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A novel concept for simulation of turbulent mixing, termed hierarchical parcel
swapping (HiPS), was recently proposed. The method involves either a parameterized
representation of the turbulent flow or a more self-contained flow simulation. As
a step toward turbulent mixing applications, the latter formulation is used for the
first numerical demonstration of model performance. Owing to its suitability for this
purpose and its role as a canonical benchmark, channel flow is the target application.
Despite its idealized representation of this flow, HiPS is shown to capture salient
features of the flow with a notable degree of quantitative accuracy. The implications
of this finding with regard to flow physics and with regard to the applicability of
HiPS to other problems are discussed.
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1. Introduction

Interest in economical yet accurate model representations of turbulence
phenomenology is continually growing due the need to predict increasingly challenging
turbulent flow and mixing processes. This motivated the recent introduction (Kerstein
2013) of a novel numerical modelling concept termed hierarchical parcel-swapping
(HiPS). That paper provides a generic description of the method and its physical
interpretation. Here, the first numerical application of HiPS is reported. The target
case is fully developed turbulent channel flow, a widely used test case due to its
geometrical simplicity and rich phenomenology.

As in many turbulent mixing models, HiPS models turbulent flow as a collection of
fluid parcels, with mixing implemented as occurrences of exchange or redistribution
of the contents of pairs or groups of parcels that have been identified as adjacent.
Within this framework, turbulent advection has two main effects. First, the overall
rate of mixing occurrences is based on a controlling advective time scale, as in most
if not all parcel-based formulations (Fox 2003). Second, turbulence influences the
time-evolution of the partitioning of parcels into adjacent pairs or groups. Prior to
the formulation of HiPS, there appeared not to have been any systematic effort to
incorporate turbulence phenomenology into the specification of this evolution. Instead,
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the identification of adjacent parcels was based on the closeness of the set of scalar
or species compositions of parcel pairs or groups, such as in Subramaniam & Pope
(1998) and Pope (2013), based on metrics defined for that purpose. Although this
approach is superior to the earlier and still common practice of ignoring the degree of
closeness, and though it appropriately reflects the fact that spatially proximate parcels
are close compositionally, it does not draw upon known turbulence phenomenology
to further improve model performance.

HiPS is a conceptually and computationally economical method for time-advancing
the grouping of parcels in a manner that reflects the stepwise nature of length-scale
breakdown in the inertial-range turbulent cascade. It has long been recognized
(Meneveau & Sreenivasan 1991; Aurell, Dormy & Frick 1997) that a hierarchical or
tree geometry provides an especially suitable representation of this breakdown, with
the scale similarity of the breakdown represented by a multiplicative stride between
successive tree levels (Sreenivasan & Stolovitzky 1995). The novel element of HiPS
is the formulation of system evolution within a hierarchical geometry in a manner
that suitably time-advances the grouping of parcels.

In doing so, HiPS offers the additional possibility of associating flow variables
(velocity components) with the parcels and redistributing momentum among parcels
to represent viscous transport. This can make the model more self-contained, because
the flow information can be used to specify time scales governing system evolution
that otherwise need to be preassigned. (Such preassignment is effectively a turbulence
parameterization.) More generally, HiPS becomes potentially a predictive model of
turbulent flow as well as a mixing model.

Another unified framework for modelling turbulent flow and mixing is the
transported velocity-composition joint probability distribution function (p.d.f.) method
(Pope 1985). However, this is a coarse-grained approach that requires subgrid mixing
closure. For that purpose, the type of mixing model described by Fox (2003) and
the other cited references is typically used. In this context, unified flow and mixing
treatment within HiPS can be viewed as a possible subgrid-scale complement to the
coarse-grained unification within the transported joint p.d.f. method for the purpose
of improving the subgrid mixing closure. However, consideration of any subgrid-scale
use of HiPS must be preceded by demonstration of the performance of HiPS as a
self-contained model.

Accordingly, an appropriate first step is to evaluate the turbulence prediction
capability of HiPS. For this purpose, a wall-bounded case is chosen due to the
importance and difficulty of modelling turbulent boundary layers.

Such an evaluation inevitably confronts the issue of the level of modelling that
is required to obtain prediction rather than description. With reference to turbulent
boundary layers, the challenge of prediction led Fernholz & Finley (1996) to conclude
that limited theoretical understanding necessitates a primarily descriptive focus. It is
shown here that HiPS modelling of turbulent channel flow sheds some light on the
degree to which a simple model of turbulent near-wall flow can be predictive.

The HiPS approach and its relationship to other approaches, which were explained
in detail in Kerstein (2013), are summarized in § 2. Specialization to channel flow
is described in § 3. The physical interpretation of this formulation and consequent
parameter-setting and data-reduction procedures are discussed in §§ 4–7. Results are
presented and interpreted in § 8.
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Hierarchical parcel swapping 423

FIGURE 1. A five-level (N = 4) binary tree and representative permutations. The squares
represent parcels at the base of the tree (level 4, based on top-down level numbering
starting from 0); the triangles represent nodes at other levels, and the line segments are
node connections. In the model specialization to channel flow, black squares represent
wall parcels. Allowed permutations that can move two representative parcels (filled with a
checkerboard pattern) closer to a wall parcel based on the proximity definition of parcel
separation are marked by double-arrow lines that connect the sets of parcels, designated by
brackets, to be swapped. Parcels that change places with the checkerboarded parcels are
shown as diagonally striped; other displaced parcels are horizontally striped. The node at
the apex of each permutation is checkerboarded. The illustrated swaps are the only allowed
swaps (i.e. swaps that do not displace a wall parcel) that can bring a checkerboarded
parcel into closer proximity to the nearest wall parcel, where proximity is based on the
size of the smallest subtree containing both parcels. Additionally, there are two allowed
swaps (not shown) that move the leftmost checkerboarded parcel farther from the left wall
and one (not shown) that moves the rightmost checkerboarded parcel farther from the right
wall, as well as five allowed swaps (not shown) that do not affect the wall proximity of
either checkerboarded parcel but change the adjacency pairing of one of them, inducing
mixing that can change the state of a checkerboarded parcel.

2. The HiPS representation of turbulent flow
2.1. Geometrical structure

HiPS is briefly summarized here to provide context for the description of its
channel-flow specialization in § 3. HiPS consists of three elements: its geometry,
the mechanisms of time-advancement and the physical modelling that specifies the
rates at which the mechanisms are implemented.

The purpose of the geometrical structure is to specify the proximity of parcel pairs
and to provide a mathematical framework in which the time-advancement mechanisms
and their rates can be prescribed. In this sense, the geometrical structure is an auxiliary
construct. The physical state consists of the parcel properties and their spatial locations
as inferred from parcel proximities.

For these purposes, the parcels are assumed to reside at the base of a hierarchical
(tree) structure, as shown in figure 1 for the special case of a binary tree. Only binary
trees are considered here. For a more general treatment, see Kerstein (2013).

Auxiliary length scales and time variables are associated with nodes of the tree
other than the base nodes at which parcels reside. The length scales are fixed in time
and are identical within each tree level, varying only from level to level. The time
variables can be fixed through parameterization or can be functions of time-varying
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424 A. R. Kerstein

parcel properties. Flow prediction requires the latter, which is therefore assumed in
what follows.

The tree levels are labelled sequentially from 0 at the apex (top level) to N at the
base (bottom level) of the tree. The apex length scale is denoted by l0, and the length
scale associated with any level-n node is ln ≡ Anl0 for n ∈ [0, N]. The role of the
scale-reduction factor A will be discussed shortly.

The node length scales serve two purposes. In conjunction with parcel properties,
they determine the time variables that control the time-advancement as described in
§ 2.2. Additionally, they specify the parcel size.

The proximity of two parcels, called their ultrametric distance in other contexts
(Benzi, Biferale & Trovatore 1997), is defined here as the level index of the smallest
subtree that contains both parcels. Adjacent parcels are those with proximity N − 1,
which corresponds to the smallest length scale above the base of the tree. The length
scale lN−1 is taken to be the parcel size, S. Additional assumptions discussed in § 4
and appendix C are needed to specify fully the spatial arrangement of parcels within
the channel.

Here A and N are key structural parameters of the model, as explained by Kerstein
(2013) and elaborated here. They control the scale range of the tree; and, additionally,
A, which is positive and less than 1, determines the relationship between the number
of parcels, which is 2N for a binary tree, and the parcel size S = lN−1. For fixed
A, N controls the relationship between parcel size and parcel number. Viewing the
decreasing parcel size with increasing N as a refinement of spatial resolution, an
effective dimension d of the space covered by parcels is identified by taking the
parcel number to be proportional to the parcel size raised to the power −d, hence
2N ∼ l−d

N−1 = ld
0A(1−N)d. The value of A that satisfies this proportionality relation is

2−1/d. Thus, the effective dimension is determined by A. This has diverse implications
(Kerstein 2013); notably, small d can be chosen to reduce computational cost, subject
to performance considerations. For channel flow, the A-dependence of cost and
performance is examined in § 8.

2.2. Time-advancement mechanisms
HiPS time-advancement involves a mechanism for successive regroupings of parcels
into adjacent pairs, based on the definition of adjacency in § 2.1, and a mechanism
for mixing the contents of adjacent parcels. In order to focus on the former, which is
the novel feature of HiPS, a minimal representation of mixing is adopted here. At the
instant that two parcels become adjacent, their contents are fully mixed so that their
states become identical. There is no further mixing involving either parcel until one of
them becomes adjacent to a different partner. Implications of this and other possible
mixing formulations are discussed by Kerstein (2013). Channel-flow implications are
discussed in § 3.

The tree structure allows a simplified representation of turbulent advection effects
over a large range of scales in terms of a relatively small number of possible
rearrangements of parcel placements at the base of the tree. Owing to the discreteness
of the tree structure (versus the continuity of physical space), these rearrangements
are instantaneous events. This is consistent with the ultimate purpose of HiPS, which
is to modify repeatedly the grouping of parcels into adjacent pairs.

An advection event involves a permutation of parcel placements within the tree
structure, as follows. The event is associated with a chosen tree node, called the
apex of the permutation, which can be at any level n 6 N − 2. Any such node
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connects downward to the apexes of two level-(n + 1) subtrees, and each of those
apexes connects downward to the apexes of two level-(n + 2) subtrees. Within each
level-(n+ 1) subtree, one of the two level-(n+ 2) subtrees is chosen. The two chosen
subtrees are swapped, meaning that the parcels within each subtree are moved to the
other subtree.

In figure 1, two advection events are illustrated. The tree nodes associated with
the respective events are the triangles filled with a checkerboard pattern. Each event,
denoted by a double-arrow line segment, swaps two sets of parcels. Each set is marked
by a bracket, and consists of the parcels contained in a subtree two levels below the
apex of the permutation.

The swapping of subtrees two levels below the apex of the permutation, rather than
at some other choice of level, is based on the following considerations. A swap of
the two subtrees that are one level below the apex does not change the proximity of
any pair of parcels, so based on the model representation of spatial structure, such a
swap does not change the state of the system and therefore is not a time-advancement
mechanism. A swap of two subtrees that are three or more levels below the apex is a
valid analogue of advection, but the locality of scale-space interactions in the turbulent
cascade, a fundamental principle with strong conceptual and empirical support (Frisch
1995), is best represented by minimizing the difference in scale between the size and
separation of the selected subtrees. As defined in HiPS, advection events transparently
emulate salient features of cascade phenomenology (Kerstein 2013).

This defines the generic time-advancement mechanisms within HiPS. Supplementary
mechanisms representing wall effects and pressure effects specific to the present
formulation are described in § 3 and appendix A. To complete the formulation of
the generic model, the rules governing the occurrences of advection events need
to be specified. The statistical sampling of events used here for HiPS channel-flow
simulation is described in §§ 3 and 7 and appendix A. The formulation is analogous
in many respects to one-dimensional turbulence (ODT). Appendix A introduces the
relevant ODT concepts.

Kerstein (2013) discusses various implications of the HiPS time-advancement
mechanisms. Two key points are restated here. One is that only level-(N − 2)
permutations, which swap level-N subtrees (i.e. individual parcels), affect the grouping
of parcels into adjacent pairs. The other is that larger-scale (smaller-n) permutations,
though having no such effect, are nevertheless consequential because they break
down the length scales of parcel-state variation, as in the turbulent cascade. This
process promotes the eventual mixing-induced fluxes between adjacent parcels, which
must have dissimilar property values in order for mixing to induce net property
transfers. Event likelihood is dependent on the local instantaneous flow state in a
manner that tends to induce more frequent occurrences of smaller-scale permutations,
again reflecting turbulent cascade phenomenology. Additional details are provided in
appendix A and Kerstein (2013).

HiPS has no physically meaningful laminar-flow limit, because the restrictive
definition of parcel adjacency in HiPS prevents molecular transport of momentum
and other parcel properties except between the parcels that make up an adjacent pair.
The advection events representing turbulent flow induce the ongoing parcel regrouping
that enables mixing effects to be communicated throughout the flow domain. Thus,
HiPS is generically a model of advectively controlled transport and mixing regimes.
Where molecular transport dominates, e.g. in the viscous sublayer of near-wall flow,
case-specific modification is needed, such as that introduced for channel flow in § 3.
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3. Specialization to channel flow
Due to the present focus on modelling flow rather than scalar mixing, the only

parcel properties that are time-advanced are the three velocity components (u, v, w)
corresponding to the streamwise, wall-normal and spanwise directions (x, y, z),
respectively, in a channel flow. Here A = 0.5, corresponding to d = 1, is assumed
initially, allowing the physical interpretation (see § 4) of parcels being aligned along
a one-dimensional wall-normal line of sight spanning the channel. (The model
formulation and interpretation for other A values are explained in appendix C.)

Channel flow is simulated by introducing two case-specific features: an imposed
streamwise pressure gradient dp/dx and a representation of wall effects. Two parcels
that have proximity 0 relative to each other are chosen to be wall parcels. Figure 1
shows these parcels located at the endpoints of the linear parcel array. Their placement
at array endpoints is strictly a physical interpretation. The model formulation
recognizes no geometrical relationships other than proximity as governed by the
tree structure.

Wall parcels have zero nominal size. All parcels have the same mass, corresponding
to a fixed density ρ in non-wall parcels.

The pressure forcing introduces a third time-advancement mechanism, namely time-
stepping of the u variable of each non-wall parcel according to

du
dt
=− 1

ρ

dp
dx
, (3.1)

where dp/dx is constant in space and time and is assumed to be negative so that the
mean flow is in the positive x direction. This is the only continuous-in-time (though
numerically discretized) advancement process in the channel-flow simulation.

Wall parcels are not deemed to be part of the flow, so advection events that would
displace a wall parcel are forbidden. A wall parcel is time-advanced by mixing with
its adjacent neighbour immediately after advection places a new parcel at the adjacent
location, and by an additional mechanism that is introduced to enforce the no-slip
boundary condition, i.e. that immediately after mixing changes the state of a wall
parcel, its state is reset to u= v =w= 0.

