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Abstract
We extend a recent argument of Kahn, Narayanan and Park ((2021) Proceedings of the AMS 149 3201–
3208) about the threshold for the appearance of the square of a Hamilton cycle to other spanning
structures. In particular, for any spanning graph, we give a sufficient condition under which we may deter-
mine its threshold. As an application, we find the threshold for a set of cyclically ordered copies of C4 that
span the entire vertex set, so that any two consecutive copies overlap in exactly one edge and all overlapping
edges are disjoint. This answers a question of Frieze.We also determine the threshold for edge-overlapping
spanning Kr-cycles.
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1. Introduction
The study of threshold functions for the appearance of spanning structures plays an important
role in the theory of random graphs. Unlike in the case of small subgraphs, which was resolved
by Erdős and Rényi [6] (for balanced graphs) and by Bollobás [4] (for general graphs), in the case
of general spanning structures only sufficient conditions are known. These sufficient conditions
lead to upper bounds for the threshold of a general spanning graph, although the expectation
threshold conjecture of Kahn and Kalai [14], recently confirmed by Park and Pham [21], predicts
the threshold for any graph up to a logarithmic factor.

Apart from particular structures where the thresholds are known, such as perfect matchings
[7], F-factors [13], Hamilton cycles [16, 22] or spanning trees [18] (to name a few), the most
general result providing upper bounds was, until recently, due to Riordan [23], giving in some
cases asymptotically optimal upper bounds (lattices, hypercubes, k-th powers of Hamilton cycles
for k≥ 3 [17]). An excellent survey by Böttcher [5] provides references to many other results, in
particular algorithmic ones.

The recent breakthrough work by Frankston, Kahn, Narayanan and Park [8] (following ideas
from a breakthrough of Alweiss, Lovett, Wu and Zhang [1] on the sunflower conjecture) estab-
lished the fractional expectation threshold conjecture of Talagrand [26], leading in many cases
to optimal thresholds, or providing an upper bound for the threshold which is off by at most a
logarithmic factor. The subsequent work by Kahn, Narayanan and Park [15] exploited the proof
approach of [8] in a more efficient way, allowing to erase the logarithmic factor in the case of the
square of a Hamilton cycle, and thus proving the threshold for its appearance to be n−1/2. Here,
we generalise the approach from [15] and make it applicable to any structure satisfying a certain
property, also erasing the logarithmic factor from the upper bound on their thresholds, and thus
establishing the thresholds for several new structures. To showcase our result, we consider two
specific families of spanning subgraphs.
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In a recent paper, Frieze [10] studied thresholds for the containment of spanning Kr-cycles,
i.e., cyclically ordered edge-disjoint copies of Kr with two consecutive copies sharing a vertex
(assuming the right divisibility conditions on n). He proved the optimal threshold of the form
n−2/r log1/(

r
2) n by reducing this problem to another result of Riordan about coupling the ran-

dom graph with the random r-uniform hypergraph [24] (see also the work of Heckel [11] for the
triangle case). Frieze also raised the question about the threshold for the containment of a span-
ning C4-cycle, where the copies of C4 are ordered cyclically and two consecutive cycles overlap in
exactly one edge, whereby each cycle C4 overlaps with two copies of C4 in opposite edges (there
are some possible variations, but this would be a canonically defined structure). Such C4-cycles
are referred to in [10] as a C4-cycle with overlap 2, where it is also observed that the threshold for
its appearance is at most n−2/3 log n, which follows from [8].

The purpose of this paper is to contribute to the large body of work on thresholds for spanning
structures by establishing thresholds for spanning 2-overlapping C4-cycles (which we denote by
Ce
4,n), thus answering the question of Frieze [10], and also for 2-overlapping Kr-cycles (defined

below) for r ≥ 4. Both structures cannot be handled directly by the results in [8, 23].We determine
the thresholds for both of these structures.

Our first theorem answers the question of Frieze [10].

Theorem 1.1. The threshold for the appearance of Ce
4,n in G(2n, p) is �(n−2/3).

Our second result generalises the recent work of Kahn, Narayanan and Park [15] on the
threshold for the square of a Hamilton cycle. The square of a Hamilton cycle can be seen as the
particular case r = 3 of a structure which we call a 2-overlapping (or edge-overlapping) span-
ning Kr-cycle and denote by Kr,2,n, for r ≥ 3. This consists of a set of cyclically ordered copies of
Kr , where consecutive cliques share exactly one edge and, if r ≥ 4, all other cliques are pairwise
vertex-disjoint.

Theorem 1.2. Let r ≥ 3 and n ∈N with (r − 2) | n. Then, the threshold for the appearance of Kr,2,n
in G(n, p) is �(n−2/(r+1)).

To prove Theorems 1.1 and 1.2, we state and prove a general lemma (the fragmentation lemma,
Lemma 2.3), which has potential to handle more spanning structures. This lemma is a generali-
sation of the work of Kahn, Narayanan and Park on the square of a Hamilton cycle [15, Lemma
3.1] to handle structures for which constantly many rounds of exposure may be necessary, in con-
trast to [15], where only two rounds are used, and to [8], where logarithmically many rounds are
necessary.

The organisation of the paper is as follows. In the next section, Section 2, we provide the main
definitions, state a general lemma (the fragmentation lemma, Lemma 2.3) and use it to establish
a general theorem (Theorem 2.2) about thresholds for certain spanning graphs. Theorem 2.2 is
actually the main general result of the paper, and Theorems 1.1 and 1.2 are two of its applications.
We prove these two applications in Section 3. Finally, in Section 4 we collect a few remarks, and
in the appendices we provide the proof of Lemma 2.3 as well as several technical results for the
applications.

2. A general theorem for thresholds
Given any real numbers a and b, we write [a, b] to refer to the set {n ∈Z : a≤ n≤ b}. For an integer
n, we often abbreviate [n] := [1, n]. We use standard O notation for asymptotic statements.

A hypergraphH on the vertex setV := V(H) is a subset of the power set 2V . The elements ofH
are referred to as edges. The hypergraphH is said to be r-bounded if all its edges have cardinality
at most r, and r-uniform if all the edges have exactly r vertices. Oftentimes, we will consider mul-
tihypergraphs H on V , where we view H as a multiset with elements from 2V . We usually write
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|H| for the number of edges of H. To ease readability, we will often refer to multihypergraphs
as hypergraphs. We also omit floor and ceiling signs whenever they do not affect our asymptotic
computations.

Following [15], we say that a (multi-)hypergraphH is q-spread if, for every I ⊆V(H), we have

|H ∩ 〈I〉| ≤ q|I||H|,
where 〈I〉 := {J ⊆V(H) : I ⊆ J} andH ∩ 〈I〉 is the set of edges ofH in 〈I〉 (with multiplicities ifH
is a multihypergraph). The spreadness ofH is the minimum q such thatH is q-spread.

While the general framework developed in [8, 15] works for arbitrary hypergraph thresholds,
here we focus on graphs. Let F be some (possibly spanning) subgraph of the complete graph Kn,
and let F denote the set of all copies of F in Kn. We will identify copies of F from F with their
edge sets, and we thus view F as a k-uniform hypergraph, where k= |E(F)|, on the vertex set
M := ([n]

2
)
.

With the notion of spreadness, (a consequence of) the main result of Frankston, Kahn,
Narayanan and Park [8] can be stated as follows. Let F be a subgraph of Kn, and suppose that the
hypergraphF of all copies of F inKn is q-spread. Then, there is an absolute constantC such that, if
p≥ Cq log n, then P

[
F ⊆G(n, p)

]≥ 1− ε. As mentioned in the introduction, our main contribu-
tion is removing the logarithmic factor in the bound on p above, under certain conditions on the
hypergraph F . We now define a strengthening of the notion of spreadness of hypergraphs which
is key for our results.

