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This paper is concerned with a prey–predator model with population flux by
attractive transition. Our previous paper (Oeda and Kuto, 2018, Nonlinear Anal.
RWA, 44, 589–615) obtained a bifurcation branch (connected set) of coexistence
steady states which connects two semitrivial solutions. In Oeda and Kuto (2018,
Nonlinear Anal. RWA, 44, 589–615), we also showed that any positive steady-state
approaches a positive solution of either of two limiting systems, and moreover, one of
the limiting systems is an equal diffusive competition model. This paper obtains the
bifurcation structure of positive solutions to the other limiting system. Moreover,
this paper implies that the global bifurcation branch of coexistence states consists of
two parts, one of which is a simple curve running in a tubular domain near the set of
positive solutions to the equal diffusive competition model, the other of which is a
connected set characterized by positive solutions to the other limiting system.
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1. Introduction

In this paper, as a continuation of [32], we consider the following Lotka–Volterra
prey–predator model with a strongly coupled diffusion term:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut = d1Δu+ u(m1 − u− cv), (x, t) ∈ Ω × (0, T ),

vt = ∇ ·
[
d2∇v + αu2 ∇

(
v

u

)]
+ v(m2 + bu− v), (x, t) ∈ Ω × (0, T ),

u = v = 0, (x, t) ∈ ∂Ω × (0, T ),
u(x, 0) = u0(x) � 0, v(x, 0) = v0(x) � 0, x ∈ Ω,
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966 K. Kuto and K. Oeda

where Ω (⊂ R
N ) is a bounded domain with a smooth boundary ∂Ω; unknown func-

tions u(x, t) and v(x, t) stand for the population densities of prey and predator
at location x ∈ Ω and time t > 0, respectively; positive constants d1 and d2 stand
for random diffusion rates of each individual of prey and predator, respectively;
constants m1 and m2 stand for growth rates of each species, where m1 is a posi-
tive constant, but m2 is a real constant which is allowed to be negative; positive
constants b and c denote the rate of increase of predator and the rate of decrease
of prey due to the predation, respectively. The strongly coupled diffusion term
α∇ · [u2∇(v/u)] describes an ecological tendency that each individual of predator
has to chase in densely populated regions of prey. In terms of the diffusion process
in ecology, the strongly coupled diffusion term microscopically models a situation
where the transition probability of each individual of predator depends on the
density of prey at the point of arrival [33, § 5.4].

This paper focuses on the effect of the strongly coupled diffusion term on the set
of stationary solutions. Then we study the stationary problem which consists of the
nonlinear elliptic equations

d1Δu+ u(m1 − u− cv) = 0 in Ω, (1.1a)

∇ ·
[
d2∇v + αu2 ∇

(
v

u

)]
+ v(m2 + bu− v) = 0 in Ω, (1.1b)

subject to the homogeneous Dirichlet boundary conditions

u = v = 0 on ∂Ω (1.1c)

and the non-negative conditions

u � 0 and v � 0 in Ω. (1.1d)

Throughout this paper, we call (u, v) a positive solution if (u, v) satisfies
(1.1a)–(1.1c) and u > 0 and v > 0 in Ω. Hence a positive solution corresponds to a
coexistence steady state of prey and predator.

In the case of linear diffusion with α = 0, the stationary problem has been dis-
cussed in a lot of papers. Among them, in the pioneering papers by Blat and
Brown [1, 2], Dancer [5], López-Gómez and Pardo [23] and Li [19], they initiated
the study to describe a sufficient region on the (m1,m2) plane for the existence
of positive solutions. In the last 20 years or so, there has been an increase in the
number of papers dealing with the effects of the chemotaxis term or the cross-
diffusion term (appearing in the Shigesada–Kawasaki–Teramoto model) on positive
steady-state solutions (e.g. [16, 38, 39] for the stationary problem with the chemo-
taxis term, e.g. [9–15, 17, 18, 20, 21, 25–31, 34, 35, 37] for the stationary
Shigesada–Kawasaki–Teramoto model). In a cerebrating book [33] on the diffusion
process in ecology, the strongly coupled diffusion term ∇ · [u2∇(v/u)] is introduced
in parallel to the abovementioned chemotaxis and cross-diffusion. In spite of such a
description in [33], there seems to be no paper (except [32]) which studies the effect
of the strongly coupled diffusion term ∇ · [u2∇(v/u)] on the bifurcation structure
of stationary solutions of the diffusive Lotka–Volterra model.
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Bifurcation structure of coexistence states for a prey–predator model 967

Then, this paper studies the bifurcation structure of positive solutions of (1.1) in a
case when α is sufficiently large. We introduce semitrivial solutions as a basic prepa-
ration for explaining the structure of positive solutions. Here a semitrivial solution
denotes a solution (u, v) of (1.1a)–(1.1d) such that one of components is positive in
Ω but the other component identically vanishes. Obviously, any semitrivial solution
satisfies the logistic equation{

diΔU + U(mi − U) = 0 in Ω,
U = 0 on ∂Ω,

(1.2)

for i = 1 or 2. It is well known that (1.2) has a positive solution if and only if
mi > diλ1, where λ1 denotes the least eigenvalue of −Δ with homogeneous Dirichlet
boundary condition on ∂Ω. Furthermore, for each mi > diλ1, (1.2) has a unique
positive solution, and therefore, the positive solution will be denoted by θdi,mi

. As
discussed in [32], (1.1) has a semitrivial solution

(u, v) = (θd1,m1 , 0) if m1 > d1λ1

and another semitrivial solution

(u, v) = (0, θd2,m2) if m2 > d2λ1.

Throughout this paper, regarding m2 as a real parameter, we study the set

S(α) := { (u, v,m2) ∈ X × R : (u, v) is a positive solution of (1.1) }

for any α � 0 and (m1, d1, d2, b, c) ∈ R
5
+, where R+ := (0,∞) and

X := (W 2,p(Ω) ∩W 1,p
0 (Ω)) × (W 2,p(Ω) ∩W 1,p

0 (Ω)) (1.3)

with p > N . It is noted that all elements of S(α) become classical solutions of (1.1)
by virtue of the elliptic regularity and the Sobolev embedding ([7]).

Our previous paper [32] obtained the following result:

• if 0 < m1 � d1λ1, then S(α) is empty;

• if m1 > d1λ1, there exist two real numbers f(m1, α) and g(m1) (> d2λ1) such
that S(α) contains a bounded set which bifurcates from a semitrivial solution
(u, v) = (θd1,m1 , 0) atm2 = f(m1, α) and joins the other semitrivial one (u, v) =
(0, θd2,m2) at m2 = g(m1) (see figure 1).

