity map on IGH(P ) and the second by applying
property A(d) in Appendix A to (4.1). By using property A(g) in Appendix A of the
functor dΛ(G) we then extend this definition to obtain for any object C of Dp

S(Λ(G)) a
canonical morphism δγ(C) : IG

H(C) → IG
H(C) in Dp(Λ(G)) and an induced morphism in

V (Λ(G)) of the form

tS(C) : 1Λ(G) → dΛ(G)(IGH(C))dΛ(G)(IGH(C))−1 → dΛ(G)(C).
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This morphism is closely analogous to those that arise naturally in the context of varieties
over finite fields (cf. [20, Lemma 3.5.8] and [5, § 3.2]).

In the following result we use the homomorphism chΛ(G),ΣC
and notation [−,−]FK

defined in Appendix A.

Lemma 4.10. If G has no element of order p, then for each C in Dp
S(Λ(G)) one has

chΛ(G),ΣC
([C, tS(C)]FK) = char∗

G,γ(C).

Proof. We first recall from Appendix A that chΛ(G),ΣC
([C, tS(C)]FK) = θC,tS(C) where

the latter element is as defined in (A.1). To compute θC,tS(C) explicitly we set R := Λ(G),
Q := RS∗ , CQ := Q ⊗R C, H(C)Q := Q ⊗R H(C), H(C)H,Q := Q ⊗Λ(H) H(C) and
Hi(C)H,Q := Q ⊗Λ(H) Hi(C). We consider the following diagram in V (Q):

1Q
α1 ��

α5

��

dQ(H(C)H,Q)dQ(H(C)H,Q)−1 α2 �� dQ(H(C)Q)
α3 �� dQ(CQ)

1Q
α4 �� dQ(H(C)H,Q)dQ(H(C)H,Q)−1 α2 �� dQ(H(C)Q)

α3 �� dQ(CQ)

In this diagram α1 is induced by the identity map on H(C)H,Q, α2 is induced by the
second arrow in the definition of tS(H(C)), α3 is property A(h) in Appendix A, α4 is
induced by the automorphism Q ⊗R Hi(δγ(C)) of each term Hi(C)H,Q = H(C)i

H,Q and
α5 is defined so that the first square commutes. Now the upper row of the diagram
is equal to the morphism Q ⊗R tS(C) while the lower row agrees with the morphism
1Q → dQ(CQ) induced by the acyclicity of CQ. From the commutativity of the diagram
we thus deduce that the element θC,tS(C) of K1(Q) is represented by α5. On the other
hand, an explicit comparison of the maps α1 and α4 shows that α5 represents the same
element of K1(Q) as does the morphism

dQ(H(C)H,Q) ∼=
∏
i∈Z

dQ(Hi(C)H,Q)(−1)i →
∏
i∈Z

dQ(Hi(C)H,Q)(−1)i ∼= dQ(H(C)H,Q),

where the first and third maps use property A(h) in Appendix A for the complex H(C)H,Q

and the second map is
∏

i∈Z dQ(Q ⊗R Hi(δγ(C)))(−1)i

. From here we deduce the required
equality in K1(Q):

θC,tS(C) =
∏
i∈Z

〈δγ | Hi(C)H,Q〉(−1)i

=: char∗
G,γ(C).

�

4.4.2. p-torsion complexes

In this subsection we assume that G has no element of order p (so that Dp(Λ(G))
identifies with Dfg(Λ(G))).

If T is a bounded complex of finitely generated Ω(G)-modules, then there is a bounded
complex of finitely generated projective Ω(G)-modules P̄ that is isomorphic in D(Ω(G))

https://doi.org/10.1017/S147474800900022X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800900022X


80 D. Burns and O. Venjakob

(and hence also in Dp(Λ(G))) to T . Also, following the discussion of § 3.3, in each degree
i there is a finitely generated projective Λ(G)-module P i and an exact sequence of
Λ(G)-modules

0 → P i p−→ P i → P̄ i → 0. (4.2)

We may therefore define a morphism

t(T ) : 1Λ(G) →
∏
i∈Z

(dΛ(G)(P i)dΛ(G)(P i)−1)(−1)i

→
∏
i∈Z

dΛ(G)(P̄ i)(−1)i

= dΛ(G)(P̄ ) → dΛ(G)(T ),

where the first arrow is induced by the identity map on each module P i, the second by
applying property A(d) in Appendix A to each of the sequences (4.2) and the last by the
given quasi-isomorphism P̄ ∼= T . If now C is any bounded complex of modules in D(G),
then there exists a finite length filtration of C by complexes

0 = Cd ⊂ Cd−1 ⊂ · · · ⊂ C1 ⊂ C0 = C (4.3)

so that each quotient complex Ti := Ci/Ci+1 belongs to Dp(Ω(G)). This gives associated
exact triangles in Dp

S∗(Λ(G)) of the form

Ca+1 → Ca → Ta → Ca+1[1], 0 � a < d, (4.4)

which combine to induce an identification dΛ(G)(C) =
∏

0�a<d dΛ(G)(Ta). With respect
to this identification, we set

t(C) :=
∏

0�a<d

t(Ta).

This definition is easily checked to be independent of the choice of filtration (4.3) and,
for each a, of isomorphism P̄ ∼= Ta and resolution (4.2) used to define t(Ta).

Lemma 4.11. If G has no element of order p and C is any bounded complex of modules
in D(G), then in K1(Λ(G)S∗) one has chΛ(G),ΣS∗ ([C, t(C)]FK) = χµ

G(C).

Proof. Given the above definition of t(C), a straightforward reduction argument com-
bining the exact triangles (4.4) with both relation (2) in the definition of K1(Λ(G), ΣS∗)
(cf. Definition A.1) and Lemma 4.4 shows that it is enough to consider the case that C is
equal to a bounded complex of finitely generated Ω(G)-modules T . A similar reduction
argument then allows one to further assume that T = P̄ [0] for a finitely generated projec-
tive Ω(G)-module P̄ . Now, in terms of the notation introduced in § 3.3, one has a direct
sum decomposition P̄ ∼=

⊕
i∈I Y mi

i with mi := 〈P̄ , Yi〉 for each i ∈ I. There is therefore
a resolution (4.2) of the form 0 → Λ(G)n d−→ Λ(G)n → P̄ → 0 where n :=

∑
i∈I mi and

the homomorphism d is given with respect to the canonical Λ(G)-basis of Λ(G)n by the
diagonal matrix with ath entry equal to fb := 1+ (p− 1)eb if

∑i=b−1
i=1 mi < a �

∑i=b
i=1 mi
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for any b ∈ I. The definition of chΛ(G),ΣS∗ then implies that

chΛ(G),ΣS∗ ([T, t(T )]FK) = 〈d | Λ(G)n
S∗〉

=
∏
i∈I

〈fi | Λ(G)mi

S∗ 〉

=
∏
i∈I

〈fmi
i | Λ(G)S∗〉

=
∏
i∈I

〈1 + (pmi − 1)ei | Λ(G)S∗〉

=
〈

1 +
∑
i∈I

(pmi − 1)ei

∣∣∣∣ Λ(G)S∗

〉
.

Recalling the explicit definition of χµ
G(P̄ [0]) it is thus enough to show that for each

i ∈ I one has mi = µi
Λ(G)(P̄ [0]). But the decomposition P̄ ∼=

⊕
a∈I Y ma

a implies that
µi

Λ(G)(P̄ [0]) =
∑

a∈I maµi
Λ(G)(Ya[0]) and (3.3) implies that this sum is indeed equal to mi.

�

4.4.3. The proof of Proposition 4.7

For each complex C in ΣS∗ we write H(C)tor and H(C)tf for the complexes with
H(C)i

tor = Hi(C)tor and H(C)i
tf = Hi(C)tf in each degree i and in which all differen-

tials are zero. There is then a tautological exact sequence of complexes 0 → H(C)tor →
H(C) → H(C)tf → 0 and hence an equality χ(C) = χ(H(C)) = χ(H(C)tor) + χ(H(C)tf)
in K0(MS∗(G)). From the definitions of χµ

G(−) and char∗
G,γ(−) it is also clear that

χµ
G(C) = χµ

G(H(C)tor) and char∗
G,γ(C) = char∗

G,γ(H(C)tf). Claim (i) therefore follows
upon combining Lemmas 4.10 and 4.11 (with C replaced by H(C)tf and H(C)tor respec-
tively) with the following fact: there is a commutative diagram of homomorphisms of
abelian groups

K1(Λ(G), ΣS∗) ∂′
��

chΛ(G),ΣS∗

��

K0(ΣS∗)

ι

��
K1(Λ(G)S∗)

∂G �� K0(MS∗(G))

where ∂′ sends each class [C, a]FK to −[[C]] (cf. [18, Theorem 1.3.15]) and ι sends each
class [[C]] to χ(C) =

∑
i∈Z(−1)i[Hi(C)] (cf. [18, § 4.3.3]).

Regarding claim (ii) we note first that if a homomorphism χG,γ exists satisfying prop-
erty (a), then it is automatically unique. Next we note that Lemma 4.4 implies the
assignment M �→ charG,γ(M [1]) for each M in MS∗(G) induces a well-defined homo-
morphism χG,γ : K0(MS∗(G)) → K1(Λ(G)S∗) and claim (i) implies that this homo-
morphism is a right inverse to ∂G. Further, for each M in D(G) and N in MS(G) one
has charG,γ(M [1]) = χµ

G,γ(M [1]) ∈ ι(K0(Ω(G))) and charG,γ(N [1]) = char∗
G,γ(N [1]) ∈

ι(K0(MS(G))) (where the latter equality follows from Lemma 3.1 (iii)) and so prop-
erty (c) is satisfied. Finally, the commutativity of the diagram in (d) is a direct conse-
quence of Lemma 4.5.
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5. Descent theory

In this section we shall discuss leading terms of elements of K1(Λ(G)S∗) and in particular
prove Theorem 2.2. The approach of this section was initially developed by the first named
author in an unpublished early version of the article [6].

We deal first with the case that C is acyclic. In this case the complex Zp[Ḡ] ⊗L
Λ(G) C

is also acyclic so [dZp[Ḡ](Zp[Ḡ] ⊗L
Λ(G) C), t(C)Ḡ] is the zero element of K0(Zp[Ḡ], Qc

p[Ḡ])
and in addition ξ belongs to the image of the natural map K1(Λ(G)) → K1(Λ(G)S∗).
The equality of Theorem 2.2 is therefore a consequence of the following result.

Lemma 5.1. If u belongs to the image of the natural map λ : K1(Λ(G)) → K1(Λ(G)S∗),
then for each finite quotient Ḡ of G the element (u∗(ρ))ρ∈Irr(Ḡ) belongs to ker(∂Ḡ).

Proof. Let O be the valuation ring of a finite extension L of Qp such that all rep-
resentations of Ḡ can be realized over O. If v ∈ K1(Λ(G)) with u = λ(v), then
u∗(ρ) = u(ρ) = λ(v)(ρ) ∈ O× for all ρ ∈ Irr(Ḡ). Thus by functoriality of K-theory
and the fact that the canonical map K1(ΛO(Γ )) → K1(O) is equal to the ‘evaluation
at 0’ homomorphism ΛO(Γ )× → O×, the image of v in K1(Zp[Ḡ]) under the natural
projection is mapped to (u∗(ρ))ρ∈Irr(Ḡ) ∈ K1(L[Ḡ]). �

5.1. Reduction to S-acyclicity

We now reduce the general case of Theorem 2.2 to the case that C belongs to Dp
S(Λ(G)).

In this subsection we therefore assume that G has no element of order p.

Lemma 5.2. If G has no element of order p, then it is enough to prove Theorem 2.2 in
the case that C is acyclic outside at most one degree.

Proof. We assume that the result of Theorem 2.2 is true for all complexes that are
acyclic outside at most one degree. To deduce Theorem 2.2 in the general case we use
induction on the number of non-zero cohomology groups of C (which we assume to be
at least two). We let n denote the largest integer m for which Hm(C) is non-zero. We
write C1 for the (non-naive!) truncation of C in degrees less than n (which has fewer
non-zero cohomology groups than does C) and set C2 := Hn(C)[−n]. Then there is an
exact triangle in Dp

S∗(Λ(G)) of the form

C1 → C → C2 → C1[1] (5.1)

and the assumption that C is semisimple at ρ implies that both C1 and C2 are also
semisimple at ρ (for any ρ in Irr(Ḡ)). Let ξ be an element such that ∂G(ξ) = χ(C). If
ξ1 is such that ∂G(ξ1) = χ(C1), then ξ2 := ξξ−1

1 satisfies ∂G(ξ2) = ∂G(ξ) − ∂G(ξ1) =
χ(C)−χ(C1) = χ(C2), where the last equality follows from (5.1). Hence, by the inductive
hypothesis, one has

∂Ḡ((ξ∗(ρ))ρ) = ∂Ḡ((ξ∗
1(ρ))ρ) + ∂Ḡ((ξ∗

2(ρ))ρ)

= −[dZp[Ḡ](C1,Ḡ), t(C1)Ḡ] − [dZp[Ḡ](C2,Ḡ), t(C2)Ḡ], (5.2)
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where Ci,Ḡ := Zp[Ḡ] ⊗L
Λ(G) Ci for i = 1, 2. Now if we set CḠ := Zp[Ḡ] ⊗L

Λ(G) C, then (5.1)
induces an exact triangle in Dp(Zp[Ḡ])

C1,Ḡ → CḠ → C2,Ḡ → C1,Ḡ[1] (5.3)

and, with respect to this triangle, the trivializations t(C1)Ḡ, t(C)Ḡ and t(C2)Ḡ satisfy the
‘additivity criterion’ of [3, Corollary 6.6]. Indeed, for each ρ in Irr(Ḡ) the exact triangle
(5.1) combines with the definition (3.1) of each of the complexes C1,ρ, Cρ and C2,ρ to
induce an exact triangle

Qc
p⊗̂

L

ΛO(Γ )C1,ρ → Qc
p⊗̂

L

ΛO(Γ )Cρ → Qc
p⊗̂

L

ΛO(Γ )C2,ρ → Qc
p⊗̂

L

ΛO(Γ )C1,ρ[1]

and the cohomology sequence of this triangle gives an equality rG(C)(ρ) = rG(C1)(ρ) +
rG(C2)(ρ) and a short exact sequence of complexes

0 → Hβ(�(C1,ρ, γ)) → Hβ(�(Cρ, γ)) → Hβ(�(C2,ρ, γ)) → 0.