As explained in § 2.2, mixing of adjacent parcels is complete, i.e. the resulting
parcel states are identical. Because each wall parcel has the same nominal mass as
other parcels, mixing with the adjacent parcel halves the velocity values of that parcel.

The enforcement of the boundary condition after mixing causes the state of a wall
parcel to be dissimilar from the state of its adjacent neighbour. This is the only
situation in which dissimilarity of adjacent parcels is allowed to persist.

Operationally, a HiPS simulation consists of time-stepped advancement of (3.1),
punctuated by occurrences of advection events. If an event modifies parcel pairings,
then the newly adjacent pairs are mixed. If mixing changes the state of a wall parcel,
then boundary-condition enforcement is implemented immediately afterwards as
described. The event occurrence times and the subtrees swapped during an event are
randomly sampled in a manner that embodies the HiPS representation of turbulence
phenomenology.

When an advection event occurs, not only are the parcels in the selected subtrees
swapped as described but, additionally, the u, v and w values of these parcels are
modified in a manner that models the fluctuating part of the pressure-gradient term
of the momentum equation. Unlike swapping and mixing, which affect all parcel
properties, this operation is applied only to velocity components. (In the present

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

27
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.276


Hierarchical parcel swapping 427

case there are no other time-advanced properties.) It does not induce dissimilarity of
adjacent parcels because its effect on parcels within each swapped subtree is uniform.
This and other aspects of advection in HiPS are explained further in appendix A.

Without this pressure-fluctuation treatment, there would be no mechanism generating
non-zero values of v and w. These components could be omitted, thereby limiting the
model to the prediction of u statistics; but they have been included here in order to
broaden both the present investigation and the scope of possible future applications.

4. Physical-space interpretation

In § 2.1 it is assumed that the parcel size S is lN−1 = AN−1l0 (except that S= 0 for
wall parcels). Specializing to A= 0.5, the parcels are assumed to form a line in the
wall-normal direction that spans the channel without gaps or overlaps. On this basis,
S times the number 2N − 2 of non-wall parcels is equal to the channel height 2h,
where h is the half-height. This gives h= (2N−1− 1)S= (1− 21−N)l0. This relationship
between h and l0 is used in § 6.2 to determine the Reynolds numbers corresponding
to a given HiPS configuration.

Apart from the small effect of the treatment of wall parcels, this physical-space
interpretation implies that l0 corresponds to the separation of the midpoints of the
level-1 subtrees on either side of the midpoint of the wall-normal line. Analogously,
the parcel size lN−1 is the separation of the midpoints of adjacent parcels, subject to
the noted small correction. This indicates almost exact consistency of the physical
meaning of ln across scales. This consistency is important for physically correct
rendering of the turbulence phenomenology used in appendix A to formulate the
event-sampling scheme.

These assumptions and their consequences might seem straightforward, but they
are valid only for A = 0.5. Generalization to other A values, explained in § 8.2 and
appendix C, is less transparent.

In the HiPS channel-flow formulation, the distinct treatment of wall parcels with
regard to both advection and boundary-condition enforcement is the sole basis for flow
inhomogeneity, analogous to the origin of spatial inhomogeneity in physical channel
flow. In the absence of a distinct treatment of particular parcels, proximity defines
spatial structure in HiPS only in a relative sense. The distinct treatment of wall parcels
enables a degree of representation of channel-flow physical-space structure.

Figure 2 illustrates HiPS channel-flow structure, which is evident also in
instantaneous flow snapshots but is more readily discernible in this mean-flow
illustration. Because the wall treatment is the sole mechanism for deviation from
homogeneity, statistical properties of a parcel depend only on its proximity to each
of the walls. In other words, parcels whose wall proximities are the same have
indistinguishable statistics.

Thus, the successive intervals of uniform (apart from slight fluctuations due to
the finite run-time; see § 8.3) parcel mean-velocity values reflect the absence of
any basis for systematic parcel-to-parcel behavioural differences other than their
proximities to the wall parcels. In this sense, each interval contains a set of parcels
that are equivalent samples of the flow state anywhere within the interval. Therefore
such an interval may be viewed as a coarse-grained region containing parcels that
constitute a representative sample of fluid states within the region. Reflecting the
stated physical-space interpretation, the parcels are located at uniform y increments
in physical space in figure 2, but within homogeneous intervals the parcel placements
are immaterial. The figure shows half of the y-coordinate range [0, 2h].
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FIGURE 2. For case N8 of table 1, parcel mean streamwise velocities in the y interval
[0, h], with uniform parcel spacing as described in the text.

In § 8, results are presented by combining the parcel statistics within each
homogeneous interval and locating the result at the y value corresponding to the
midpoint of the interval. Determination of the midpoints is based on the assumed
uniform spatial distribution of non-wall parcels filling the size-2h domain. In particular,
the physical-space picture implies that the midpoint of a parcel adjacent to a wall is
at a distance S/2 from the wall. In §§ 5 and 8, wall shear is evaluated as the velocity
of that parcel divided by S/2. In addition to identifying the locations of interval
midpoints, the physical-space interpretation of the HiPS channel-flow formulation has
other roles in data gathering and interpretation that are discussed in appendices B
and C.

This data-reduction approach is consistent with the interpretation of each
homogeneous interval as a single control volume (using conventional terminology,
though control interval would be literally more accurate here) within a non-uniformly
coarse-grained finite-volume scheme. From this perspective, the artificiality of the
piecewise-constant structure of the mean flow profile becomes immaterial. As noted
above, the parcels within a homogeneous interval are now statistical samples of the
state within the interval, and there is no need to interpret them in terms of spatial
structure within the interval. Importantly, the hierarchical structure within the interval
remains operative during the time-advancement so that the HiPS turbulent-cascade
representation governs the flow evolution. (The intervals are homogeneous statistically
but not instantaneously.)

Viewed as an effectively coarse-grained approach, the HiPS channel-flow formulation
is less unconventional than figure 2 suggests. Additionally, it has some beneficial
features from this viewpoint.

For example, the geometrical increase of interval size corresponds to uniform
increase of the logarithm of size. As suggested by figure 2 and further illustrated in
§ 8, this corresponds to roughly uniform increments of ū+ in the log-law subrange.
Thus, near-optimal spatial partitioning is obtained automatically.
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Irrespective of coarse-grained data reduction, there is an effectively constant number
density of parcels along the y coordinate, so the coarse-graining has no direct cost
benefit. However, this conclusion is specific to A= 0.5. For A< 0.5, figure 10 shows
that the corresponding effective dimensionality d< 1 results in a cost-saving decrease
in the parcel number density with increasing y. Conceptual and performance concerns
limit the degree to which this benefit can be exploited, but results in § 8.2 suggest
some scope for reducing A without excessive sacrifice in performance. An additional
consideration is that mixing applications of the HiPS channel-flow formulation might
have minimum parcel-number-density requirements for adequate statistical sampling of
mixture states.

Thus it is seen that the ostensibly unphysical behaviour seen in figure 2 is both
reasonable and beneficial from a coarse-graining perspective. This perspective likewise
indicates a benefit of the unphysically restrictive definition of parcel adjacency in
HiPS, namely that it prevents mixing of parcel pairs which are adjacent in the
spatial rendering in figure 2 but have highly dissimilar states because they are
in different homogeneous intervals. This prevents spurious mixing of the sort that
degrades the performance of conventional coarse-grained models. In those models, the
coarse-graining is inherent in the formulation rather than in a data-aggregation strategy,
so they typically require subgrid modelling in order to avoid an unacceptable degree
of spurious mixing. As noted in § 1, HiPS is designed to improve the performance of
subgrid models as well as to provide novel predictive capabilities as a self-contained
model.

With regard to the distinction between approaches to coarse-graining, it is shown in
§ 8.1 that it is advantageous to set the parcel size S to a larger value than the near-
wall resolution scale; so, as presently implemented, HiPS is itself inherently coarse-
grained to some extent, irrespective of any coarse-graining introduced through the
aggregate data-reduction treatment. The detailed evaluations in § 8 show that the model
formulation in many respects performs as would be expected from a more costly fully
resolved treatment.

5. Channel-flow phenomenology in HiPS
The mean momentum balance for fully developed turbulent channel flow implies

that

u2
τ ≡ ν

dū
dy

∣∣∣∣
w

=− h
ρ

dp
dx
, (5.1)

where uτ is the friction velocity, ū is the mean velocity, ν is the kinematic viscosity
and w denotes wall value. As indicated by (5.1), (dū/dy)|w adjusts so that momentum
is fluxed to the walls at the rate that it is supplied by the work done by the imposed
pressure gradient in the statistically steady state. The HiPS analogue of Reynolds shear
stress and the associated form of the mean momentum balance in HiPS are discussed
in § 8 and appendices B and C.

The HiPS mixing mechanism and the wall treatment described in § 3 do not
involve gradient-based momentum fluxing governed by the kinematic viscosity, but
the viscosity implied by this formulation can be inferred from (5.1) by evaluating
(dū/dy)|w from the computed mean velocity profile. In the HiPS channel-flow
formulation, this quantity is the ū value of a parcel adjacent to a wall divided
by the distance S/2 of its midpoint from the wall. Then the implied viscosity is

ν =− h
ρ

dp/dx
(dū/dy)|w . (5.2)

This is used to evaluate the friction and bulk Reynolds numbers in § 6.
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A self-consistent estimate of the flow structure resulting from the wall treatment
follows from the mixing-length picture of the mean structure of statistically steady
near-wall flow. The eddy-viscosity representation of the Reynolds shear stress can be
expressed as −νe(y)(dū/dy). Substitution of the mixing-length ansatz νe(y)∼ y2(dū/dy)
for the eddy viscosity gives proportionality to y2(dū/dy)2. In the sublayer where the
Reynolds shear stress is roughly constant because advective transport dominates
viscous-transport and mean-pressure effects, y-independence of the mixing-length
result implies ū(y) ∼ log y, showing how the log law arises from elementary
considerations.

The physical basis of the ansatz is the notion that turbulent transport at a distance
y from the wall is governed by size-y eddies. The mean-square fluid displacement by
such an eddy in the y direction scales as y2, explaining the appearance of this term in
the νe(y) ansatz. Invoking the random-walk interpretation of turbulent diffusion, νe(y)
is estimated by multiplying this term by the frequency of such eddies, governed by
the inverse time scale dū(y)/dy.

The turbulent transport by size-y eddies generically dominates the turbulent transport
by smaller eddies, justifying neglect of the latter, but the justification of the omission
of contributions by larger eddies is configuration-specific. A location y contained in
an eddy of size s � y must be near the edge of that eddy, because the edge can
extend at most to the wall, so location y is at most a distance y� s from the edge.
Putting aside spatial inhomogeneity effects, it is much less likely for a given point
to be near the edge of an eddy than to be at an arbitrary location within the eddy.
In the νe(y) scaling estimate, this indicates that a relatively small frequency factor
tends to counteract the large mean-square-displacement factor associated with eddies
of size s� y. Thus it is plausible that the contribution of eddy sizes s� y to νe(y)
is negligible. More detailed reasoning, as well as empirical evidence, supports the
validity of this hypothesis (Schlichting & Gersten 2000).

In HiPS, if displacement of wall parcels were permitted, then there would be no
wall-proximity-dependence of the frequency of advection events that contain a given
parcel, and hence no basis for log-law mean-velocity scaling near the wall. The
prohibition of wall-parcel displacement introduces such a dependence, resulting in
logarithmic mean-velocity scaling near the wall, as illustrated in § 8. To quantify the
dependence, consider a parcel whose proximity to a wall parcel is n. If an advection
event whose apex is at level m < n − 1 displaces this parcel, then it displaces
all parcels in the level-n subtree containing the parcel; thus it also displaces the
wall parcel, and is therefore prohibited. This shows that prohibition of wall-parcel
displacement disallows displacements of any given parcel by advection events that
affect parcels much farther from the wall than the given parcel. Therefore the largest
and thus dominant advection events affecting such a parcel are of the order of the
length scale associated with the proximity of the parcel to the wall parcel. On this
basis, the prohibition of wall-parcel displacement satisfies one of the prerequisites
for logarithmic mean-flow behaviour in HiPS channel-flow simulation. Logarithmic
scaling also requires the inverse time scale governing advective transport at a given y
to be of order dū(y)/dy. The approach used to determine the frequencies of advection
events in HiPS, described in appendix A, satisfies this requirement.

The immobility of the wall parcels is the HiPS analogue of wall blocking. HiPS
transparently illustrates that wall blocking of turbulent motions, which is introduced
in the present context by enforcing a simple constraint, is the principal mechanism
underlying fundamental features of channel flow such as those discussed in § 8.
Figure 1 illustrates the limitation of advective parcel displacements resulting from the
wall-blocking constraint.
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6. Inputs and parameter assignments
6.1. Parameter dependences of HiPS simulations

The dimensional quantities specifying a particular channel flow are h, (1/ρ)(dp/dx)
and ν. Normalized flow properties depend only on the friction Reynolds number
Reτ = huτ/ν. Evaluation of uτ and ν using (5.1) and (5.2), respectively, gives
Reτ = (dū/dy)|w[−(1/(hρ))(dp/dx)]−1/2, showing that the needed physical input is
a time scale T ≡ [−(1/(hρ))(dp/dx)]−1/2. Owing to the method by which ν is
inferred in HiPS, the model output (dū/dy)|w is also needed to determine Reτ , so Reτ
itself is a model output rather than an input, contrary to the physical situation.

The rate distribution (A 2) that governs the frequencies of the possible advection
events involves an overall multiplicative factor C that scales event frequencies and
hence the rates of viscous as well as advective processes, due to the association of
viscous transport with advection events in HiPS. Therefore C scales the rates of all
model processes except the pressure forcing, whose associated rate of momentum
input is governed by the quantity 1/T . From this perspective, CT is the governing
parameter group because changes of C and T that leave CT unchanged are equivalent
to a rescaling of time without changing the sequence of flow states that occur.
The flow states are unaffected because rescaling of time involves the speeding
or slowing of time-advancement processes but not a rescaling of parcel velocity
values. Velocity rescaling would be a necessary consequence of time rescaling of the
physical equations of motion, but in HiPS the parameter C absorbs the rescaling, so
the advection rate can change without changing velocities.

In the HiPS treatment of viscous transport, rescaling of time alters the relationship
between velocity gradients and mixing-induced (interpreted as viscous) momentum
transfer to the wall, so it affects the viscosity inferred from (5.2) through a rescaling
that is derived in § 6.2. This and a rescaling of uτ are then shown to imply a rescaling
of Reτ , indicating that the time rescaling converts a simulation corresponding to a
given Reτ into a simulation corresponding to a different Reτ .

In addition to these parameters, the structural parameters of HiPS have important
effects on computed results. In appendix C it is shown that the choice of A has a
profound effect on the physical-space interpretation of HiPS. Additionally, the scale
lN−1 = AN−1l0 of the smallest possible advective displacements (which is the HiPS
analogue of the viscous cutoff scale) depends on both A and N.