Furthermore, in [32], we studied the asymptotic behaviour of positive solutions
(un, vn) of (1.1) with α = αn → ∞ and showed that (un, vn) satisfy either of the
following two convergence situations passing to a subsequence:

(i) (un, vn) converge to a positive solution (u, v) of the first-limiting system con-
sisting of equal diffusive Lotka–Volterra competition equations and an integral
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Figure 1. Sufficient regions for the existence of positive solutions of (1.1).

constraint:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d1Δu+ u(m1 − u− cv) = 0 in Ω,
d1Δv + v(m1 − u− cv) = 0 in Ω,
u = v = 0 on ∂Ω,
d2

d1

∫
Ω

v(m1 − u− cv) =
∫

Ω

v(m2 + bu− v);

(1.4)

(ii) (αnun, vn) converge to a positive solution (w, v) of the second-limiting system:⎧⎪⎪⎨⎪⎪⎩
d1Δw + w(m1 − cv) = 0 in Ω,

Δv +
v

d2 + w

{
w

d1
(m1 − cv) +m2 − v

}
= 0 in Ω,

w = v = 0 on ∂Ω.

(1.5)

Concerning the first-limiting system, the set of positive solutions with parameter
m2 forms a segment Γ∞

1 which connects

(u, v,m2) = (θd1,m1 , 0, f
∞(m1)) with (u, v,m2) =

(
0,
θd1,m1

c
, h(m1)

)
,

where f∞(m1) := limα→∞ f(m1, α) and h(m1) are some real numbers (see
figure 2(b)). Here we remark that (u, v) = (θd1,m1 , 0) is a semitrivial solution of
(1.1), but (u, v) = (0, θd1,m1/c) is not a semitrivial solution of (1.1).

The first purpose of this paper is to study the second-limiting system (1.5). It
will be shown that the branch (connected set) of positive solutions of (1.5) bifur-
cates from the semitrivial solution (w, v) = (0, θd2,m2) at m2 = g(m1) and the w
component of the branch blows up at m2 = h(m1) (see figure 2(a)).

The second purpose of this paper is to construct a bifurcation branch of positive
solutions of (1.1) with large α by perturbing the sets of solutions of two limit-
ing systems (1.4) and (1.5). In § 4, we construct the bifurcation branch Γα with
the following profile: Γα bifurcates from the semitrivial solution (u, v) = (θd1,m1 , 0)
at m2 = f(m1, α) and goes in a tubular domain around the segment Γ∞

1 for a
while, however, Γα never attains the other end (u, v,m2) = (0, θd1,m1/c, h(m1))
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Figure 2. Bifurcation branches in case f(m1, α) < g(m1) < h(m1).

of the segment Γ∞
1 because this end point is not a solution of (1.1). A main

result will show that Γα leaves the tubular domain near the end point (u, v,m2) =
(0, θd1,m1/c, h(m1)) after that Γα is characterized by solutions to (1.5) in the
second-limiting case (ii) and attains another semitrivial solution (u, v) = (0, θd2,m2)
at m2 = g(m1) (see figure 2(b)).
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The paper is structured as follows: in § 2, main results of this paper are presented.
In § 3, we give a bifurcation structure of positive solutions of the nonlinear elliptic
system in the second-limiting case (ii). In § 4, we construct a bifurcation branch of
positive solutions of (1.1) when α is sufficiently large.

Throughout this paper, the usual norms of the spaces Lp(Ω) for p ∈ [1,∞) and
C(Ω) are defined by

‖u‖p :=
(∫

Ω

|u(x)|p
)1/p

and ‖u‖∞ := max
x∈Ω

|u(x)|.

2. Main results

In this section, we state main results of this paper. The first result is concerned
with the bifurcation structure of the second-limiting system (1.5). It is easy to check
that all semitrivial solutions of (1.5) with m1 > d1λ1 are restricted to

(w, v) = (0, θd2,m2) if m2 > d2λ1.

We obtain the next result on a bifurcation branch of positive solutions of (1.5).

Theorem 2.1. If 0 < m1 � d1λ1, then (1.5) has no positive solution. If m1 > d1λ1,
positive solutions with parameter m2 of (1.5) bifurcate from (w, v) = (0, θd2,m2) at
m2 = g(m1). Furthermore the connected set Γ∞

2 (⊂ X × R) of positive solutions
bifurcating from (w, v,m2) = (0, θd2,m2 , g(m1)) satisfies the following properties:

(i) the (v,m2) component of Γ∞
2 is uniformly bounded in W 2,p(Ω) × R, whereas

the w component of Γ∞
2 is unbounded in Lp(Ω) for any p � 1;

(ii) any unbounded sequence {(wn, vn,m2,n)} ⊂ Γ∞
2 satisfies

lim
n→∞ ‖wn‖p = ∞ for any p � 1, and

lim
n→∞(w̃n, vn,m2,n) =

(
θd1,m1

‖θd1,m1‖∞
,
θd1,m1

c
, h(m1)

)
in C1(Ω) × C1(Ω) × R

by passing to a subsequence if necessary, where w̃n := wn/‖wn‖∞ and

h(m1) :=
d2

d1
m1 −

(
d2

d1
− 1
c

)‖θd1,m1‖2
2

‖θd1,m1‖1
. (2.1)

We give a possible profile of the bifurcation branch Γ∞
2 in figure 2(a). It is noted

that any positive solution of (1.1) can be characterized by an element of Γ∞
1 or Γ∞

2

when α is sufficiently large. The next result is to construct a portion of S(α) as a
perturbation of Γ∞

1 . In the case when α is large enough, the portion forms a curve
that lies in a tubular domain as a neighbourhood of Γ∞

1 , see also figure 2(b).

Theorem 2.2. If α > 0 is sufficiently large, there exists a bounded connected set
Γα(⊂ X × R ) of positive solutions of (1.1). There exists a small δ > 0 such that
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Γα contains a simple curve parameterized as

Γα
1 := { (u( · , ξ, α), v( · , ξ, α),m2(ξ, α)) : 0 < ξ < 1 − δ },

where

lim
α→∞(u( · , ξ, α), v( · , ξ, α),m2(ξ, α))

= (1 − ξ)(θd1,m1 , 0, f
∞(m1)) + ξ

(
0,
θd1,m1

c
, h(m1)

)
∈ Γ∞

1 ,

where

f∞(m1) := lim
α→∞ f(m1, α) =

d2

d1
m1 −

(
d2

d1
+ b

)‖θd1,m1‖2
2

‖θd1,m1‖1
.

Furthermore, Γα is characterized as a maximal extension of Γα
1 from the endpoint

of Γα
1 :

(u( · , 1 − δ, α), v( · , 1 − δ, α),m2(1 − δ, α)) ∈ ∂Γα
1 ,

and Γα reaches a semitrivial solution (u, v,m2) = (0, θd2,m2 , g(m1)).