Here we use the notation of Appendix B and write �(Cρ, γ) for the triangle

Qc
p ⊗L

O Cρ
θγ,ρ−−→ Qc

p ⊗L
O Cρ → Qc

p⊗̂
L

ΛO(Γ )Cρ → Qc
p ⊗L

O Cρ[1], (5.4)

where θγ,ρ is induced by multiplication by γ − 1, and we use similar notation for C1 and
C2. This means that the criterion of [3, Corollary 6.6] is satisfied if one takes (in the
notation of [3]) Σ to be Qc

p[Ḡ],

P
a−→ Q

b−→ R
c−→ P [1]

to be the exact triangle (5.3) (so ker(HevaΣ) = ker(HodaΣ) = 0) and the trivial-
izations tP , tQ and tR to be induced by (−1)rG(C1)(ρ)t(C1,ρ), (−1)rG(C)(ρ)t(Cρ) and
(−1)rG(C2)(ρ)t(C2,ρ) respectively. From [3, Corollary 6.6] we therefore deduce that the
last element in (5.2) is indeed equal to −[dZp[Ḡ](CḠ), t(C)Ḡ], as required. �

Taking account of Lemmas 5.1 and 5.2 we now assume that C is acyclic outside precisely
one degree. To be specific, we assume that C = M [0] with M in MS∗(Λ(G)). Then there
is an exact triangle of the form

Mtor[0] → M [0] → Mtf [0] → Mtor[1], (5.5)

where Mtor belongs to D(G) and Mtf to MS(Λ(G)). In this case one has t(M [0])Ḡ =
t(Mtf [0])Ḡ and so (by another application of [3, Corollary 6.6])

[dZp[Ḡ](Zp[Ḡ] ⊗L
Λ(G) M [0]), t(M [0])Ḡ]

= [dZp[Ḡ](Zp[Ḡ] ⊗L
Λ(G) Mtor[0]), can] + [dZp[Ḡ](Zp[Ḡ] ⊗L

Λ(G) Mtf [0]), t(M [0])Ḡ] (5.6)

with ‘can’ the canonical morphism

dQp[Ḡ](Qp[Ḡ]⊗̂L

Λ(G)Mtor[0]) = dQp[Ḡ](0) → 1Qp[Ḡ].
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Lemma 5.3. Let N be an object of D(G). If ξ is any element of K1(Λ(G)S∗) with
∂G(ξ) = χ(N [0]), then for any finite quotient Ḡ of G one has

∂Ḡ((ξ∗(ρ))ρ) = −[dZp[Ḡ](Zp[Ḡ] ⊗L
Λ(G) N [0]), can].

Proof. An easy reduction (using dévissage and the additivity of Euler characteristics
on exact sequences in D(G)) allows us to assume that N is an object of D(G) which lies
in an exact sequence of Λ(G)-modules of the form

0 → Q
d−→ P → N → 0, (5.7)

where Q and P are both finitely generated and projective. (Indeed, it is actually enough
to consider the case that Q = P = Λ(G)ei for an idempotent ei as in § 3.3 and with d

equal to multiplication by p.)
To proceed we identify the subgroup K0(D(G)) of K0(MS∗(G)) with the group

K0(Λ(G), Λ(G)[1/p]). To be compatible with the normalizations used in § 1.2 we must fix
this isomorphism so that for every exact sequence (5.7) the element [N ] of K0(D(G)) cor-
responds to the element (Q, d′, P ) of K0(Λ(G), Λ(G)[1/p]) with d′ := Λ(G)[1/p] ⊗Λ(G) d.

Now since Λ(G)[1/p] ⊗Λ(G) N = 0 the localization sequence of K-theory implies that
any element ξ as above belongs to the image of K1(Λ(G)[1/p]) in K1(Λ(G)S∗). This
implies in particular that ξ∗(ρ) = ξ(ρ) for all ρ in Irr(Ḡ). The natural commutative
diagram of connecting homomorphisms

K1(Λ(G)[1/p]) ��

��

K0(Λ(G), Λ(G)[1/p])

��
K1(Qp[Ḡ])

∂Ḡ �� K0(Zp[Ḡ], Qp[Ḡ])

also then implies that ∂Ḡ((ξ∗(ρ))ρ) = (QḠ, d′
Ḡ

, PḠ) with QḠ := Zp[Ḡ] ⊗Λ(G) Q, PḠ :=
Zp[Ḡ] ⊗Λ(G) P and d′

Ḡ
:= Qp[Ḡ] ⊗Λ(G) d. Hence, with respect to the isomorphism (1.2)

(with R = Zp[Ḡ] and R′ = Qp[Ḡ]), one has

∂Ḡ((ξ∗(ρ))ρ) = [dZp[Ḡ](QḠ)dZp[Ḡ](PḠ)−1, τ ] (5.8)

with τ equal to the composite morphism

dQp[Ḡ](Qp ⊗Zp
QḠ)dQp[Ḡ](Qp ⊗Zp

PḠ)−1

→ dQp[Ḡ](Qp ⊗Zp
PḠ)dQp[Ḡ](Qp ⊗Zp

PḠ)−1 = 1Qp[Ḡ],

where the first arrow is induced by dQp[Ḡ](d′
Ḡ

). Finally, we note that the image under
Zp[Ḡ] ⊗Λ(G) − of the sequence (5.7) induces an isomorphism in Dp(Zp[Ḡ]) between
Zp[Ḡ] ⊗L

Λ(G) N [0] and the complex QḠ

dḠ−−→ PḠ where the first term is placed in degree
−1 and dḠ := Zp[Ḡ] ⊗Λ(G) d and this implies that the element on the right-hand side
of (5.8) is the inverse of [dZp[Ḡ](Zp[Ḡ] ⊗L

Λ(G) N [0]), can], as required. �

Lemmas 5.1, 5.2 and 5.3 combine with (5.5) and (5.6) to reduce the proof of Theo-
rem 2.2 to consideration of complexes in Dp

S(Λ(G)) (now in both cases, whether G has
an element of order p or not!). In the remainder of § 5 we shall therefore assume that C

belongs to Dp
S(Λ(G)).
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5.2. Equivariant twists

In this subsection we introduce the algebraic formalism that is key to a proper under-
standing of descent.

5.2.1. The definition

We fix an open normal subgroup U of G and set Ḡ := G/U . We write

∆Ḡ : Λ(G) → Λ(Ḡ × G) ∼= Zp[Ḡ] ⊗Zp
Λ(G)

for the (flat) ring homomorphism which sends each element σ of G to σ̄ ⊗ σ where σ̄

is the image of σ in Ḡ. Then for each Λ(G)-module M the induced Λ(Ḡ × G)-module
Λ(Ḡ × G) ⊗Λ(G),∆Ḡ

M can be identified with the module

twḠ(M) := Zp[Ḡ] ⊗Zp M

upon which Ḡ acts via left multiplication and each σ ∈ G acts by sending x⊗y to xσ̄−1⊗
σ(y). This construction extends to give an exact functor C �→ twḠ(C) from Dp(Λ(G))
to Dp(Λ(Ḡ × G)) and for each such C we set

twḠ(C)H := Λ(Ḡ × Γ ) ⊗L
Λ(Ḡ×G) twḠ(C) ∈ Dp(Λ(Ḡ × Γ )).

5.2.2. Base change

For each s ∈ Λ(G) we write rs and r∆Ḡ(s) for the endomorphisms of Λ(G) and Λ(Ḡ × G)
given by right multiplication by s and ∆Ḡ(s) respectively. Then cok(r∆Ḡ(s)) is isomorphic
as a Λ(Ḡ × G)-module to twḠ(cok(rs)) and so is finitely generated over Λ(Ḡ × H) if
cok(rs) is finitely generated over Λ(H). This implies that ∆Ḡ(S∗) ⊆ S∗

1 , where S := SG,H

and S1 := SḠ×G,Ḡ×H and so ∆Ḡ induces a ring homomorphism

Λ(G)S∗ → Λ(Ḡ × G)S∗
1

→ Λ(Ḡ × Γ )S∗
2

= Q(Ḡ × Γ ), (5.9)

where S2 := SḠ×Γ,Ḡ, the second arrow is the natural projection and the equality is
because Ḡ × Γ has rank one (as a p-adic Lie group). These maps induce a group homo-
morphism

πḠ×Γ : K1(Λ(G)S∗) → K1(Q(Ḡ × Γ ))

which forms the upper row of a natural commutative diagram of connecting homomor-
phisms:

K1(Λ(G)S∗) ��

��

K1(Λ(Ḡ × G)S∗
1
) ��

��

K1(Λ(Ḡ × Γ )S∗
2
)

��
K0(Λ(G), Λ(G)S∗) �� K0(Λ(Ḡ × G), S∗

1 ) �� K0(Λ(Ḡ × Γ ), S∗
2 )

(5.10)

where we write K0(Λ(Ḡ × G), S∗
1 ) and K0(Λ(Ḡ × Γ ), S∗

2 ) for K0(Λ(Ḡ × G), Λ(Ḡ × G)S∗
1
)

and K0(Λ(Ḡ × Γ ), Λ(Ḡ × Γ )S∗
2
) respectively.
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5.2.3. Reduced norms

We set R := Λ(Ḡ × Γ ). Then the algebra Q(R) identifies with the group ring Q(Γ )[Ḡ]
and, with respect to this identification, one has

ζ(Q(R)) ⊂ ζ(Qc(R)) =
∏

ρ∈Irr(Ḡ)

Qc(Γ ) (5.11)

where Qc(R) := Qc
p ⊗Qp Q(R) and Qc(Γ ) := Qc

p ⊗Qp Q(Γ ). We write x = (xρ)ρ for the
corresponding decomposition of each element x of ζ(Qc(R)).

In the next result we write NrdQ(R) : K1(Q(R)) → ζ(Qc(R))× for the reduced norm
map of the semisimple algebra Q(R) and use the homomorphism Φρ and Ore set S̃ defined
in (2.1) and (2.3) respectively.

Lemma 5.4. For each ξ in K1(Λ(G)S̃) one has NrdQ(R)(πḠ×Γ (ξ)) = (Φρ(ξ))ρ∈Irr(Ḡ).

Proof. It suffices to prove that, with respect to the decomposition (5.11), one has
Φρ(ξ) = NrdQ(R)(πḠ×Γ (ξ))ρ for each fixed ρ in Irr(Ḡ). Further, since [15, Proposition 4.2,
Theorem 4.4] implies that the natural map Λ(G)×

S̃
→ K1(Λ(G)S̃) is surjective, it is

enough to verify this for all elements ξ of the form 〈rs | Λ(G)S̃〉 with s ∈ Λ(G) ∩ Λ(G)×
S̃

.
To do this we fix a finite-dimensional Qc

p-space Vρ that corresponds to ρ and write
Vρ∗ for the space HomQc

p
(Vρ, Q

c
p) that corresponds to ρ∗. Then for each x =

∑
δ∈Ḡ cδδ in

Q(Γ )[Ḡ]× = Q(R)× the argument of Ritter and Weiss in [27, § 3] shows that

NrdQ(R)(〈rx | Q(R)〉)ρ = detQc(Γ )(αx), (5.12)

where αx is the automorphism of Vρ∗ ⊗Qc
p

Qc(Γ ) given by
∑

δ∈Ḡ δ−1 ⊗ µ(cδ) with µ(cδ)
denoting multiplication by cδ. Now the matrix of the action of δ−1 on Vρ∗ (with respect
to a fixed Qc

p-basis) is the transpose of the matrix of the action of δ on Vρ (with respect
to the dual Qc

p-basis). Using this fact, and an explication of the role of Morita equiva-
lence in (2.1), one finds that Φρ(s) = detQc(Γ )(α∆Ḡ(s)) for each s ∈ Λ(G) ∩ Λ(G)×

S̃
. Since

πḠ×Γ (〈rs | Λ(G)S̃〉) = 〈r∆Ḡ(s) | Q(R)〉 the claimed result is therefore a consequence of
the description (5.12). �

5.2.4. Semisimplicity

There are natural isomorphisms in Dp(Zp[Ḡ]) of the form

Zp ⊗L
Λ(Γ ) twḠ(C)H

∼= Zp ⊗L
Λ(G) twḠ(C) ∼= Zp[Ḡ] ⊗L

Λ(G) C

and hence an exact triangle in D(Λ(Ḡ × Γ )) of the form

�(twḠ(C), γ) : twḠ(C)H
θγ−→ twḠ(C)H → Zp[Ḡ] ⊗L

Λ(G) C → twḠ(C)H [1],

where θγ is induced by multiplication by γ − id ∈ Λ(Γ ) on Λ(Ḡ × Γ ).
In the next result we use the terminology and notation of Appendix B. For each

Qp[Ḡ]-module M we also define a Qc
p-module Mρ := HomQc

p[Ḡ](Vρ, Q
c
p ⊗Zp M).
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Lemma 5.5.

(i) The image of �(twḠ(C), γ) under the (exact) functor eρQc
p[Ḡ] ⊗Zp[Ḡ] − is naturally

isomorphic to the exact triangle �(Cρ, γ) defined in (5.4).

(ii) For each ρ in Irr(Ḡ) one has

rG(C)(ρ) =
∑
i∈Z

(−1)i+1dimQc
p
(Hi(twḠ(C)H)Γ,ρ).

(iii) The morphism θγ is semisimple if and only if C is semisimple at ρ (in the sense
of [13, Definition 3.11]) for every ρ in Irr(Ḡ).

(iv) If θγ is semisimple, then

rG(C)(ρ) =
∑
i∈Z

(−1)i+1i · dimQc
p
(Hi(Zp[Ḡ] ⊗L

Λ(G) C)ρ)

for every ρ in Irr(Ḡ) and, with respect to the decomposition (1.4), one has for the
Bockstein morphism (as defined in Appendix B)

t(Qp ⊗Zp
�(twḠ(C), γ)) = (t(Cρ))ρ∈Irr(Ḡ),

where Qp ⊗Zp �(twḠ(C), γ) denotes the exact triangle in Dp(Λ(Ḡ × Γ )[1/p]) that
is obtained from �(twḠ(C), γ) by scalar extension.

Proof. For every Λ(G)-module P there is a natural isomorphism of Λ(Ḡ × Γ )-modules

Λ(Ḡ × Γ ) ⊗Λ(Ḡ×G) (Zp[Ḡ] ⊗Zp P ) ∼= Λ(Γ ) ⊗Λ(G) (Zp[Ḡ] ⊗Zp P )

where the action of Ḡ on the second module is just on Zp[Ḡ] (from the left). This fact
gives rise to natural isomorphisms in D(ΛQc

p
(Γ )) of the form

eρQc
p[Ḡ] ⊗Zp[Ḡ] twḠ(C)H

∼= ΛQc
p
(Γ ) ⊗L

ΛQc
p
(G) (eρQc

p[Ḡ] ⊗Zp C)

∼= ΛQc
p
(Γ ) ⊗L

ΛQc
p
(G) (Vρ∗ ⊗Zp C)

∼= Qc
p ⊗O Cρ, (5.13)

where eρ denotes a primitive idempotent of Qc
p[Ḡ] for which eρQc

p[Ḡ] is isomorphic to
Vρ∗. We now set CḠ := Zp[Ḡ] ⊗L

Λ(G) C. Then claim (i) follows upon combining the iso-
morphism (5.13) together with the following natural isomorphism in D(ΛQc

p
(Γ )):

eρQc
p[Ḡ] ⊗Zp[Ḡ] CḠ

∼= Vρ∗⊗̂L

Λ(G)C
∼= Qc

p⊗̂
L

ΛO(Γ )Cρ.