The HiPS channel formulation provides only a minimal representation of the viscous
sublayer near the wall. This is because the restrictive definition of parcel adjacency
allows only advection events to bring parcel properties into closer proximity to the
wall, except for property mixing between a wall parcel and its adjacent partner. In
this sense, the HiPS viscous sublayer extends only to the parcel adjacent to a wall.
Accordingly, it would be appropriate to locate that parcel at the value of y+ = yuτ/ν
corresponding to the spatial extent of the viscous sublayer, which terminates at y+≈ 5.
The first-differencing procedure introduced in § 5 to determine (dū/dy)|w and hence to
infer ν is quantitatively accurate only if the physical profile of ū is linear from the
wall to the location of the first parcel, a condition that is satisfied only if that interval
is entirely contained within the viscous sublayer.

These considerations suggest that N might be chosen so that the parcel adjacent to
a wall is located at y+≈ 5. For reasons explained below, this is not the procedure used
to determine N, but for A= 0.5 it is shown in § 8.1 that this result is obtained as an
outcome rather than as an imposed constraint, indicating a degree of self-consistency
of the HiPS channel-flow formulation. For lower A, the extent of the HiPS viscous
sublayer increases, but the increase is slight for the cases considered in § 8.2.
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In ODT, parameter tuning has been used to obtain the correct extent of the viscous
sublayer. This was accomplished through adjustment of the parameter that scales the
viscous term in the event-rate expression (Schmidt et al. 2003). That term serves
to suppress small (especially near-wall) eddies in ODT channel flow and thereby
tune the spatial extent of viscous dominance. In ODT, many cells might be used
to resolve the viscous sublayer, but in HiPS it cannot be resolved using more than
one parcel because there is no viscous interaction between the parcel adjacent to a
wall and parcels farther from the wall. From this viewpoint, there is no benefit to
introducing near-wall event suppression in HiPS because in the y range in which it
would suppress advection, instead of having purely viscous momentum transport there
would be no momentum transport at all between homogeneous intervals, resulting in
no momentum transport to the wall and thus no convergence of the time-advancement
to a statistically steady state.

This difference between the HiPS and ODT resolution criteria illustrates the
economy of the HiPS formulation, but this economy is accompanied by a loss of
fidelity. Heat or mass transfer at a boundary layer might involve Pr or Sc much
different from unity, such that the thermal or scalar wall sublayer might be embedded
within the viscous layer (for high Pr or Sc) or vice versa (for low Pr or Sc). ODT,
but not HiPS (as presently formulated), can capture such near-wall Pr and Sc effects.

6.2. Parameter assignments
Based on the parameter dependences explained in § 6.1, the following procedure for
assigning HiPS parameter values is adopted. A particular choice of N is assumed.
Again specializing to A= 0.5 (see appendix C for generalization to any A6 0.5), the
remaining inputs are C and T = h/uτ .

In HiPS, event rates R can be non-dimensionalized using any fixed time T0,
giving R = (C/T0)r, where r is non-dimensional and does not depend on C. Then
the non-dimensional quantity CT/T0 is the sole input governing the steady-state
single-time statistics of a HiPS channel-flow simulation. (Due to the associated time
rescaling, varying C and T with CT fixed can affect multi-time statistics such as
time-lagged correlation functions, which are not considered here. Additionally, the
numerical evaluation of fluxes must account for the time rescaling, as explained at
the end of appendix B.)

The first step in parameter assignment is to enforce the high-ReU empirical friction
correlation (Zanoun, Nagib & Durst 2009; Schultz & Flack 2013)

Cf ≡ 2(uτ/U)2 = 0.0743 Re−1/4
U , (6.1)

where U is the bulk velocity and ReU ≡ 2hU/ν is the bulk Reynolds number. Cases
investigated here are within the ReU range in which (6.1) is applicable. Schultz &
Flack (2013) also proposed a more accurate correlation, but the additional accuracy
is not needed for the present purposes and (6.1) simplifies the derivation of relevant
relationships.

HiPS single-time statistics for given C and T and the associated Reτ (determined
using output) represent equally well the statistics for some R̂eτ (evaluated below) for
any other values Ĉ and T̂ such that ĈT̂ = CT . From its definition, Cf = 2(h/(TU))2.
Use of (5.2) to evaluate ν in the definition of ReU gives ReU = (2T2U/h)(dū/dy)|w.
Insertion of these expressions for Cf and ReU into (6.1) gives 2(h/(T̂U))2 =
0.0743 (T̂U/h)−1/2[(2h/U) (dū/dy)|w]−1/4, where T̂ now denotes the T value for
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which (6.1) is satisfied based on substituting T = T̂ into the expressions for Cf and
ReU. This gives

T̂ =
(

2
0.0743

)2/3 h
U

(
2h
U

dū
dy

∣∣∣∣
w

)1/6

. (6.2)

This result is used as follows. For any chosen C, (1/ρ)(dp/dx) and h, where the
latter two quantities determine T ≡ [−(1/(hρ))(dp/dx)]−1/2, a HiPS run yields values
of U and (dū/dy)|w. All the quantities needed to evaluate T̂ are now available. Based
on this evaluation, Ĉ= CT/T̂ completes the determination of the quantities T̂ and Ĉ
that would give the same values of U and (dū/dy)|w (and of all other single-time flow
statistics) but also obey the friction correlation. Thus, the friction correlation can be
enforced by reinterpreting the results of a given run without performing any additional
runs. Here, reinterpretation means adjustment of all quantities that are affected by the
adjustment T→ T̂, C→ Ĉ.

To proceed in this way, the adjustment ratio T̂/T = (2/0.0743)2/3(uτ/U) ·
[(2h/U)(dū/dy)|w]1/6 is obtained from (6.2) and T = h/uτ , where uτ is the original
(unadjusted) friction velocity. Here T = h/uτ also implies the adjustment ûτ = (T/T̂)uτ .
Powers of T̂/T adjust other relevant quantities. The adjustment of Reτ involves
adjustment of ν as well as uτ . For fixed (dū/dy)|w, the mean momentum balance
gives ν̂ ∼ û2

τ ∼ (T/T̂)
2
ν. This and the uτ adjustment give R̂eτ = (T̂/T)Reτ . The

ReU adjustment involves only the ν adjustment, giving R̂eU = (T̂/T)2ReU. Finally,
ŷτ = ν̂/ûτ = (T/T̂)yτ is used to evaluate ŷ+ = y/ŷτ .

It might be supposed that results for various R̂eτ values are obtained for given N
by running cases with different values of the product CT . In fact, all non-zero CT
values for given N yield the same wall-scaled results, corresponding to the same R̂eτ
value. The reason is that all event-related velocity-field modifications by advective
and viscous processes in HiPS, as well as event rates governed by (A 2), scale
linearly with respect to a multiplicative rescaling of the velocity field. Denoting a
representative velocity scale by V , this linearity implies that event rates scale as CV .
The rate of momentum transfer induced by both advective and viscous processes
involves an additional factor of V , giving the scaling CV2. Therefore, statistically
stationary balance between given pressure forcing and all other processes implies that
a change of C changes V so as to leave CV2 invariant, hence V ∼C−1/2. The relevant
point is that modification of the input C for fixed T induces a spatially uniform
rescaling of all single-time velocity statistics of the fully developed flow.

A particular consequence is that a change of C rescales the mean velocity profile
without changing its shape, such that U ∼ (dū/dy)|w ∼ C−1/2. The result needed here
is that U and (dū/dy)|w have the same C-dependence.

Suppose then that C is changed for fixed T , which changes U and (dū/dy)|w by
the same factor F but leaves uτ unchanged because T = h/uτ . So C affects Reτ only
through the dependence 1/ν ∼ (dū/dy)|w from (5.2), giving Reτ ∼ (dū/dy)|w, which
implies that the change of C changes Reτ by the factor F. Now the adjustment
to enforce (6.1) is applied. Based on the powers of U and (dū/dy)|w in (6.2), the
change of C changes T̂ and hence the ratio T̂/T by the factor 1/F. Then, in the
adjustment R̂eτ = (T̂/T)Reτ , the change of C introduces the factors 1/F and F, which
cancel. Thus there is no dependence of R̂eτ on the input C. Since there is also no
CT-dependence, is there likewise no T-dependence.

The upshot is that the adjustment that enforces the empirical friction correlation
always yields the same R̂eτ value. In other words, the adjustment collapses all possible
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cases (i.e. choices of C and T) for a given N to the same adjusted case. Henceforth,
the hat notation is dropped and all quantities subject to adjustment are assumed to be
adjusted.

The reasoning has been specialized to A = 0.5. The model extension to A 6= 0.5
in appendix C yields the same collapse for any given A, but A-dependence is not
eliminated, so the collapse is for given A and N. Results are therefore presented in
§ 8 for various A as well as N values. There is no simple relationship between Reτ
and the hierarchy scale range A−N , because the adjustment procedure involves outputs
that are sensitive to the details of model dynamics.

Generalizing (A 2) to incorporate viscous or buoyancy effects (see § 6.1 and
appendix A) would introduce nonlinear dependence of event rates on a rescaling
of the velocity field, resulting in C-dependence for given A and N, but there would
still be no dependence on CT . The absence of CT-dependence is attributable to
the constrained role of the mixing operation that represents viscous transport. If this
operation were allowed to proceed on the basis of an independent time scale governed
by a given viscosity, then there would be more freedom to preselect any value of Reτ
and to tune the model to fit comparison data. These modifications are desirable for
some purposes, but here the goal of clearcut assessment of a minimal formulation is
best served by avoiding such flexibility.

7. Numerical implementation

A HiPS channel-flow simulation time-advances the solution of a one-dimensional
initial–boundary-value problem according to the advancement mechanisms described
in §§ 2.2 and 3. Boundary-condition enforcement has been described in § 3.

The time-advancement cycle is governed by the statistical sampling of advection
events, which involves sampling of both occurrence times and the particular swaps
to be performed. The sampling and associated advancement mechanisms proceed as
follows (omitting details explained in appendix A and references cited therein).

(i) The time t of occurrence of the next prospective event is randomly sampled
based on Poisson event-time statistics. The event is prospective because
implementation of an event at time t is not guaranteed.

(ii) Mean-pressure-gradient forcing of the u velocity profile is advanced to time t in
one step because (3.1) is an exactly solvable linear differential equation.

(iii) Having arrived at the event occurrence time t, a particular allowed swap
is statistically sampled. The assumed swap probability distribution and the
sampling rate used in step (i) together imply a swap sampling rate λs that can
be different for each of the possible swaps.

(iv) Based on the physical states of the parcels affected by the selected swap,
physical modelling as described in appendix A determines the current value
λ of the time-varying physical rate at which the selected swap should occur
during the simulation.

(v) Provided that λ < λs (a requirement that sets a lower bound on the assigned
value of λs), this determines the probability P = λ/λs < 1 that the current
prospective event will be implemented (versus rejected).

(vi) A Bernoulli trial using acceptance probability P determines whether the event
is implemented. If not, the remaining steps of the time-advancement cycle are
skipped.

(vii) The pre-swap states at swap-affected parcel locations are saved.
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(viii) The swap is implemented.
(ix) The post-swap and saved pre-swap states at swap-affected parcel locations are

used to update the statistics of the Mi and Mii terms of the turbulent-kinetic-
energy (TKE) budget. (In appendix B, where details of the TKE budget are
discussed, pre-change and post-change quantities are indicated by carets and
tildes, respectively.)

(x) The post-swap states at swap-affected parcel locations are saved.
(xi) The mechanism that models pressure-gradient fluctuations is implemented.

(xii) The saved post-swap states and the current states at swap-affected parcel
locations are used to update the statistics of the Ki and Kii terms of the TKE
budget.

(xiii) If the swap modifies any parcel pairings, then the current states at swap-affected
parcel locations are saved; otherwise this and the remaining steps are skipped.

(xiv) The mixing mechanism is implemented.
(xv) The saved pre-mixing states and the current states at swap-affected parcel

locations are used to update the statistics of the Vi and Vii terms of the TKE
budget.

(xvi) If mixing modifies a wall-parcel state, then the velocity components in that
parcel are set to zero to enforce the wall boundary conditions. For the affected
wall parcel, the statistics of the Vi and Vii terms of the TKE budget are updated.

In addition to the noted gathering of TKE-budget statistics, single-parcel statistics
are gathered at event occurrence times, with weighting that accounts for the statistical
variability of the time intervals between events. Spatial aggregation of the outputs to
obtain the final results is described in § 8.1.

The present focus is on the fully developed, statistically stationary flow, so the
initial condition is unimportant except for its effect on the duration of transient
relaxation to the fully developed state. A tent-shaped (triangular) initial u profile is
used whose average is set equal to a prior estimate of the steady-state bulk velocity.
Each of the cases reported in § 8 consists of a single simulated realization in which
data is gathered during the statistically stationary advancement after the relaxation of
the initial transient flow development.

As explained in § 6.2, the parameter-setting procedure eliminates dependence of
computed results on model inputs other than A and N. Therefore any convenient
values of C, h, ρ and dp/dx are assigned. Variations of these parameters were run to
verify the anticipated insensitivity to their values.

8. Numerical results
8.1. Results for A= 0.5

Single-point statistics, such as mean quantities, higher moments and probability
density functions, can be gathered straightforwardly subject to the interpretations
discussed in § 4, notably that statistics for the parcels within each homogeneous
interval can be aggregated. Additionally, data from statistically equivalent homogeneous
intervals on either side of y = h are combined. Flux terms in the mean momentum
balance and in budgets of quantities such as TKE require special treatment, explained
in appendix B.

Figure 2 shows mean u values of individual parcels in order to highlight the
intervals of statistical homogeneity, but henceforth parcel statistics are aggregated.
Owing to the piecewise-constant character of statistical properties, such as in figure 2,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

27
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.276


436 A. R. Kerstein

A N Reτ κ t+ CPU CPU/t+

0.5 9 1967 0.262 249 262 66 min 0.016
0.5 8 1023 0.254 649 500 48 min 0.0044
0.4 7 1664 0.264 402 615 6 min 0.000 89
0.3 6 2336 0.266 474 239 82 s 0.000 17
0.3 5 781 0.252 202 528 8 s 0.000 040

TABLE 1. Simulation cases: cases are denoted by Nm, where m is the N value shown in
the second column of the table. Here κ is the von Kármán constant, t+ is the simulation
time in wall units, and CPU is the processing time of the run; CPU/t+ is expressed in
seconds.

aggregated statistical output is deemed to reside at isolated points, i.e. the midpoints
of homogeneous intervals, except for the Reynolds shear stress, which resides at
interval endpoints (see below). Thus, the data reduction is based on the treatment of
homogeneous intervals as the control volumes of a standard finite-volume scheme.
Line segments connecting data points in plots are drawn solely for visual clarity and
are not intended to imply spatially continuous profiles.