Thanks to theorems 2.1 and 2.2, we can say that an effect of the strongly cou-
pled diffusion term α∇ · [u2∇(v/u)] produces an almost line part perturbed by Γ∞

1

and the other part perturbed by a scaling of Γ∞
2 . Then, for example, in a case

when f(m1, α) < g(m1) < h(m1), (1.1) admits at least two positive solutions if
g(m1) < m2 < h(m1) − δ with some small δ > 0. In the linear diffusion case α = 0,
the uniqueness of positive solutions was proved in the one-dimensional case by
López-Gómez and Pardo [24]; in the case when Ω is a ball or an annuli by Dancer,
López-Gómez and Ortega [6].

3. Bifurcation structure of the second-limiting system

In this section, we study positive solutions of (1.5) to prove theorem 2.1. It is noted
that the second equation of (1.5) can be expressed as

d2Δv + wΔv − vΔw + v(m2 − v) = 0 in Ω. (3.1)

3.1. A priori estimates of positive solutions

We begin with a priori estimates of the v component of any positive solution
(w, v) of (1.5):

Lemma 3.1. If 0 < m1 � d1λ1 or m2 � 0, then there is no positive solution of (1.5).
Furthermore, if (1.5) admits a positive solution (w, v) of (1.5), then v satisfies

‖v‖2 < m2|Ω|1/2, ‖v‖∞ � max
(
m1

c
,m2

)
.
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Proof. Let (w, v) be any positive solution of (1.5). Then it follows that

(−d1Δ + cv −m1)w = 0 in Ω, w = 0 on ∂Ω.

Since w > 0 and v > 0 in Ω, then

0 = σ1(−d1Δ + cv −m1) > σ1(−d1Δ −m1) = d1λ1 −m1,

where σ1(−d1Δ + q(x)) represents the least eigenvalue of −d1Δ + q(x) with homo-
geneous Dirichlet boundary condition on ∂Ω. Consequently, there is no positive
solution if 0 < m1 � d1λ1.

Thanks to the Gauss–Green theorem and boundary conditions, we integrate (3.1)
to obtain

d2

∫
∂Ω

∂v

∂ν
dσ +

∫
Ω

v(m2 − v) = 0.

Since ∂v/∂ν < 0 on ∂Ω by the Hopf lemma, one can see ‖v‖2
2 < m2

∫
Ω
v. Hence

there exists no positive solution when m2 � 0. If m2 > 0, the Schwarz inequality
gives ‖v‖2 < m2|Ω|1/2.

Let x1 ∈ Ω be a maximum point of v, namely, ‖v‖∞ = v(x1) > 0. Hence
Δv(x1) � 0 follows. Thus the second equation of (1.5) gives

w(x1)
d1

(m1 − cv(x1)) +m2 − v(x1) � 0.

Setting a function M(ξ) := (m1ξ + d1m2)/(cξ + d1), we see v(x1) � M(w(x1)). It
follows from supξ>0M(ξ) � max(m1/c,m2) that

v(x1) � M(w(x1)) � max
(
m1

c
,m2

)
.

The proof of lemma 3.1 is accomplished. �

Furthermore, we obtain a necessary condition of coefficients for the existence of
positive solutions of (1.5):

Lemma 3.2. If (1.5) admits a positive solution, then m1 > d1λ1 and

min
(

1
c
,
d2

d1

)
� m2

m1
� max

(
1
c
,
d2

d1

)
,

where equalities hold only in case 1/c = d2/d1.

Proof. Suppose that (1.5) has a positive solution (w, v). Then lemma 3.1 ensures
m1 > d1λ1. Subtracting the L2 inner product of the second equation of (1.5) with
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d1w from the inner product of the first equation with v, we obtain∫
Ω

vw(m1 − cv) − d1

∫
Ω

vw

d2 + w

{
w

d1
(m1 − cv) +m2 − v

}
= 0,

which is reduced to∫
Ω

vw

d2 + w

{
d2

d1
m1 −m2 + c

(
1
c
− d2

d1

)
v

}
= 0. (3.2)

In case of 1/c > d2/d1, (3.2) and the positivity of (w, v) yield

d2

d1
m1 −m2 < 0 <

d2

d1
m1 −m2 + c

(
1
c
− d2

d1

)
‖v‖∞. (3.3)

The right inequality with the L∞ estimate of v obtained in lemma 3.1 implies

0 <
d2

d1
m1 −m2 + c

(
1
c
− d2

d1

)
max
(
m1

c
,m2

)
. (3.4)

Assume for contradiction that m2 � m1/c. Then (3.4) gives

0 <
d2

d1
(m1 − cm2), that is, m2 <

m1

c
.

This contradicts our assumption. Together with the left inequality of (3.3), we can
conclude that

d2

d1
m1 < m2 <

m1

c
if

1
c
>
d2

d1
. (3.5)

On the other hand, in case 1/c < d2/d1, hence the reverse inequalities of (3.3)
hold true. Then a similar procedure enables us to obtain

m1

c
< m2 <

d2

d1
m1 if

1
c
<
d2

d1
. (3.6)

Furthermore, one can easily verify that

m2 =
d2

d1
m1

(
=
m1

c

)
if

1
c

=
d2

d1
. (3.7)

Hence lemma 3.2 follows from (3.5)–(3.7). �

3.2. Parameterization of the branch near the bifurcation point

We recall that (1.5) has the semitrivial solution (w.v) = (0, θd2,m2) if m2 > d2λ1.
In this section, we regard the coefficientm2 as a bifurcation parameter and construct
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a local curve of positive solutions which bifurcates from the branch of the semitrivial
solution (w.v) = (0, θd2,m2) at m2 = g(m1), where g(m1) is the inverse function of

m1 = d1σ1

(
−Δ +

cθd2,m2

d1

)
and it is monotone increasing for m1 ∈ (d1λ1,∞) with

lim
m1→d1λ1

g(m1) = d2λ1 and lim
m1→∞ g(m1) = ∞,

see [32, lemma 4.5]. To do so, we introduce a change of variables

z := v − θd2,m2 for m2 > d2λ1, (3.8)

which transforms the semitrivial solution (w, v) = (0, θd2,m2) to (w, z) = (0, 0). By
substituting (3.8) and −d2Δθd2,m2 = θd2,m2(m2 − θd2,m2) into (1.5), we know that
(w, z) satisfies the following semilinear problem:⎧⎪⎪⎨⎪⎪⎩

d1Δw + q1(w, z,m2) = 0 in Ω,

Δz + q2(w, z,m2) = 0 in Ω,

w = z = 0 on ∂Ω,

(3.9)

where q1 and q2 are defined by

q1(w, z,m2) := w{m1 − c(z + θd2,m2) },

q2(w, z,m2) :=
1

d2 + w

[(
z − θd2,m2w

d2

)
(m2 − θd2,m2)

+ (z + θd2,m2)
(
w

d1
{m1 − c(z + θd2,m2) } − z

)]
.