Definition 2.1. For q, α, δ ∈ (0, 1), we say that a k-bounded hypergraph F on vertex set M is
(q, α, δ)-superspread if it is q-spread and, for any I ⊆M with |I| ≤ δk, we have

|F ∩ 〈I〉| ≤ q|I|k−αcI |F |,
where cI is the number of components of I (when I is viewed as a subgraph of Kn).

The role of the term k−αcI will become clear later, but, roughly speaking, it will be responsible
for bounding the threshold by O(q/α). The value of the constant δ actually plays no role in the
result, but we do need it to be bounded away from 0 for our approach to work.

With the definition above, we may already state our main result.

Theorem 2.2. Let d, α, δ, ε > 0 with α, δ < 1. Then, there exists some C0 such that, for all C ≥ C0
and n ∈N, the following holds. If F is a subgraph of Kn with �(F)≤ d and k0 := |E(F)| = ω(1) and
the hypergraph F of all copies of F is (q, α, δ)-superspread with q≥ 4k0/(Cn2), then, for p≥ Cq,

P
[
F ⊆G(n, p)

]≥ 1− ε.

This result immediately provides an upper bound of Cq for the threshold for the appearance
of F as a subgraph of G(n, p). If a matching lower bound can be found (say, by the standard first
moment method), then this establishes the threshold for the appearance of any graph F which
satisfies the conditions in the statement.

It is worthmentioning here that, shortly after announcing our results, Spiro [25] independently
introduced a different notion of spreadness which further generalises the notion of superspread-
ness given in Definition 2.1. As such, the main result in [25] also implies Theorem 2.2. One
advantage of our approach is that the definition of superspreadness seems to be more readily
applicable than the more general definition of Spiro [25].

Before proving Theorem 2.2, let us introduce some definitions. Given a hypergraphH, let S ∈H
and X ⊆V(H). For any J ∈H such that J ⊆ S∪ X, we call the set J \ X an (S, X)-fragment. Given
some k ∈N, we say that the pair (S, X) is k-good if some (S, X)-fragment has size at most k, and we
say it is k-bad otherwise.

More generally, let H0 be some k0-bounded (multi-)hypergraph. Let k0 ≥ k1 ≥ . . . ≥ kt be
a sequence of integers and X1, . . . , Xt be a sequence of subsets of V(H0). Then, we define a
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sequence of ki-bounded multihypergraphs H1, . . . ,Ht inductively as follows. Let i ∈ [t], and
assume the hypergraph Hi−1 is already defined. Then, consider each S ∈Hi−1 such that (S, Xi)
is a ki-good pair, and let Hi be the multihypergraph which arises by including, for each ki-
good pair (S, Xi), an (arbitrary) (S, Xi)-fragment of size at most ki. That is, we define Gi := {S ∈
Hi−1 : (S, Xi) is ki-good} and, for each S ∈ Gi, Ji(S) := {J \ Xi : J ∈Hi−1, J ⊆ S∪ Xi, |J \ Xi| ≤ ki}.
We then fix an arbitrary function fi : Gi →⋃

S∈Gi Ji(S) such that fi(S) ∈Ji(S) for every S ∈ Gi (for
instance, we may simply pick the lexicographically smallest element in the set) and define

Hi := {fi(S) : S ∈ Gi}.
We will refer to the sequence (H0,H1, . . . ,Ht) as a fragmentation process with respect to
(k1, . . . , kt) and (X1, . . . , Xt). In our applications, we will let X1, . . . , Xt be random subsets of
V(H0) and choose a suitable sequence k0, . . . , kt which will guarantee that the hypergraphs in the
sequence do not become very small (with high probability). Observe that the fragments at the i-th
step of this process (i.e., the edges ofHi) correspond to subsets of the edges ofH0 which have not
been covered by the sets X1, . . . , Xi. In particular, for all i ∈ [t] and all I ⊆V(H0) we have that

|Hi ∩ 〈I〉| ≤ |H0 ∩ 〈I〉|. (2.1)

The proof of Theorem 2.2 follows along similar lines as the proofs in [8, 15]: one proceeds in
rounds of sprinkling random edges by showing that, after each round of exposure (which corre-
sponds to a step of the fragmentation process), the random graph contains larger pieces of the
desired structure (or, conversely, the missing fragments become smaller). In the general proof in
[8], the authors show that the progress in each round shrinks the percentage of the edges from
the desired structure by a factor of 0.9, which results in logarithmically many steps and, thus,
a log n factor with respect to the fractional expectation threshold of the structure (this result is
quite general, though, and oftentimes a logarithmic factor is indeed needed, as in the case of span-
ning trees, Hamilton cycles and Kr-factors in random graphs, or of perfect matchings and loose
Hamilton cycles in random hypergraphs). The threshold for the square of a Hamilton cycle K3,2,n
happens to be n−1/2, and in this case, as shown in [15], two rounds suffice: the shrinkage factor
there is n−1/2, so that after the first round a second moment computation suffices in the second
round of exposure/sprinkling. We show that the threshold for the appearance of F is at most O(q)
and for this we will need 1/α rounds (exposing each time edges with probability Cq, for some
constant C): the shrinkage factor in all but the last round will be n−α , so that we can apply the
second moment method in the last round.

The following result is the main lemma of the paper. It will be used to iteratively build a copy
of F in G(n, p) through a fragmentation process.

Lemma 2.3. Let d, α, δ > 0 with α, δ < 1. Then, there exists some C0 such that, for all C ≥ C0
and n ∈N, the following holds. Let F be some subgraph of Kn with �(F)≤ d and k0 := |E(F)| =
ω(1), and let F be the set of all copies of F in Kn. Assume that F is (q, α, δ)-superspread with
q≥ 4k0/(Cn2) and that (H0,H1, . . . ,Hi) is some fragmentation process with H0 := F such that,
for each j ∈ [i], Hj is kj-bounded and |Hj| ≥ |Hj−1|/2, and ki = ω(kα

0 ). Then, for w := Cq
(n
2
)
,

k := kik−α
0 and X chosen uniformly at random from

(M
w
)
, we have

E
[∣∣{(S, X) : S ∈Hi, (S, X) is k-bad

}∣∣]≤ 2C−k/3|Hi|. (2.2)

The proof of Lemma 2.3 closely follows the proofs of [15, Lemma 3.1] and [8, Lemma 3.1].
Therefore, for the sake of completeness, we give its proof in Appendix A, for the convenience of
the interested reader.

In the proof of Theorem 2.2 we also make use of the following auxiliary lemma. Again, its proof
follows similarly as the proof of [15, Proposition 2.2], and we thus defer it to Appendix A.

https://doi.org/10.1017/S0963548323000172 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000172


Combinatorics, Probability and Computing 837

Lemma 2.4. Let F be a graph with f edges and maximum degree d. Then, the number of subgraphs
I of F with � edges and c components is at most

(4ed)�
(
f
c

)
.

With these auxiliary lemmas in hand, we can already prove our main result.

Proof of Theorem 2.2. We first note that, by adjusting the value of C0, we may assume that n is
sufficiently large, and therefore k0 is sufficiently large too. We may also assume that q< C−1

0 . In
the beginning, we will switch and work with the G(n,m) model instead of G(n, p). (A random
graph G(n,m) is simply a uniformly chosen graph from the set of all labelled graphs on n vertices
with exactly m edges.) This can be done easily since these models are essentially equivalent for
m= p

(n
2
)
(see, e.g., [12, Proposition 1.12]).