Claim (ii) follows by combining the equality

rG(C)(ρ) =
∑
i∈Z

(−1)i+1 dimQc
p
(Hi(Qc

p ⊗O Cρ)Γ )

https://doi.org/10.1017/S147474800900022X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800900022X


88 D. Burns and O. Venjakob

with the isomorphisms of ΛQc
p
(Γ )-modules

Hi(Qc
p ⊗O Cρ) ∼= Hi(eρQc

p[Ḡ] ⊗Zp[Ḡ] twḠ(C)H) ∼= Hi(twḠ(C)H)ρ

that are induced by (5.13).
Next we note that claim (i) implies that θγ is semisimple if and only if for every ρ

in Irr(Ḡ) the morphism θγ,ρ which occurs in (5.4) is semisimple. Claim (iii) thus follows
immediately from the very definition of ‘semisimplicity at ρ’ (in terms of θγ,ρ).

In each degree i the exact triangle �(twḠ(C), γ) induces a short exact sequence

0 → Hi(twḠ(C)H)Γ → Hi(CḠ) → Hi+1(twḠ(C)H)Γ → 0.

So by applying the exact functor M �→ Mρ to this sequence one finds that

dimQc
p
(Hi(CḠ)ρ) = dimQc

p
(Hi(twḠ(C)H)Γ,ρ) + dimQc

p
(Hi+1(twḠ(C)H)Γ,ρ)

for each integer i and hence that
∑

i∈Z(−1)i+1i · dimQc
p
(Hi(CḠ)ρ) is equal to

∑
i∈Z

(−1)i+1i(dimQc
p
(Hi(twḠ(C)H)Γ,ρ) + dimQc

p
(Hi+1(twḠ(C)H)Γ,ρ))

=
∑
i∈Z

(−1)i+1 dimQc
p
(Hi(twḠ(C)H)Γ,ρ).

This proves the explicit formula for rG(C)(ρ) in claim (iv). The explicit description of
t(Qp ⊗ �(twḠ(C), γ)) in claim (iv) follows from the identification in claim (i) and the
fact that t(Cρ) is defined in [13] to be equal to the morphism t(�(Cρ, γ)). �

5.3. Leading terms

We now fix an element ξ and a complex C as in Theorem 2.2. Then Lemma 5.5 (iii)
implies that the morphism θγ : twḠ(C)H → twḠ(C)H is semisimple and so in each degree
i there is a direct sum decomposition of Λ(Ḡ × Γ )[1/p]-modules

Qp ⊗Zp Hi(twḠ(C)H) = Di
0 ⊕ Di

1, (5.14)

where

Di
0 := Qp ⊗Zp ker(Hi(θγ)) = Qp ⊗Zp Hi(twḠ(C)H)Γ and Di

1 := Qp ⊗Zp im(Hi(θγ)).

By assumption, both Di
0 and Di

1 are finitely generated (projective) Qp[Ḡ]-modules and
Hi(θγ) induces an automorphism of Di

1.
The proof of the following result will occupy the rest of this section.

Proposition 5.6. ∂Ḡ(((−1)rG(C)(ρ)ξ∗(ρ))ρ∈Irr(Ḡ)) =
∑

i∈Z(−1)i∂Ḡ(〈Hi(θγ) | Di
1〉).
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5.3.1. The descent to Q(R)

We write Σ for the subset of R consisting of those elements of Λ(Γ ) with non-zero
image under the projection Λ(Γ ) → Zp. This is a multiplicatively closed Ore set in R

which consists of central regular elements. It can be shown that RΣ = RS2 ⊆ Q(R) where
S2 denotes (as in § 5.2.2) the Ore set SḠ×Γ,Ḡ.

Lemma 5.7. For each integer i we set M i := (IḠ×Γ
Ḡ

(Hi(twḠ(C)H)Γ ))S∗ . Then the
element

yξ := NrdQ(R)

(
πḠ×Γ (ξ)

∏
i∈Z

〈δγ | M i〉(−1)i+1
)

belongs to ζ(RΣ)× ⊆ ζ(Q(R))×.

Proof. We set X := twḠ(C)H . Then the commutative diagram (5.10) implies that
∂Ḡ×Γ (πḠ×Γ (ξ)) = χ(X) in K0(R, Q(R)). But X belongs to Dp

S(R) and so [6, Theo-
rem 4.1(ii)] also implies that ∂Ḡ×Γ (charḠ×Γ,γ(X)) = χ(X). Hence the upper row of (1.1)
with R′ = Q(R) implies that there exists an element u of K1(R) with

πḠ×Γ (ξ) = ι1(u)charḠ×Γ,γ(X), (5.15)

where ι1 is the natural homomorphism K1(R) → K1(RΣ) → K1(Q(R)).
For each integer i we set N i := (IḠ×Γ

Ḡ
(Hi(twḠ(C)H)))S∗ . Then the term 〈δγ | N i〉

occurs in the definition of charḠ×Γ,γ(X) = char∗
Ḡ×Γ,γ(X). Also, from Lemma 5.8 below,

the action of δγ on N i = Q(R) ⊗Qp[Ḡ] (Qp ⊗Zp
Hi(twḠ(C)H)) restricts to give an auto-

morphism of RΣ ⊗Qp[Ḡ] Di
1 and so (5.14) implies that 〈δγ | N i〉 is equal to

〈δγ | Q(R) ⊗Qp[Ḡ] Di
0〉〈δγ | Q(R) ⊗Qp[Ḡ] Di

1〉
= 〈δγ | Q(R) ⊗Qp[Ḡ] Di

0〉ιΣ(〈δγ | RΣ ⊗Qp[Ḡ] Di
1〉),

where ιΣ is the natural homomorphism K1(RΣ) → K1(Q(R)). Hence by combining
(5.15) with the definition of charḠ×Γ,γ(X) one finds that

πḠ×Γ (ξ)
∏
i∈Z

〈δγ | M i〉(−1)i+1
= πḠ×Γ (ξ)

∏
i∈Z

〈δγ | Q(R) ⊗Qp[Ḡ] Di
0〉(−1)i+1

= ι1(u)ιΣ

( ∏
i∈Z

〈δγ | RΣ ⊗Qp[Ḡ] Di
1〉(−1)i

)
∈ im(ιΣ). (5.16)

Now RΣ is finitely generated as a module over the commutative local ring Λ(Γ )Σ and
so is itself a semi-local ring (cf. [16, Proposition (5.28)(ii)]). The natural homomorphism
R×

Σ → K1(RΣ) is thus surjective (by [16, Theorem (40.31)]) and so (5.16) implies that
the element πḠ×Γ (ξ)

∏
i∈Z〈δγ | M i〉(−1)i+1

is represented by a pair of the form 〈ry | Q(R)〉
with y ∈ R×

Σ . Now both y and y−1 are of the form zσ−1 for suitable elements z ∈ R ∩
Q(R)× and σ ∈ Σ. Thus, to complete the proof of the lemma, it suffices to prove that for
all such z and σ both NrdQ(R)(〈rz | Q(R)〉) and NrdQ(R)(〈rσ−1 | Q(R)〉) belong to ζ(RΣ).
But (5.12) implies NrdQ(R)(〈rσ−1 | Q(R)〉) = (σ−dρ)ρ ∈ ζ(RΣ) with dρ := dimQc

p
(Vρ).
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Also, if Zc
p is the integral closure of Zp in Qc

p and Tρ is any full Zc
p-sublattice of Vρ, then

the action of Ḡ on Tρ induces a homomorphism � : R = Λ(Γ )[Ḡ] → Mdρ(Zc
p ⊗Zp Λ(Γ ))

and (5.12) implies

NrdQ(R)(〈rx | Q(R)〉) = (det(�(z)))ρ ∈ (Qc
p ⊗Zp ζ(R)) ∩ ζ(Q(R))

= Qp ⊗Zp ζ(R) ⊆ ζ(RΣ),

as required. �

Lemma 5.8. δγ induces an automorphism of RΣ ⊗Qp[Ḡ] Di
1.

Proof. The argument of [28, Proposition 2.2, Remark 2.3] gives a short exact sequence

0 → R ⊗Zp[Ḡ] Di
1

δγ−→ R ⊗Zp[Ḡ] Di
1 → Di

1 → 0

and so it suffices to show that (Di
1)Σ = 0. But Di

1 := Qp ⊗Zp
im(Hi(θγ)) and, regarding

im(Hi(θγ)) as a (finitely generated) module over Λ(Γ ) ⊆ R, the decomposition (5.14)
implies that im(Hi(θγ))Γ is finite. This implies that im(Hi(θγ)) is a finitely generated
torsion Λ(Γ )-module whose characteristic polynomial f(T ) is coprime to T . It follows
that f(T ) is invertible in RΣ and so (Di

1)Σ = im(Hi(θγ))Σ = 0, as required. �

5.3.2. The proof of Proposition 5.6

We write (−)∗(0) : Qc
p ⊗Qp

Q(Zp[[T ]])× → Qc,×
p for the ‘leading term’ homomorphism

which assigns to each series of the form T rG(T ) with G(0) �= 0 the value G(0). Then
Lemma 5.4 implies that the ‘leading term at ρ’ homomorphism (−)∗(ρ) from K1(Λ(G)S̃)
to Qc,×

p coincides with the composite

K1(Λ(G)S̃)
πḠ×Γ−−−−→ K1(Q(R))

NrdQ(R)−−−−−→ ζ(Q(R))× ⊂
∏

ρ∈Irr(Ḡ)

Qc(Γ )× prρ−−→ Qc(Γ )× (−)∗(0)−−−−−→ Qc,×
p ,

where prρ denotes projection to the ρ-component. Thus from Lemma 5.7 we know that

(
ξ∗(ρ)

∏
i∈Z

(NrdQ(R)(〈δγ | M i〉))∗
ρ(0)(−1)i+1

)
ρ∈Irr(Ḡ)

= π(yξ), (5.17)

where π is the natural projection ζ(RΣ)× → ζ(Qp[Ḡ])×. But if x is in R×
Σ , then

NrdQ(R)(〈rx | Q(R)〉) belongs to ζ(RΣ)× (see the proof of Lemma 5.7) and (5.12) implies
π(NrdQ(R)(〈rx | Q(R)〉)) = NrdQp[Ḡ](〈rx̄ | Qp[Ḡ]〉) with x̄ the image of x in Qp[Ḡ]×.
Hence (5.16) implies

π(yξ) = NrdQp[Ḡ](ū)
∏
i∈Z

NrdQp[Ḡ](〈Hi(θγ) | Di
1〉)(−1)i

,
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where ū is the image of u under the natural composite homomorphism K1(R) →
K1(Zp[Ḡ]) → K1(Qp[Ḡ]). Since ∂Ḡ(ū) = 0 one therefore has

∂Ḡ(π(yξ)) =
∑
i∈Z

(−1)i∂Ḡ(〈Hi(θγ) | Di
1〉). (5.18)

The equality of Proposition 5.6 now follows upon substituting (5.17) into (5.18) and then
using both the explicit formula for rG(C)(ρ) given in Lemma 5.5 (ii) and the following
result (with M = Hi(twḠ(C)H) for each integer i).

Lemma 5.9. If M is any finitely generated R-module, then for every ρ in Irr(Ḡ) one
has

(NrdQ(R)(δγ | IḠ×Γ
Ḡ

(MΓ )S∗))∗
ρ(0) = (−1)dimQc

p
(MΓ,ρ)

.

Proof. There are natural isomorphisms of Qc(Γ )-modules of the form

HomQc
p[Ḡ](Vρ, IḠ×Γ

Ḡ
(MΓ )S∗) ∼= HomQc

p[Ḡ](Vρ, Q
c(Γ ) ⊗Zp MΓ ) ∼= MΓ,ρ ⊗Qc

p
Qc(Γ )

under which the induced action of δγ on the first module corresponds to the endomor-
phism δ̃γ of the third module that sends m ⊗ x to m ⊗ (γ−1 − 1)x. It follows that the
reduced norm NrdQ(R)(δγ | IḠ×Γ

Ḡ
(MΓ )S∗)ρ is equal to

detQc(Γ )(δ̃γ | MΓ,ρ ⊗Qc
p

Qc(Γ )) = detQc(Γ )(γ−1 − 1 | Qc(Γ ))dimQc
p
(MΓ,ρ)

= (−T/(1 + T ))dimQc
p
(MΓ,ρ)

,

where the last equality follows from the fact that γ−1 − 1 = (1 − γ)/γ = −T/(1 + T ).
From this explicit formula it is clear that the first non-zero coefficient of T in the series
NrdQ(R)(δγ | IḠ×Γ

Ḡ
(MΓ )S∗)ρ is equal to (−1)dimQc

p
(MΓ,ρ). �

5.4. Completion of the proof of Theorem 2.2

We set N := U ∩ H. Then in each degree i there is a natural isomorphism of Zp[Ḡ]-
modules

Hi(twḠ(C)H) ∼= Zp[Ḡ] ⊗Λ(H/N) Hi(Λ(G/N) ⊗L
Λ(G) C).

But Λ(G/N) ⊗L
Λ(G) C belongs to Dp

SG/N,H/N
(Λ(G/N)) and so each module Hi(twḠ(C)H)

is finitely generated over Zp[Ḡ]. This implies that ∆(twḠ(C), γ) is an exact triangle in
Dp(Zp[Ḡ]). In view of Lemma 5.5 (iv) and Proposition 5.6 we may thus deduce Theo-
rem 2.2 by applying the following result with G = Ḡ, R = Zp and ∆ = ∆(twḠ(C), γ).

For each finite group G and R[G]-module M we write MF for the associated F [G]-
module F ⊗R M . We also use similar notation for both homomorphisms and complexes
of R[G]-modules.

Proposition 5.10. Let G be a finite group, R an integral domain and F the field
of fractions of R. Let ∆ : C

θ−→ C → D → C[1] be an exact triangle in Dp(R[G]). We
assume that θ is semisimple and in each degree i fix an F [G][Hi(θ)]-equivariant direct
complement W i to ker(Hi(θ))F in Hi(C)F . Then Hi(θ) induces an automorphism of the

https://doi.org/10.1017/S147474800900022X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800900022X


92 D. Burns and O. Venjakob

(finitely generated projective) F [G]-module W i, the element 〈Hi(θ)〉∗ := 〈Hi(θ) | W i〉 of
K1(F [G]) is independent of the choice of W i and in K0(R[G], F [G]) one has

∑
i∈Z

(−1)i∂G(〈Hi(θ)〉∗) = −[dR[G](D), t(∆)], (5.19)

where ∂G is the connecting homomorphism K1(F [G]) → K0(R[G], F [G]) and the mor-
phism t(∆) is as defined in (B.1).

Proof. It is clear that Hi(θ) induces an automorphism of W i and straightforward to
verify that 〈Hi(θ)〉∗ is independent of the choice of W i. However to prove (5.19) we shall
give a very explicit argument in order to avoid any ambiguities of sign.