(3.10)

If we can construct a branch of positive solutions of (3.9) bifurcating from the trivial
solution (w, z) = (0, 0) for some m2, then the required branch of positive solutions
of (1.5) bifurcating from the semitrivial solution (0, θd2,m2) can be obtained by
(3.8). Thus our analysis will use the simple bifurcation theorem by Crandall and
Rabinowitz [3, theorem 1.7] to construct a curve of positive solutions bifurcat-
ing form (w, z) = (0, 0) at some m2. For the functional space X defined by (1.3)
and Y := Lp(Ω) × Lp(Ω), we define an operator F : X × (d2λ1,∞) → Y associated
with (3.9) by

F (w, z,m2) :=
[
d1Δw + q1(w, z,m2)
Δz + q2(w, z,m2)

]
. (3.11)

We denote the linearized operator of F around (w, z) = (0, 0) by

L(m2) := F(w,z)(0, 0,m2) : X → Y.
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By straightforward computations, one can see that

L(m2)
[
φ
ψ

]
=

⎡⎢⎣ d1Δφ+ (m1 − cθd2,m2)φ
1
d2

{d2Δψ + θd2,m2

(
− m2 − θd2,m2

d2
+
m1 − cθd2,m2

d1

)
φ

+(m2 − 2θd2,m2)ψ}

⎤⎥⎦ .
(3.12)

In order to get KerL(m2), we see the first component to solve the Dirichlet problem
of the linear elliptic equation:{

−d1Δφ+ cθd2,m2φ = m1φ in Ω,
φ = 0 on ∂Ω.

(3.13)

Hence (3.13) admits positive solutions if m1/d1 is the least eigenvalue of −Δ +
cθd2,m2/d1 under the homogeneous Dirichlet boundary condition, that is,

m1

d1
= inf

{
‖∇ϕ‖2

2 +
c

d1

∫
Ω

θd2,m2ϕ
2 : ϕ ∈ H1

0 (Ω), ‖ϕ‖2 = 1
}
. (3.14)

In [32], it is shown that all (m1,m2) satisfying (3.14) consist of the monotone
increasing curve m2 = g(m1) (m1 > d1λ1). Therefore, if m1 > d1λ1 and m2 =
g(m1), then all solutions of (3.13) are expressed as φ = Cφ∗ for any constant
C, where φ∗ is the L∞ normalized positive solution satisfying φ∗ > 0 in Ω and
‖φ∗‖∞ = 1. Then our task is to solve the second equation with φ = φ∗:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−d2Δψ + (2θd2,g(m1) − g(m1))ψ

= θd2,g(m1)

(
−g(m1) − θd2,g(m1)

d2
+
m1 − cθd2,g(m1)

d1

)
φ∗ in Ω,

ψ = 0 on ∂Ω.

(3.15)

By the fact that −d2Δθd2,g(m1) + (θd2,g(m1) − g(m1))θd2,g(m1) = 0 in Ω, and the
monotone property of the least eigenvalue, we know that the least eigenvalue of
−d2Δ + (2θd2,g(m1) − g(m1)) with the homogeneous Dirichlet boundary condition
is positive, and thereby, invertible. Then (3.15) admits a solution

ψ∗ := [−d2Δ + (2θd2,g(m1) − g(m1))]−1θd2,g(m1)

×
(
−g(m1) − θd2,g(m1)

d2
+
m1 − cθd2,g(m1)

d1

)
φ∗.

Consequently, we obtain

KerL(g(m1)) = Span{ (φ∗, ψ∗) } for m1 > d1λ1. (3.16)

Then, in order to use the simple bifurcation theorem [3, theorem 1.7], we need to
check the condition that

codim RanL(g(m1)) = 1 (3.17)
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and so-called the transversality condition

F(w,z),m2(0, 0, g(m1))
[
φ∗

ψ∗

]
	∈ RanL(g(m1)). (3.18)

To verify (3.17), we take any (h, k) ∈ RanL(g(m1)). Then there exists (φ, ψ) ∈ X
such that L(g(m1)) t(φ, ψ) = t(h, k), hence (3.12) implies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d1Δφ+ (m1 − cθd2,g(m1))φ = h in Ω,
1
d2

{d2Δψ + θd2,g(m1)

(
− g(m1) − θd2,g(m1)

d2
+
m1 − cθd2,g(m1)

d1

)
φ

+(g(m1) − 2θd2,g(m1))ψ} = k in Ω,
h = k = 0 on ∂Ω.

(3.19)
By the Riesz-Schauder theory, we know that the first equation of (3.19) is solvable
if and only if

∫
Ω
hφ∗ = 0. Therefore, the above h need to satisfy

∫
Ω
hφ∗ = 0, the first

equation gives the solution φ and the second equation of (3.19) gives the solution

ψ = [−d2Δ + (2θd2,g(m1) − g(m1))]−1

×
[
θd2,g(m1)

(
−g(m1) − θd2,g(m1)

d2
+
m1 − cθd2,g(m1)

d1

)
φ− d2k

]
.

Hence this fact means (3.17).
Next we check the transversality condition (3.18). By straightforward cal-

culations, one can see that the first component F
(1)
(w,z),m2

(0, 0, g(m1)) of
F(w,z),m2(0, 0, g(m1)) satisfies

F
(1)
(w,z),m2

(0, 0, g(m1))
[
φ∗

ψ∗

]
= −c∂θd2,m2

∂m2

∣∣∣∣
m2=g(m1)

φ∗.

Here it should be noted that

∂θd2,m2

∂m2
> 0 for any x ∈ Ω, m2 > d2λ1 (3.20)

(see e.g. [8]). Suppose for contradiction that

F(w,z),m2(0, 0, g(m1))
[
φ∗

ψ∗

]
∈ RanL(g(m1)).

Then the first component of (3.12) ensures some ϕ ∈W 2,p(Ω) ∩W 1,p
0 (Ω) such that⎧⎪⎨⎪⎩d1Δϕ+ (m1 − cθd2,g(m1))ϕ = −c∂θd2,m2

∂m2

∣∣∣∣
m2=g(m1)

φ∗ in Ω,

ϕ = 0 on ∂Ω.

By taking the inner product of the above differential equation with φ∗, we see

0 = c

∫
Ω

∂θd2,m2

∂m2

∣∣∣∣
m2=g(m1)

(φ∗)2.
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However it is impossible because the right-hand side is positive by (3.20). Then the
transversality condition (3.18) is shown by the contradiction argument.