We proceed as follows. We consider G(n,m1)∪G(n,m2)∪ . . . ∪G(n,mt) with t = �1/α
 − 1
andmi =Kq

(n
2
)
for each i ∈ [t], whereK is assumed to be sufficiently large throughout (andC0 will

be defined as 2(t + 1)K). We then define a fragmentation process onF with respect to (k1, . . . , kt)
and (G(n,m1), . . . ,G(n,mt)), where the integers k1, . . . , kt will be defined shortly. We prove that
a.a.s. each step of this fragmentation process satisfies the conditions of Lemma 2.3, so that we may
iteratively apply it and conclude that each of the subsequent hypergraphs is not ‘too small’. At the
end of this process, we will be sufficiently ‘close’ to a copy of F that a second moment argument
will yield the result.

To be precise, we first consider the hypergraph H0 := F and take X1 := G(n,m1) and k1 :=
k1−α
0 . We consider a first step in the fragmentation process. We obtain a multihypergraph H1
of (S, X1)-fragments which is k1-bounded, where each S is an edge of H0. In particular, by the
assertion (2.2) of Lemma 2.3 and Markov’s inequality, we have that

P [|H1| ≥ |H0|/2]≥ 1− 4K−k1/3. (2.3)

Suppose now that we have already run the fragmentation process (H0,H1, . . . ,Hi), for some
i ∈ [t − 1], and that |Hj| ≥ |Hj−1|/2 for all j ∈ [i]. We run one further step of the fragmentation
process with Xi+1 := G(n,mi+1) and ki+1 := kik−α

0 to obtain a ki+1-bounded hypergraphHi+1 of
(S, X1 ∪ . . . ∪ Xi+1)-fragments (where, again, each S is an edge of H0). By another application of
Lemma 2.3 and Markov’s inequality, we obtain that

P [|Hi+1| ≥ |Hi|/2]≥ 1− 4K−ki+1/3. (2.4)

We say that the fragmentation process (H0,H1, . . . ,Ht) is successful if |Hj| ≥ |Hj−1|/2 for
all j ∈ [t]. Let β := 1− tα, and note that, by the definition of t = �1/α
 − 1, we have 0<

β ≤ α. By (2.3) and (2.4), we conclude that the probability that the fragmentation process
(H0,H1, . . . ,Ht−1) which we run is successful is at least

1− 4
t∑

i=1
K−ki/3 ≥ 1− 4

�1/α
−1∑
i=1

K−k1−iα
0 /3 = 1−O

(
K−kβ

0 /3
)
.

To summarise, a.a.s. the fragmentation process is successful and, thus, yields a kt-bounded mul-
tihypergraph Ht of (S, X1 ∪ . . . ∪ Xt)-fragments, where kt = kβ

0 , |Ht| ≥ 2−t|H0| and each S is an
element ofH0.

We now apply one more round of sprinkling. In this final round we switch and work with the
random set X := G(n, p) with p=Kq. We may also assume thatHt is kt-uniform, since every set
S ∈Ht is contained in some S′ ∈F and thus we can add some arbitrary kt − |S| vertices from S′ \ S
to S. The proof now will proceed along the same lines as the proof in [15, Theorem 1.2].

Define the random variable Y := |{S ∈Ht : S⊆G(n, p)}|. Our aim is to estimate the vari-
ance of Y and to show that P[Y = 0]≤ ε. This would mean that the random graph G(n, p)∪
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⋃t
i=1 G(n,mi) contains a copy of F with probability at least 1− ε (by [12, Proposition 1.12], this

also applies to G(n, C0q)).
We estimate the variance of Y as follows (recall that we work in G(n, p) now). Let R ∈Ht , so

|R| = kt = kβ
0 . Since β ≤ α < 1 and k0 = ω(1), for sufficiently large n we have that kt ≤ δk0. Then,

using the fact that F is (q, α, δ)-superspread, for each � ∈ [kt] we have that

|{S ∈Ht : |S∩ R| = �}| ≤
∑

L⊆R,|L|=�

|Ht ∩ 〈L〉| (2.1)≤
∑

L⊆R,|L|=�

|F ∩ 〈L〉| ≤
∑

L⊆R,|L|=�

q|L|k−αcL
0 |F |

=
�∑

c=1

∑
L⊆R,|L|=�,cL=c

q�k−αc
0 |F | Lemma 2.4≤

�∑
c=1

(4ed)�
(
kt
c

)
q�k−αc

0 |F |

= q�|F |(4ed)�
�∑

c=1

(
kt
c

)
k−αc
0 ≤ q�|F |(4ed)�

�∑
c=1

(
ektk−α

0
c

)c

= q�|F |eO(�),

where the implicit constants in the O notation are independent of K. We therefore get the
following bound on the variance:

Var[Y]≤ p2kt
∑

R,S∈Ht , R∩S �=∅

p−|R∩S| |Ht |≤|F |≤ |F |2p2kt
kt∑

�=1
eO(�)p−�q� =O

(
E[Y]2/K

)
,

where we use the facts that p=Kq, E[Y]= pkt |Ht| and |Ht| ≥ 2−t|F | = �(|F |). By letting K be
sufficiently large, the result follows by Chebyshev’s inequality.

3. Applications of Theorem 2.2
We use this section to prove Theorems 1.1 and 1.2 as applications of Theorem 2.2.

3.1. Spanning C4-cycles
Throughout this section, we assume that n is even. Observe that the graph Ce

4,n has 3n/2 edges.
Let C be the (3n/2)-uniform hypergraph on the vertex setM = ([n]

2
)
where we see (the set of edges

of) each copy of Ce
4,n as an edge of C. We write |C| for the number of its edges and notice that

|C| = (n− 1)!/2. Indeed, consider an arbitrary labelling v1, . . . , vn of the vertices.We define a copy
of Ce

4,n uniquely based on this ordering: we consider a matching between the set of even vertices
and odd vertices (where we add the edge v2i−1v2i for each i ∈ [n/2]), and then we define a cycle of
length n/2 on the set of even vertices and another cycle in the set of odd vertices (where the edges
of these cycles join the vertices which are closest in the labelling, seen cyclically). In this way, each
of the C4’s which conform the copy of Ce

4,n is given by four consecutive vertices in the labelling,
starting with an odd vertex v2i−1, so that its edges are {v2i−1v2i, v2i+1v2i+2, v2i−1v2i+1, v2iv2i+2}.
Now one can easily verify that there are 2n different labellings which yield the same copy of Ce

4,n
(there are n/2 possible starting points while maintaining the same cyclic ordering; if the ordering
is reversed, the resulting graph is the same; and if all pairs of vertices {v2i−1, v2i} are swapped, the
resulting graph is also the same).

Recall that the hypergraph C is q-spread, for some q ∈ (0, 1), if |C ∩ 〈I〉| ≤ q|I||C| for all I ⊆M,
where 〈I〉 denotes the set of all supersets of I. Moreover, for α, δ ∈ (0, 1), we say C is (q, α, δ)-
superspread if it is q-spread and, for every I ⊆M with |I| ≤ 3δn/2, we have

|C ∩ 〈I〉| ≤ q|I|(3n/2)−αcI |C|,
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where cI is the number of components of I. Our main goal now is to establish that the hypergraph
C is (250n−2/3, 1/3, 1/15)-superspread.

Lemma 3.1. Let I ⊆ Ce
4,n be a graph with � ≤ n/10 edges and c components. Then, we have

|V(I)| − c≥ 2
3
� + c

3
.