Table 1 lists the cases considered here. As explained in appendix C, A= 0.5 is the
physically most consistent A value, so results for A< 0.5 serve primarily to quantify
the tradeoff between the loss of fidelity and the cost savings resulting from reduction
of A. As explained in § 6.2, after constraining model parameters to obey the empirical
friction correlation (6.1), results depend only on A and the number N+1 of tree levels,
because a given tree structure as specified by its A and N values can be consistent
with the friction correlation for only one Reτ value and the corresponding ReU value
prescribed by the friction correlation. For given A, this implies that channel flow can
be simulated only for a discrete set of Reτ values corresponding to the values of
the integer N. As noted in § 6.2, HiPS channel flow can be formulated to be more
flexible in this regard, but the more restrictive formulation is advantageous for present
purposes.

Profiles of Reynolds shear stress for cases N8 and N9 are shown in figure 3.
As explained in appendix B, there are no net property fluxes within a homogeneous
interval, so fluxes are evaluated at the boundaries between adjacent intervals. Therefore
the symbols in figure 3 are located at interval endpoints, but in plots of other
quantities they are located at interval midpoints.

Wall-normalized Reynolds shear stress is not evaluated in HiPS using its definition
u′v′+. In HiPS, parcels are advected not by their associated velocities but by advection
events that are only indirectly controlled by the instantaneous velocity field. The
operational definition of Reynolds shear stress that closes the HiPS mean momentum
balance is derived in appendix B.

The linearity of the Reynolds shear stress (except at the wall, where it is zero)
reflects the fact that momentum transport between a wall parcel and its adjacent
partner occurs only by mixing, representing viscous transport, while elsewhere
momentum transport between homogeneous intervals occurs only by advection.
Through the mean momentum balance, the spatial uniformity of the pressure-gradient
forcing requires the sum of mean viscous and advective transport to be linear. Thus,
the profiles in figure 3 directly reflect model mechanisms. This behaviour can be
compared to the channel-flow near-wall transition region seen in the measured y
profile of Reynolds shear stress (Schultz & Flack 2013). The close adherence of the
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FIGURE 3. Wall-normalized Reynolds shear stress. Symbols: +, case N8; ×, case N9;
——, exact result in the absence of viscous transport.

HiPS results to the linear y-dependence shows that the data gathering was delayed
long enough to allow full relaxation of initial transients and that the data-gathering
period was long enough so that finite-sample effects were minor. (Section 8.3 contains
further discussion of run-times and statistical precision.)

The solid line corresponding to the exact linear dependence is plotted in figure 3
for comparison with the HiPS results. This line is the spatial continuum result
in the absence of viscous transport, corresponding to the infinite-Reynolds-number
limit of physical channel flow. In contrast, HiPS is intrinsically a spatially discrete
formulation, such that the finite cell size S implies a finite spatial extent of the
viscous sublayer, allowing the implied viscosity to be inferred accordingly based on
(5.2). The offset of the leftmost non-wall point from y+= 0 is not easily discerned in
the linear coordinates of figure 3, but it is readily apparent in the semi-logarithmic
plot examined next. In any case, the HiPS Reynolds-stress profile per se has no
explicit manifestation of finite-Reynolds-number behaviour.

Like figure 2, figure 4 shows mean velocity profiles but with data aggregation as
described, so that plotted data points correspond to the midpoints of homogeneous
intervals. The logarithmic scaling that occurs for reasons explained in § 5 is
represented by line segments. The corresponding values of the von Kármán constant
κ shown in table 1 are somewhat smaller than the value κ = 0.4 obtained from
channel-flow measurements (Schultz & Flack 2013). It is unclear whether the slight
Reτ -dependence of κ indicated by table 1 is related to mechanisms that have been
proposed to explain such dependence (Buschmann & Gad-el-Hak 2003); this merits
further investigation.

In § 6.1, it is noted that HiPS near-wall resolution of y+ ≈ 5, corresponding to the
extent of the viscous sublayer, would be physically appropriate because net viscous
momentum transfer occurs only between wall parcels and the parcels adjacent to
them. The parameter-setting procedure does not enforce this as a constraint, but
nevertheless it is seen that resolution close to this value is obtained. In any case, no
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FIGURE 4. Mean velocity profiles. Symbols: +, case N8; ×, case N9; ◦, measurements
for Reτ = 2000 from Schultz & Flack (2013). The κ values in table 1 for the model cases
are based on the solid and dashed lines here, which indicate logarithmic scaling.

procedure for setting the near-wall resolution can fully compensate for the fact that, in
reality, viscous effects on the mean flow taper off gradually with increasing y+. This
explains the absence of the experimentally observed shoulder, and further identifies
the HiPS near-wall treatment as being largely responsible for both the capabilities
and limitations of the HiPS channel-flow formulation.

Overall, the mean velocity profiles are more accurate than the underprediction of
κ and the absence of the shoulder might suggest. These two errors tend to cancel
because the high slope of the HiPS logarithmic region brings the HiPS profile
back into conformance with the measured profile beyond the viscous-to-logarithmic
transition region. Irrespective of phenomenological inaccuracies, prediction of the
mean velocity profile with less than 30 % error at all y+ with no tuning of the
model to fit the profile is a noteworthy outcome relative to previously demonstrated
capabilities and has potential practical significance.

In this regard, it is noted in § 6.1 that ODT exhibits good mean-flow behaviour
upon adjustment of a parameter that selectively suppresses near-wall eddies. When this
parameter is set to a negligibly small value so that the effect is eliminated, the ODT
mean profile, curve (a) of figure 3 in Schmidt et al. (2003), is remarkably similar to
the HiPS profiles in our figure 4. In the HiPS formulation, empirical input is used to
eliminate one degree of freedom, but not to tune the mean profile specifically, while
the ODT curve (a) result is based on tuning the ODT analogue of the parameter C
to optimize agreement with the mean velocity profile. This provides an indication
that HiPS performance relative to its low cost (see § 8.3) and simplicity compares
favourably to previously demonstrated capability.

HiPS profiles of u and v variance for cases N8 and N9 are compared in figure 5
with measurements at Reτ values close to the model values. HiPS does not capture
details of the shapes of the measured profiles, and the v variance is significantly
overpredicted. The overall magnitude of the u variance profiles is more reasonable.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

27
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.276


Hierarchical parcel swapping 439

102101 103
0

2

4

6

8

10

FIGURE 5. Velocity variances u′2
+

(squares) and v′2
+

(circles) for Reτ = 1000 (filled
symbols) and 2000 (open symbols). The HiPS results for cases N8 and N9 (see table 1 for
exact Reτ values) are connected by line segments. The other symbols are measurements
from Schultz & Flack (2013). Also shown are the Reτ = 590 DNS results of Moser, Kim
& Mansour (1999) for v′2

+
(dashed curve) and w′2

+
(dot–dash curve).

ODT results shown in figure 5 of Schmidt et al. (2003) substantially underpredict
both variance profiles after tuning two parameters to match the mean flow. The HiPS
results, not tuned to match flow structure, are more accurate overall.

A key consideration with regard to the v-variance overprediction is that v

fluctuations are produced solely by the return-to-isotropy representation of pressure-
scrambling effects, as described in appendix A. Without this mechanism, only the u
velocity would be non-zero, but in other respects HiPS channel-flow phenomenology
would not be significantly affected. The ODT analogue of this mechanism was
originally formulated with an additional parameter that can be used to adjust the
production of v fluctuations (Kerstein et al. 2001). To minimize parameter tuning in
the present study, the more restrictive approach of Kerstein & Wunsch (2006), which
does not involve this additional tuning, is used here.

One limitation of the pressure-scrambling treatment is that it results in statistical
equivalence of the v and w components for the channel-flow configuration. The
analogous limitation in ODT is discussed in Schmidt et al. (2003). To quantify the
effect of this artifact, v and w variance profiles from a direct numerical simulation
(DNS) by Moser et al. (1999) are shown in figure 5. It is seen that the inability to
capture the distinction is somewhat less impactful than the overprediction of either
profile. Overall, it is found in HiPS, as in ODT, that velocity components for which
the pressure-scrambling treatment is the sole turbulence-production mechanism are
not as well predicted as those that are driven by body forces or imposed shear.

ODT near-wall subgrid closure of a channel-flow large-eddy simulation yields more
accurate variance profiles (Schmidt et al. 2003), indicating that coupling to a coarse-
grained 3-D core-flow representation can improve the ODT-resolved near-wall results.
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FIGURE 6. Probability density function of wall-normalized wall stress. Symbols: +,
case N8; ×, case N9; —◦—, DNS for Reτ = 1000 by Lenaers et al. (2012).

Near-wall and general subgrid closure is a major goal of HiPS development (see § 9.1),
which can possibly lead to similar accuracy improvement.

Due to the smallness of the v and w fluctuations relative to the u fluctuations, the
overprediction of the v and w variances has only a minor impact on the TKE and
hence on flow properties more generally. In this regard, it is explained in appendix A
that HiPS velocity profiles do not directly advect parcels; rather, they influence
advection through the dependence of the rates of occurrence of advection events on
velocity fluctuations.

The Reτ -sensitivity of the wall-scaled variance profiles, though slight, is an
indication of deviation from inner scaling, the origin of which has been investigated
in detail. Spectral and other analyses of channel-flow DNS have identified structural
mechanisms of inner–outer flow coupling that can cause such deviation (del Álamo
et al. 2004; Hoyas & Jiménez 2006). The occurrence of an analogous deviation in
HiPS channel flow suggests that HiPS might embody an idealized representation of
the inner–outer coupling.

Alfredsson, Örlü & Schlatter (2011) show that the root-mean-square fluctuation
τ ′w
+ of the wall stress is equal to the near-wall limit of u′/ū. The method by which

viscosity is inferred for HiPS channel flow is equivalent to an assumption that the
instantaneous value of τw

+ at a wall is equal to ua/ūa, where ua and ūa denote the
instantaneous and average u values, respectively, of the parcel adjacent to the wall.
This relationship is used to gather statistics of τw

+. Probability density functions of
τw
+ for cases N8 and N9 are compared in figure 6 with results of a channel-flow

DNS for Reτ = 1000 (Lenaers et al. 2012).
The HiPS p.d.f.s have negligible Reτ -dependence and are seen to have long-tailed

shapes resembling the DNS p.d.f. but somewhat narrower. DNS p.d.f.s likewise exhibit
no noticeable Reτ -dependence on a linear plot, but in the far tails, discernible only
on a logarithmic plot, DNS p.d.f.s exhibit a slight Reτ -dependence and also a small
likelihood of negative τw

+ values. The only advancement mechanism in HiPS that
can possibly cause such occurrences is the pressure-scrambling operation described in
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FIGURE 7. Probability density function of wall-normalized wall stress. Symbols: +,
case N8; ——, fitted lognormal curve.

appendix A, in which a kernel function that has both negative and positive values is
added to the velocity values of a set of swapped parcels, such that the negative kernel
values could be large enough locally to change the sign of u in some places. Thus,
flow reversal can and possibly does occur, but evidently not adjacent to the walls,
according to figure 6. Rather, τw

+ is seen in figure 6 to have a positive lower bound
in the vicinity of 0.2.

ODT produces τw
+ p.d.f.s that closely resemble the HiPS p.d.f.s in figure 6. Like

the HiPS p.d.f.s, they have shorter tails than the DNS p.d.f.s and have positive
lower bounds (F. Meiselbach, personal communication). When ODT is used as
a subgrid model in a 3-D flow solver, the τw

+ p.d.f.s that are obtained have
negative tails, and in fact they quite accurately reproduce the DNS p.d.f.s (C. Glawe,
personal communication). An important future goal is to determine whether subgrid
implementation of HiPS in a 3-D flow solver will yield comparable performance at
lower cost.

Except in the far tails, p.d.f.s of τw
+ from DNS are found to be lognormally

distributed (Örlü & Schlatter 2011). Figure 7 shows that the HiPS results likewise
exhibit lognormality.

Lognormal and other long-tailed p.d.f.s are familiar signatures of turbulence
intermittency. Scale-invariant hierarchical stochastic models of turbulence capture
various aspects of intermittency (Meneveau & Sreenivasan 1991) through their
embodiment of the random-multiplier mechanism (Sreenivasan & Stolovitzky 1995)
that idealizes the stepwise multiplicative breakdown of flow-structure scales, notably
leading to lognormality under simple assumptions (Gurvich & Yaglom 1967).
Although there are fundamental differences between HiPS and other hierarchical
models, scale breakdown in HiPS is likewise multiplicative and scale-invariant
(Kerstein 2013), so lognormality of property gradients is not a surprising outcome.
Lognormality and other facets of turbulence intermittency have been studied in detail
using scale-invariant hierarchical stochastic models and will likewise be examined in
the future using HiPS. Figure 7, and a related result in § 8.2, are at most preliminary
indications.
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FIGURE 8. Positive y+: terms of the TKE budget, normalized by u4
τ/ν, for cases N8

(crosses) and N9 (squares). Negative y+: DNS of Moser et al. (1999) for Reτ = 590
(curves) and 395 (crosses). The different line types represent the production term (solid),
dissipation term (dashed) and sum of viscous and advective transport (dot–dash).
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FIGURE 9. Contributions to the TKE transport term of figure 8: viscous (solid) and
advective (dashed); the other symbols are as in figure 8.

In figures 8 and 9, the TKE budgets for cases N8 and N9 are compared to
budgets from the channel-flow DNS of Moser et al. (1999). The budget terms, whose
evaluation for HiPS channel flow is explained in appendix B, are normalized by
dividing them by u4

τ/ν.
Like the DNS budgets, the HiPS budgets exhibit negligible sensitivity to order-one

variation of Reτ , indicating that it is valid to compare the HiPS results with the
lower-Reτ DNS results. The main quantitative discrepancies in figure 8 are the
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overpredictions of the viscous transport and the dissipation at the wall. These are
actually a single discrepancy because the two quantities must sum to zero.

This discrepancy might be related to an ambiguity in the attribution of viscous
effects to viscous transport and dissipation. Such ambiguities arise because evaluation
of spatial derivatives is needed to determine certain budget terms, but these derivatives
are not uniquely defined because HiPS statistical quantities have a piecewise-constant
character stemming from the grouping of parcels into homogeneous intervals. The
deviation from smooth behaviour is greatest near walls, as seen in figure 2. Owing to
this spatial structure, there is a non-negligible dependence of several budget terms on
the choice of numerical approximant or physical modelling assumption used to resolve
each ambiguity. Importantly, this is not a numerical implementation sensitivity of the
HiPS formulation per se; rather, it is an ambiguity of the after-the-fact interpretation
of model results.

Subject to this caveat, the HiPS TKE budget is compared with DNS results.
Away from the wall, it is seen that the HiPS results for TKE production, transport
and dissipation are quantitatively as well as qualitatively reasonable. The degree of
agreement of the HiPS TKE dissipation profile with the DNS result is potentially
significant for the intended application of HiPS to turbulent mixing, in which scalar
dissipation effects are crucial (Fox 2003).