Consequently, we have checked all conditions for use of the simple bifurcation
theorem [3, theorem 1.7] to obtain a local curve of solutions of (3.9) which bifurcates
from the trivial solution (w, v) = (0, 0) at m2 = g(m1). Hence (3.8) gives a local
curve of positive solutions of (1.5), which bifurcates from the semitrivial solution
(w, z) = (0, θd2,m2) at m2 = gm1 as follows:

Proposition 3.3. Positive solutions of (1.5) bifurcate from the semitrivial solution
(w, v) = (0, θd2,m2) if and only if m2 = g(m1). More precisely, there exist a neigh-
bourhood N (⊂ X × R) of (0, θd2,g(m1), g(m1)) and a positive number δ such that all
positive solutions contained in N form a smooth simple curve

C+
p :

⎡⎣ w
v
m2

⎤⎦ (s) =

⎡⎣ 0
θd2,g(m1)

g(m1)

⎤⎦+

⎡⎣ s(φ∗ + φ̃(s))
s(ψ∗ + ψ̃(s))
μ(s)

⎤⎦ (0 < s < δ),

where
∫
Ω
φ̃(s)φ∗ = 0 and (φ̃(0), ψ̃(0), μ(0)) = (0, 0, 0).

3.3. Completion of the proof of theorem 2.1

This subsection is devoted to the completion of the proof of theorem 2.1.

Proof of theorem 2.1. Let Γ∞
2 be the connected component of

{(w, v,m2) ∈ (X × R) \ {(0, θd2,g(m1), g(m1))} : F (w, v − θd2,m2 ,m2) = 0}
which contains C+

p , where F is the operator defined by (3.11) and C+
p is the local

bifurcation branch obtained in proposition 3.3. We define

P := {(w, v) ∈ X : w > 0, v > 0 in Ω and ∂νw < 0, ∂νv < 0 on ∂Ω},
where ν is the outer unit normal vector on ∂Ω. First we will show

Γ∞
2 ⊂ P × R (3.21)

by contradiction. Suppose that Γ∞
2 	⊂ P × R. Then Γ∞

2 reaches a point

(w∗, v∗,m∗
2) ∈ (∂P × R) \ {(0, θd2,g(m1), g(m1))}. (3.22)

By virtue of the elliptic regularity theory and the strong maximum principle (e.g.
[7]), one of the following (a)–(c) must occur:

(a) w∗ = v∗ = 0 in Ω;

(b) w∗ > 0 and v∗ = 0 in Ω;

(c) w∗ = 0 and v∗ > 0 in Ω.

Note that (w∗, v∗) is a solution of (1.5) withm2 = m∗
2. Then case (b) cannot occur

because of the assumption m1 > d1λ1. If case (c) holds, then (w∗, v∗) = (0, θd2,m∗
2
),

https://doi.org/10.1017/prm.2021.43 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.43


978 K. Kuto and K. Oeda

and m∗
2 = g(m1) by proposition 3.3, namely, (w∗, v∗,m∗

2) = (0, θd2,g(m1), g(m1)).
This contradicts (3.22). Furthermore, we can show that case (a) gives a contradic-
tion by the same argument as in the proof of theorem 4.7 in the previous paper
[32]. Therefore, the assertion (3.21) holds true.

Next we will prove the assertion (i) of theorem 2.1. According to the unilateral
global bifurcation theorem by López-Gómez [22, theorem 6.4.3] (see also [36]), Γ∞

2

satisfies one of the following:

(a) Γ∞
2 is not compact in X × R;

(b) Γ∞
2 contains a point (0, θd2,m̂2 , m̂2) with m̂2 	= g(m1);

(c) Γ∞
2 contains a point (h, θd2,m2 + k,m2) ∈ X × R with some (h, k,m2) ∈ (X \

{(0, 0)}) × R satisfying
∫
Ω
hφ∗ = 0, where φ∗ is the positive function stated

in proposition 3.3.

By (3.21), the second alternative (b) cannot occur. The third alternative (c) is
also impossible because of (3.21) and φ∗ > 0. Therefore, the first alternative (a)
must hold. By lemmas 3.1 and 3.2, the (v,m2) component of Γ∞

2 is uniformly
bounded in L∞(Ω) × R. Then by applying the elliptic estimate (e.g. [7]) to the
second equation of (1.5), we find that the (v,m2) component of Γ∞

2 is uniformly
bounded in W 2,p(Ω) × R for any p > 1. Hence the w component of Γ∞

2 must be
unbounded inW 2,p(Ω) for any p > 1. Moreover, applying the elliptic estimate to the
first equation of (1.5), we see that for any p > 1, there exist two positive constants
C1 and C2 such that

‖w‖W 2,p � C1

∥∥∥∥w(m1 − cv)
d1

∥∥∥∥
p

� C2‖w‖p

for any (w, v) with (w, v,m2) ∈ Γ∞
2 . Consequently, the w component of Γ∞

2 is
unbounded in Lp(Ω) for any p > 1. This completes the proof of the assertion (i).

Finally, we will prove the assertion (ii). Let {(wn, vn,m2,n)} ⊂ Γ∞
2 be any

unbounded sequence. Since we have already shown the assertion (i), it holds that
limn→∞ ‖wn‖p = ∞ by passing to a subsequence if necessary. In addition, the asser-
tion (i) and the Sobolev embedding theorem yield the uniform boundedness of
{‖vn‖C1(Ω)}. Thus, by passing to a subsequence if necessary, limn→∞ vn = v∞ in
C1(Ω) for some non-negative function v∞ ∈ C1(Ω). We set w̃n := wn/‖wn‖∞. Then
w̃n is a positive solution of

d1Δw̃n + w̃n(m1 − cvn) = 0 in Ω, w̃n = 0 on ∂Ω. (3.23)

It follows from lemmas 3.1 and 3.2 that

‖w̃n(m1 − cvn)‖∞ � ‖m1 − cvn‖∞ � C

for some positive constant C independent of n. Hence we see from the elliptic
estimate and the Sobolev embedding theorem that limn→∞ w̃n = w̃∞ in C1(Ω) for
some non-negative function w̃∞ ∈ C1(Ω) by passing to a subsequence if necessary.
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Setting n→ ∞ in (3.23), we have

d1Δw̃∞ + w̃∞(m1 − cv∞) = 0 in Ω, w̃∞ = 0 on ∂Ω. (3.24)

Since w̃∞ � 0 in Ω and ‖w̃∞‖∞ = 1, we obtain w̃∞ > 0 in Ω by the strong maximum
principle. Then it holds that

lim
n→∞wn = lim

n→∞ ‖wn‖∞w̃n = ∞ uniformly in any compact subset of Ω (3.25)

because of limn→∞ ‖wn‖∞ = ∞ by passing to a subsequence if necessary. Therefore,
together with lemma 3.2, we obtain

lim
n→∞

vn

d2 + wn

{
wn

d1
(m1 − cvn) +m2,n − vn

}
=
v∞
d1

(m1 − cv∞)

uniformly in any compact subset of Ω. Setting n→ ∞ in (1.5) with (m2, w, v) =
(m2,n, wn, vn), we see that v∞ is a weak non-negative solution of

d1Δv∞ + v∞(m1 − cv∞) = 0 in Ω, v∞ = 0 on ∂Ω. (3.26)

The Schauder estimate ensures v∞ ∈ C2,γ(Ω) for any γ ∈ (0, 1). By (3.26), we have

d1Δ(cv∞) + cv∞(m1 − cv∞) = 0 in Ω, cv∞ = 0 on ∂Ω.