Proof. Let I1, . . . , Ic be the components of I with at least one edge, and let v1, . . . , vc be the num-
ber of vertices spanned by I1, . . . , Ic, respectively. Since for all j ∈ [c] we have |Ij| ≤ |I| ≤ n/10, we
conclude the following easy bound on any component:

|Ij| ≤ 1
2
(
4 · 2+ (vj − 4) · 3)= 3

2
vj − 2. (3.1)

Indeed, this holds since the maximum degree of I is at most 3 and in every component Ij with
4≤ vj ≤ n/10 there are four vertices whose sum of degrees is at most 8. For vj ∈ [2, 3] we have
|Ij| = vj − 1, hence the bound given in (3.1) holds in these cases as well. Summing over all j ∈ [c],
we obtain that

� = |I| ≤ 3
2
|V(I)| − 2c,

which yields the desired result by rearranging the terms.

Lemma 3.2. Let I ⊆ Ce
4,n be a graph with � edges and c components. Then, we have

|V(I)| − c≥ 2
3
� − 1.

Proof. Since every vertex of Ce
4,n has degree 3, the bound in the statement holds trivially if I has

only one component. We may thus assume that I contains at least two components with at least
one edge each. But then, one can directly check that (3.1) must hold, and we can argue exactly as
in Lemma 3.1, which leads to a better bound than claimed in the statement.

Lemma 3.3. The hypergraph C is (250n−2/3, 1/3, 1/15)-superspread.

Proof. Let I ⊆M. We need to obtain upper bounds for |C ∩ 〈I〉|. If I is not contained in any copy
of Ce

4,n, then |C ∩ 〈I〉| = 0, so we may assume I is a subgraph of some copy of Ce
4,n. Recall that a

copy of Ce
4,n can be defined by an ordering of [n] and that exactly 2n such orderings define the

same copy of Ce
4,n. Thus, it suffices to bound the number of orderings of [n] which define a copy

of Ce
4,n containing I.
Let I1, . . . , Ic be the components of I which contain at least one edge, and let v1, . . . , vc be the

number of vertices spanned by I1, . . . , Ic, respectively. For each j ∈ [c], choose a vertex xj ∈V(Ij)
(note that there are vj possible choices for this, which leads to a total of

c∏
j=1

vj ≤ 2|I| (3.2)

choices for {x1, . . . , xc}, where the inequality holds since 2|Ij| ≥ 2vj−1 ≥ vj). Now, each ordering σ

of [n] (recall this defines a copy of Ce
4,n) induces an ordering on the set consisting of the vertices

x1, . . . , xc as well as all isolated vertices in I. Let us denote this induced ordering as τ = τ (σ ). We
now want to bound the total number of possible orderings σ by first bounding the number of
orderings τ (which depend on the choice of x1, . . . , xc) and then the number of orderings σ with
τ = τ (σ ).

After the choice of x1, . . . , xc, the number of possible orderings τ is

(n− |V(I)| + c)!. (3.3)
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Now, in order to obtain some σ such that τ = τ (σ ), it suffices to ‘insert’ the vertices which are
missing into the ordering, and this must be done in a way which is consistent with the structure
of the components Ij. For each j ∈ [c], consider a labelling of the vertices of Ij starting with xj and
such that each subsequent vertex has at least one neighbour with a smaller label. Then, we insert
the vertices of Ij into the ordering following this labelling, and note that, for each vertex, there are
at most three choices, as �(Ij)≤ 3. This implies there are at most 3|V(Ij)|−1 ≤ 3|Ij| possible ways to
fix the ordering of the vertices of Ij. By considering all j ∈ [c], we conclude that there are at most

c∏
j=1

3|Ij| ≤ 3|I| (3.4)

possible orderings σ which result in the same τ .
Combining (3.2), (3.3) and (3.4) with the fact that there are 2n distinct orderings σ which result

in the same copy of Ce
4,n, we conclude that

|C ∩ 〈I〉| ≤ 6|I|

2n
(n− |V(I)| + c)! ≤ 6|I|(n− |V(I)| + c− 1)!. (3.5)

We can now estimate the spreadness of C. Consider first any I ⊆M with |I| ≤ n/10= |Ce
4,n|/15,

and let c be its number of components. Then, by substituting the bound given by Lemma 3.1 into
(3.5), we conclude that

|C ∩ 〈I〉| ≤ 6|I|
(
n− 2

3
|I| − c

3
− 1

)
!.

By using the bound on |I| and taking into account that |C| = (n− 1)!/2 and |Ce
4,n| = 3n/2, we

conclude that |C ∩ 〈I〉| ≤ q|I||Ce
4,n|−c/3|C| for q≥ 250n−2/3.

Similarly, assume I ⊆M has |I| > n/10 edges and c components. By substituting the bound
given by Lemma 3.2 into (3.5), we now have that

|C ∩ 〈I〉| ≤ 6|I|
(
n− 2

3
|I|
)

!.

Now, as above, we conclude that |C ∩ 〈I〉| ≤ q|I||C| for q≥ 12n−2/3.
Combining the two statements above, it follows by definition that C is (250n−2/3, 1/3, 1/15)-

superspread, as we wanted to see.

Proof of Theorem 1.1. Lemma 3.3 establishes that C is (250n−2/3, 1/3, 1/15)-superspread. By
Theorem 2.2 we have that, if p≥ Cn−2/3, where C is a sufficiently large constant, then

P
[
Ce
4,n ⊆G(n, p)

]≥ 1/2.
To finish the argument, one can employ a general result of Friedgut [9] (see, e.g., a recent paper of
Narayanan and Schacht [19]) which allows to establish that

P
[
Ce
4,n ⊆G(n, (1+ o(1))p)

]= 1− o(1).

3.2. Spanning Kr-cycles
In the following we will study copies of Kr arranged in a cyclic way. Since there are several ways
how two consecutive copies ofKr can overlap, we provide a precise definition of what will be called
an s-overlapping Kr-cycle.

Definition 3.4. Let r > s≥ 0 and n ∈Nwith (r − s) | n be integers. A Kr,s,n-cycle is a graph on vertex
set Zn = [0, n− 1] whose edge set is the union of the edge sets of n/(r − s) copies of Kr , where for
each i ∈ [0, n/(r − s)− 1] there is a copy of Kr on the vertices [i(r − s), i(r − s)+ r − 1] (modulo n).
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In other words, the n/(r − s) copies of Kr are arranged cyclically on the vertex set Zn, so
that two consecutive copies of Kr intersect in exactly s vertices and two non-consecutive cliques
intersect in as few vertices as possible.

The case s= 0 corresponds to a Kr-factor. The threshold for the property of containing a Kr-
factor was famously determined by Johansson, Kahn and Vu [13]. For the case s= 1, the copies of
Kr in Kr,1,n are edge-disjoint. As mentioned in the introduction, the threshold for the appearance
of Kr,1,n in G(n, p) was recently determined by Frieze [10]. When s= r − 1, the s-overlapping Kr-
cycles are usually referred to as the (r − 1)-th power of a Hamilton cycle Cn, where the k-th power
of some arbitrary graph G is obtained by connecting any two vertices of G which are at distance at
most k with an edge. The threshold for the appearance of Kr,r−1,n is known to be n−1/r. This was
observed by Kühn and Osthus [17] for r ≥ 4, while the case r = 3 was solved recently by Kahn,
Narayanan and Park [15].

We determine the threshold for the appearance of Kr,s,n for all the remaining values of
r and s. Whenever s≥ 3, the result follows from a general result of Riordan [23]; see Section 4.
Our main focus here is on the cases when s= 2. The overall strategy follows the same structure as
in Section 3.1.

We denote the set of all unlabelled copies ofKr,s,n on [n] by Cr,s,n. First, we observe the following
simple facts about Kr,s,n.