To do this we replace C by a complex P in Cp(R[G]) for which there exists an isomor-
phism q : P → C in Dp(R[G]) and we shall argue by induction on |P | := max{i : P i �=
0} − min{j : P j �= 0}. We fix a morphism of complexes φ : P → P such that q ◦ φ = θ ◦ q

in Dp(R[G]).
If |P | = 0, then P = Pm[−m] = Hm(P ) (and φ = φm = Hm(φ)) for some integer

m. In this case D can be identified with the mapping cone Pm φm

−−→ Pm of φ (so the first
term of this complex is placed in degree m − 1) in such a way that the homomorphism
Hm−1(D) → ker(Hm(θ)) → cok(Hm(θ)) → Hm(D) induced by ∆ corresponds to the
tautological map τ : ker(φm) → cok(φm). Further, if W is a direct complement to
ker(φm)F in Pm

F , then φm(W ) = W (since φ is semisimple) and [dR[G](D), t(∆)] =
(Pm, ι(−1)m−1

, Pm) with ι the composite isomorphism

Pm
F = ker(φm)F ⊕ W

(F⊗Rτ,Hm(φ))−−−−−−−−−−→ cok(φm)F ⊕ W ∼= Pm
F ,

where the isomorphism is induced by a choice of splitting of the tautological exact
sequence 0 → W → Pm

F → cok(φm)F → 0 (this explicit description of [dR[G](D), t(∆)]
follows, for example, from [3, Theorem 6.2]). The equality (5.19) is therefore valid because
one has

−(Pm, ι(−1)m−1
, Pm) = (−1)m∂G(〈ι | Pm

F 〉) = (−1)m∂G(〈Hm(φ) | W 〉).

We now assume that |P | = n > 0 and, to fix notation, that min{j : P j �= 0} = 0. We
set C2 := P and φ2 = φ. We also write C3 for the naive truncation in degree n − 1 of
P and φ3 for the morphism C3 → C3 obtained by restricting φ and set C1 := Pn[−n]
and write φ1 for the morphism C1 → C1 given by φn. Then one has a tautological short
exact sequence of complexes in Cp(R[G])

C1 → C2 → C3. (5.20)

From the long exact sequence of cohomology of this short exact sequence we deduce that
Hi(C2) = Hi(C3) if i < n − 1 and that there are commutative diagrams of short exact

https://doi.org/10.1017/S147474800900022X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800900022X


Non-commutative main conjectures 93

sequences

0 �� Hn−1(C2) ��

Hn−1(φ2)
��

Hn−1(C3) ��

Hn−1(φ3)
��

Bn(C2) ��

φn

��

0

0 �� Hn−1(C2) �� Hn−1(C3) �� Bn(C2) �� 0

(5.21)

0 �� Bn(C2) ��

φn

��

Hn(C1) ��

Hn(φ1)
��

Hn(C2) ��

Hn(φ2)
��

0

0 �� Bn(C2) �� Hn(C1) �� Hn(C2) �� 0

(5.22)

where Bn(C2) denotes the coboundaries of C2 in degree n. Further, by mimicking the
argument of [6, Lemma 4.4] we may change φ by a homotopy in order to assume that,
in each degree i, the restriction of φi to Bi(C2) induces an automorphism of Bi(C2)F .
This assumption has two important consequences. Firstly, the above diagrams then imply
that the morphisms φ1 and φ3 of C1 and C3 that are induced by φ are both semisimple.
Secondly, if we write Di for the mapping cone of φi for i = 1, 2, 3, then (5.20) induces a
short exact sequence of complexes in Cp(R[G]) of the form

D1 → D2 → D3 (5.23)

and there are also commutative diagrams of short exact sequences of complexes in
Cp(F [G]) of the form

Z(D1,F ) ��

��

Z(D2,F ) ��

��

Z(D3,F )

��
D1,F ��

��

D2,F ��

��

D3,F

��
B(D1,F )[1] �� B(D2,F )[1] �� B(D3,F )[1]

B(D1,F ) ��

��

B(D2,F ) ��

��

B(D3,F )

��
Z(D1,F ) ��

��

Z(D2,F ) ��

��

Z(D3,F )

��
H(D1,F ) �� H(D2,F ) �� H(D3,F )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.24)

We refer to the left- and right-hand diagrams here as (5.24)l and (5.24)r. In these diagrams
we write B(Di,F ) and Z(Di,F ) for the complexes of coboundaries and cocycles of Di,F
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(each with zero differentials), all horizontal morphisms are induced by those in (5.23)
and all vertical morphisms are tautological. It is thus clear that all columns in (5.24) are
short exact sequences and that (5.23) implies the central row of (5.24)l is a short exact
sequence. The fact that the lower row of (5.24)r is a short exact sequence is proved as
follows: the exact sequences obtained by applying the snake lemma to (5.21) and (5.22)
combine with the equalities Hi(C2) = Hi(C3) for i < n − 1 and our assumption that
(the restriction of) φn induces an automorphism of Bn(C2)F to imply that the exact
sequence of cohomology of (5.23) induces an isomorphism Hi(D2)F

∼= Hi(D3)F for each
i < n − 1, a short exact sequence 0 → Hn−1(D1)F → Hn−1(D2)F → Hn−1(D3)F → 0
and an isomorphism Hn(D1)F

∼= Hn(D2)F ; to deduce that the lower row of (5.24)r is a
short exact sequence one then need only note that Hi(D1)F vanishes for each i < n − 1
and that Hn(D3) vanishes. Given that the central row of (5.24)l and lower row of (5.24)r
are now known to be short exact sequences it is a straightforward exercise to show that
all of the remaining rows in (5.24) are also short exact sequences.

We next consider the following diagram in V (F [G]):

d(D2,F )
α1 ��

α3
��

d(H(D2,F ))

α4
��

d(Hβ(D2,F ))
α2 ��

α5
��

1

d(D1,F )d(D3,F )
α6 �� d(H(D1,F ))d(H(D3,F )) d(Hβ(D1,F ))d(Hβ(D3,F ))

α7 �� 1 · 1

Here we have abbreviated dF [G](−) and 1V (F [G]) to d(−) and 1 and used the following
morphisms: α1 and α6 are induced by property A(h) in Appendix A; α2 and α7 are
induced by property A(e) and the acyclicity of Hβ(Di,F ); α3 and α4 are induced by
applying property A(d) to the central row of (5.24)l and to the bottom row of (5.24)r; if
we write ∆i for the tautological exact triangle

Ci
φi−→ Ci → Di → Ci[1],

then α5 is induced by applying property A(d) to the short exact sequence Hβ(∆1,F ) →
Hβ(∆2,F ) → Hβ(∆3,F ) which is induced by the bottom row of (5.24)r. Now by apply-
ing property A(d) to the diagrams (5.24) one finds that the first square in the above
diagram commutes and it is clear that the other squares in this diagram also com-
mute. But the upper and lower rows of the diagram are equal to the morphisms t(∆2)
and t(∆1)t(∆3) respectively. Hence, by combining the commutativity of this diagram
with the equality dR[G](D2) = dR[G](D1)dR[G](D3) induced by applying property A(d)
to (5.23), and recalling the group structure of V (R[G], F [G]), one deduces that in
π0(V (R[G], F [G])) ∼= K0(R[G], F [G]) there is an equality

[dR[G](D2), t(∆2)] = [dR[G](D1), t(∆1)] + [dR[G](D3), t(∆3)].

But the inductive hypothesis implies

−[dR[G](D3), t(∆3)] =
i=n−1∑

i=0

(−1)i∂G(〈Hi(φ3)〉∗)

https://doi.org/10.1017/S147474800900022X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800900022X


Non-commutative main conjectures 95

and, since |C1| = 0, our earlier argument proves

−[dR[G](D1), t(∆1)] = (−1)n∂G(〈Hn(φ1)〉∗).

One also has 〈Hi(φ3)〉∗ = 〈Hi(φ2)〉∗ for i < n − 1, while (5.21) and (5.22) imply

〈Hn−1(φ3)〉∗ = 〈Hn−1(φ2)〉∗〈φn | Bn(C2)F 〉,
〈Hn(φ1)〉∗ = 〈φn | Bn(C2)F 〉〈Hn(φ2)〉∗.

The claimed description of −[dR[G](D), t(∆)] = −[dR[G](D2), t(∆2)] thus follows upon
combining the last five displayed equations. �

Remark 5.11. If G is abelian, then Proposition 5.10 can be reinterpreted in terms of
graded determinants and in this case has been proved to within a ‘sign ambiguity’ by
Kato in [20, Lemma 3.5.8]. (This ambiguity arises because Kato uses ungraded determi-
nants; for more details in this regard see [20, Remark 3.2.3(3) and 3.2.6(3),(5)] and [10,
Remark 9].)

Part II. Arithmetic

For any Galois extension of fields F/E we set GF/E := Gal(F/E). For any field E we
also fix an algebraic closure Ec and abbreviate GEc/E to GE .

6. Field-theoretic preliminaries

We first introduce the class of fields for which the techniques of [15] allow one to formulate
a main conjecture of non-commutative Iwasawa theory.

We fix an odd prime p and for each number field k we write Fk for the set of Galois
extensions L of k inside Qc which satisfy the following conditions:

(i) L contains the cyclotomic Zp-extension kcyc of k;

(ii) L/k is unramified outside a finite set of places;

(iii) GL/k is a compact p-adic Lie group.

If k is totally real, then we also let F+
k denote the subset of Fk comprising those fields

that are totally real.
The following result was explained to us by Kazuya Kato. It provides an important

general reduction step and also shows that Theorem 2.2 constitutes a satisfactory reso-
lution of the descent problem in the setting of non-commutative Iwasawa theory.

Lemma 6.1. For any number field k and any F in Fk there exists a field F ′ in Fk with
F ⊆ F ′ and such that GF ′/k has no element of order p. If k is totally real and F belongs
to F+

k , then one can also choose F ′ in F+
k .
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Proof. For any extension E of k we write E(ζp∞) for the extension of E generated by
all p-power roots of unity (in Qc).

We set F̃ := F (ζp∞) and choose a p-torsion free open normal subgroup U of V :=
GF̃ /k(ζp∞ ). We let L be the extension of k in F̃ that corresponds to U and for each non-
trivial p-torsion element σi of V/U we write Li for the fixed subfield of L by σi. Then
L = Li(a

1/pn

i ) for some ai ∈ L×
i . Let aij , 1 � j � s(i), be all conjugates of ai over F and

let L′
i denote the field generated over Li by the set {a

1/pn

ij : 1 � j � s(i), n � 1}. Then
F̃L′

i is a Galois extension of F that contains L. Furthermore, GL′
i/Li

is isomorphic to a
subgroup of Z

s(i)
p by τ �→ (r(j))j with τ(a1/pn

j )/a
1/pn

j = ζ
r(j)
pn . Let F ′ be the composite

field of F̃ and L′
i for all i.

The group GF ′/k is a compact p-adic Lie group and we now prove that it has no
element of order p. We note first that Gk(ζp∞ )/k is isomorphic to a subgroup of Z×

p and
hence is p-torsion free by the assumption p �= 2. Thus if σ ∈ GF ′/k has order p, then the
image of σ in GF̃ /k is contained in V and so the image of σ in V/U coincides with σi

for some i. Thus σ fixes all elements of Li. But then the image of σ in GL′
i/Li

is both
p-torsion and also non-trivial (for its restriction to GL/Li

is non-trivial). This contradicts
the fact that GL′

i/Li
has no element of order p. Hence GF ′/k has no element of order p,

as claimed.
Lastly we assume that F (and hence k) is totally real. Then F̃ is a CM field with

maximal real subfield F̃+ equal to the compositum of F and the maximal totally real
subfield of k(ζp∞). Also, by the above construction, the extension F ′/F̃ is pro-p. Since
p is odd, the group GF ′/F̃+ therefore contains a unique element of order 2 and the fixed
field (F ′)+ of F ′ by this element is totally real, contains F , is Galois over k and such
that G(F ′)+/k has no element of order p. �

In the remainder of this article we set Γk := Gkcyc/k, HL/k := GL/kcyc , Λ(L/k) :=
Λ(GL/k) and Ω(L/k) := Ω(GL/k) for each L in Fk. We also fix a topological generator
γQ of ΓQ, set dk := [k ∩ Qcyc : Q] and write γk for the topological generator γdk

Q of Γk.

Remark 6.2. If C denotes either Fk or F+
k , then it is an ordered set (by inclusion).

Lemma 6.1 implies that the subset C′ of C comprising those fields F for which GF/k

has no element of order p is cofinal. Taking account of the functorial properties of the
isomorphism in Theorem 2.1 and of the results in Proposition 4.7 (ii) we may therefore
deduce the following extensions of these results.

• There is a natural isomorphism of abelian groups

lim←−
F∈C

K1(Λ(F/k)S∗) ∼= lim←−
F∈C

K0(Ω(F/k))⊕ lim←−
F∈C

K0(Λ(F/k), Λ(F/k)S)⊕ lim←−
F∈C

im(λF/k),

where λF/k is the natural homomorphism K1(Λ(F/k)) → K1(Λ(F/k)S∗) and in
each inverse limit the transition maps are induced by the homomorphism Λ(F/k) →
Λ(F ′/k) for each F ′ ⊆ F .

• Let (xF )F be an element of lim←−F∈C K0(Λ(F/k), Λ(F/k)S∗). Then for each F in C
we may define an element charGF/k,γk

(xF ) of K1(Λ(F/k)S∗) in the following way:
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we choose F ′ in C′ with F ⊆ F ′ and let charGF/k,γk
(xF ) denote the image of

charGF ′/k,γk
(xF ′) under the natural projection K1(Λ(F ′/k)S∗) → K1(Λ(F/k)S∗).

Then Lemma 4.5 implies charGF/k,γk
(xF ) is independent of the precise choice of F ′

and Proposition 4.7 implies ∂GF/k
(charGF/k,γk

(xF )) = xF .

7. Non-commutative main conjectures

In this section we formulate explicit ‘main conjectures of non-commutative Iwasawa
theory’ for certain Tate motives and critical motives. In particular, in the setting of
elliptic curves, the conjecture we formulate is finer than that formulated by Coates et
al . in [15] in that we consider interpolation formulae for the leading terms (rather than
values) of p-adic L-functions at Artin representations.

Henceforth we will fix an isomorphism of fields j : C ∼= Cp and often simply omit it
from the notation.

7.1. Tate motives

In this subsection we fix a totally real number field k and formulate a main conjecture
for class groups associated to fields in F+

k . We therefore fix a field K in F+
k and a finite set

of places Σ of k that contains the archimedean places and all places that ramify in K/k.
For each Artin representation ρ of GK/k we write ρj−1

for the complex representation of
GK/k induced by j−1 and LΣ(s, ρj−1

) for the Artin L-function of ρj−1
that is truncated

by removing the Euler factors attached to places in Σ.
To formulate a main conjecture we must multiply the leading term L∗

Σ(1, ρj−1
) in the

Taylor expansion of LΣ(s, ρj−1
) at s = 1 by an appropriate period. To define this period

we let E be any finite degree Galois extension of k with E ⊂ K and GK/E ⊆ ker(ρ).
We set E∞ := R ⊗Q E ∼=

∏
Hom(E,C) R and write log∞(O×

E) for the inverse image of
O×

E ↪→ E×
∞ under the (componentwise) exponential map exp∞ : E∞ → E×

∞. Then the
Dirichlet Unit Theorem implies that log∞(O×

E) is a full lattice in the R-space generated
by E0 := {x ∈ E : TrE/Q(x) = 0} and so there is a canonical isomorphism of C[GE/k]-
modules µ∞ : C ⊗Z log∞(O×

E) ∼= C ⊗Q E0. In addition, if we write Sp(E) for the set of
p-adic places of E, then the composite homomorphism

Zp ⊗Z log∞(O×
E)

exp∞−−−→ Zp ⊗Z O×
E

→
∏

w∈Sp(E)

U1
Ew

(uw)w �→(logp(uw))w−−−−−−−−−−−−−→
∏

w∈Sp(E)

Ew
∼= Qp ⊗Q E

(where the second arrow is the natural diagonal map) factors through the inclusion
Qp⊗QE0 ⊂ Qp⊗QE and hence induces a homomorphism µp : Cp⊗Zlog∞(O×

E) ∼= Cp⊗QE0

of Cp[GE/k]-modules. The resulting period

Ωj(ρ) := detCp(µp ◦ (Cp ⊗C,j µ∞)−1)ρ ∈ Cp

depends upon j and ρ but is independent of the choice of E.
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We write χcyc for the cyclotomic character Gk → Γk → Z×
p and for any Artin represen-

tation ρ of GK/k we write 〈ρ, 1〉 for the multiplicity with which the trivial representation
of GK/k occurs in ρ.