Thus it holds that v∞ = θd1,m1/c or v∞ = 0 in Ω. If v∞ = 0, then m1 = d1λ1

must hold because of (3.24) and w̃∞ > 0 in Ω. This contradicts the assumption
m1 > d1λ1. Hence v∞ = θd1,m1/c. It follows from (3.24) that{

d1Δw̃∞ + w̃∞(m1 − θd1,m1) = 0 in Ω, w̃∞ = 0 on ∂Ω,
w̃∞ > 0 in Ω, ‖w̃∞‖∞ = 1.

Therefore, w̃∞ = θd1,m1/‖θd1,m1‖∞. Thus it only remains to show that
limn→∞m2,n = h(m1) by passing to a subsequence if necessary. By the
Gauss–Green theorem, we integrate (3.1) with (w, v,m2) = (wn, vn,m2,n) over Ω
to obtain

d2

∫
Ω

Δvn +
∫

Ω

vn(m2,n − vn) = 0

for any n ∈ N. Then by (1.5), we have

−d2

∫
Ω

vn

d2 + wn

{
wn

d1
(m1 − cvn) +m2,n − vn

}
+
∫

Ω

vn(m2,n − vn) = 0

for any n ∈ N. Setting n→ ∞ in the above equality, we find from lemma 3.2, (3.25)
and limn→∞ vn = θd1,m1/c in C1(Ω) that

−d2

d1

∫
Ω

θd1,m1

c
(m1 − θd1,m1) +

∫
Ω

θd1,m1

c

(
lim

n→∞m2,n − θd1,m1

c

)
= 0.

In view of (2.1), we obtain limn→∞m2,n = h(m1). Therefore, the proof of theorem
2.1 is complete. �
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Remark 3.4. We should refer to a global bifurcation result by Lopez-Gomez [22,
theorem 7.2.2], which exhibits all the possible behaviours of the branch of pos-
itive solutions bifurcating from a semitrivial solution to a class of the diffusive
Lotka–Volterra systems. Although the proof of theorem 2.1 can be slightly simpli-
fied by using [22, theorem 7.2.2] directly, we have given the proof in a way that uses
his unilateral global bifurcation theorem [22, theorem 6.4.3] with respect, which is
one of the origins of [22, theorem 7.2.2].

4. Perturbation of solutions of limiting systems

In this section, we give a proof of theorem 2.2.

Proof of theorem 2.2. To construct the bifurcation branch of positive solutions of
(1.1), we employ a Lyapunov–Schmidt reduction procedure with a perturbation
parameter

ε =
1
α
.

It is easy to check that the original system (1.1) is equivalent to the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d1Δu+ u(m1 − u− cv) = 0 in Ω,

d1Δv + v(m1 − u− cv) +
εv

εd2 + u
×{−d2(m1 − u− cv) + d1(m2 + bu− v)} = 0 in Ω,

u = v = 0 on ∂Ω,
u � 0, v � 0 in Ω.

(4.1)

In view of the first-limiting case (i) stated in § 1, we recall the asymptotic behaviour
of solutions (un, vn,m2) of (4.1) converges to a point on the segment Γ∞

1 as ε =
εn → +0. As the perturbation when ε > 0 is small, near the segment Γ∞

1 :

(u, v,m2) =
(
(1 − s)θd1,m1 ,

s

c
θd1,m1 , (1 − s)f∞(m1) + sh(m1)

)
,

we seek for solutions of (4.1) in the form

(u, v) =
(

1 − s,
s

c

)
θd1,m1 + ε (U, V ). (4.2)

Substituting the above decomposition into the left-hand side of (4.1), we introduce
the operator G : X × R × R × [0, 1] → Y by

G(U, V,m2, ε, s) := L(s)
[
U
V

]
+
[

0
q(U,m2, ε, s)

]
+ ε

[
r1(U, V )
r2(U, V,m2, ε, s)

]
,

(4.3)
where

L(s)
[
U
V

]
=

[
d1ΔU + (m1 − θd1,m1)U − (1 − s)θd1,m1(U + cV )
d1ΔV + (m1 − θd1,m1)V − s

c
θd1,m1(U + cV )

]
(4.4)
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and

q(U,m2, ε, s) :=
sθd1,m1

c(εd2 + (1 − s)θd1,m1 + εU)

[
−d2(m1 − θd1,m1)

+ d1

{
m2 +

(
b(1 − s) − s

c

)
θd1,m1

}] (4.5)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1(U, V ) := −U(U + cV ),
r2(U, V,m2, ε, s) := −V (U + cV )

+
V

εd2 + (1 − s)θd1,m1 + εU

[
−d2{m1 − θd1,m1 − ε(U + cV )}

+d1

{
m2 +

(
b(1 − s) − s

c

)
θd1,m1 + ε(bU − V )

}]
+

sθd1,m1

c(εd2 + (1 − s)θd1,m1 + εU)
{d2(U + cV ) + d1(bU − V )} .

Here we note that q is independent of V . Our strategy is to construct solutions of the
equation G(U, V,m2, ε, s) = 0 by a combination of the Lyapunov–Schmidt reduction
and a perturbation procedure. As the first step of the method, we consider the
linear operator L(s) : X → Y defined by (4.4) for each s ∈ [0, 1]. In order to obtain
KerL(s), we solve the Dirichlet problem of the following linear elliptic equations⎧⎪⎨⎪⎩

d1Δφ+ (m1 − θd1,m1)φ− (1 − s)θd1,m1(φ+ cψ) = 0 in Ω,
d1Δψ + (m1 − θd1,m1)ψ − s

cθd1,m1(φ+ cψ) = 0 in Ω,
φ = ψ = 0 on ∂Ω.