Figure 9 shows the partitioning of the TKE transport into advective and viscous
contributions. The necessarily inexact representation of derivatives is the underlying
cause of the evident discrepancies. In particular, the production term, which is subject
to numerical error resulting from finite-difference approximation of the derivative of
the mean velocity, is an input to the evaluation of the advective transport. As a result,
the advective transport contributions do not sum to zero. This does not indicate a
violation of conservation laws but, rather, the lack of a fully consistent spatially
discrete analogue of the continuum TKE budget. Conventional evaluation of budget
terms involves order-of-accuracy errors that can cause deviations from the required
summing to zero of advective transport contributions, but for smooth property fields,
these errors can be kept small by mesh refinement.

An ODT channel-flow budget of u variance is shown in figure 6 of Schmidt et al.
(2003). Compared to the HiPS TKE budget in figure 8, the overall accuracy is roughly
the same, but the individual transport terms are more accurate than the HiPS results
in figure 9. Spatial profiles in ODT are continuous, so budget terms are not subject
to the technical difficulties that arise in HiPS data reduction. Considering this and
the idealized HiPS representation of turbulent channel flow, the degree to which HiPS
performs comparably to ODT is noteworthy.

8.2. Results for A 6= 0.5
In § 4 it is shown that the physical-space interpretation of HiPS channel flow for A=
0.5, involving one-dimensional alignment of parcels exactly covering the wall-normal
line spanning the channel, is consistent (subject to a small deviation related to wall
parcels) with the proximity definition of parcel separations. This reflects the effective
dimensionality d= 1 that is obtained for A= 0.5 based on the relation A= 2−1/d (see
§ 2.1).

Reduction of A results in greater scale-space separation between hierarchy levels.
Therefore fewer levels and hence fewer parcels are needed to represent a given scale
range, implying a reduction of computational cost (see § 8.3). Results for A < 0.5,
corresponding to d < 1, are examined in order to evaluate the cost–performance
tradeoff associated with the reduction of d.
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FIGURE 10. For case N5, parcel mean streamwise velocities in the y interval [0, h], using
uniform parcel spacing within each homogeneous interval.

Non-integer d suggests that the HiPS parcels cover a fractal subset of physical space.
For the spatially inhomogeneous flow considered here, it is shown in appendix C
that consistent physical-space interpretation requires parcel separation to increase
with increasing distance from the wall. Therefore the parcels form a spatially
inhomogeneous set; but, as noted below, this does not preclude fractal attributes.

Figure 10, which is the A= 0.3 analogue of figure 2, illustrates the low-A physical-
space parcel distribution and the associated mean-flow structure. The reasoning that
leads to the grouping of parcels into homogeneous intervals is valid for any A, so this
behaviour is seen in both figures. The new feature is the reduced number of parcels
per unit length in each successive homogeneous interval.

Like the A= 0.5 results that have been presented, results shown below for A< 0.5
are based on averaging of parcel statistics within each homogeneous interval, with
interval averages plotted at the centres of the respective intervals. Therefore the
assigned spatial distribution of parcels within each homogeneous interval is immaterial.
For clarity, in figure 10 parcels are equally spaced within each homogeneous interval.
A spacing that is more consistent with the proximity measure of separation yields
a self-affine structure with associated fractal properties (Mandelbrot 1985). Due to
the arbitrariness of the choice of spacing within homogeneous intervals, this has no
physical consequence in the present context, but for other applications it might be
relevant.

The number of parcels within a homogeneous interval increases with increasing
distance from a wall. Results averaged over homogeneous intervals containing many
parcels have greater statistical precision than averages over intervals with fewer
parcels. So, by gathering statistics over sufficient run-time to obtain a desired precision
near the walls, the precision elsewhere is better than needed. From this viewpoint,
low A is computationally efficient because it concentrates parcels near the wall, where
they are most needed. In this sense, it introduces efficient non-uniform meshing, albeit
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FIGURE 11. Reynolds shear stress u′v′+. Symbols: ×, case N5; +, case N6; �,
case N7; ——, exact result for A= 0.5 in the absence of viscous transport.

by the unphysical mechanism of introducing gaps between parcels, as explained next.
This feature does not necessarily extend to cases other than wall-bounded flow.

It is important to note the distinction between fractal scaling of properties of
the HiPS flow solution, which is discussed in Kerstein (2013), and the fractal or
other low-dimensional spatial structure of the set of parcels that form the support
of the flow solution. The parcels whose centres are plotted in figure 10 are all the
same size, so their increasing separation implies gaps between the parcels. This
introduces the unphysical notion of the region between the channel walls consisting
of isolated patches of fluid separated by voids. HiPS allows advective and viscous
property transport across such voids because HiPS advection is a non-local process
and because parcel adjacency is a topological relationship that does not rely on
physical adjacency.

Nevertheless, this artifact reduces the physical realism of HiPS, as reflected by lower
accuracy of model results as A is reduced. This is illustrated by the A-dependence
of the Reynolds-shear-stress profiles shown in figure 11. The pressure-gradient
momentum source is applied only within parcels, so far from walls, where fluid
parcels are widely spaced, it is applied in a relatively small fraction of each
homogeneous interval. Mean momentum conservation then implies a relatively
shallow slope of the Reynolds-shear-stress profile. The profile steepens as the wall
is approached. The resulting deviation from linearity increases with decreasing A,
reflecting the increasingly unrealistic spatial structure.

Figure 12 and the κ values in table 1 indicate only a slight sensitivity of the mean
flow to A. Here κ varies mainly with Reτ . At the parcels adjacent to the walls, the wall
treatment enforces the viscous-layer relation ū+= y+. Except in a y+ range to the left
of any plotted point, the graph of this relation has a slope steeper than the logarithmic-
layer slopes, so the vertical offsets of the successive profiles are sensitive mainly to
the coarser physical-space resolution as N decreases. The dominant dependence on N
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FIGURE 12. Mean velocity profiles. Symbols: +, case N5; �, case N6; �, case N7; ×,
case N9. The κ values in table 1 for these cases are based on the line segments here,
which indicate logarithmic scaling.

rather than Reτ is not a physically meaningful model behaviour, but its quantitative
impact is not large.

Coarsening resolution causes the model representation of the viscous sublayer to
extend beyond its true physical extent y+≈ 5. As noted in § 6.1, this implies possible
inaccuracy in the determination of ν and therefore possible systematic discrepancies
in various wall-normalized results. However, the negligible κ-sensitivity suggests that
this source of inaccuracy is not significant for the cases considered.

Figure 13 indicates greater A-sensitivity of variance profiles. Again, the sensitivity
is not primarily a Reτ -dependence. The results indicate decreasing accuracy as A is
reduced.

Figure 14 indicates moderate sensitivity to A of the τw
+ p.d.f. The main trend is a

shortening of the tail of the p.d.f. with decreasing N. Lognormality is an asymptotic
property resulting from the multiplication of a large number of random variables
representing the scale reduction at successive levels, so as the number of hierarchy
levels decreases, the long-tailed character of the p.d.f. diminishes.

Figure 15 compares the TKE budgets for the cases with smallest and largest N.
The differences are significant, yet case N5 nevertheless has a rough quantitative
correspondence to the DNS results. It is noteworthy that a case that involves 32
parcels and runs in a few seconds (see table 1 and § 8.3) yields such an outcome
for a flow metric that challenges any form of reduced modelling. The results for
case N6 (not shown) differ only slightly from the case N5 results, consistent with
the insensitivity to Reτ for given A that is seen in figure 8.

The overall impression is that reduction of A causes increasing but generally
moderate quantitative discrepancies. Some degree of reduction might be beneficial
depending on application-specific criteria, including cost considerations such as those
discussed in § 8.3.
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FIGURE 13. Velocity variances u′2
+

(filled symbols) and v′2
+

(open symbols): O, case N5;
4, case N6; �, case N7; �, case N9; ◦, measurements for Reτ = 2000 from Schultz &
Flack (2013).
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FIGURE 14. Probability density function of wall-normalized wall stress for cases N5 (dot–
dash), N6 (dashed), N7 (solid) and N9 (crosses).

In this regard, the A-dependences indicated here do not necessarily hold for flow
configurations or model formulations other than the model formulation and application
considered here. The focus here is on simplicity and minimal parameter adjustment to
allow model assessment from a fundamental perspective. Additional empiricism can
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FIGURE 15. Terms of the TKE budget, normalized by u4
τ/ν: production (solid), dissipation

(dashed) and the sum of viscous and advective transport (dot–dash). Positive y+: �,
case N5; �, case N9. Negative y+: DNS results as in figure 8.

be introduced straightforwardly, e.g. by allowing wall parcels to have an adjustable
nominal mass rather than the same mass as other parcels. Other possible model
variants have been noted. Accordingly, the results presented here should be viewed
as a baseline assessment rather than a complete exploration of the range of options.

8.3. Computational cost
In the discussion of figure 10, it is noted that the number of parcels representing a
flow for given Reτ decreases with decreasing A, but this does not necessarily impact
statistical precision because successive homogeneous intervals contain multiplicatively
increasing numbers of parcels. Therefore it is reasonable to base a cost comparison
over a range of A values on CPU time per unit normalized time-advancement using
the wall-normalized run-time t+= tu2

τ/ν = t (dū/dy)|w, where t is the run-time and the
final expression follows from (5.1).

The timing results shown in table 1 are based on serial implementation on an
i7TM processor. It is found that there is roughly a factor-of-four cost increase per
additional hierarchy level, whether comparing equal or unequal A values, indicating
that the cost reduction resulting from decreasing A is due mainly to reduction of
the number of hierarchy levels needed to reach a given Reτ range. Each additional
hierarchy level doubles the number of parcels and roughly doubles the number of
distinct advection events that can occur. The latter effect doubles the number of
sampled events per unit time, and the former effect doubles the cost of evaluating a
typical sampled event, so the combined effects account for the fourfold cost increase.
(Determination of which sampled events are implemented, described in appendix A,
is the dominant computational cost.)

The indicated t+ values are much higher than would be needed for converged
statistics in three dimensions, because 3-D simulation allows averaging over the
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homogeneous directions. In figure 3, results for case N9 deviate slightly but noticeably
from linearity, but no such deviation is seen for case N8, whose run-time is longer
in terms of t+, suggesting that roughly 5× 105 wall times are needed for sufficiently
converged statistics so that there is no visually detectable finite-sample variability.

It is possible, however, that a larger multiple of the wall time t+ is needed for
N values larger than considered here. Figure 2 provides a hint of the origin of
such N-dependence. The two longest homogeneous intervals exhibit slight jumps of
their ū+ values across their midpoints. Within each homogeneous interval, the parcel
groups on either side of the midpoint have lower proximity relative to each other
than parcels within either group. Based on the turbulence phenomenology embedded
in the procedure for selecting advection events (see appendix A), this implies less
frequent advective transfer between the groups than within the groups. For a given
run-time, this implies more sampling variability of the intergroup ū+ difference than
of the intragroup ū+ difference, as seen. As more hierarchy levels are added, longer
run-times (as multiples of t+) might therefore be needed in order to maintain a given
variability tolerance. A countervailing consideration is that the longest homogeneous
intervals have increasing numbers of parcels with increasing N, so interval averages
are increasingly stable. The shorter near-wall intervals might therefore control overall
precision. The resulting N-dependence might be different for different output statistics.

The precision target adopted here is more stringent than required for most uses
of turbulence simulations, so meaningful results should be obtainable in shorter
times than indicated in table 1, especially after application-specific optimization
of the numerical algorithm. Cost minimization is a key requirement for subgrid
implementation within 3-D flow solvers, which is a long-term goal of HiPS
development.

9. Discussion
9.1. Comparison with other approaches

Turbulence modelling based on a hierarchical (tree) geometry has hitherto focused
on homogeneous conditions and associated universal properties of the turbulent
cascade. HiPS can likewise address these features (Kerstein 2013), but the first
quantitative demonstration of model performance, presented here, focuses on the
phenomenology of an inhomogeneous turbulent flow. This focus serves to illustrate
the novel capabilities of HiPS relative to other hierarchical formulations.

Hierarchical turbulence modelling is one of several contexts that provide perspectives
on the present study. Other relevant contexts are turbulence modelling in general and
modelling of turbulent mixing.

The degree of physical fidelity required for accurate modelling of turbulent flow and
processes within turbulent flow, such as molecular mixing, is sensitive to the impact
of small-scale processes, such as mixing, on the flow at larger scales. Viscosity is
primarily a small-scale kinetic-energy sink with relatively small effects on large-scale
flow structure, but in wall-bounded flow, the wall-blocking mechanism suppresses
large-scale influences near walls, resulting in important viscous influences within the
thin but crucial interval from the viscous through the logarithmic sublayers. In this
respect, modelling of near-wall turbulent flow and modelling of turbulent mixing
involve comparable challenges.

To capture the viscous influence on near-wall turbulence, modelling of this flow
regime at a deeper level than mixing-length and related dimensional reasoning (an
example of which is presented in § 5) requires some degree of resolution of unsteady
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viscous effects. Accomplishing this at less cost than DNS requires some combination
of sacrificing resolution, simplifying the dynamics and reducing the dimensionality of
the flow domain. The predominant dependence of near-wall flow properties on the
wall-normal direction suggests that dimension reduction involving flow modelling on
a one-dimensional wall-normal domain might be a promising approach. From this
viewpoint, near-wall flow is a good test case for a dimension-reduction strategy as
well as an intrinsically important target application.

This reasoning motivated the development of ODT, which is the basis of much
of the modelling within HiPS as well as a useful comparison case, as noted in
§ 8. On a one-dimensional wall-normal domain, ODT is fully resolved, allowing
physically sound representation of viscosity and other molecular transport processes.
One-dimensional unsteady simulation of turbulence requires simplification of the flow
dynamics regardless of cost considerations. The baseline (A= 0.5) HiPS channel-flow
formulation is likewise effectively one-dimensional, with dynamics based largely
on the ODT approach. Comparisons shown in § 8 indicate no major performance
advantage of either method. In this context, the benefits of HiPS relative to ODT and
other alternatives require careful examination.

One important consideration is cost. As implemented here, HiPS is spatially
under-resolved, yet its performance is adequate for some purposes and is not
matched by any comparably economical approach. (Predictions of some flow
properties considered here, such as wall-stress p.d.f.s, are beyond the scope of other
comparably economical approaches.) Coarse-grained ODT with subgrid modelling
on the one-dimensional domain, though feasible and demonstrated for near-wall flow
(Kerstein & Wunsch 2006), holds promise but is not fully established as a viable
alternative cost-reduction strategy. Coarse-graining negates some of the salient features
of ODT, such as its comprehensive representation of molecular transport, including
Pr and Sc dependencies, without attaining conceptual and algorithmic simplicity
comparable to HiPS. If adjacent ODT fluid elements were instantly mixed, the
flow state would become and remain spatially uniform. The restrictive definition
of adjacency in the hierarchical geometry prevents such anomalies, enabling a
simple, economical coarse-grained mixing treatment involving instant mixing of
newly adjacent parcels.