Conjecture 7.1. Assume that GK/k has no element of order p. Then the Galois group
XΣ(K) of the maximal pro-p abelian extension of K that is unramified outside Σ belongs
to MS∗(GK/k) and there exists an element ξ of K1(Λ(K/k)S∗) which satisfies both of
the following conditions.

(a) At each Artin representation ρ of GK/k the value of ξ at ρ is equal to

ξ(ρ) = (logp(χcyc(γk))〈ρ,1〉cρ,k)−1Ωj(ρ)L∗
Σ(1, ρj−1

)j

with cρ,k := 1 if either ρ is trivial or HK/k �⊂ ker(ρ) and cρ,k := 1−ρ(γ−1
k ) otherwise.

(b) ∂GK/k
(ξ) = [XΣ(K)].

Remark 7.2. For each Artin representation ρ of GK/k the ‘(Σ-truncated) p-adic Artin
L-function’ of ρ is the unique p-adic meromorphic function Lp,Σ(·, ρ) : Zp → Cp with
the property that for each strictly negative integer n and each isomorphism j : C ∼= Cp

one has Lp,Σ(n, ρ) = LΣ(n, (ρ ⊗ ωn−1)j−1
)j where ω : GQ → Z×

p is the Teichmüller
character. Then the ‘p-adic Stark conjecture at s = 1’, as formulated by Serre in [29] and
discussed by Tate in [32, Chapter VI, § 5], asserts that the term Ωj(ρ)L∗

Σ(1, ρj−1
)j in

Conjecture 7.1 (a) is equal to the leading term of Lp,Σ(s, ρ) at s = 1. See [13, Remark 5.3]
for more details.

Remark 7.3. There are several different motivations lying behind our precise formula-
tion of Conjecture 7.1. It is firstly a natural analogue for the ideal class groups of totally
real fields of the main conjecture for elliptic curves without complex multiplication that
is formulated by Coates et al . in [15]. Following Remark 7.2 it is also, modulo the validity
of Serre’s p-adic Stark conjecture at s = 1, a natural non-commutative generalization of
the classical main conjecture of commutative Iwasawa theory. Indeed, in Conjecture 8.3
we will formulate a generalization of Conjecture 7.1 that allows GK/k to have an element
of order p and it can be shown that if GK/k has rank one and Serre’s conjecture is valid,
then Conjecture 8.3 is compatible with the central conjecture formulated by Ritter and
Weiss in [27, § 4] and in the case that GK/k is also abelian with the equivariant main
conjecture studied by Greither and the first named author in [12]. In particular, if GK/k

is abelian of rank one, Serre’s p-adic Stark conjecture at s = 1 is valid and certain µ-
invariants vanish, then the validity of Conjecture 8.3 can be deduced from Wiles’s proof
of the main conjecture for totally real fields via the approach of either [26] or [12]. As
a further motivation for Conjecture 7.1 we will later prove (in Theorem 8.1) that it also
combines with Theorem 2.2 to imply the relevant case of the equivariant Tamagawa num-
ber conjecture with respect to any finite degree Galois extension F/k such that F ⊂ K

and Leopoldt’s Conjecture is valid for F at p.
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7.2. Critical motives

7.2.1. Preliminaries

For further background on this (standard) material we refer the reader to either [18,
§§ 2.2, 2.4], [10, § 3] or [35, § 2].

We fix a finite extension F of Q and a motive M that is defined over Q and has
coefficients F . As usual we write MB, MdR, M� and Mλ for the Betti, de Rham, �-adic and
λ-adic realizations of M , where � ranges over rational primes and λ over non-archimedean
places of F . We also let tM denote the tangent space MdR/M0

dR of M . For any ring R and
R[Gal(C/R)]-module X we denote by X+ and X− the R-submodule of X upon which
complex conjugation acts as multiplication by +1 and −1 respectively.

In our later calculations we will use each of the following isomorphisms.

• The comparison isomorphisms between the Betti and λ-adic realizations of M

induce canonical isomorphisms of Fλ-modules, respectively F�-modules, of the form

g+
λ : Fλ ⊗F M+

B
∼= M+

λ , respectively g+
� : F� ⊗F M+

B
∼= M+

� . (7.1)

• We set FR := R ⊗Q F . Then the comparison isomorphism between the de Rham
and Betti realizations of M induces a canonical FR-equivariant period map

R ⊗Q M+
B

αM−−→ R ⊗Q tM . (7.2)

• For each p-adic place λ of F , the comparison isomorphism between the p-adic and
de Rham realizations of M induces a canonical isomorphism of Fλ-modules of the
form

tp(Mλ) = DdR(Mλ)/D0
dR(Mλ)

gt
dR−−→ Fλ ⊗F tM . (7.3)

We further recall that the ‘motivic cohomology groups’ H0
f (M) := H0(M) and H1

f (M)
of M are F -modules that can be defined either in terms of algebraic K-theory or motivic
cohomology in the sense of Voevodsky (cf. [10]). They are both conjectured to be finite
dimensional.

Now let M be a critical motive over Q that has good ordinary reduction at p. Then its
p-adic realization V = Mp has a unique Qp-subspace V̂ that is stable under the action
of GQp and such that D0

dR(V̂ ) = tp(V ) := DdR(V )/D0
dR(V ). Now let ρ be an Artin

representation defined over a number field B and [ρ] the corresponding Artin motive. We
fix a p-adic place λ of B, set L := Bλ and write O for the valuation ring of L. Then the
λ-adic realization

W := Wρ := Nλ = V ⊗Qp [ρ]∗λ (7.4)

of the motive N := M(ρ∗) := M ⊗ [ρ]∗ is an L-adic representation and contains the
GQp

-subrepresentation Ŵ = V̂ ⊗Qp
[ρ]∗λ. The algebraic rank of M(ρ∗) is defined as

r(M)(ρ) := r(N) := dimL(H1
f (Q, (Wρ)∗(1))) − dimL(H0

f (Q, (Wρ)∗(1))). (7.5)
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Let Σ be a finite set of places of Q containing p, ∞ and all places at which M has bad
reduction. We fix a field K in FQ that is unramified outside Σ. By Υ we denote the set
of those primes � �= p such that the ramification index of � in K/Q is infinite.

For a B-motive N over Q we denote by Ω∞(N) and Ωp(N) the associated complex and
p-adic periods and by Rp(N) and R∞(N) the associated complex and p-adic regulators,
see again [18] or [13, Theorem 6.5] for more details.

Let γ′ = (γ′
i)i and δ′ = (δi)i denote a choice of ‘good bases’ (in the sense of [18,

4.2.24(3)]) of N+
B and tN respectively. Furthermore, we let P∨ = (P∨

1 , . . . , P∨
d(N)) and

P = (P1, . . . , Pd(N)) be B-bases of H1
f (N) and H1

f (N∗(1)) respectively. We fix an embed-
ding of B into C. We let Ω∞(N) denote the determinant of the canonical isomorphism

αN : (N+
B )C → (tN )C (7.6)

with respect to the bases γ′ and δ′, and R∞(N) the determinant of the inverse of the
canonical (height-pairing) isomorphism

h∞(N) : (H1
f (N∗(1))∗)C → H1

f (N)C (7.7)

with respect to the dual basis P d := (P d
1 , . . . , P d

d(N)) of P and the basis P∨ respectively.
Similarly, Rp(N) = detL(ad(hp(W ))) is induced from Nekovář’s height pairing

ad(hp(W )) : H1
f (Q, W ) → H1

f (Q, W ∗(1))∗, (7.8)

while the definition of Ωp(N) is more complicated, because ε-constants are involved,
see [18].

We recall that Ω∞(N) �= 0 if N is critical and that R∞(N) �= 0 if the (com-
plex) height pairing of N is non-degenerate. Furthermore, for a Qp-linear continuous
GQp

-representation Z we write Γ (Z) for its Γ -factor [18]. Finally, for any L-linear con-
tinuous representation V and prime number � we define an element of the polynomial
ring L[u] by setting

P�(V, u) := PL,�(V, u) :=

{
detL(1 − ϕ�u | V I�), if � �= p,

detL(1 − ϕpu | Dcris(V )), if � = p,

where ϕ� denotes the geometric Frobenius automorphism of �.
As shown by Fukaya and Kato in [18, Theorem 4.2.26], the behaviour of local ε-factors

implies that p-adic L-functions can exist only after a suitable extension of scalars. To
describe this we must assume the following hypothesis:

the maximal absolutely abelian subfield Kab,p of K in which p is unramified is finite.
(7.9)

Under this hypothesis we let A denote the valuation ring of the completion at any p-
adic place of the field Kab,p. We set ΛA(K/Q) := A ⊗Zp Λ(K/Q) and ΛA(K/Q)S∗ :=
A ⊗Zp Λ(K/Q)S∗ and write ∂A,GK/Q

: K1(ΛA(K/Q)S∗) → K0(ΛA(K/Q), ΛA(K/Q)S∗)
for the corresponding connecting homomorphism.
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7.2.2. Elliptic curves

We first consider the case of the motive M = h1(E)(1) of an elliptic curve E over Q

which has good ordinary reduction at p. We take K to be the extension Q(E(p)) of Q

which arises by adjoining the p-power division points of E and note that K belongs to
FQ. We assume that GK/Q has no element of order p since in this case one can formulate
a very explicit (refined) main conjecture by using the Pontryagin dual X(E/K) of the
(p-primary) Selmer group; later we will give another formulation for general critical
motives involving Selmer complexes. In the present situation one knows that the condition
(7.9) is satisfied (cf. [15, just before Conjecture 5.7]) and also that, if III(E/Kker(ρ)) is
finite, then one has

r(M)(ρ∗) = dimCp(eρ∗(Cp ⊗Z E(Kker(ρ)))). (7.10)

We now formulate the refined main conjecture in this setting.

Conjecture 7.4. Set K = Q(E(p)) and let Σ denote the finite set of places of Q which
ramify in K/Q. Assume that GK/Q has no element of order p. Then the module X(E/K)
belongs to MS∗(GK/Q). Further, there exists an element L = L(E) of K1(ΛA(K/Q)S∗)
which satisfies both of the following conditions.

(a) At each Artin representation ρ of GK/Q, the value at T = 0 of T−r(M)(ρ∗)Φρ(L) is
equal to

(−1)r(M)(ρ∗) L∗
B,Υ (M(ρ∗))

Ω∞(M(ρ∗))R∞(M(ρ∗))
· Ωp(M(ρ∗))Rp(M(ρ∗)) ·

PL,p(Ŵ ∗
ρ (1), 1)

PL,p(Ŵρ, 1)
,

where L∗
B,Υ (M(ρ∗)) is the leading coefficient at s = 0 of the complex L-function of

M(ρ∗), truncated by removing Euler factors for all primes in Υ .

(b) ∂A,GK/Q
(L) = [ΛA(K/Q) ⊗Λ(K/Q) X(E/K)].

Remark 7.5 (independence of the choice of γ). In formulating Conjecture 7.4 we
have implicitly fixed the choice of a topological generator γ of ΓQ. However the validity
of the conjecture is independent of this choice. Indeed, both sides of the equality in (a)
change in the same way if one replaces γ by γ′ = γu for any u ∈ Z∗

p. More precisely, if
Rp,γ = Rp(N) denotes the p-adic regulator of N with respect to γ, then Rp,γ = urRp,γ′

with r = r(N). This is due to the fact that Nekovář’s height pairing h̃π,1,1 in [25, § 11.1.4]
takes values in L ⊗Zp

ΓQ which has been identified with the L-valued height pairing
hp(W ) in [13, § 6.3] via the identification ΓQ

∼= Zp which sends γc to c. Thus the claim
follows from the definition Rp,γ = detL(ad(hp)). Obviously, the leading term of Φρ(L)
changes in the same way if T = γ −1 is replaced by T ′ = γ′ −1. In fact in order to obtain
an interpolation formula in (a) (or a definition of the leading coefficient and the p-adic
height pairing) which is independent of the choice of γ one has to renormalize the leading
coefficient and the p-adic height pairing by multiplying by the factor (logp(χcyc(γ)))r.

Remark 7.6. The conjectured value at T = 0 of T−r(M)(ρ∗)Φρ(L) in Conjecture 7.4
should be the leading term L∗(ρ) at T = 0 of Φρ(L) only if Rp(M(ρ∗)) �= 0.
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Remark 7.7. The primary motivation for believing Conjecture 7.4 is that its precise
formulation is what results if one incorporates into the main conjecture of Coates et
al . [15, Conjecture 5.8] the explicit formulae for the leading terms of zeta isomorphisms
that were derived from the conjectures of Fukaya and Kato [18] by the present authors
in [13]. (We discuss the link between Conjecture 7.4 and [15, Conjecture 5.8] in Propo-
sition 7.8 below.) However, in § 8.2 we will also show that Theorem 2.2 implies that both
Conjecture 7.4 and its natural extension to more general critical motives (Conjecture 7.9)
are compatible with all relevant cases of the equivariant Tamagawa number conjecture.

Before stating the next result we recall that the explicit interpolation formula given in
the main conjecture of [15, Conjecture 5.8] requires minor modification. To be precise,
one must interchange all occurrences of ρ and ρ̂ on the right-hand side of the equality
of [15, (107)] except for the term ‘ep(ρ)’ (for further details see the footnote at the end
of § 6.0 in [35]).

Proposition 7.8. Assume the hypotheses of Conjecture 7.4 and also that III(E/F ) is
finite for every finite Galois extension F of Q in K. Further assume that for all Artin
representations ρ of GK/Q the ‘order of vanishing part’ of the Birch–Swinnerton-Dyer
Conjecture for E(ρ∗) holds. Then Conjecture 7.4 implies the ‘main conjecture of non-
commutative Iwasawa theory’ of [15, Conjecture 5.8] (corrected as described above).