(4.6)

Multiplying the second equation by c and adding the first equation, we see{
−d1Δ(φ+ cψ) + 2θd1,m1(φ+ cψ) = m1(φ+ cψ) in Ω,
φ = ψ = 0 on ∂Ω.

Since m1 is the least eigenvalue of −d1Δ + θd1,m1 with the Dirichlet boundary
condition, then m1 is less than the least eigenvalue of −d1Δ + 2θd1,m1 with the
Dirichlet boundary condition, that is, −d1Δ + 2θd1,m1 −m1 is invertible. Therefore,
we see that φ+ cψ = 0 in Ω. In view of (4.6), we know that φ = τcθd1,m1 and
ψ = −τθd1,m1 for any τ , namely,

KerL(s) = Span{e}, where e :=
[

c
−1

]
θd1,m1 . (4.7)

We recall (4.2) to note that

(u, v) = (θd1,m1
, 0) + s

(
−1,

1
c

)
θd1,m1︸ ︷︷ ︸

∈Ker L(s)

+ε(U, V ). (4.8)
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Then for the application of the Lyapunov–Schmidt reduction for

G(U, V,m2, ε, s) = 0, (4.9)

we employ a reasonable decomposition in (4.8) as follows:

(U, V ) ∈ X1 := {(U, V ) ∈ X | 〈 t(U, V ),e〉 = 0 }.
Concerning RanL(s), the Fredholm alternative theorem enables us to see that

RanL(s) = KerL∗(s)⊥ in Y, (4.10)

where L∗(s) is the adjoint operator of L(s) as follows:

L∗(s)
[
φ
ψ

]
=

[
d1Δφ+ (m1 − θd1,m1)φ− (1 − s)θd1,m1φ− s

c
θd1,m1ψ

d1Δψ + (m1 − θd1,m1)ψ − sθd1,m1ψ − c(1 − s)θd1,m1φ

]
.

By the same procedure to get KerL(s), we obtain

KerL∗(s) = Span{e∗(s)}, where e∗(s) :=
[

s
−c(1 − s)

]
θd1,m1 . (4.11)

By virtue of (4.7)–(4.11), we define a projection P (s) : Y → L(s) by

P (s)
[
y
z

]
=

〈 t[y, z], e∗〉
〈e, e∗〉 e

=
1

c‖θd1,m1‖2
2

(
s

∫
Ω

θd1,m1y − c(1 − s)
∫

Ω

θd1,m1z

)
e .

(4.12)

Then it is easy to check that P 2(s) = P (s) and P (s)L(s) = 0 for any s ∈ [0, 1].
Equation (4.9) is decomposed into the one-dimensional Span {e} component:

P (s)G(U, V,m2, ε, s) = 0, (4.13)

and the infinitely dimensional RanL(s) component:

G⊥(U, V,m2, ε, s) := (I − P (s))G(U, V,m2, ε, s) = 0. (4.14)

We first solve (4.13)–(4.14) in the case when ε = 0. By setting ε = 0 in (4.3), we
see that

P (s)G(U, V,m2, 0, s) = P (s)
[

0
q(U,m2, 0, s)

]
because of P (s)L(s) = 0. It follows from (4.5) and (4.12) that P (s)G(U, V,
m2, 0, s) = 0 is equivalent to

− c(1 − s)
∫

Ω

θd1,m1q(U,m2, 0, s)

= s

∫
Ω

[
d2(m1 − θd1,m1) − d1

{
m2 +

(
b(1 − s) − s

c

)
θd1,m1

}]
θd1,m1 = 0,
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which is solved by

m2 = (1 − s)f∞(m1) + sh(m1) (=: m0
2(s))

for any (U, V ) ∈ X1 and s ∈ (0, 1). Then it suffices to solve

(I − P (s))G(U, V,m0
2(s), 0, s) = 0,

which is expressed as

L⊥(s)
[
U
V

]
=

s

c(1 − s)
(I − P (s))

×
⎡⎣ 0

d2(m1 − θd1,m1) − d1

{
m0

2(s) +
(
b(1 − s) − s

c

)
θd1,m1

} ⎤⎦ ,
where

L⊥(s) := L(s)|X1 : X1 → Y

is an isomorphism. Therefore, we know that

G(U0(s), V0(s),m0
2(s), 0, s) = 0 for any s ∈ (0, 1), (4.15)

where[
U0(s)
V0(s)

]
:=

s

c(1 − s)
(L⊥)−1(s)(I − P (s))

×
⎡⎣ 0

d2(m1 − θd1,m1) − d1

{
m0

2(s) +
(
b(1 − s) − s

c

)
θd1,m1

} ⎤⎦ .
In view of (4.3) and the left-hand side of (4.14), we note that

G⊥(U, V,m2, ε, s) : X1 × R × R × [0, 1] → RanL(s)

is represented as

G⊥(U, V,m2, ε, s) =L⊥(s)
[
U
V

]
+ (I − P (s))

[
0

q(U,m2, ε, s)

]
+ ε(I − P (s))

[
r1(U, V )

r2(U, V,m2, ε, s)

]
.

It follows that the Fréchet derivative G⊥
(U,V )(U0(s), V0(s),m0

2(s), 0, s) satisfies

G⊥
(U,V )(U0(s), V0(s),m0

2(s), 0, s)
[
φ
ψ

]
= L⊥(s)

[
φ
ψ

]
+ (I − P (s))

[
0
q0Uφ

]
= L⊥(s)

[
φ
ψ

]
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since (4.5) implies q0U := qU (U0(s),m0
2(s), 0, s) = 0. Therefore, we know that

G⊥(U0(s), V0(s),m0
2(s), 0, s) = 0, and moreover,

G⊥
(U,V )(U0(s), V0(s),m0

2(s), 0, s) : X1 → Y

is invertible for s ∈ (0, 1). Then the implicit function theorem with usual com-
pactness arguments ensures that, for any fixed small δ > 0, there exists a tubular
neighbourhood Nδ ⊂ X1 × R × R × R of

{(U0(s), V0(s),m0
2(s), 0, s) | s ∈ [δ, 1 − δ]}

such that all solutions of G⊥(U, V,m2, ε, s) = 0 in Nδ can be expressed as

U = U(m2, ε, s) and V = V (m2, ε, s),

where U and V are functions of C1 class satisfying

U(m0
2(s), 0, s) = U0(s) and V (m0

2(s), 0, s) = V0(s)

for all s ∈ [δ, 1 − δ]. Then substituting these U and V into the left-hand side of
(4.13), we define a function G1(m2, ε, s) as

G1(m2, ε, s)e := P (s)G(U(m2, ε, s), V (m2, ε, s),m2, ε, s).