HiPS has additional scope for cost reduction by decreasing A to values below
0.5, corresponding to a non-integer effective dimensionality below unity. As noted in
appendix C, A< 0.5 is physically problematic (though not to a degree that precludes
meaningful results) for channel-flow simulation, but this concern does not necessarily
extend to other flow configurations.

Most relevant in this regard is mixing simulation, which is the main future
target application (Kerstein 2013). Although self-contained mixing simulation is
of technological as well as scientific interest, the principal use of mixing models
is for subgrid mixing closure of 3-D coarse-grained unsteady flow simulations and
steady-state solvers. For this purpose, it is generally appropriate to treat the subgrid
mixing-field structure within 3-D control volumes as spatially homogeneous. In this
case, the problematic channel-flow low-A physical-space interpretation does not apply,
though there is still a practical limit to the reduction of A due to the need for enough
parcels to provide a sufficient statistical sample of mixture states. Thus, reduction of
the effective dimensionality to values below unity is a suitable cost-reduction strategy
for mixing simulation.

Parcel-based subgrid mixing simulation as generally implemented (see § 1) is
effectively zero-dimensional, so statistical sampling requirements determine the needed
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number of parcels. By choosing a HiPS effective dimension that corresponds to the
same number of parcels for a given case, the turbulence phenomenology embodied
in HiPS can enhance model fidelity with no cost increase other than the minor
overhead associated with HiPS time-evolution of parcel grouping. Implementation
within existing algorithms is straightforward because it affects only the selection of
pairs to be mixed, with no other impact on time-advancement.

An important exception to the appropriateness of a spatially homogeneous subgrid
mixing-field structure is subgrid modelling in control volumes adjacent to walls. The
only robust multiphysics near-wall subgrid treatment that is currently available is
ODT, whose near-wall closure implementation for channel-flow large-eddy simulation
has been demonstrated (Schmidt et al. 2003). (Here, multiphysics refers to couplings
between dynamically active scalars and the flow field.) The results presented here
suggest that HiPS has the potential to provide comparable near-wall performance
at lower cost, with the additional benefit of compatibility with current modelling
frameworks. An important caveat is that HiPS cannot resolve Pr and Sc effects,
physical-space flame structure etc., so ODT is ultimately a higher-fidelity approach
for the most demanding applications. Concurrent use of HiPS in some control volumes
and ODT in others is a cost-effective high-fidelity approach that can be envisioned.

Apart from cost and performance considerations, there is a fundamental scientific
motivation for the development of HiPS. Modelling is ultimately a quest for the
simplest formulation that can represent complex reality. This motivated the formulation
of shell models that simplify Navier–Stokes dynamics by collapsing the wavenumber
vector to a discretized scalar, which precludes a direct physical-space interpretation
(Kadanoff 1995). Hierarchical (tree) geometry is the minimal extension of this
approach towards a physical-space treatment. From this viewpoint, it is natural
to investigate the extent to which model development within this framework can
lead to formulations that broaden its capabilities and scope of application. The
degree to which HiPS can achieve these outcomes has been discussed in detail
(Kerstein 2013), and the present study provides the first direct supporting evidence.
An important conclusion is that HiPS to some extent bridges the longstanding gap
between application-focused modelling and the physics-focused model progression
originating with shell models.

9.2. Features and performance of the channel-flow formulation
In a fundamental scientific context, the present study not only serves as a capability
demonstration but additionally indicates the extent to which the phenomenology of
near-wall turbulent flow can be captured using a formulation that is minimal in
the sense explained in § 9.1. To the extent that this is possible, the study indicates
that aspects of this phenomenology are not uniquely attributable to the particular
vortical structures (streamwise vortices, hairpins etc.) or transient events (sweeping,
ejection etc.) known to occur in near-wall turbulent flow. Here, flow inhomogeneity
is introduced by imposing two elementary constraints on the parcels selected to
represent the channel walls: they cannot be advected, and any non-zero velocity
components resulting from momentum transfer to those parcels are immediately set
to zero in order to enforce the Dirichlet boundary condition. The advection process
is as featureless as possible within a formulation designed to capture the range of
scales of turbulent motion. It consists of swaps implemented as rigid translations,
such that each swap causes two fluid regions to change places. Viscous transport is
minimally implemented as complete mixing whenever two parcels become adjacent
due to advection.
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In the physical-space interpretation of this formulation, these swaps introduce
velocity discontinuities. However, the restrictive definition of parcel adjacency within
the hierarchical structure prevents viscous transport across these discontinuities.
Therefore the discontinuities do not result in anomalies of the sort that might occur
if the model were implemented in physical space.

The salient feature of HiPS flow simulation is the development of a cascade
analogous to the inertial-range turbulent cascade, resulting in the breakdown of
flow structures from the largest to the smallest scales of the model hierarchy
(Kerstein 2013). The wall representation in the channel-flow formulation modifies
this phenomenology in a fundamental way. As illustrated in figure 1 and explained
in § 5, the self-evident requirement that the wall parcels cannot be advected has the
consequence that the largest-scale advective motion that can include a given location
y is of order y rather than of order h, which is the largest possible scale of motion
in the hierarchy. This model property is the basis of key features of HiPS channel
flow, such as the logarithmic subrange of the mean velocity profile.

The extent to which the highly idealized turbulence, viscosity and wall-coupling
representations in HiPS capture channel-flow phenomenology has been evaluated. As
shown in § 6.2, the simplicity of the formulation leads to unique model predictions
upon invoking the friction correlation as the sole empirical constraint on model
parameters. Given this constraint, results depend on the scale-space stride A and
the number N + 1 of hierarchy levels, but A = 0.5 is preferred due to its physical
consistency for channel flow (see appendix C). For given A, each N value corresponds
to a unique value of Reτ , so N is a surrogate physical input rather than a tunable
parameter. Because N is an integer, the model yields results for only a discrete set of
Reτ values for given A. The minimal degree of empiricism needed to uniquely specify
the formulation is an important consideration motivating the choice of channel flow
as the first HiPS application.

Various flow statistics quantify the predictive capabilities of the model. It is
shown in § 5 that the hierarchical geometry in conjunction with the wall treatment
imposes a logarithmic range of the mean velocity profile. Apart from the friction
correlation, which is an imposed constraint, the most fundamental metric of
channel-flow structure is the von Kármán constant κ . The slightly case-sensitive
results underpredict κ , but figure 4 shows that the mean velocity profile is more
accurate than this underprediction might suggest. Other model predictions are, in
general, comparably accurate. Some of the noted exceptions can be attributed to
features of the particular HiPS formulation used in this study rather than general
limitations of the HiPS approach. Future formulations tailored to other applications
will broaden the perspective in this regard. Additionally, it has been noted that HiPS
channel flow can be formulated in a more empirical but more flexible way, allowing
simulations for any Reτ rather than just for isolated values.

The model exhibits collapse of various flow statistics in wall units and the known
deviation of wall-scaled velocity variance profiles from collapse. In general, the
sensitivity or insensitivity of HiPS results to Reτ is in accordance with experimental
and DNS results, suggesting that the model might embody some representation of the
inner–outer coupling that causes such sensitivity.

These assessments are based on results for A= 0.5. For lower A values, computat-
ional cost is considerably reduced, motivating examination of results for A = 0.4
and 0.3 despite the increasingly problematic physical-space interpretation of HiPS as
A is reduced. The results suggest that modest reduction of A below 0.5 can offer
advantageous cost–performance outcomes, depending on application-specific criteria.
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Owing to the effective dimensionality d< 1 of the spatial support of the flow domain
for A < 0.5, this algebraically straightforward parameter variation introduces the
novel concept of turbulence simulation on a domain of non-integer effective spatial
dimensionality, whose implications merit further examination.

9.3. Relationship to turbulent mixing
Near-wall turbulent flow and mixing are related, at least in a restricted sense, by the
Reynolds analogy (Eckert & Drake 1972). In HiPS, the relationship is broader because
velocity components are more closely analogous to advected scalars than in Navier–
Stokes dynamics.

The reason is that HiPS velocity components do not directly advect fluid. Rather,
the dynamical role of velocity components (complementary to their role as model
observables) is to serve as carriers of kinetic energy, whose spatial distribution
influences the stochastic sampling of advection events as described in appendix A.
As a result, the usual advective term that distinguishes velocity from other flow
properties is absent, and velocity components evolve mathematically as individual
advected diffusive scalar fields subject to various sources and sinks, such as those
associated with the return-to-isotropy mechanism.

In appendix A it is noted that this mechanism can be, and originally was, omitted
from ODT, in which case only the u component is non-zero. Then, for channel
flow, u is subject only to advection, viscosity and pressure forcing. Here u is then
mathematically equivalent to a passive scalar, say temperature with Pr= 1, subject to
a heat source that is uniform in space and time, with isothermal boundary conditions
at the channel walls. In this case, an ODT channel-flow simulation is equivalent to a
scalar mixing simulation.

The same considerations apply to HiPS. For maximum scope of application, the
return-to-isotropy mechanism is included in HiPS, so the present study does not
unequivocally address scalar mixing. However, related ODT results strongly suggest
that, as a practical matter, the present HiPS implementation is roughly equivalent to
a mixing simulation. Specifically, the results of one-component ODT simulations of
turbulent boundary layers (Kerstein 1999) and free shear flows (Kerstein & Dreeben
2000) closely resemble those of their three-component counterparts (Kerstein et al.
2001; Schmidt et al. 2003). Thus, at least inferentially, the present results can be
viewed as valid indicators of the performance of HiPS as a turbulent mixing model.

Nevertheless, this is at most a preliminary step in the demonstration and application
of HiPS mixing capabilities. An important consideration with regard to future steps
is that mixing properties relevant to reacting flows are potentially sensitive to all
the details of the ensemble of time histories of parcel-pair encounters. A theoretical
development that is pertinent in this regard is the temporal multiscaling concept
and its associated mathematically and computationally demonstrated properties
(L’vov, Podivilov & Procaccia 1997; Biferale, Calzavarini & Toschi 2011). Future
investigation of temporal multiscaling using HiPS will complement previous
hierarchical shell-model studies of temporal multiscaling (Pandit, Ray & Mitra 2008),
as well as indicate HiPS performance in a context relevant to mixing.

Turbulent mixing simulation has different performance requirements than turbulent
flow simulation because of molecular-transport and chemical-kinetic uncertainties
that limit the attainable fidelity as well as sensitivities to flow details that might be
unimportant in constant-property flows. Although formulated from the perspective
of mixing simulation, it has been shown here that HiPS has noteworthy turbulence
modelling capabilities that offer a novel perspective on the mechanistic origins of
some well-known channel-flow behaviours.
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Appendix A. Advection in HiPS flow simulation
Advection in HiPS can be either parameterized or implemented as a more self-

contained and predictive flow simulation. The focus here is on the latter. A minimal
formulation of advection in HiPS flow simulation is outlined in Kerstein (2013). In
the present study, an advection treatment is used which is more robust in ways that
will be explained. It has not been described previously, so details are presented here.

Advection in HiPS flow simulation is closely analogous to advection in ODT. In
particular, the previously outlined minimal HiPS flow formulation is analogous to
the ODT formulation introduced by Kerstein (1999), but the approach used here
is analogous to the constant-density specialization of the version of ODT used in
Kerstein & Wunsch (2006), Kerstein (2009) and Gonzalez-Juez, Kerstein & Lignell
(2011).

The notation and conventions of the latter references are adopted, except that
here the one-dimensional spatial domain is denoted by y instead of z and component
indexing rather than (u, v,w) notation is used where convenient. The analogy between
HiPS and ODT is explained so that applicable analysis and interpretation in previous
ODT studies can be carried over directly.

On a uniformly meshed one-dimensional spatial domain, advection in ODT is
represented by permutations of the spatial ordering of the mesh cells. (A different
approach to numerical implementation of permutations is also possible in ODT
(Lignell et al. 2013), but it is not applicable to HiPS and therefore not discussed
here.)

In ODT, each permutation is a ‘triplet map’ applied to a contiguous interval whose
size is denoted by l. A HiPS permutation swaps two sets of parcels, such that the
sum of the sizes of the swapped intervals is the HiPS analogue of the ODT map size
l. The swapped intervals are equal in size and are therefore each of size l/2.

In ODT, length scales such as the map size l are defined in the spatial continuum,
and spatial discretization is undertaken for purposes of numerical implementation.
HiPS is formulated in a discrete space that can be interpreted as continuous space. It
is valid and convenient to carry over the continuous-space terminology and formalism
of ODT to HiPS provided that a consistent interpretation is used, as in § 4 and
appendix C.

In ODT, f (y) denotes the inverse of the map, meaning that f (y) is the location that
is mapped to location y. To evaluate this in HiPS, a y coordinate is used such that the
collection of swapped parcels together form a contiguous size-l interval whose centre
is nominally at y= 0. Then the associated inverse map is f (y)= y− (l/2) sgn(y) for
|y|6 l/2 and f (y)= y for |y|> l/2, where sgn denotes the sign function. Another key
construct is the kernel K(y)≡ y− f (y), which is the map-induced displacement of a
location mapped to y.

The length scale l is central to the analysis that follows. It can be defined in several
possible ways, e.g. as two times the length scale ln associated with the hierarchy
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level n of the swapped subtrees. For A = 0.5, 2ln is the sum of the sizes of the
parcels in the swapped subtrees; but for A< 0.5, that sum is less than ln due to the
gaps between parcels. The gaps are deemed to be void, with no dynamical role (see
§ 8.2 and appendix C), so they are excluded from spatial integrals of flow properties.
Because l is the normalizing length scale that converts certain of these integrals into
averages, l is defined as the sum of the sizes of the swapped parcels rather than as 2ln.

Based on these considerations, the y coordinate used in the event-sampling analysis
corresponds to the coverage of spatial intervals by parcels rather than the full extent
of the intervals, and hence differs from the y coordinate used in appendix C. This is
one example of the complications that arise for A< 0.5. The analysis that follows is
most easily understood by focusing on the simpler case of A= 0.5.

In terms of the generic inverse map f and kernel K, the formulation and
analysis of ODT event-sampling and event-implementation procedures carry over
directly to HiPS, subject to the sole distinction that the mean-square displacement
〈K2〉 = (1/l)

∫
K2(y) dy within a triplet-mapped region is (4/27)l2, but the HiPS

analogue is (1/4)l2, which is the nominal squared displacement of every swapped
parcel. Accordingly, we follow closely the ODT analysis and notation, omitting details
that can be found in the cited references.

In spatial-continuum notation, random sampling of event occurrences requires
the specification of an event-rate distribution that is denoted by λ(l, y0; t) in ODT,
where y0 is the left boundary of the mapped interval and the argument t reflects
the dependence of λ on the instantaneous system state within that interval. In HiPS,
the sampling of subtrees to be swapped requires the event-rate distribution to have
different arguments. Assuming any convenient indexing of subtrees within the HiPS
hierarchy, e.g. as in Kerstein (2013), the indices j and k of the sampled subtrees
complete the specification of a swap. Then λ(j, k; t) denotes the HiPS event-rate
distribution. Because j and k are integers, λ has units of inverse time, unlike λ in
the continuum mathematical formulation of ODT. (The spatially discrete numerical
implementation of ODT is closer in formulation to HiPS.)