Fact 3.5. Let r > s≥ 0 and n ∈N with (r − s) | n. Then, the number of edges in Kr,s,n is exactly((
r
2

)
−
(
s
2

))
n

r − s
= 1

2
(r + s− 1)n.

In particular, for s≤ r/2, the number of vertices of degree 2r − s− 1 is exactly sn/(r − s) (such
vertices belong to two copies of Kr), whereas the remaining (r − 2s)n/(r − s) vertices have degree
r − 1 (these vertices belong to exactly one copy of Kr). �
Fact 3.6. Let r > s≥ 1 and n ∈N with (r − s) | n and s≤ r/2.We have

|Cr,s,n| = (n− 1)!(r − s)
2((r − 2s)!)n/(r−s)(s!)n/(r−s) = r − s

2
dnr,s(n− 1)!,

where dr,s ∈ (0, 1] is some absolute constant that depends on s and r only. �
The main technical part of the proof of Theorem 1.2 is to obtain estimates which are crucial for

studying the spreadness of Cr,2,n. Here we only include the statements of the two estimates which
we require; we postpone their proofs to Appendix B.

Lemma 3.7. Let r ≥ 4 and n ∈N with (r − 2) | n. Let I ⊆Kr,2,n be a subgraph with � ≤ n/(2r) edges
and c components. Then,

|V(I)| − c≥ 2
r + 1

� + c
r + 1

.

Lemma 3.8. Let r ≥ 4 and n ∈N with (r − 2) | n. Let I ⊆Kr,2,n be a subgraph with � edges and c
components. Then,

|V(I)| ≥ 2
r + 1

�.

Combining the previous two lemmas, we show that Cr,2,n is a (O(n−2/(r+1)), 1/(r + 1), 1/(r(r +
1)))-superspread hypergraph.

Lemma 3.9. Let r ≥ 4 and n ∈N with (r − 2) | n. Then, the hypergraph Cr,2,n of all copies of Kr,2,n
in M = ([n]

2
)
is (O(n−2/(r+1)), 1/(r + 1), 1/(r(r + 1)))-superspread.
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Proof. Let I ⊆M. Our first aim is to obtain a general upper bound on |Cr,2,n ∩ 〈I〉|. If I is not
contained in any copy of Kr,2,n, we automatically have |Cr,2,n ∩ 〈I〉| = 0, so we may assume I is a
subgraph of some copy ofKr,2,n. Recall that each copy ofKr,2,n can be defined by an ordering of the
n vertices, so it suffices to bound the number of orderings which yield a copy ofKr,2,n containing I.

Let I1, . . . , Ic be the components of I with at least one edge, and let v1, . . . , vc be the number of
vertices spanned by I1, . . . , Ic, respectively. For each j ∈ [c], let xj ∈V(Ij) (there are vj such possible
choices, which leads to a total of

c∏
j=1

vj ≤ 2|I| (3.6)

choices for {x1, . . . , xj}). Then, each ordering σ of [n] which defines a copy of Kr,2,n containing
I induces a unique ordering τ = τ (σ ) on the set consisting of x1, . . . , xj and all other isolated
vertices. The total number of such orderings τ is

(n− |V(I)| + c)! (3.7)

so now it suffices to bound, for each such τ , the number of orderings σ with τ = τ (σ ).
Given an ordering τ , in order to obtain an ordering σ with τ = τ (σ ), it suffices to ‘insert’ the

missing vertices into the ordering. That is, for each j ∈ [c], we need to ‘insert’ the other vertices of
V(Ij) into the ordering. By considering a labelling of the vertices of Ij in such a way that each sub-
sequent vertex is a neighbour of at least one previously included vertex (and taking into account
that xj is already included), we note that there are at most 2r choices for each vertex (recall that
�(Kr,2,n)< 2r). This leads to a total of at most (2r)|V(Ij)|−1 ≤ (2r)|Ij| possible ways to include the
component Ij. By considering all j ∈ [c], we conclude that there are at most

c∏
j=1

(2r)|Ij| = (2r)|I| (3.8)

orderings σ with τ = τ (σ ).
Combining (3.6), (3.7) and (3.8) with the fact that each copy of Kr,2,n is given by d−n

r,2 2n/(r − 2)
distinct orderings (see Fact 3.6), we conclude that

|Cr,2,n ∩ 〈I〉| ≤ r − 2
2

dnr,2(4r)
|I|(n− |V(I)| + c− 1)!. (3.9)

We can now estimate the spreadness of Cr,2,n. Consider first any I ⊆M with |I| > n/(2r)=
|Kr,2,n|/(r(r + 1)) (see Fact 3.5). Note that I has at most r(r + 1) components Ij of size larger than
n/(2r). For each of these components, we use Lemma 3.8 to bound |V(Ij)|. For the remaining
components Ij, we simply use the bound |V(Ij)| − 1≥ 2|Ij|/(r + 1), which follows by Lemma 3.7.
By substituting these bounds into (3.9), we conclude that

|Cr,2,n ∩ 〈I〉| ≤ r − 2
2

dnr,2(4r)
|I|
(
n− 2

r + 1
|I| + r(r + 1)

)
!.

By comparing this with the expression given in Fact 3.6 (and taking into account the bound on
|I|), we conclude that |Cr,2,n ∩ 〈I〉| ≤ q|I||Cr,2,n| whenever q≥ c1n−2/(r+1), where c1 is a constant
that depends only on r.

Consider now some I ⊆M with |I| ≤ n/(2r)= |Kr,2,n|/(r(r + 1)), and let c be its number of
components. By making use of Lemma 3.7 and (3.9), we have that

|Cr,2,n ∩ 〈I〉| ≤ r − 2
2

dnr,2(4r)
|I|
(
n− 2

r + 1
|I| − c

r + 1
− 1

)
!.
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As above, by comparing this with the expression given in Fact 3.6, and taking into account
also Fact 3.5, for q≥ c2n−2/(r+1), where c2 depends only on r, we have that |Cr,2,n ∩ 〈I〉| ≤
q|I||Kr,2,n|−c/(r+1)|Cr,2,n|.
Proof of Theorem1.2. By Lemma 3.9, we have that Cr,2,n is (O(n−2/(r+1)), 1/(r + 1), 1/(r(r + 1)))-
superspread. By Theorem 2.2 it follows that, if C is sufficiently large, for p≥ Cn−2/(r+1) we
have

P
[
Kr,2,n ⊆G(n, p)

]≥ 1/2.

To finish the argument, one can employ a general result of Friedgut [9] (see also [19]) which allows
to establish that P

[
Kr,2,n ⊆G(n, (1+ o(1))p)

]= 1− o(1).

4. Concluding remarks
4.1. Dense overlapping Kr-cycles
As mentioned in the introduction, a general result of Riordan [23] provides a sufficient condi-
tion for a spanning graph to be contained in G(n, p). For a graph H = (V , E), let v(H) := |V|
and e(H) := |E|. For each integer v, let eH(v) := max{e(F) : F ⊆H, v(F)= v}. Then, the follow-
ing parameter will be responsible for the upper bound on the threshold for the property that
H ⊆G(n, p):

γ (H) := max
3≤v≤n

{
eH(v)
v− 2

}
.

Riordan proved the following (see also [20] for its generalisation to hypergraphs).

Theorem 4.1. Let H =H(i) be a sequence of graphs with n= n(i) vertices (where n tends to infinity
with i), e(H)= α

(n
2
)= α(n)

(n
2
)
edges and � = �(H). Let p= p(n) : N→ [0, 1). If H has a vertex of

degree at least 2 and npγ (H)�−4 = ω(1), then a.a.s. the random graph G(n, p) contains a copy of H.