By (4.3), (4.12) and the fact P (s)L(s) = 0, we see

G1(m2, ε, s) = − 1 − s

‖θd1,m1‖2
2

∫
Ω

θd1,m1 q(U(m2, ε, s),m2, ε, s) +O(ε)

=
s(1 − s)
c‖θd1,m1‖2

2

∫
Ω

θ2d1,m1

εd2 + (1 − s)θd1,m1 + εU(m2, ε, s)

×
[
d2(m1 − θd1,m1) − d1

{
m2 +

(
b(1 − s) − s

c

)
θd1,m1

}]
+O(ε).

Therefore, we see that

G1
m2

(m0
2(s), 0, s) = −d1s‖θd1,m1‖1

c‖θd1,m1‖2
2

< 0.

In addition, (4.15) implies G1(m0
2(s), 0, s) = 0 for any s ∈ (0, 1). Then by the

implicit function theorem, for any fixed s∗ ∈ (0, 1), there exist small positive
numbers δ∗, ε∗ and σ∗ such that all solutions of G1(m2, ε, s) = 0 in

N∗ := {(m2, ε, s) ∈ R
3 : |m2 −m0

2(s∗)|, |ε|, |s− s∗| < δ∗} (4.16)

can be expressed as

m2 = m2(ε, s) for |ε| < ε∗, |s− s∗| < σ∗, (4.17)

where m2(ε, s) is a function of C1 class satisfying m2(0, s∗) = m0
2(s∗). Here we

recall the local curve of positive solutions of (4.1) bifurcating from the semitrivial
solution (u, v) = (θd1,m1 , 0) at m2 = f(m1, 1/ε) as follows:
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Lemma 4.1. Let ε > 0 and m1 ∈ (d1λ1,∞) be given arbitrarily. Positive solutions
of (4.1) bifurcate from (u, v) = (θd1,m1 , 0) if and only if m2 = f(m1, 1/ε). To be pre-
cise, there exists a neighbourhood O1 of (u, v,m2) = (θd1,m1 , 0, f(m1, 1/ε)) ∈ X × R

such that all positive solutions of (4.1) in O1 form a curve of C1 class as follows

Γε :

⎡⎣ u
v
m2

⎤⎦ (s) =

⎡⎣ θd1,m1

0
f(m1, 1/ε)

⎤⎦+

⎡⎣ s(φ∗ε + ũε(s))
s(ψ∗

ε + ṽε(s))
με(s)

⎤⎦ for s ∈ (0, σε) (4.18)

with some σε > 0. Here (φ∗ε, ψ
∗
ε ) ∈ X is some function with ψ∗

ε > 0 in Ω
and (ũε, ṽε, με)(s) ∈ X × R is continuously differentiable for s ∈ (0, σε) satisfying∫
Ω
ψ∗

ε ṽε(s) = 0 for all s ∈ (0, σε) and (ũε, ṽε, με)(0) = (0, 0, 0).

It follows from (4.8) and (4.18) that all positive solutions of G(U, V,m2, ε, s) = 0
near s = 0 can be expressed by[

U
V

]
=
s

ε

([
φ∗ε + ũε(s)
ψ∗

ε + ṽε(s)

]
−
[ −1

1/c

]
θd1,m1

)
and

m2(s) = f(m1, 1/ε) + με(s).

By virtue of a perturbation theorem in the local bifurcation theory [4, remark 3.3],
we see that, as ε→ 0, the local curve Γε converges to⎡⎣ u

v
m2

⎤⎦ (s) =

⎡⎣ θd1,m1

0
f∞(m1)

⎤⎦+ s

⎡⎣ −θd1,m1

θd1,m1/c
−f∞(m1) + h(m1)

⎤⎦ for s ∈ (0, σ0)

with some σ0 > 0. For any small η > 0,

{ (m0
2(s), 0, s) ∈ R

3 : s ∈ [0, 1 − η] } ⊂ N0 ∪
⋃

0<s∗<1−η

Ns∗ ,

where N0 := {(m2, ε, s) : |m2 −m0
2(0)| < 2σ0, |ε| < 2σ0, |s| < 2σ0}. Thanks to the

combination of the segment on the left-hand side, there exist

0 < s1 < s2 < · · · < sn < 1 − η,

with some integer n = n(η) such that⎧⎨⎩{ (m0
2(s), 0, s) ∈ R

3 : s ∈ [0, 1 − η] } ⊂
n⋃

j=0

Nj ,

Nj−1 ∩Nj 	= ∅, j = 1, 2, . . . , n,
(4.19)

where s0 := 0 and each Nj represents the set defined by (4.16) with s∗ is replaced by
sj . As mentioned below (4.16), all solutions of G1(m2, ε, s) = 0 in Nj are expressed
as

{(m2, ε, s) ∈ R
3 : m2 = m2(ε, s), |ε| < εj , |s− sj | < σj }.

Here we set εη := min{ε1, ε2, . . . , εn}, where εj is obtained by (4.17) in case s∗ = sj .
Then in view of (4.19), a usual patchwork procedure implies that all solutions of
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G1(m2, ε, s) = 0 in ∪n
j=0 Nj can be expressed as

{(m2, ε, s) ∈ R
3 : m2 = m2(ε, s), |ε| < εη, 0 < s < 1 − η′ }

with some small η′ > 0. Consequently, we deduce that

G(U(ε, s), V (ε, s),m2(ε, s), ε, s) = 0 for any |ε| < εη, s ∈ [0, 1 − η′],

where we denote U(m2(ε, s), ε, s) and V (m2(ε, s), ε, s) by U(ε, s) and V (ε, s),
respectively. Then we know that for any ε ∈ (0, εη], the set{

(u(ε, s), v(ε, s),m2(ε, s), ε, s) : 0 < ε < εη, s ∈ [0, 1 − η′],

(u(ε, s), v(ε, s)) = (θd1,m1 , 0) + s

(
−1,

1
c

)
θd1,m1 + ε(U(ε, s), V (ε, s))

} (4.20)

consists of positive solutions of (4.1), equivalently, (1.1). Therefore, for any fixed
ε ∈ (0, εη], the set (4.20) forms a curve bifurcating from the semitrivial solution
(u, v,m2) = (θd1,m1 , 0, f(m1, 1/ε)) and lies in a cylindrical domain as a perturbation
of the segment

{(u, v,m2) = (1 − s)(θd1,m1 , 0, f
∞(m1)) + s(0, θd1,m1/c, h(m1)) : s ∈ [0, 1 − η′] }.

We remark that this bifurcation curve cannot attain (u, v,m2) = (0, θd1,m1 , h(m1))
because this point does not satisfy (4.1). So from the viewpoint of the global
bifurcation theorem, the above bifurcation curve must attain the another semitriv-
ial solution (u, v) = (0, θd2,m2) at m2 = g(m1). Then the proof of theorem 2.2 is
complete. �
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