As in ODT, the available-energy concept is the basis for physical modelling of λ in
HiPS. The kinetic energy of velocity component i can be modified by adding ciK(y) to
the velocity profile, where K(y) is the kernel associated with a particular swap. Using
the HiPS value of

∫
dy K2(y), the resulting kinetic-energy change (in one-dimensional

units) is

1Ei = ρ2
∫

dy
[
(vi + ciK)2 − v2

i

]= ρ
2

∫
dy
[
c2

i K2 + 2civiK
]= ρl3

8
c2

i + ρl2civi,K (A 1)

where vi,K denotes (1/l2)
∫

dy viK. The available energy Qi is defined to be the
maximum of −1Ei with respect to ci, which occurs at ci=−(4/l)vi,K , corresponding
to Qi = 2ρlv2

i,K . As the terminology suggests, Qi is the maximum amount of kinetic
energy that can be extracted from component i using this procedure.

To model λ, powers of ρ, l and the total available energy Q = Q1 + Q2 + Q3 are
combined to obtain an inverse time, giving

λ=C
(

2〈K2〉Q
ρl5

)1/2

. (A 2)

Here, C is a parameter that can be tuned so that the swap-induced advection is
quantitatively consistent with turbulent transport in the corresponding physical flow
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(but in the present formulation, the parameter-setting procedure in § 6.2 absorbs this
degree of freedom). The quantity 2〈K2〉 is included in order to follow the ODT
convention for defining λ.

The ODT expression for λ includes a viscous term with a second tunable parameter
Z. This term can be included in HiPS, but is omitted here because it would introduce
an unphysical artifact in the present context, as explained in § 6.1.

Every time-advancement operation changes the Q and hence the λ values for some
subset of the possible future events. The affected set of rates can be recomputed,
but doing so is inefficient. Instead, each type of event, parameterized by j and k, is
oversampled. A sampled event is then allowed to occur with probability λ/λs, where
λs is the sampling rate for the chosen event type. To guarantee oversampling, λs
must always exceed the true rate λ, whose current value for the chosen event type
is determined using (A 2). The benefit of this ‘thinning’ procedure (Law & Kelton
2000) is that only one λ value need be computed per event sampling. This more
than compensates for the inefficiency of rejecting some of the sampled events, in
fact almost all of them because λs must be an upper bound on the highly variable
quantity λ, so in most cases λs � λ. Event sampling is done by thinning in both
ODT and HiPS.

HiPS time-advancement incorporates an ODT feature that extends model physics
without additional tuning, namely its ‘return-to-isotropy’ representation of pressure-
scrambling effects. This is done by using the kernel not only to compute Q for λ
evaluation but also to modify velocity profiles after map implementation so that the
new component available energies are Q′1=Q′2=Q′3=Q/3. Enforcing equality of the
quantities Q′i tends to equalize component kinetic eddies, which are correlated with but
not identical to their available energies as defined. The ci values required to enforce
this equality are obtained by substituting 1Ei=Q/3−Qi into (A 1) and solving for ci.
The solution has two branches. The physical branch is the one that satisfies 1Ei→ 0
as ci→ 0.

A broader motivation for introducing this feature is that it is required for a
meaningful three-component representation of channel flow. The mean pressure
gradient is applied only to the u component. Without the pressure-scrambling
representation, the v and w components would never deviate from zero. With it,
they are meaningful model observables, though not necessarily accurately predicted
(e.g. they are statistically equivalent for the channel-flow configuration, unlike their
physical behaviour). The definition K(y) ≡ y − f (y) implies that

∫
dy K = 0 and

hence that the pressure-scrambling operation does not change the domain-integrated
momentum for constant ρ.

The return-to-isotropy mechanism is one of several extensions of ODT physics that
were enabled by introduction of the available-energy concept, superseding the original,
kinematically based ODT formulation (Kerstein 1999). Another such extension is the
use of the ODT version of (A 1) to enforce kinetic-energy changes equal and opposite
to advection-induced changes of gravitational potential energy in buoyant stratified
flows (Kerstein & Wunsch 2006). This applies also to HiPS, and is the basis of
applications of HiPS to buoyant stratified flow that will be reported in the future.

The return-to-isotropy mechanism conserves total kinetic energy as well as
momentum, and additionally conserves the total available energy Q. Since λ is
affected by the instantaneous flow state only through its dependence on Q, changes
of the component values Qi that leave Q unaffected do not directly affect the statistics
of swap occurrences. However, there is an indirect effect because the u component
is subject to pressure forcing whose contribution to kinetic energy depends on the
magnitude of u. More generally, any state change potentially affects subsequent energy
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dissipation, thereby eventually influencing swap statistics. As a result, the effect of
the return-to-isotropy mechanism on the u profile indirectly influences Q values and
hence affects swap statistics.

Apart from this pressure-forcing effect, λ is unaffected by the directional
orientations of velocity components, and in particular the flow evolution is indifferent
to the kinematic distinction between the wall-normal and spanwise components. In
three dimensions this distinction is crucial, e.g. because the continuity equation
and the no-slip boundary conditions require dv/dy = 0 at the wall. In HiPS, 3-D
continuity cannot be enforced, and in fact it is immaterial because fluid is advected
by swaps rather than swept by velocity fields. By construction, the swaps are globally
conservative on the one-dimensional domain, which is sufficient to enforce the HiPS
analogue of continuity.

Appendix B. Data reduction
The mathematical formulation and numerical evaluation of the terms of the TKE

budget and related quantities follow the overall approach applied to ODT in the
appendix of Kerstein et al. (2001), the notation of which is adopted here where
applicable. Equation numbers that are preceded by 2001 refer to equations in that
appendix.

The time-advancement of velocity component vi in HiPS can be represented
formally as

∂vi

∂t
= Vi +Mi +Ki +Ci, (B 1)

where Vi, Mi and Ki are formal representations of the effects of viscous transport
(mixing of parcel-pair states), swaps and kernels, respectively, and Ci is the mean-
pressure-gradient contribution, which is constant. The arguments y and t of the terms
in (B 1) are not shown. Constant density is assumed, so density is omitted throughout
this appendix.

Here Ci is non-zero only in the streamwise direction i = 1. It does not appear in
the ODT formal time-advancement equation (2001A1) because the analysis there is
for flows with no imposed mean pressure gradient.

Each term on the right-hand side of (B 1), except Ci, is a sum of terms of the
form (ṽi− v̂i)δ(t− tj), where the first factor is the vi value at y after an advancement
operation associated with an event at time tj minus its value before the advancement
operation. (In this appendix, the hat notation has a different meaning than in § 6.2.)
What distinguishes Vi, Mi and Ki from one another is that each corresponds to a
different type of HiPS advancement operation associated with the event at time tj.

The HiPS mean momentum equation is obtained by ensemble averaging (B 1) term
by term. In (B 1), Ki can be interpreted as some non-unique combination Ki = Ti +
Si of transport and scrambling effects, subject to the requirement 〈Si〉 = 0 because
there are no pressure-fluctuation contributions to the Navier–Stokes mean momentum
equation. Then averaging of (B 1) gives

∂〈vi〉
∂t
= 〈Vi〉 + 〈Mi〉 + 〈Ti〉 +Ci, (B 2)

where the angle brackets denote ensemble averaging. Thus it is recognized that the
kernel operation introduces both instantaneous and mean transport of component-i
momentum as well as instantaneous, but zero-mean (in the ensemble-average as well
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as spatial-average sense), exchange of momentum among components. The derivation
and interpretation of (2001A2) are analogous.

The flow structure shown in figure 2 indicates that HiPS provides a (non-uniformly)
coarse-grained representation of channel flow. For this reason, statistics are gathered
within homogeneous intervals, in effect treating these intervals as coarse-grained finite
volumes. The statistically equivalent parcels that form a homogeneous interval can
be interpreted as residing at the interval midpoint and are all equally representative
of flow statistics within the interval. Only property transfers between homogeneous
intervals can generate net fluxes. Fluxes such as the Reynolds shear stress are therefore
evaluated at the boundaries between homogeneous intervals.

Viscous transport occurs only between adjacent parcels, so the only net viscous flux
in the system is between parcels that are adjacent yet statistically non-equivalent. The
only such parcel pairs are the wall parcels and their associated adjacent parcels, which
are statistically non-equivalent due to the enforcement of the wall boundary condition
as described in § 3. Therefore the term 〈Vi〉 in (B 2) is dropped. (Its effect at walls
will be evaluated shortly.)

Based on these considerations, spatial derivatives are discretized as follows. Using
the notation Ii(y)≡

∫ 2h
y (〈Mi〉 + 〈Ti〉), (B 2) becomes

∂〈vi〉
∂t
=−∂Ii

∂y
+Ci. (B 3)

Comparison to the mean momentum equation for Navier–Stokes channel flow
identifies I1 as the model analogue of the Reynolds shear stress 〈v′1v′2〉.

Integration of (B 3) over a homogeneous interval of width W gives

∂W〈vi〉
∂t
= Ii(y−)− Ii(y+)+WCi, (B 4)

where spatial homogeneity implies that 〈vi〉 is the interval as well as the ensemble
average of vi, and [y−, y+] is the spatial extent of the homogeneous interval.
Dividing (B 4) by W then identifies (Ii(y+) − Ii(y−))/W as the appropriate discrete
implementation of the y-derivative of Ii.

The integrand of the Ii definition contains ensemble averages of quantities that are
sums of terms of the form (ṽi − v̂i)δ(t− tj). Such averages for fixed t are zero for a
finite ensemble of numerical simulations and in the formal limit of a countably infinite
ensemble. Therefore they are evaluated within finite time windows 1t that should be
small for transient evolution but can be as large as desired during statistically steady
time-advancement. Division of these averages by the time increment 1t yields an
approximate (but sufficiently accurate for small 1t) evaluation of the fixed-t averages.
ODT implementation based on (2001A5) is analogous.

The i= 1 steady-state specialization of (B 4) is used to evaluate the model analogue
I1 of the Reynolds shear stress. As shown in figure 3, behaviour consistent with the
channel-flow mean momentum balance is obtained, except for near-wall behaviour
reflecting the simplified treatment of viscous transport. That behaviour is associated
with the term 〈Vi〉 that was dropped in deriving (B 4). Mean viscous transport is non-
zero only at the wall and is the only transport mechanism at the wall, so the Reynolds-
shear-stress profile in figure 3 is affected only at y= 0, where it is zero.

An evolution equation for v2
i is obtained by multiplying (B 1) by 2vi. As in (B 1),

all terms except the last require a formal treatment, now expressed as

∂v2
i

∂t
= Vii +Mii +Kii + 2viCi, (B 5)
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where each term on the right-hand side except the last is a sum of terms of the
form (ṽ2

i − v̂2
i )δ(t − tj), representing the change of v2

i resulting from the viscous,
swapping and kernel operations, respectively, associated with the jth advection event.
Decomposing the kernel term into transport and scrambling contributions as in the
derivation of (B 2), we obtain

∂〈v2
i 〉

∂t
= 〈Vii〉 + 〈Mii〉 + 〈Tii〉 + 〈Sii〉 + 2〈vi〉Ci, (B 6)

where the scrambling term 〈Sii〉 can now be non-zero. The ODT procedure for
modelling the non-unique quantity Sii can be applied, but this is immaterial here
because it cancels out of the sum over i in TKE budget equation of interest.

Unlike vi, v2
i is not conserved by the mixing mechanism representing viscous

momentum transport in HiPS. (This non-conservation reflects the physical mechanism
of viscous dissipation of kinetic energy.) One consequence is that 〈Vii〉 includes
viscous dissipation as well as viscous transport of component-i TKE (see below) and
hence cannot be omitted.

Subtraction of 2〈vi〉 times (B 2) from (B 6) gives

∂〈v′i 2〉
∂t
= 〈Vii +Mii + Tii + Sii〉 − 2〈Vi +Mi + Ti〉〈vi〉, (B 7)

where the term involving Ci no longer appears due to cancellation. Addition and
subtraction of −2Ii(∂〈vi〉/∂y) on the right-hand side gives

∂〈v′i 2〉
∂t
= 〈Vii〉 − 2〈Vi〉〈vi〉 − 2Ii

∂

∂y
〈vi〉 − ∂

∂y
(Iii − 2〈vi〉Ii)+ 〈Sii〉, (B 8)

where Iii(y)≡
∫ 2h

y (〈Mii〉 + 〈Tii〉).
In (B 3), introduction of the y-derivative of a y-integrated quantity facilitates

conservative spatial discretization in (B 4). There is no analogous procedure for
unambiguous spatially discrete evaluation of the spatial derivatives involving 〈vi〉.
These derivatives were introduced into (B 8) by adding and subtracting −2Ii(∂〈vi〉/∂y)
in order to enable identification of the HiPS analogues of the turbulent production
and turbulent transport terms of the TKE budget. The numerical error inherent in
evaluating the spatial derivatives involving 〈vi〉 has the effect of modifying the relative
contributions of these two terms, but it does not compromise the numerical closure of
the budget provided that the numerical method preserves the algebraic cancellation. In
numerical implementation, the term that is expressed as a y-derivative to identify it as
turbulent transport is therefore decomposed by applying the derivative term by term
so that the term that cancels the turbulent production term (which is immediately to
the left of the turbulent transport term) is isolated. In order to enforce the cancellation
required for numerical closure of the budget, the algebraically cancelling terms are
identically evaluated by applying first-differencing within the spatially non-uniform
finite-volume representation of the grouping of parcels into homogeneous intervals.
However, enforcing this cancellation to obtain numerical closure is incompatible with
numerically evaluating the turbulent transport term as an exact differential. Therefore
that term does not numerically integrate to zero. Alternatively, numerical integration
of that term to zero could be enforced, but then the budget would not close.

This tradeoff arises in any numerical evaluation of the TKE budget. Because the
physical model in this case imposes piecewise-constant statistical properties in finite
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intervals, the usual remedy of driving the integral of the turbulent transport toward
zero through mesh refinement is not possible. This explains the noticeable non-zero
value of this integral in figure 9. A different choice of numerical approximation of
the y-derivative would modify the profile but would not eliminate the anomaly.

It has been noted that advection (i.e. swaps) within homogeneous intervals is
immaterial and therefore can be omitted from the TKE budget evaluations. The
kernel-induced spatial redistribution of the energy of a given component, represented
by the T portions of the quantities Ii and Iii, is a fluxing operation and therefore
likewise immaterial within homogeneous intervals. However, kernels also redistribute
energy among velocity components, as represented by the scrambling term 〈Sii〉 in the
budget (B 8) of the variance of an individual velocity component. Therefore this term
is included when forming the variance budget of one velocity component. However,
all kernel-induced effects cancel in the summation over components that yields the
budget of TKE.