Proof. We first reinterpret the interpolation formula of Conjecture 7.4 (a) in terms of the
classical Hasse–Weil L-functions and their twists L(E, ρ∗, s) in the sense of [15, (102)]
(which is the same as the L-function attached to the B-motive h1(E) ⊗ [ρ]∗). To do
this we let u in Zp be the unit root of the polynomial 1 − apX + pX2 where, as usual,
p + 1 − ap = #Ẽp(Fp) with Ẽp denoting the reduction of E modulo p. Furthermore, we
write pfρ for the p-part of the conductor of ρ and εp(ρ) for the local ε-factor of ρ at the
prime p. Moreover, let d+(ρ) and d−(ρ) denote the dimension of the subspace of [ρ]λ on
which complex conjugation acts by +1 and −1, respectively. We denote the periods of E

by

Ω+(E) :=
∫

γ+
ω, Ω−(E) :=

∫
γ−

ω,

where ω is the Néron differential and γ+ and γ− denote a generator for the submodule
of H1(E(C), Z) on which complex conjugation acts as +1 and −1 respectively. Finally,
we write R∞(E, ρ∗) and Rp(E, ρ∗) for the complex and p-adic regulators of E twisted
by ρ∗. Then the displayed expression in Conjecture 7.4 (a) is equal to

(−1)dimCp (eρ∗ (Cp⊗ZE(Kker(ρ)))) L∗
R(E, ρ∗)

Ω+(E)d+(ρ)Ω−(E)d−(ρ)R∞(E, ρ∗)

× εp(ρ)u−fρRp(E, ρ∗)
PL,p([ρ]λ, u−1)
PL,p([ρ]∗λ, up−1)

. (7.11)

Here L∗
R(E, ρ∗) is the leading coefficient at s = 1 of the L-function LR(E, ρ∗, s) obtained

from the Hasse–Weil L-function of E twisted by ρ∗ by removing the Euler factors at p

https://doi.org/10.1017/S147474800900022X Published online by Cambridge University Press

https://doi.org/10.1017/S147474800900022X


Non-commutative main conjectures 103

and at all primes � at which the j-invariant jE of E in non-integral. For the calculation
of Ωp(M(ρ∗)) see [18, Remark 4.2.27 and the proof of Theorem 4.2.26(1) with u = α].

Next we note that in this case the set Υ that occurs in Conjecture 7.4 (and was defined
in general just after (7.5)) comprises the prime p and all prime numbers q with ordq(jE) <

0 (see also [18, 4.5.3] or [35, Remark 6.5]). Hence, given the reinterpretation (7.11) of
the interpolation formula of Conjecture 7.4 (a), the only essential difference between
Conjecture 7.4 and [15, Conjecture 5.8] is that Conjecture 7.4 involves an interpolation
formula for ((r(M)(ρ∗)!)−1×) the value at T = 0 of the r(M)(ρ∗)th derivative of Φρ(L)
rather than merely for the value at T = 0 of Φρ(L) itself as in [15, Conjecture 5.8].

Now, since III(E/Kker(ρ)) is assumed to be finite, Conjecture 7.4 (a) combines with the
equality (7.10) to imply that

r(Φρ(L)) � r(M)(ρ∗) = dimCp
(eρ∗(Cp ⊗Z E(Kker(ρ)))) � 0

because the given interpolation formula has no pole. In particular, L does not have ∞
as its value at any representation ρ. We also note that the ‘order of vanishing part’ of
the Birch–Swinnerton-Dyer Conjecture for E(ρ∗) implies that the order of vanishing of
LR(E, ρ∗, s) at s = 1 is equal to dimCp(eρ∗(Cp ⊗Z E(Kker(ρ)))).

We now assume that eρ∗(Cp ⊗Z E(Kker(ρ))) vanishes. Then both Rp(M(ρ∗)) = 1 and
R∞(M(ρ∗)) = 1. Also, the leading term L∗

R(E, ρ∗) is in this case equal to the value at
s = 1 of LR(E, ρ∗, s). Hence, the interpolation formula (7.11) coincides with that given
in [15, Conjecture 5.8].

On the other hand, if eρ∗(Cp ⊗Z E(Kker(ρ))) �= 0, then r(Φρ(L)) > 0 and so the value
of L at ρ is equal to 0. In addition, in this case the function LR(E, ρ∗, s) vanishes at
s = 1 and so the interpolation formula of [15, Conjecture 5.8] also implies that the value
of L at ρ is equal to 0, as required. �

7.2.3. The general case

We return to the more general case discussed in § 7.2.1. We fix a full Galois sta-
ble Zp-sublattice T of V and define a GQp

-stable Zp-sublattice of V̂ by setting
T̂ := T ∩ V̂ . As before we let T denote the Galois representation Λ(K/Q) ⊗Zp

T and
set T̂ := Λ(K/Q) ⊗Zp T̂ similarly. Then T̂ is a GQp-stable Λ(K/Q)-submodule of T. For
the definition of the Selmer complex SCU := SCU (T̂, T) (and the related one SC(T̂, T)),
which is originally due to Nekovář [25], we refer the reader to either [18, 4.1.2] or [13,
(31)]. There are several reasons for using Selmer complexes in this context rather than
the Pontryagin dual of the Selmer group: firstly, the latter module is not in general of
finite projective dimension over Λ(K/Q) and so the formalism of (non-commutative)
determinants cannot be applied; secondly, Selmer complexes have better functorial prop-
erties than do Selmer groups; thirdly, Nekovář has shown that the Selmer complex is
able to explain subtle phenomena (for example, concerning exceptional zeros). Also,
by [18, Proposition 4.2.35], the Pontryagin dual X of the Selmer group is closely related
to the cohomology of the Selmer complex SC(T̂, T) and indeed the difference between
the classes of X and SC(T̂, T) in K0(MS∗(GK/Q)) can be controlled explicitly and in fact
often vanishes [18, 4.3.15/18].
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Conjecture 7.9 (general formulation for critical motives). Fix a field K in FQ

that is unramified outside a finite set of places Σ. Then, under the above conditions, the
complex SCU belongs to Dp

S∗(Λ(K/Q)). Further, there exists an element ξ = ξ(U, M) of
K1(ΛA(K/Q)S∗) which satisfies both of the following conditions.

(a) At each Artin representation ρ : GK/Q → GLn(O) for which neither PL,p(Ŵ ρ, 1)
or PL,p(Wρ, 1) is equal to 0 the value at T = 0 of T−r(M)(ρ∗)Φρ(ξ) is equal to

(−1)r(M)(ρ∗) L∗
B,Σ(M(ρ∗))

Ω∞(M(ρ∗))R∞(M(ρ∗))
· Ωp(M(ρ∗))Rp(M(ρ∗))

· Γ (V̂ )−1 ·
PL,p(Ŵ ∗

ρ (1), 1)

PL,p(Ŵρ, 1)
,

where L∗
B,Σ(M(ρ∗)) is the leading coefficient of the complex L-function of M(ρ∗),

truncated by removing Euler factors for all primes in Σ \ {∞}.

(b) ∂A,GK/Q
(ξ) = χ(ΛA(K/Q) ⊗Λ(K/Q) SCU ).

Proposition 7.10. If M = h1(E)(1) and K = Q(E(p)) are as in Conjecture 7.4, then
Conjecture 7.9 is equivalent to Conjecture 7.4.

Proof. We note first that [18, Proposition 4.3.7] implies that the complex SCU

belongs to Dp
S∗(Λ(K/Q)) precisely when the module X(E/K) belongs to the category

MHK/Q
(GK/Q) = MS∗(GK/Q). Also, SCU differs from the complex SC(T̂, T) in [18]

only by local terms which belong to MS∗(GK/Q) (by [18, Proposition 4.3.6]) and have
characteristic elements (denoted ζ(�, K/Q) in [18]) that correspond to the Euler factors
PL,�(Wρ, s) and whose values PL,�(Wρ, 1) at ρ are neither 0 or ∞ (by [18, Lemma 4.2.23]).
To deduce the claimed result from here one need only note that ΓQp(V̂ ) = 1 in this
case and recall (from [18, Propositions 4.3.15–4.3.18]) that the class of SC(T̂, T) in
K0(MS∗(GK/Q)) is equal to [X(E/K)]. �

8. Equivariant Tamagawa numbers

Let F/k be a finite Galois extension of number fields. Then for any motive M defined over
k the equivariant Tamagawa number conjecture of [10, Conjecture 4.1(iv)] asserts the
vanishing of an element TΩ(MF , Z[GF/k]) of K0(Z[GF/k], R[GF/k]) that is constructed
(in general modulo the validity of certain standard conjectures) from the various realiza-
tions and comparison isomorphisms associated to the motive MF := F ⊗k M . Here MF

is regarded as defined over k and endowed with a natural left action of Q[GF/k] (via the
first factor).

Now the product over all primes p and all field isomorphisms j : C ∼= Cp of the natural
composite homomorphism

j∗ : K0(Z[GF/k], R[GF/k]) → K0(Z[GF/k], C[GF/k])

→ K0(Z[GF/k], Cp[GF/k]) → K0(Zp[GF/k], Cp[GF/k])
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is injective, where the second map is induced by j (cf. [4, Lemma 2.1]). To prove [10,
Conjecture 4.1(iv)] it therefore suffices to prove that j∗(TΩ(MF , Z[GF/k])) = 0 for every
such j. This reduction has the further advantage that the element j∗(TΩ(MF , Z[GF/k]))
can be directly defined without assuming the ‘Coherence Hypothesis’ of [10, § 3.3] that is
necessary to define TΩ(MF , Z[GF/k]) (cf. [10, Remark 8]). However, even if one assumes
the standard compatibility conjectures concerning the definition of Euler factors (cf.
[10, Conjecture 3]), the definition of j∗(TΩ(MF , Z[GF/k])) is in general still conditional,
being dependent upon the conjectural existence of a fundamental exact sequence relating
the motivic cohomology spaces of MF and its Kummer dual [10, Conjecture 1] and of
canonical p-adic Chern class isomorphisms [10, Conjecture 2]. In particular, since we are
assuming here that the element j∗(TΩ(MF , Z[GF/k])) is well-defined, the results that
we prove in this section will not shed any new light on either of [10, Conjecture 1,
Conjecture 2].

8.1. Tate motives

In this subsection we fix a finite Galois extension F/k of totally real number fields
and write Q(1)F for the motive h0(Spec F )(1), regarded as defined over k and with
coefficients Q[GF/k]. We recall that all of the conjectures necessary for the definition
of TΩ(Q(1)F , Z[GF/k]) are known to be valid and hence that j∗(TΩ(Q(1)F , Z[GF/k]))
is defined unconditionally as an element of K0(Zp[GF/k], Cp[GF/k]). For a discussion of
various explicit consequences of the vanishing of TΩ(Q(1)F , Z[GF/k]) see [4] or [7].

Theorem 8.1. Let K be any field which belongs to F+
k , contains F and is such that

GK/k has no element of order p (such a field K exists by virtue of Lemma 6.1). If K

validates Conjecture 7.1 and F validates Leopoldt’s Conjecture (at p), then one has
j∗(TΩ(Q(1)F , Z[GF/k])) = 0.

Proof. For any quotient G of GK/k we write Λ(G)#(1) for the Λ(G)-module Λ(G)
endowed with the following action of Gk: each σ in Gk acts on Λ(G)#(1) as right multi-
plication by the element χcyc(σ)σ̄−1, where σ̄ denotes the image of σ in G. If K ′ is the
subfield of K with GK′/k = G and Ok,Σ is the subring of k comprising elements that
are integral at all places outside Σ then, following Fukaya and Kato [18, § 2.1.1] and
Nekovář [25], the compact support cohomology complex CK′ := RΓc,ét(Ok,Σ , Λ(G)#(1))
is an object of Dp(Λ(G)) that lies in a canonical exact triangle in D(Λ(G)) of the form

CK′ → RΓét(Ok,Σ , Λ(G)#(1)) →
⊕
v∈Σ

RΓét(kv, Λ(G)#(1)) → CK′ [1]. (8.1)

Below we use the following facts: there is a natural isomorphism in Dp(Λ(G)) of the form

Λ(G) ⊗L
Λ(K/k) CK

∼= CK′ ; (8.2)

in each degree i there is a natural isomorphism Hi(CK) ∼= lim←−K′ Hi(CK′) where K ′ runs
over all finite degree Galois extensions K ′/k with K ′ ⊆ K and the limit is taken with
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respect to the natural corestriction maps; for each such K ′ there are natural identifica-
tions

Hi(CK′) ∼= Hi
c,ét(OK′,Σ , Zp(1)),

Hi(RΓét(Ok,Σ , Λ(G)#(1))) ∼= Hi
ét(OK′,Σ , Zp(1)),

Hi(RΓét(kv, Λ(G)#(1))) ∼=
⊕
w|v

Hi
ét(K

′
w, Zp(1)).

In particular, by a standard computation (involving Kummer theory, class field theory
and arithmetic duality) one obtains canonical identifications

Hi(CK′) ∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ker(λK′), i = 1,

XΣ(K ′), i = 2,

Zp, i = 3,

0, otherwise,

(8.3)

where λK′ is the diagonal map from OK′ [1/p]× ⊗ Zp to the direct sum over w ∈ Sp(K ′)
of the pro-p-completion (K ′

w)× ⊗̂ Zp of (K ′
w)× and XΣ(K ′) is the Galois group of the

maximal abelian pro-p extension of K ′ that is unramified outside Σ. By passing to the
limit over K ′ ⊂ K one finds that Hi(CK) is acyclic outside degrees 2 and 3 and that its
cohomology in degrees 2 and 3 is canonically isomorphic to XΣ(K) and Zp respectively.
The first claim of Conjecture 7.1 is therefore equivalent to asserting that CK belongs
to Dp

S∗(Λ(K/k)). In addition, since χ(CK) =
∑

i∈Z(−1)i[Hi(CK)], Conjecture 7.1 (b)
asserts that ∂GK/k

(ξ) = χ(CK)+ [Zp] or equivalently, by Proposition 4.7 (ii)(a), (b), that

∂GK/k
(ξ′) = χ(CK) (8.4)

with ξ′ := charGK/k,γk
(Zp[0]) · ξ.

In the next result we set ck := logp(χcyc(γk)).

Lemma 8.2. Assume Leopoldt’s Conjecture is valid for F (at p) and fix an Artin rep-
resentation ρ : GK/k → GLn(O) such that Vρ is an irreducible representation of GF/k.

(i) Conjecture 7.1 (a) implies that (ξ′)∗(ρ) = c
−〈ρ,1〉
k Ωj(ρ)L∗

Σ(1, ρj−1
)j .

(ii) If ρ is non-trivial, then Qp⊗̂
L

Λ(Γk)CK,ρ is acyclic and hence CK is semisimple at ρ,
rGK/k

(CK)(ρ) = 0 and t(CK,ρ) is the canonical morphism.