From Fact 3.5 it follows that γ (Kr,s,n)≥ r+s−1
2 and, since γ (Kr)> r+s−1

2 for s ∈ [2], Riordan’s
theorem does not provide optimal bounds on the threshold in the case of our Theorem 1.2 (nor
for Kr,1,n, for which the threshold was determined by Frieze [10]). However, in the cases for s≥ 3,
Riordan’s theorem suffices and yields the correct threshold n−2/(r+s−1) for the property that
G(n, p) contains a copy of Kr,s,n.

4.2. Spanning C2�-cycles
As a generalisation of Theorem 1.1, we may consider copies of C2� arranged in a cyclic manner, in
such a way that they form a spanning graph. More precisely, for � ≥ 2 and n ∈N with (2� − 2) | n,
we define a Ce

2�,n-cycle as n/(2� − 2) copies of C2� arranged cyclically on n vertices so that only
consecutive copies intersect, any two consecutive copies intersect in exactly one edge and the two
edges that a cycle C shares with its neighbouring cycles are as far apart in C as possible.

We may also use the ideas from this paper to determine the threshold for the appearance of
Ce
2�,n for all � ≥ 3. Indeed, we have the following result.

Theorem 4.2. Let � ≥ 2 and n ∈N with (2� − 2) | n. Then, the threshold for the appearance of Ce
2�,n

in G(n, p) is �
(
n− 2�−2

2�−1
)
.

The proof follows the ideas from Section 3; in particular, it follows the steps in Section 3.2 very
closely. We thus omit the details here.
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4.3. Extensions: hypergraphs and rainbow thresholds
Throughout this paper, for simplicity, we have focused on properties of random graphs. However,
we believe that Theorem 2.2 extends to random hypergraphs without much issue. In fact, this
extension also follows from the work of Spiro [25].

Very recently, Bell, Frieze andMarbach [3] and Bell and Frieze [2] partially extended the results
from [8, 15] to rainbow versions, where the vertices of some r-uniform hypergraph are coloured
randomly with r colours. It is shown in [2, 3] that, under certain conditions, the upper bounds on
the thresholds as proved in [8, 15] remain asymptotically the same to yield a rainbow hyperedge or
a rainbow copy of a spanning structure (e.g., bounded degree spanning tree, square of a Hamilton
cycle), and the result is also extended to a rainbow version of the containment of the k-th power of
a Hamilton cycle. We believe that it should be possible to adapt our techniques to prove a rainbow
version of Theorem 2.2, but we leave working out the details of this extension as an open problem.

References
[1] Alweiss, R., Lovett, S., Wu, K. and Zhang, J. (2020) Improved bounds for the sunflower lemma, pp. 624–630, Proceedings

of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Association for Computing
Machinery, New York, NY, USA. doi: 10.1145/3357713.3384234, ISBN 9781450369794.

[2] Bell, T. and Frieze, A. (2022) Rainbow powers of a Hamilton cycle in Gn,p. arXiv e-prints. arXiv: 2210.08534.
[3] Bell, T., Frieze, A. and Marbach, T. G. (2021) Rainbow thresholds. arXiv e-prints. arXiv: 2104.05629.
[4] Bollobás, B. (1981) Threshold functions for small subgraphs. Math. Proc. Camb. Philos. Soc. 90(2) 197–206. doi:

10.1017/S0305004100058655.
[5] Böttcher, J. (2017) Large-scale structures in random graphs. Surveys in combinatorics 2017, University of Strathclyde,

Glasgow, UK, Cambridge: Cambridge University Press, pp. 87–140, Papers Based on the 26th British Combinatorial
Conference, ISBN 978-1-108-41313-8/pbk; 978-1-108-33103-6/ebook.
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Appendix A. Proof of Lemma 2.3
We begin with the proof of the auxiliary Lemma 2.4.

Proof of Lemma 2.4. The proof follows along the same lines as the proof from [15, Proposition
2.2]: one uses the fact that the number of connected h-edge subgraphs of a graph G containing a
given vertex is less than (e�(G))h.

We now bound the number of ways in which we may construct subgraphs with � edges and c
components. First, we specify the roots of the c components of the �-edge subgraph of F, which
can be done in at most 2c

(f
c
)
ways. Next, we choose the sizes of the components; this can be

done in at most
(
�−1
c−1
)
ways (this is the number of c-compositions of �). Say that, to each of

the components j ∈ [c], we have assigned size �j. We finally choose the subgraphs which con-
form each component along F, which, by the fact mentioned in the first paragraph, can be done
in at most

∏c
j=1 (ed)�j = (ed)� ways. This yields a total of at most (ed)�

(
�−1
c−1
)
2c
(f
c
)≤ (4ed)�

(f
c
)

subgraphs.

The proof of Lemma 2.3 is essentially from [15, Lemma 3.1]: the only changes we need to make
are replacing 2n in [15] by ki and slightly adapting the computations for the verification of Claim
A.1 in the pathological case below.

Since we will follow the proof from [15, Lemma 3.1] closely, we use the same notation wherever
possible, so that the reader familiar with the argument can quickly verify the validity of Lemma 2.3.

Proof of Lemma 2.3. Without loss of generality, we may assume that n is sufficiently large, and
thus ki and k are also sufficiently large. We may also assume that Hi is ki-uniform (indeed, every
set S ∈Hi is contained in some S′ ∈F , so we can add some arbitrary ki − |S| vertices from S′ \ S
to S). LetM := ([n]

2
)
andm := |M|.

Now, consider pairs (S, X) with S ∈Hi and X ⊆M such that |S∩ X| = t, for some t ∈ [0, ki].
Our aim is to prove that, for each t,∣∣{(S, X) : |S∩ X| = t, (S, X) is k-bad

}∣∣≤ 2C−k/3|Hi|
(
ki
t

)(
m− ki
w− t

)
. (A.1)

Summing over all t ∈ [0, ki] yields the counting version of the bound (2.2).
Let us bound the number of bad pairs (S, X) with |S∩ X| = t, for some fixed t ∈ [0, ki]. Set

w′ := w− t, so |X \ S| =w′ and |X ∪ S| =w′ + ki. A set Z ∈ ( M
w′+ki

)
will be called pathological if

∣∣{S ∈Hi : S⊆ Z, (S, Z \ S) is k-bad}∣∣> C−k/3|Hi|
(
m− ki
w′

)/(
m

w′ + ki

)
.

A pair (S, X) with |S∪ X| =w′ + ki will be called pathological if S∪ X is pathological. We estimate
the contributions of pathological and nonpathological pairs to (A.1) separately.

Nonpathological pairs.To specify a nonpathological pair (S, X) with |S∩ X| = t, one first spec-
ifies Z = S∪ X, then S, and finally X. We use the crude bound

( m
w′+ki

)
for the number of sets Z.
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Since Z is nonpathological, there are at mostC−k/3|Hi|
(m−ki

w′
)/( m

w′+ki
)
choices for S, since (S, Z \ S)

is k-bad if (S, X) is k-bad. Finally, one can specify X ⊆ Z in at most
(ki
t
)
ways, since |X ∩ S| = t and

|S| = ki. Altogether, this gives a total of at most(
m

w′ + ki

)
·
(
ki
t

)
· C−k/3|Hi|

(
m− ki
w′

)/(
m

w′ + ki

)
w′=w−t= C−k/3|Hi|

(
m− ki
w− t

)(
ki
t

)
(A.2)

k-bad pairs.
Pathological pairs. The following claim will assist in estimating pathological contributions.