Due to this cancellation, the TKE budget is insensitive to any modelling error
associated with the kernel representation of pressure-fluctuation effects. TKE budget
results are more accurate overall than the results for the variances of individual
velocity components. This provides indirect evidence that the kernel mechanism
introduces significant modelling error.

For the same reasons that 〈Vi〉 vanishes away from walls, there is no mean viscous
transport of the variance of vi away from walls. Therefore the term 〈Vii〉 represents
solely the viscous dissipation, except for wall effects that are treated as follows.

A parcel adjacent to a wall parcel is subject to mixing with the wall parcel followed
by a change of the wall-parcel state through enforcement of the Dirichlet boundary
condition. The latter step imposes a difference between the mean states of the two
parcels. The mixing-induced flux represents viscous transport, so in (B 2) it introduces
a non-zero value of 〈V1〉 that exactly balances the mean advective flux to the parcel
adjacent to the wall. Likewise, 〈Vi〉 in (B 8) represents viscous transport of mean
momentum and is non-zero only for i= 1.

In contrast, the term 〈Vii〉 of the vi variance budget has a non-zero viscous-transport
contribution for all i at the wall. As in the evaluation of ∂〈vi〉/∂y, there is a degree
of numerical ambiguity in the allocation of 〈Vii〉 to viscous transport and viscous
dissipation. To enable this allocation, it is assumed that mixing-induced changes of
wall-parcel states contribute solely to viscous transport.

The boundary-condition enforcement has an equal-and-opposite effect that is
attributed to viscous dissipation, which is required in order to balance viscous
transport at the wall. The parcel adjacent to the wall is assigned viscous transport
equal and opposite to viscous transport at the wall so that viscous transport integrates
to zero. Thus, the ambiguity in the allocation of 〈Vii〉 provides a degree of freedom
that is used to enforce the integral constraint on the viscous transport. No such degree
of freedom is available for the turbulent-transport term.

Finally, summation of (B 8) over i and multiplication by 1/2 gives the TKE budget.
In the statistically steady state, the time-derivative term is zero.

Based on these considerations, the budgets shown in figures 8 and 9 are obtained.
Budget terms are normalized by dividing them by u4

τ/ν. As in all reported results,
adjusted values are used. As explained above, fluxes are evaluated by summing
property changes during a finite time window and dividing by the time increment.
Because the adjustment described in § 6.2 is a time rescaling, the adjustment is
applied to this time increment.
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Appendix C. Extension to A 6= 0.5

The mathematical formulation of HiPS is indifferent to the value of the ratio A of
the length scales associated with successive tree levels. However, the choice of A has
a significant impact on the physical interpretation of HiPS, as shown previously in
a general context (Kerstein 2013). Here, implications specific to HiPS channel-flow
simulation are explained.

A conceptually simple physical interpretation for general A would be to assign the
size of non-wall parcels so that their sum is 2h and to treat them as a contiguous
set covering the interval 2h. As shown below, for A< 0.5 this would imply physical
lengths of homogeneous intervals that are inconsistent with the length scales ln
corresponding to the wall proximities of the successive homogeneous intervals. This
would not preserve the scale similarity that is the basis for the physical modelling
of event rates and associated scale breakdown in accordance with inertial-range
phenomenology.

In § 2.1, the parcel size is assigned to be the length scale lN−1 corresponding to the
wall proximity of the parcel adjacent to the wall. (If any multiple of this length scale
were chosen, the prefactor would be absorbed into the relationship between l0 and h
because parcel sizes are required in § 4 to sum to 2h for A = 0.5.) Likewise, each
homogeneous interval is assigned its wall-proximity length scale. This is consistent
with the physical-space interpretation that the sum of the sizes of these intervals is 2h.
Thus, the homogeneous intervals exactly cover the one-dimensional physical domain,
but for A< 0.5 the parcels only partially cover it.

To see this, note first that the sizes of the homogeneous intervals (largest to
smallest) on one side of the channel midpoint are Al0, A2l0, A3l0, . . . , AN−1l0. Their
sum is ((A− AN)/(1− A))l0. Setting this equal to h gives l0 = ((1− A)/(A− AN))h.
In practice it is convenient to choose a value of the model parameter l0 and then
determine the corresponding value of h using h= ((A− AN)/(1− A))l0. For A= 0.5,
this gives h= (1− 21−N)l0.

The coverage of this size-h region by parcels is the product of the parcel size and
the number of parcels in this region, giving [(2A)N−1−AN−1]l0. For A= 0.5, this gives
(1 − 21−N)l0, which is h for this A value. This reflects the exact coverage that has
been enforced for A= 0.5. However, the sum of parcel sizes is less than the sum of
homogeneous-interval sizes for A< 0.5.

Although the parcel size can be chosen to be some multiple of lN−1, the smallest
homogeneous interval, which is adjacent to a wall, cannot be smaller than one parcel;
nor can it be larger because its midpoint must coincide with the midpoint of the parcel
it contains, and one of its endpoints is bounded by the wall. This locks the relationship
between parcel and interval sizes, reflecting the absorption of any multiplicative factor
into the relation determining l0. The conclusion concerning the relative coverage of
[0, h] by parcels versus homogeneous intervals is thus general.

The incomplete coverage by parcels reflects the effective dimensionality d < 1 for
A< 0.5 (see § 2.1). In physical terms, the size-2h domain is deemed to consist of an
active region (the region covered by parcels, which is now a disconnected set) and
a void region containing no fluid. This picture is grossly unphysical in the limit of
vanishing A; however, for A values less than 0.5 but of order unity, it is possible in
principle for this picture to yield reasonable results. The performance of HiPS channel-
flow simulation for A< 0.5 is examined in § 8.2.

The fractional coverage of the y domain by parcels is [((2A)N−1 − AN−1)/(2A− A)]·
[(1− A)/(1− AN−1)]. Therefore only this fraction of the domain is subject to pressure-
gradient forcing, modifying the momentum balance accordingly. In particular, (5.1)
and (5.2) are modified by multiplying h by this fraction.
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Viscous transport occurs only between wall parcels and the parcels adjacent to them.
Elsewhere, momentum production is balanced solely by advective transport. As noted
in § 8.1, the mean momentum balance then implies the relationship u′v′+ = 1 − y/h
away from the wall, consistent with the behaviour in the region of physical channel
flow where advective transport is dominant. This reasoning is specific to A= 0.5. The
deviation from linear dependence of u′v′+ on y for A < 0.5 is shown and discussed
in § 8.2.

For A6 0.5, parcel proximity provides a basis for associating parcels with locations
along the y coordinate. On this basis, the covered region within a homogeneous
interval is self-affine, as noted in § 8.2. This has no physical relevance for present
purposes because parcel statistics within a homogeneous interval are aggregated for
data-reduction purposes and are associated with the y location at the midpoint of the
interval. Based on the results above, the interval midpoints are

yj = h
2

A1−j + A−j − 2
A1−N − 1

= l0

2
AN

1− A
(A−j + A1−j − 2),

where the rightmost expression is more convenient because l0 is a model input
whereas h is an inferred quantity.

For the largest homogeneous interval, corresponding to j = N − 2, yj approaches
h/2 in the limit of vanishing A. This reflects the diverging multiplicative increase of
interval size with increasing j, such that the last interval fills the entire range [0, h]
in this (unphysical) limit, with midpoint h/2.

One might suppose that A > 0.5, corresponding to higher effective dimensionality
of the set of parcels, is physically more realistic than A 6 0.5. Here A = 2−1/2,
corresponding to dimension d = 2, might seem especially promising in this regard.
However, this is not the case because of the manner in which wall effects are
represented. For any N, the number of wall parcels remains the same and hence
constitutes a zero-dimensional set, i.e. a set of isolated points. Only the effectively
one-dimensional case A = 0.5 is fully consistent with this zero-dimensional wall
representation. Owing to the lack of conceptual advantages of A > 0.5 and the
increase in computational cost associated with increasing A, results are reported in
§ 8 only for A6 0.5.

REFERENCES

DEL ÁLAMO, J. C., JIMÉNEZ, J., ZANDONADE, P. & MOSER, R. D. 2004 Scaling of the energy
spectra of turbulent channels. J. Fluid Mech. 500, 135–144.

ALFREDSSON, P. H., ÖRLÜ, R. & SCHLATTER, P. 2011 The viscous sublayer revisited – exploiting
self-similarity to determine the wall position and friction velocity. Exp. Fluids 51, 271–280.

AURELL, E., DORMY, E. & FRICK, P. 1997 Binary tree models of high-Reynolds-number turbulence.
Phys. Rev. E 56, 1692–1698.

BENZI, R., BIFERALE, L. & TROVATORE, E. 1997 Ultrametric structure of multiscale energy
correlations in turbulent models. Phys. Rev. Lett. 79, 1670–1673.

BIFERALE, L., CALZAVARINI, E. & TOSCHI, F. 2011 Multi-time multi-scale correlation functions in
hydrodynamic turbulence. Phys. Fluids 23, 085107.

BUSCHMANN, M. H. & GAD-EL-HAK, M. 2003 Generalized logarithmic law and its consequences.
AIAA J. 41, 40–48.

ECKERT, E. R. G. & DRAKE, R. M. 1972 Analysis of Heat and Mass Transfer. McGraw-Hill.
FERNHOLZ, H. H. & FINLEY, P. J. 1996 The incompressible zero-pressure-gradient turbulent boundary

layer: an assessment of the data. Prog. Aerosp. Sci. 32, 245–311.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

27
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.276


Hierarchical parcel swapping 463

FOX, R. O. 2003 Computational Models for Turbulent Reacting Flows. Cambridge University Press.
FRISCH, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.
GONZALEZ-JUEZ, E., KERSTEIN, A. R. & LIGNELL, D. O. 2011 Fluxes across double-diffusive

interfaces: a one-dimensional-turbulence study. J. Fluid Mech. 677, 218–254.
GURVICH, A. S. & YAGLOM, A. M. 1967 Breakdown of eddies and probability distributions for

small-scale turbulence. Phys. Fluids Suppl. 10, S59–S65.
HOYAS, S. & JIMÉNEZ, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to

Reτ = 2003. Phys. Fluids 18, 011702.
KADANOFF, L. P. 1995 A model of turbulence. Phys. Today 48, 11–13.
KERSTEIN, A. R. 1999 One-dimensional turbulence: model formulation and application to

homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech. 392,
277–334.

KERSTEIN, A. R. 2009 One-dimensional turbulence stochastic simulation of multi-scale dynamics.
In Interdisciplinary Aspects of Turbulence, Lecture Notes in Physics, vol. 756, pp. 291–333.
Springer.

KERSTEIN, A. R. 2013 Hierarchical parcel-swapping representation of turbulent mixing. Part 1.
Formulation and scaling properties. J. Stat. Mech. 153, 142–161.

KERSTEIN, A. R., ASHURST, W. T., WUNSCH, S. & NILSEN, V. 2001 One-dimensional turbulence:
vector formulation and application to free shear flows. J. Fluid Mech. 447, 85–109.

KERSTEIN, A. R. & DREEBEN, T. D. 2000 Prediction of turbulent free shear flow statistics using a
simple stochastic model. Phys. Fluids 12, 418–424.

KERSTEIN, A. R. & WUNSCH, S. 2006 Simulation of a stably stratified atmospheric boundary layer
using one-dimensional turbulence. Boundary-Layer Meteorol. 118, 325–356.

LAW, A. M. & KELTON, W. D. 2000 Simulation Modeling and Analysis. McGraw-Hill.
LENAERS, P., LI, Q., BRETHOUWER, G., SCHLATTER, P. & ÖRLÜ, R. 2012 Rare backflow and

extreme wall-normal velocity fluctuations in near-wall turbulence. Phys. Fluids 24, 035110.
LIGNELL, D. O., KERSTEIN, A. R., SUN, G. & MONSON, E. I. 2013 Mesh adaption for efficient

multiscale implementation of one-dimensional turbulence. Theor. Comput. Fluid Dyn. 27,
273–295.

L’VOV, V. S., PODIVILOV, E. & PROCACCIA, I. 1997 Temporal multiscaling in hydrodynamic
turbulence. Phys. Rev. E 55, 7030–7035.

MANDELBROT, B. B. 1985 Self-affine fractals and fractal dimension. Phys. Scr. 32, 257–260.
MENEVEAU, C. & SREENIVASAN, K. R. 1991 The multifractal nature of turbulent energy dissipation.

J. Fluid Mech. 224, 429–484.
MOSER, R. D., KIM, J. & MANSOUR, N. N. 1999 DNS of turbulent channel flow up to Reτ = 590.

Phys. Fluids 11, 943–945.
ÖRLÜ, R. & SCHLATTER, P. 2011 On the fluctuating wall shear stress in zero pressure-gradient

turbulent boundary layer flows. Phys. Fluids 23, 021704.
PANDIT, R., RAY, S. S. & MITRA, D. 2008 Dynamic multiscaling in turbulence. Eur. Phys. J. B

64, 463–469.
POPE, S. B. 1985 Pdf methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192.
POPE, S. B. 2013 A model for turbulent mixing based on shadow-position conditioning. Phys. Fluids

25, 110803.
SCHLICHTING, H. & GERSTEN, K. 2000 Boundary Layer Theory. Springer.
SCHMIDT, R. C., KERSTEIN, A. R., WUNSCH, S. & NILSEN, V. 2003 Near-wall LES closure based

on one-dimensional turbulence modeling. J. Comput. Phys. 186, 317–355.
SCHULTZ, M. P. & FLACK, K. A. 2013 Reynolds-number scaling of turbulent channel flow. Phys.

Fluids 25, 025104.
SREENIVASAN, K. R. & STOLOVITZKY, G. 1995 Turbulent cascades. J. Stat. Phys. 78, 311–333.
SUBRAMANIAM, S. & POPE, S. B. 1998 A mixing model for turbulent reactive flows based on

Euclidean minimum spanning trees. Combust. Flame 115, 487–514.
ZANOUN, E.-S., NAGIB, H. & DURST, F. 2009 Refined cf relation for turbulent channels and

consequences for high-Re experiments. Fluid Dyn. Res. 41, 021405.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

27
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.276

	Hierarchical parcel-swapping representation of turbulent mixing. Part 2. Application to channel flow
	Introduction
	The HiPS representation of turbulent flow
	Geometrical structure
	Time-advancement mechanisms

	Specialization to channel flow
	Physical-space interpretation
	Channel-flow phenomenology in HiPS
	Inputs and parameter assignments
	Parameter dependences of HiPS simulations
	Parameter assignments

	Numerical implementation
	Numerical results
	Results for A = 0.5
	Results for A =0.5
	Computational cost

	Discussion
	Comparison with other approaches
	Features and performance of the channel-flow formulation
	Relationship to turbulent mixing

	Acknowledgements
	Appendix A. Advection in HiPS flow simulation
	Appendix B. Data reduction
	Appendix C. Extension to A =0.5
	References