(iii) If ρ is trivial, then Qp⊗̂
L

Λ(Γk)CK,ρ is acyclic outside degrees 2 and 3 and its cohom-
ology in degrees 2 and 3 identifies with Qp ⊗Zp cok(λk) and Qp respectively. Further,
CK is semisimple at ρ, rGK/k

(CK)(ρ) = 1 and (−1)× t(CK,ρ) is induced by the iso-
morphism β : Qp ⊗Zp cok(λk) → Qp that sends each element (xv)v of

∏
v∈Sp(k) k×

v

to c−1
k

∑
v∈Sp(k) logp(Nv(xv)) with Nv the field-theoretic norm k×

v → Q×
p .
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Proof. Leopoldt’s Conjecture implies that the determinant Ωj(ρ) and hence also the
product (c〈ρ,1〉

k cρ,k)−1Ωj(ρ)L∗
Σ(1, ρj−1

)j in Conjecture 7.1 (a) is non-zero. Since Conjec-
ture 7.1 (a) asserts that this product is equal to the value ξ(ρ) it therefore also implies
that ξ(ρ) = ξ∗(ρ). Next we observe that claim (i) is a consequence of the equality

Φρ(charGK/k,γk
(Zp[0])) =

{
1 − ρ(γ−1

k )(1 + T )−1, if HK/k ⊆ ker(ρ),

1, otherwise.
(8.5)

Indeed, if (8.5) is true, then charGK/k,γk
(Zp[0])∗(ρ) = cρ,k and so claim (i) follows from the

obvious equalities (ξ′)∗(ρ) = (charGK/k,γk
(Zp[0]) · ξ)∗(ρ) = charGK/k,γk

(Zp[0])∗(ρ)ξ∗(ρ).
To prove (8.5) we regard the tensor product

Mρ := Λ(Γk) ⊗Zp
(On)t = ΛO(Γk) ⊗O (On)t

as a (ΛO(Γk), Λ(GK/k))-bimodule, where ΛO(Γk) acts via multiplication on the left and
the (right) action of each element g of GK/k is via x ⊗ y �→ xπΓk

(g) ⊗ yρ(g). Then the
definitions of the element charGK/k,γk

(Zp[0]) and homomorphism Φρ combine to imply
that

Φρ(charGK/k,γk
(Zp[0]))

= detQ(O[[T ]])(id ⊗ id − id ⊗ θ | Q(O[[T ]]) ⊗ΛO(Γk) (Mρ ⊗Λ(HK/k) Zp)), (8.6)

where θ is the endomorphism of Mρ ⊗Λ(HK/k) Zp
∼= Λ(Γk) ⊗Zp ((On)t ⊗Λ(HK/k) Zp) that

sends each element x⊗ (y ⊗ z) to xγ−1
k ⊗ (yρ(γ̃−1

k )⊗ z) (this recipe is independent of the
choice of lift γ̃k of γk through πΓk

).
Now Vρ is irreducible and HK/k is normal in GK/k and so (On)t ⊗Λ(HK/k) Qp is either

canonically isomorphic to (On)t ⊗Zp
Qp or vanishes depending on whether HK/k ⊆ ker(ρ)

or not. Thus, if HK/k �⊂ ker(ρ), then (8.6) implies Φρ(charGK/k,γk
(Zp[0])) is the deter-

minant of an endomorphism of the zero space and so equal to 1. On the other hand, if
HK/k ⊆ ker(ρ), then n = 1 (since Γk is abelian and Vρ is irreducible) and so (8.6) implies
Φρ(charGK/k,γk

(Zp[0])) is the determinant of the endomorphism of Q(O[[T ]]) given by
multiplication by 1 − ρ(γ−1

k )(1 + T )−1. The required equality (8.5) is therefore clear.
To prove claims (ii) and (iii) we note that in each degree i the isomorphism (8.2)

induces an identification Hi(Qp⊗̂
L

Λ(Γk)CK,ρ) ∼= Hi(CF )ρ. Further, if Leopoldt’s Conjec-
ture is valid for F , then ker(λF ) vanishes and Qp ⊗Zp XΣ(F ) is a trivial GF/k-module
and so the explicit descriptions of (8.3) with K ′ = F imply CF is acyclic outside degrees
2 and 3 and moreover that each space Hi(CF )ρ vanishes if ρ is non-trivial. This proves
the first assertion of claim (ii) and then all remaining assertions of claim (ii) follow imme-
diately from [13, Lemma 3.13]. In addition, the long exact cohomology sequence of (8.1)
induces an identification H2

c,ét(Ok,Σ , Qp(1)) ∼= cok(λk) ⊗Zp
Qp and if ρ is trivial and we

use (8.2) with K ′ = kcyc to identify CK,ρ with Ckcyc , then [13, Lemma 3.13] implies
that all remaining assertions of claim (iii) will follow if we can show that the given iso-
morphism β is equal to −1 times the Bockstein homomorphism β2

∆k,c
in degree 2 of the

canonical exact triangle

∆k,c : Qp ⊗Zp RΓc,ét(Ok,Σ , Tk)
γk−1−−−→ Qp ⊗Zp RΓc,ét(Ok,Σ , Tk) → RΓc,ét(Ok,Σ , Qp(1)) →,
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where Tk := Λ(kcyc/k)#(1). Now the argument of [13, § 3.2.1] shows that β2
∆k,c

is equal
to the homomorphism H2

c,ét(Ok,Σ , Qp(1)) → H3
c,ét(Ok,Σ , Qp(1)) induced by taking the

cup product with the element ϕk of H1
ét(Ok,Σ , Zp) = Homcts(XΣ(k), Zp) obtained by

composing the projection XΣ(k) → Γk with the continuous homomorphism Γk → Zp

that sends γk to 1. Since cup products commute with corestriction we therefore obtain a
commutative diagram

H2
c,ét(Ok,Σ , Qp(1))

β2
∆k,c ��

κ2

��

H3
c,ét(Ok,Σ , Qp(1))

κ3

��
H2

c,ét(ZΣ′ , Qp(1))
d−1

k β2
∆Q,c �� H3

c,ét(ZΣ′ , Qp(1))

in which Σ′ is the set of rational places lying below those in Σ, ∆Q,c denotes the exact
triangle obtained from ∆k,c by replacing k and Σ by Q and Σ′ respectively, the vertical
arrows are the natural corestriction maps and dk occurs in the lower row because the
restriction of ϕQ ∈ H1

ét(OQ,Σ , Zp) to H1
ét(Ok,Σ , Zp) is equal to ϕdk

k (since γk = γdk

Q ).
But, with respect to the canonical identifications H2

c,ét(Ok,Σ , Qp(1)) ∼= cok(λk) ⊗Zp
Qp

and H3
c,ét(Ok,Σ , Qp(1)) ∼= Qp (and similarly with k and Σ replaced by Q and Σ′), the

map κ2 is induced by the norm maps Nv : k×
v → Q×

p and κ3 is the identity map. Thus,
since dk × cQ = ck, it is enough for us to prove that (−1) × β2

∆Q,c
is induced by the

homomorphism c−1
Q · logp : Q×

p → Qp. To compute β2
∆Q,c

explicitly we use the morphism
of natural exact triangles

RΓét(Qp, TQ)
γQ−1 ��

��

RΓét(Qp, TQ) ��

��

RΓét(Qp, Zp(1)) ��

θ

��
RΓc,ét(ZΣ′ , TQ)[1]

γQ−1 �� RΓc,ét(ZΣ′ , TQ)[1] �� RΓc,ét(ZΣ′ , Zp(1))[1] ��

(8.7)

in which each vertical morphism is induced by the definition of compact support cohom-
ology. Indeed, from the long exact cohomology sequences of the rows in this diagram we
obtain a commutative diagram

H1
ét(Qp, Qp(1))

Qp⊗ZpH1(θ)
��

β1

��

H2
c,ét(ZΣ′ , Qp(1))

(−1)×β2
∆Q,c

��
H2

ét(Qp, Qp(1))
Qp⊗ZpH2(θ)

�� H3
c,ét(ZΣ′ , Qp(1))

Here Qp ⊗Zp H1(θ) identifies with the natural surjection H1
ét(Qp, Qp(1)) ∼= (Q×

p ⊗̂Zp)⊗Zp

Qp → cok(λQ)⊗Zp Qp
∼= H2

c,ét(ZΣ′ , Qp(1)), Qp ⊗Zp H2(θ) is induced by the identifications
H2

ét(Qp, Qp(1)) ∼= Qp and H3
c,ét(ZΣ′ , Qp(1)) ∼= Qp and the identity map on Qp, β1 is the

Bockstein homomorphism in degree 1 of the image under Qp ⊗Zp − of the upper row of
(8.7) and the factor −1 occurs on the right-hand vertical arrow because of the 1-shift
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in the lower row of (8.7). To complete the proof of claim (iii) it thus suffices to recall
that the homomorphism β1 is induced by c−1

Q · logp (for a proof of this fact see, for
example, [11, p. 352]). �

Returning to the proof of Theorem 8.1 we now apply Theorem 2.2 to the conjectural
equality (8.4). By taking into account the canonical isomorphism (8.2) with K ′ = F and
the explicit descriptions given in Lemma 8.2 we therefore deduce that

∂GF/k
((c−〈ρ,1〉

k Ωj(ρ)L∗
Σ(1, ρj−1

)j)ρ∈Irr(GF/k)) = −[dZp[GF/k](CF ), β∗], (8.8)

where β∗ is the morphism dCp[GF/k](Cp[GF/k]⊗̂L

Zp[GF/k]CF ) → 1Cp[GF/k] that is induced
by the isomorphism

Qp ⊗Zp
H2(CF ) ∼= Qp ⊗Zp

cok(λk)
β−→ Qp

∼= Qp ⊗Zp
H3(CF )

coming from Lemma 8.2 (ii), (iii). But the proof of [13, Theorem 5.5] shows that (8.8) is
equivalent to an equality of the form [dZp[GF/k](CF ), β′

∗] = 0 where β′
∗ = (β′

ρ)ρ∈Irr(GF/k)

under the identification (1.4) and each β′
ρ is the explicit morphism described in [13, (25)].

The fact that (8.8) implies the vanishing of the element j∗(TΩ(Q(1)F , Z[GF/k])) then
follows directly upon explicitly comparing the definition of TΩ(Q(1)F , Z[GF/k]) with
that of each morphism β′

ρ. This therefore completes the proof of Theorem 8.1. �

We end this subsection by noting that the above computations show that the correct
generalization of Conjecture 7.1 (to groups with an element of order p) is the following.

Conjecture 8.3. Fix a totally real number field k and a field K in F+
k that is unramified

outside a finite set of places Σ. Then CK belongs to Dp
S∗(Λ(K/k)). Further, there exists

an element ξ′ of K1(Λ(K/k)S∗) which satisfies both of the following conditions.

(a) At each Artin representation ρ of GK/k one has

ξ′(ρ) = logp(χcyc(γk))−〈ρ,1〉Ωj(ρ)L∗
Σ(1, ρj−1

)j .

(b) ∂GK/k
(ξ′) = χ(CK).

As already observed in Remark 7.3, it can be shown that this conjecture is compatible
with that formulated in the case that GK/k has rank one by Ritter and Weiss in [27, § 4].

8.2. Critical motives

In this subsection we assume the notation and hypotheses of Conjecture 7.9 and fix a
subfield F of K that is both Galois and of finite degree over Q. We set

T̂F := Λ(F/Q) ⊗Zp T̂ ∼= Λ(F/Q) ⊗Λ(K/Q) T̂.

We write Z = Zρ and Z̃ = Z̃ρ for the Kummer duals W ∗
ρ (1) and Ŵ ∗

ρ(1) of Wρ and Ŵ ρ

respectively; finally we set W̃ = W̃ ρ := Wρ/Ŵ ρ. In terms of the notation of [13] we
consider the following assumption on Wρ.
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Assumption (W). For each ρ in Irr(GF/Q) the space W = Wρ satisfies all of the
following conditions:

(A1) P�(W, 1)P�(Z, 1) �= 0 for all primes � �= p;

(B1) Pp(W, 1)Pp(Z, 1) �= 0;

(C1) Pp(W̃ , 1)Pp(Z̃, 1) �= 0; and

(D2) H0
f (Q, W ) = H0

f (Q, Z) = 0.

In the following result we write

ιA : K0(Zp[GF/Q], Cp[GF/Q]) → K0(A[GF/Q], Cp[GF/Q])

for the canonical homomorphism obtained by regarding A as a subring of Cp. We also
recall that [10, Conjecture 4(iii)] (which is a natural equivariant version of the Deligne–
Beilinson Conjecture) for the motive MF , regarded as defined over Q and with an action
of Q[GF/Q], implies that the element j∗(TΩ(MF , Z[GF/Q])) belongs to the image of the
natural map K0(Zp[GF/Q], Qp[GF/Q]) → K0(Zp[GF/Q], Cp[GF/Q]).

Theorem 8.4. Assume that

• Assumption (W) is valid;

• the complex SCU is semi-simple at all ρ in Irr(GF/Q);

• an ε-isomorphism

εp,Zp[GF/Q](T̂F ) : 1Zp[GF/Q] → dZp[GF/Q](RΓ (Qp, T̂F ))dZp[GF/Q](T̂F )

in the sense of [18, Conjecture 3.4.3] exists;

• Conjecture 7.9 is valid for the motive M and the extension K/Q.

Then ιA(j∗(TΩ(MF , Z[GF/Q]))) vanishes. Further, if j∗(TΩ(MF , Z[GF/Q])) belongs to
the image of the natural map K0(Zp[GF/Q], Qp[GF/Q]) → K0(Zp[GF/Q], Cp[GF/Q]), then
j∗(TΩ(MF , Z[GF/Q])) vanishes.

Proof. We fix an element ξ as in Conjecture 7.9. Since SCU is semisimple at each ρ in
Irr(GF/Q), the obvious analogue of Theorem 2.2 with A in place of Zp combines with
Conjecture 7.9 (b) to imply that

∂GF/Q
((ξ∗(ρ))ρ∈Irr(GF/Q)) = −ιA([dZp[GF/Q](SCU (T̂F , TF )), t(SCU (T̂F , TF ))GF/Q

]).