Claim A.1. For a given S ∈Hi and Y chosen uniformly at random from
(M\S
w′
)
, we have that

E
[∣∣{J ∈Hi : J ⊆ S∪ Y , |J ∩ S| ≥ k

}∣∣]≤ C−2k/3|Hi|
(
w′ + ki

ki

)/(
m
ki

)
. (A.3)

The number of pathological pairs (S, X) can now be estimated as follows. First, we choose S
and S∩ X, which can be done in at most |Hi|

(ki
t
)
ways. We then need to choose X \ S. Since we

are counting pairs (S, X) which are k-bad, for every J ∈Hi with J ⊆ S∪ X we have that |J ∩ S| ≥
|J \ X| ≥ k. Since we are only considering pathological pairs (S, X), by definition this yields the
following lower bound on the number of such J ∈Hi:

∣∣{J ∈Hi : J ⊆ S∪ (X \ S), |J ∩ S| ≥ k
}∣∣≥ C−k/3|Hi|

(
m− ki
w′

)/(
m

w′ + ki

)

= C−k/3|Hi|
(
w′ + ki

ki

)/(
m
ki

)
.

When choosing a uniformly random set X \ S of sizew′, Claim A.1 andMarkov’s inequality yield

P

[∣∣{J ∈Hi : J ⊆ S∪ (X \ S), |J ∩ S| ≥ k
}∣∣≥ C−k/3|Hi|

(
m− ki
w′

)/(
m

w′ + ki

)]
≤ C−k/3,

which gives us at most C−k/3(m−ki
w′
)= C−k/3(m−ki

w−t
)
choices for X \ S. Altogether this yields

at most

C−k/3
(
m− ki
w− t

)
|Hi|

(
ki
t

)
(A.4)

choices for pathological fragments.
From the bounds in each case, (A.2) and (A.4), we obtain (A.1).

Finally, we turn to the proof of Claim A.1.

Proof of Claim A.1. For each j ∈ [0, ki], let fj denote the fraction of J ∈Hi with |J ∩ S| = j. Then,
the left-hand side of (A.3) is

ki∑
j=k

fj|Hi|
(m−ki−(ki−j)

w′−(ki−j)
)

(m−ki
w′
) =

ki∑
j=k

fj|Hi|
(w′)ki−j

(m− ki)ki−j
. (A.5)

Hence, it suffices to show that, for each j ∈ [k, ki],

fj
(w′)ki−j

(m− ki)ki−j

(m
ki
)

(w′+ki
ki
) = eO(j)C−j, (A.6)

where the implied constants in the O notation are independent of C.
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We rewrite the left-hand side of (A.6) as follows:

fj
(w′)ki−j

(m− ki)ki−j
· (m)ki
(w′ + ki)ki

= fj
(w′)ki−j

(w′ + ki)ki−j
· (m)ki−j

(m− ki)ki−j
· (m− ki + j)j

(w′ + j)j
.

We next use the bounds (w′)ki−j
(w′+ki)ki−j

≤ 1, (m)ki−j
(m−ki)ki−j

≤ exp
(
ki(ki − j)/(m− ki)

)≤ ed2 =O(1) and

(m− ki + j)j
(w′ + j)j

≤
(

m
Cq
(n
2
)− ki

)j
ki=O(k0), q≥4k0/(Cn2)≤ eO(j)C−jq−j

to bound the left-hand side of (A.6) from above by

fjeO(j)C−jq−j. (A.7)

Finally we observe that, since F is q-spread and (F ,H1, . . . ,Hi) is a fragmentation process
with |H�| ≥ |H�−1|/2 for all � ∈ [i], by (2.1), for every I ⊆M we have

|Hi ∩ 〈I〉| ≤ |F ∩ 〈I〉| ≤ q|I||F | ≤ 2iq|I||Hi|.
Consider now sets I ⊆M with |I| = j. For j ∈ [δe(F), ki], since δe(F)≥ δki, we have that

fj ≤
(
ki
j

)
2iq|I| = eOδ(j)qj, (A.8)

where we have used the fact that 2i =O(1). Now recall that k0 = e(F). For j ∈ [k, min{ki, δk0}], we
use the fact that F is (q, α, δ)-superspread and, thus, by (2.1), for each I ⊆M with |I| = j and cI
components we have

|Hi ∩ 〈I〉| ≤ |F ∩ 〈I〉| ≤ q|I|k−αcI
0 |F | ≤ 2ik−αcI

0 q|I||Hi|.
This yields

fj = |Hi|−1 ∣∣{J ∈Hi : |J ∩ S| = j}∣∣≤ |Hi|−1
∑

I⊆S,|I|=j
|Hi ∩ 〈I〉| ≤ |Hi|−1

∑
I⊆S,|I|=j

2ik−αcI
0 q|I||Hi|

=O(qj)
∑

I⊆S,|I|=j
k−αcI
0 =O(qj)

j∑
c=1

k−αc
0

∣∣{I ⊆ S : |I| = j, cI = c
}∣∣ Lemma 2.4≤ eO(j)qj

j∑
c=1

k−αc
0

(
ki
c

)

≤ eO(j)qj
j∑

c=1

(
e · ki · k−α

0
c

)c

= eO(j)qj
j∑

c=1

(
e · k
c

)c
≤ eO(j)qj

j∑
c=1

ek j≥k= eO(j)qj. (A.9)

Combining (A.8) and (A.9), we simplify (A.7) as follows:

fjeO(j)C−jq−j ≤ eO(j)qjeO(j)C−jq−j = eO(j)C−j.

This confirms (A.6) and, thus, concludes the proof of the claim.

Appendix B. Proofs of Lemmas 3.7 and 3.8
Wepresent here all the details needed to prove Lemmas 3.7 and 3.8.When talking about subgraphs
of Kr,s,n, we refer to sets of consecutive vertices as segments. The length of a segment is the number
of vertices it contains. We will make use of the following simple fact.
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Fact B.1. Let r ≥ 4 and n ∈N with (r − 2) | n. Let V ⊆V(Kr,2,n) be a segment starting in the first
vertex of some clique Kr with |V| ≤ n/(2r)+ 1. Then,

e(Kr,2,n[V])=
((

r
2

)
− 1

)
a+

(
b
2

)
−max{2− b, 0} · (r − 2), (B.1)

where |V| = (r − 2)a+ b with a, b ∈N0 and 0≤ b< r − 2. �
Instead of using (B.1), we will make use of the following estimate to streamline our calculations.

Proposition B.2. Let r ≥ 4 and v ∈N with v= (r − 2)a+ b, where a, b ∈N0 and 0≤ b< r − 2.
Then, ((

r
2

)
− 1

)
a+

(
b
2

)
−max{2− b, 0} · (r − 2)≤ r + 1

2
v− r + 2

2
. (B.2)

Proof. We can rewrite the LHS of (B.2) as
(r + 1)(r − 2)

2
a+

(
b
2

)
−max{2− b, 0} · (r − 2).

By substituting v= (r − 2)a+ b in the RHS, we see that (B.2) is equivalent to(
b
2

)
−max{2− b, 0} · (r − 2)≤ r + 1

2
b− r + 2

2
.

To verify this, we consider

f (b) := 2
(
r + 1
2

b− r + 2
2

−
((

b
2

)
−max{2− b, 0} · (r − 2)

))
= (r + 2− b)b− (r + 2)+ 2max{2− b, 0} · (r − 2).