After unwinding the identification (1.2), this means that there exists a morphism in
V (A[GF/Q])

ψ : 1A[GF/Q] → dA[GF/Q](A[GF/Q] ⊗Zp[GF/Q] SCU (T̂F , TF ))
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such that

(ξ∗(ρ)−1)ρ∈Irr(GF/Q) = t(SCU (T̂F , TF ))GF/Q
◦ ψCp[GF/Q]

∈ AutV (Cp[GF/Q])(1Cp[GF/Q]) ∼= K1(Cp[GF/Q])

under the identification (1.4). After recalling the explicit definition of the morphism
t(SCU (T̂F , TF ))GF/Q

which occurs in Theorem 2.2 and then taking inverses we obtain a
morphism in V (A[GF/Q])

ψ−1 : 1A[GF/Q] → dA[GF/Q](A[GF/Q] ⊗Zp[GF/Q] SCU (T̂F , TF ))−1

such that

(−1)rG(SCU )(ρ)ξ∗(ρ) = t(SCU (ρ∗))−1 ◦ ψ−1(ρ) ∈ AutV (Cp)(1Cp
) ∼= C×

p

for all ρ in Irr(GF/Q). Here we write ψ−1(ρ) for the ρ-component of the morphism

1Cp[GF/Q] → dCp[GF/Q](Cp[GF/Q] ⊗Zp[GF/Q] SCU (T̂F , TF ))−1

that is induced by ψ−1. This is equivalent to asserting the existence of a morphism in
V (A[GF/Q])

ψ′ : 1A[GF/Q] → dA[GF/Q](A[GF/Q] ⊗Zp[GF/Q] RΓc(U, TF ))−1

such that for all ρ in Irr(GF/Q) the composite morphism

1Cp

ψ′(ρ)Cp−−−−−→ dL(RΓc(U, Wρ))−1
Cp

β(ρ)ε(T̂)−1(ρ)−−−−−−−−−→ dL(SCU (Ŵρ, Wρ))−1
Cp

t(SCU (ρ∗))−1
Cp−−−−−−−−−→ 1Cp

(8.9)

corresponds to (−1)rG(SCU )(ρ)ξ∗(ρ). In this displayed expression we write ε(T̂)(ρ) for
Vρ∗⊗Zp[GF/Q]εp,Zp[GF/Q](T̂F ) and β(ρ) for Vρ∗ ⊗Zp[GF/Q] (Zp[GF/Q] ⊗Λ(G) β) ∼= Vρ∗ ⊗Λ(G) β

with β the morphism dΛ(T+)Λ̃
∼= dΛ(T̂)Λ̃ that is defined in [13, (35)], and all underlying

identifications are as explained in [13, § 6].
Now the hypothesis that SCU is semisimple at ρ combines with Assumption (W),

the duality isomorphism H3
f (Q, W ) ∼= H0

f (Q, Z) and the results of [13, Lemmas 6.7
and 3.13(ii)] to imply that the algebraic rank r(M)(ρ∗) defined in (7.5) is equal to
rG(SCU )(ρ), that [13, Condition (F)] is satisfied and that the value at T = 0 of
T−r(M)(ρ∗)Φρ(ξ) is equal to the leading term ξ∗(ρ). Conjecture 7.9 (a) therefore gives
an explicit formula for ξ∗(ρ). Taking this formula into account, one can compare the
composite morphism (8.9) to the first displayed morphism after [13, Lemma 6.8]. After
unwinding the proof of [13, Theorem 6.5] (for which we use Assumption (W)) this com-
parison shows that

ψ′(ρ) = ϑλ(M(ρ∗))Cp
◦ ζK(M(ρ∗))Cp
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for all ρ in Irr(GF/Q), where ϑλ(M(ρ∗))Cp
and ζK(M(ρ∗))Cp

are the morphisms that occur
in [13, Conjecture 4.1]. Finally, we note that the validity of the last displayed equality (for
all ρ in Irr(GF/Q)) is equivalent to asserting that the element ιA(j∗(TΩ(MF , Z[GF/Q])))
vanishes (by the very definition of the latter element). This proves the first claim of the
theorem.

The second claim of Theorem 8.4 will now follow if we can show that the natural
composite homomorphism

K0(Zp[GF/Q], Qp[GF/Q]) → K0(Zp[GF/Q], Cp[GF/Q]) ιA−→ K0(A[GF/Q], Cp[GF/Q])

is injective. To do this we write F for the field of fractions of A (so F ⊂ Cp). Then,
since the natural scalar extension map K1(F [GF/Q]) → K1(Cp[GF/Q]) is injective, the
exact commutative diagram (1.1) with R = A[GF/Q], R′ = F [GF/Q] and R′′ = Cp[GF/Q]
implies that the natural homomorphism

K0(A[GF/Q], F [GF/Q]) → K0(A[GF/Q], Cp[GF/Q])

is also injective. It therefore suffices to prove that the natural homomorphism

K0(Zp[GF/Q], Qp[GF/Q]) → K0(A[GF/Q], F [GF/Q])

is injective. But, since A is unramified over Zp, this is an immediate consequence of a
result of Taylor [33, Chapter 8, Theorem 1.1]. Indeed, to see this one need only note that
the groups K0(Zp[GF/Q], Qp[GF/Q]) and K0(A[GF/Q], F [GF/Q]) are naturally isomorphic
to the Grothendieck groups K0T (Zp[GF/Q]) and K0T (A[GF/Q]) which occur in [33]. �

Remark 8.5. If M = h1(A)(1) for an abelian variety A that has good ordinary reduction
at p and is such that the Tate–Shafarevich group III(A/F ) of A over F is finite, then
it is known that the vanishing of j∗(TΩ(MF , Z[GF/Q])) implies the ‘p-part’ of a Birch–
Swinnerton-Dyer type formula (see, for example, [35, § 3.1]). However, we stress that
Conjecture 7.9 does not itself imply that III(A/F ) is finite.

Remark 8.6. Explicit consequences of Conjecture 7.9 for the value at s = 1 of twisted
Hasse–Weil L-functions have been described by Coates et al . in [15], by Kato in [21]
and by Dokchister and Dokchister in [17]. However, all of the consequences described
in [15, 17, 21] become trivial when the L-functions vanish at s = 1. One of the key
advantages of Theorem 8.4 is that in many of these cases it can be combined with the
approach of [7] to show that Conjecture 7.9 implies a variety of explicit (and highly non-
trivial) congruence relations between values at s = 1 of derivatives of twisted Hasse–Weil
L-functions. Such explicit (conjectural) congruences will be considered elsewhere.

Remark 8.7. Following Theorem 8.4 it is of some interest to study elements in K-theory
of the form TΩ(h1(E/F )(1), Z[GF/Q]) with E an elliptic curve over Q and F/Q a finite
non-abelian Galois extension. The study of such elements is however still very much in
its infancy. Indeed, the only explicit computation that we are currently aware of is the
following. Let E be the elliptic curve y2 + y = x3 − x2 − 10x − 20. Then, with F equal
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to the splitting field of the polynomial x3 − 4x− 1, the group GF/Q is dihedral of order 6
and Navilarekallu [24] has proved numerically that if � is any odd prime for which the �-
primary component of III(E/F ) is trivial, then the element j∗(TΩ(h1(E/F )(1), Z[GF/Q]))
vanishes for any isomorphism j : C ∼= C�.

Appendix A. Determinant functors

In this appendix we recall some details of the formalism of determinant functors intro-
duced by Fukaya and Kato in [18] and used in [13] (see also [35])

We fix an associative unital noetherian ring R. We write B(R) for the category of
bounded complexes of (left) R-modules, C(R) for the category of bounded complexes of
finitely generated (left) R-modules, P (R) for the category of finitely generated projec-
tive (left) R-modules, Cp(R) for the category of bounded (cohomological) complexes of
finitely generated projective (left) R-modules. By Dp(R) we denote the category of per-
fect complexes as full triangulated subcategory of the derived category Db(R) of B(R).
We write (Cp(R), quasi) and (Dp(R), is) for the subcategory of quasi-isomorphisms of
Cp(R) and isomorphisms of Dp(R), respectively.

For each complex C = (C•, d•
C) and each integer r we define the r-fold shift C[r] of C

by setting C[r]i = Ci+r and di
C[r] = (−1)rdi+r

C for each integer i.
We first recall that there exists a Picard category CR and a determinant functor

dR : (Cp(R), quasi) → CR with the following properties (for objects C, C ′ and C ′′ of
Cp(R)).∗

A(d) If C ′ → C → C ′′ is a short exact sequence of complexes, then there is a canoni-
cal isomorphism dR(C) ∼= dR(C ′)dR(C ′′) in CR (which we usually take to be an
identification). These isomorphisms have the following functorial property: for any
commutative diagram of short exact sequences of complexes in Cp(R) of the form

D′ ��

��

D ��

��

D′′

��
C ′ ��

��

C ��

��

C ′′

��
E′ �� E �� E′′

there is a commutative diagram in CR

dR(C)
∼= ��

∼=
��

dR(C ′)dR(C ′′)

∼=
��

dR(D)dR(E)
∼= �� dR(D′)dR(E′)dR(D′′)dR(E′′)

∗ The listing starts with (d) to be compatible with the notation of [35].
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in which the upper, lower, left and right arrow is the isomorphism induced by the
central row, top and bottom rows, central column and left- and right-hand columns
in the above diagram respectively.

A(e) If C is acyclic, then the quasi-isomorphism 0 → C induces a canonical isomorphism
1R → dR(C).

A(f) For any integer r one has dR(C[r]) = dR(C)(−1)r

.

A(g) The functor dR factorizes over the image of Cp(R) in Dp(R) and extends (uniquely
up to unique isomorphisms) to (Dp(R), is).

A(h) For each C in Db(R) we write H(C) for the complex which has H(C)i = Hi(C)
in each degree i and in which all differentials are 0. If H(C) belongs to Dp(R) (in
which case one says that C is cohomologically perfect), then C belongs to Dp(R)
and there are canonical isomorphisms

dR(C) ∼= dR(H(C)) ∼=
∏
i∈Z

dR(Hi(C))(−1)i

.

(For an explicit description of the first isomorphism see [22, § 3] or [3, Remark 3.2].)

A(i) If R′ is another (associative unital noetherian) ring and Y an (R′, R)-bimodule
that is both finitely generated and projective as an R′-module, then the functor
Y ⊗R − : P (R) → P (R′) extends to a commutative diagram

(Dp(R), is)
dR ��

Y ⊗L
R−

��

CR

Y ⊗R−
��

(Dp(R′), is)
dR′ �� CR′

In particular, if R → R′ is a ring homomorphism and C is in Dp(R), then we often
simply write dR(C)R′ in place of R′ ⊗R dR(C).

In [18] a ‘localized K1-group’ is defined for any full subcategory Σ of Cp(R) which
satisfies the following four conditions:

(i) 0 ∈ Σ;

(ii) if C, C ′ are in Cp(R) and C is quasi-isomorphic to C ′, then C ∈ Σ ⇔ C ′ ∈ Σ;

(iii) if C ∈ Σ, then also C[n] ∈ Σ for all n ∈ Z;

(iv′) if C ′ and C ′′ belong to Σ, then C ′ ⊕ C ′′ belongs to Σ.

Definition A.1 (Fukaya–Kato). Assume that Σ satisfies the conditions (i), (ii), (iii)
and (iv′) above. Then the localized K1-group K1(R, Σ) is defined to be the (multiplica-
tively written) abelian group which has as generators symbols of the form [C, a]FK for
each complex C ∈ Σ and morphism a : 1R → dR(C) in CR and the following relations:
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(0) [0, id1R
]FK = 1;

(1) [C ′,dR(f) ◦ a]FK = [C, a]FK if f : C → C ′ is an quasi-isomorphism with C (and
thus C ′) in Σ;

(2) if 0 → C ′ → C → C ′′ → 0 is an exact sequence in Σ, then

[C, a]FK = [C ′, a′]FK · [C ′′, a′′]FK,

where a is the composite of a′ ·a′′ with the isomorphism induced by property A(d);

(3) [C[1], a−1]FK = ([C, a]FK)−1.

We now assume to be given a left denominator set S of R and let RS := S−1R

denote the corresponding localization and ΣS the full subcategory of Cp(R) comprising
all complexes C in Cp(R) for which RS ⊗R C is acyclic. For each complex C in ΣS

and morphism a : 1R → dR(C) in CR we write θC,a for the element of K1(RS) which
corresponds under the canonical isomorphism K1(RS) ∼= AutCRS

(1RS
) to the composite

1RS

RS⊗Ra−−−−−→ dRS
(RS ⊗R C) → 1RS

, (A.1)

where the second morphism results from property A(e) with C and R replaced by RS⊗RC

and RS . Then it can be shown that the assignment [C, a]FK �→ θC,a induces an isomor-
phism of groups

chR,ΣS
: K1(R, ΣS) ∼= K1(RS)

(cf. [18, Proposition 1.3.7]). Hence, if Σ is any subcategory of ΣS we also obtain a
composite homomorphism

chR,Σ : K1(R, Σ) → K1(R, ΣS) ∼= K1(RS).

In particular, we often use this construction in the following case: C belongs to ΣS and
Σ is equal to smallest full subcategory ΣC of Cp(R) that contains C and also satisfies
the conditions (i), (ii), (iii) and (iv′) that are described above.

Appendix B. Bockstein homomorphisms

Let A be a regular noetherian (associative unital) ring and assume given an exact triangle
in Dp(A) of the form

∆ : C
θ−→ C → D → C[1].

For each integer i we define the ‘Bockstein homomorphism in degree i of ∆’ to be the
composite homomorphism

βi
∆ : Hi(D) → ker(Hi+1(θ)) → Hi+1(C) → cok(Hi+1(θ)) → Hi+1(D),

where the first and fourth maps occur in the long exact sequence of cohomology of ∆
and the second and third are tautological, and we write

Hβ(∆) : · · · βi−1
∆−−−→ Hi(D)

βi
∆−−→ Hi+1(D)

βi+1
∆−−−→ · · ·
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for the associated complex (with each term Hi(D) placed in degree i). The morphism
θ is said to be ‘semisimple’ if the tautological map ker(Hi(θ)) → cok(Hi(θ)) is bijective
in each degree i. This condition is equivalent to asserting that the complex Hβ(∆) is
acyclic. Hence, if true, there is a composite morphism in V (A) of the form

t(∆) : dA(D) → dA(H(D)) → dA(Hβ(∆)) → 1V (A), (B.1)

where the first map is as in A(h), the second is the obvious map (induced by the fact that
the complexes H(D) and Hβ(∆) agree termwise) and the third is induced by property A(e)
and the fact that Hβ(∆) is acyclic.

Appendix C. Sign conventions

Due to a difference of conventions between [13] and [18], which unfortunately had not
previously been noticed by the authors, the following sign conflict has arisen: for a dis-
crete valuation ring O with field of fractions L, an element c ∈ O\{0} ⊆ L× corresponds
in [18] to the class of [O c−→ O, id]FK in K1(L), where the complex O c−→ O is concen-
trated in degree 0 and 1 (while this complex is implicitly concentrated in degrees −1
and 0 in [13, Remark 2.4]). With this convention, Fukaya and Kato must normalize the
connecting homomorphism as [C, a]FK �→ −[[C]] in order to ensure that the connect-
ing homomorphism L× = K1(L) → K0(ΣO\{0}) ∼= Z coincides with the valuation map
ordL (cf. [18, Remark 1.3.16]). It follows that in [13, Remark 2.4] the correct formula is
actually

ordL(c) = −lengthO(A),

if we identify A with the complex A[0]. For the same reason, the signs in [13, Proposi-
tion 3.19] are incorrect, the correct versions being

χadd(G, C(ρ∗)) = −ordL(L∗(ρ))

and

χmult(G, C(ρ∗)) = |L∗(ρ)|[L:Qp]
p .

We note also that L := [C, a]FK ∈ K1(Λ, ΣS∗) is a characteristic element of −[[C]] =
[[C[1]]] (rather than of [[C]]) in K0(ΣS∗) due to the normalization of the connecting
homomorphism in [18]. For a similar reason we have to add a sign in the formulae
of [18, (38), (39)] to obtain the corrected versions

LU,β := LU,β(M) : 1Λ → dΛ(SCU (T̂, T))−1 (C.1)

and

Lβ := Lβ(M) : 1Λ → dΛ(SC(T̂, T))−1. (C.2)

Also in the following convention we need a 1-shift: we write LU,β and Lβ for the ele-
ments [SCU [1],LU,β ]FK and [SC[1],Lβ ]FK of K1(Λ(G), ΣSCU

) and K1(Λ(G), ΣSC) respec-
tively. Finally, in the first displayed formula after [13, Lemma 6.8] one has to replace
t(SCU (ρ∗))L̃ by t(SCU (ρ∗)[1])L̃ = t(SCU (ρ∗))−1

L̃
.

The authors would like to apologize for these oversights.
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