For all b �= 2 we have f ′(b)= (r + 2)− 2b− 2(r − 2) · 1{b<2} and f ′′(b)= −2. Since f is concave in
(−∞, 2) and (2,∞), in order to verify that f (b)≥ 0 for all b ∈ [0, r − 3] (which is then equivalent
to (B.2)) it suffices to check the value of f (b) at 0, 1, 2 and r − 3 (assuming this is larger than 2).
Indeed,

f (0)= −(r + 2)+ 4(r − 2)= 3r − 10> 0,
f (1)= (r + 1)− (r + 2)+ 2(r − 2)= 2r − 5> 0,
f (2)= 2r − (r + 2)= r − 2> 0,

and, if r − 3> 2,
f (r − 3)= 5(r − 3)− (r + 2)= 4r − 17> 0.

Our goal now is to establish that the densest subgraphs of Kr,2,n are precisely those described in
Fact B.1. The next lemma establishes that, among all subgraphs of Kr,2,n induced by segments of
length at most n/(2r)+ 1 (i.e., there is no ‘wrapping around the cycle’), the densest ones are those
where the segment starts in a ‘new’ Kr or ends in a ‘full’ Kr .

Lemma B.3. Let r ≥ 4 and n ∈N with (r − 2) | n. Let V ⊆V(Kr,2,n) be a segment with r ≤ |V| ≤
n/(2r)+ 1. Then, the number of edges induced by V is maximised when V starts in the first vertex
of some clique Kr or ends in the last vertex of some clique Kr.

Proof. Let V be a segment which induces the maximum possible number of edges from Kr,2,n. By
the symmetries of Kr,2,n, we may assume that V ∩ ([0, r − 1]∪ [n− r, n− 1])=∅. Assume that
V is not of the form described in the claim (i.e., it neither begins in the first vertex nor ends in the
last vertex of some clique Kr). Let i1 and i2 be the first and last vertices of V , and let j1 and j2 be
the number of vertices which V contains in the (last) clique Kr which contains i1 and in the (first)
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clique which contains i2, respectively. We may assume, without loss of generality, that j1 ≤ j2 (and
recall that j1, j2 < r). However, then the set (V \ {i1})∪ {i2 + 1} = [i1 + 1, i2 + 1] induces more
edges than V . But this contradicts our choice of V as a set of consecutive vertices which induces
the maximum possible number of edges.

Now we prove that no subgraph of Kr,2,n is denser than the subgraphs induced by segments. In
the coming proofs, we will call vertices of Kr,2,n with degree 2r − 3 heavy and those with degree
r − 1 light.

Lemma B.4. Let r ≥ 4 and n ∈N with (r − 2) | n. Let V ⊆V(Kr,2,n) with r + 1≤ v := |V| ≤
n/(2r)+ 1. Then, the number of edges induced by V is at most the number induced by a segment of
length v.

Proof. Let V ⊆V(Kr,2,n) be a set of cardinality v inducing the maximum possible number of
edges. Let I be the graph induced by V . Of course, we may assume I has no isolated vertices.
Let S be a smallest segment containing V . By the symmetries of Kr,2,n, we may assume that
S∩ ([0, r − 1]∪ [n− r, n− 1])=∅. We use a compression-type argument to show that we can
modify V into a segment which induces at least as many edges as V . We achieve this by consec-
utively creating new sets V ′ which are contained in shorter segments but induce at least as many
edges as the previous set.

Let i1 and i2 be the first and last vertices of V (i.e., S= [i1, i2]) and notice that i1 and i2 do not
form an edge (since r + 1≤ v≤ n/(2r)+ 1). Observe, then, that degI(i1), degI(i2) ∈ [r − 1]. By an
argument as in Lemma B.3, wemay assume, without loss of generality, that degI(i1)≥ degI(i2) and
that i1 is the first vertex of some clique Kr completely contained in I: otherwise, we could replace
the vertex i2 with some missing vertex from such a clique and increase the number of edges.

Let K(1) be the copy of Kr contained in I with the smallest indices (in particular, it contains i1).
Assume that V is not a segment. Consider the vertex i′ ∈ S \V with the smallest index. Observe
that i′ /∈V(K(1)). We distinguish two cases, depending on whether i′ is heavy or light.

If i′ is heavy, let K ′ and K ′′ be the two copies of Kr from Kr,2,n with i′ ∈V(K ′)∩V(K ′′) and K ′
containing smaller indices than K ′′. If E(K ′′)∩ E(I)=∅, then we can shift all edges of I induced
by V ∩ [i′ + 1, i2] to the left r − 2 positions, yielding a graph contained in a segment of length
i2 − i1 + 1− r with the same number of edges as I. Hence, we assume that E(K′′)∩ E(I) �=∅,
which implies V contains at least two of the vertices of K′′. Observe that K(1) �=K ′. Then, replace
i1 by i′. In this way, since i1 is the first vertex from K(1), we remove r − 1 edges, but at the same
time we add at least r edges. But this contradicts our choice of V .

Assume now that i′ is light and let K be the unique clique Kr from Kr,s,n with i′ ∈V(K). Since i′
is light, by its definition we must have |V(K) \V| ≤ r − 2. We replace the first t := |V(K) \V| ≤
r − 2 vertices from K(1) by adding V(K) \V to V . In this way, we remove

∑t
i=1 (r − i) edges, but

at the same time we add at least
∑t

i=1 (r − i) edges. Since i2 > i′, this means the new set lies in a
shorter segment but induces at least as many edges.

In all described situations we managed to make the segment containing V shorter while not
decreasing the number of edges. Hence, we eventually find a segment V ′ inducing at least as many
edges as V .

The following now follows directly by combining Fact B.1, Proposition B.2 and Lemmas B.3
and B.4 (and noting that the bound holds trivially if |V| ≤ r).

Corollary B.5. Let r ≥ 4 and n ∈Nwith (r − 2) | n. Let V ⊆V(Kr,2,n)with |V| ≤ n/(2r)+ 1. Then,

e(Kr,2,n[V])≤ r + 1
2

|V| − r + 2
2

.

Combining the different results above, we can obtain the proofs of Lemmas 3.7 and 3.8.
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Proof of Lemma 3.7. Let I1, . . . , Ic be the components of I with at least one edge, and let
v1, . . . , vc be the number of vertices spanned by I1, . . . , Ic, respectively. For each j ∈ [c], since
|Ij| ≤ |I| ≤ n/(2r), by Corollary B.5 we have the following easy bound:

|Ij| ≤ r + 1
2

vj − r + 2
2

.

Summing over all j ∈ [c], we obtain that

� = |I| ≤ r + 1
2

|V(I)| − r + 2
2

c= r + 1
2

(|V(I)| − c) − c
2
,

and the claim follows by reordering.

Proof of Lemma 3.8. The vertex set of Kr,2,n consists of t := n/(r − 2) segments of heavy vertices
and t segments of light vertices, which alternate as we traverse the vertex set. The segments of
heavy vertices have length 2, and the segments of light vertices have length r − 4 (the case r = 4
is special: here the segments of light vertices are empty). For each i ∈ [t], let hi and �i denote the
number of heavy vertices and light vertices of I in the i-th segment of heavy or light vertices,
respectively. For notational purposes, let ht+1 := h1. Then, we can bound the number of edges of
I as follows:

|I| ≤
t∑

i=1

((
hi
2

)
+
(

�i
2

)
+ hi�i + hi+1�i + hi+1hi

)

≤
t∑

i=1

((
hi
2

)
+
(

�i
2

)
+ hi�i + 2�i + 2hi

)
=

t∑
i=1

((
hi + �i

2

)
+ 2(�i + hi)

)
.

Next, observe that, for each i ∈ [t],(
hi + �i

2

)
+ 2(�i + hi)= (hi + �i)

(
hi + �i − 1

2
+ 2

)
≤ r + 1

2
(hi + �i),

where the inequality holds since hi + �i ≤ r − 2. The conclusion follows by adding over all
i ∈ [t].
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