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Abstract We consider the relative Bruce–Roberts number μ−
BR(f, X) of a function on an isolated

hypersurface singularity (X, 0). We show that μ−
BR(f, X) is equal to the sum of the Milnor number of

the fibre μ(f−1(0) ∩ X, 0) plus the difference μ(X, 0) − τ(X, 0) between the Milnor and the Tjurina
numbers of (X, 0). As an application, we show that the usual Bruce–Roberts number μBR(f, X) is
equal to μ(f) + μ−

BR(f, X). We also deduce that the relative logarithmic characteristic variety LC(X)−,
obtained from the logarithmic characteristic variety LC(X) by eliminating the component corresponding
to the complement of X in the ambient space, is Cohen–Macaulay.
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1. Introduction

Let (X, 0) be a germ of complex analytic set in C
n and f : (Cn, 0) → (C, 0) a holomorphic

function germ. The Bruce–Roberts number of f with respect to (X, 0) was introduced
by Bruce and Roberts in [4] and is defined as

μBR(f,X) = dimC

On

df(ΘX)
,

where On is the local ring of holomorphic functions (Cn, 0) → C, df is the differential
of f and ΘX is the On-submodule of Θn of vector fields on (Cn, 0) which are tangent
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The relative Bruce–Roberts number of a function on a hypersurface 663

to (X, 0) at its regular points. If IX is the ideal of On of functions vanishing on (X, 0),
then

ΘX = {ξ ∈ Θn | dh(ξ) ∈ IX , ∀h ∈ IX}.
In particular, when X = C

n, df(ΘX) is the Jacobian ideal of f and thus, μBR(f, X)
coincides with the classical Milnor number μ(f). We remark that ΘX is also denoted
in some papers by Der(− logX), following Saito’s notation [11]. The main properties of
μBR(f, X) are the following (see [4]):

(a) μBR(f, X) is invariant under the action of the group RX of diffeomorphisms φ :
(Cn, 0) → (Cn, 0) which preserve (X, 0);

(b) μBR(f, X) <∞ if and only if f is finitely determined with respect to the RX -
equivalence;

(c) μBR(f, X) <∞ if and only if f restricted to each logarithmic stratum is a
submersion in a punctured neighbourhood of the origin.

In general, μBR(f, X) is not so easy to compute as the classical Milnor number. The
main difficulty comes from the computation of the module ΘX and most of the times, it
is necessary to use a symbolic computer system like Singular [6]. If (X, 0) is an isolated
complete intersection singularity (ICIS) and μBR(f, X) is finite, then (f−1(0) ∩X, 0) is
an ICIS [2, Proposition 2.8], therefore it has well-defined Milnor number. In a previous
paper, [9] we considered the case that (X, 0) is an isolated hypersurface singularity (IHS).
We showed that

μBR(f,X) = μ(f) + μ(f−1(0) ∩X, 0) + μ(X, 0) − τ(X, 0), (1)

where μ and τ are the Milnor and the Tjurina numbers, respectively. Thus, (1) gives
an easy way to compute μBR(f, X) in terms of well-known invariants. The formula (1)
was also obtained independently in [8] and previously in [10] when (X, 0) is weighted
homogeneous.

An important application of (1) allowed us to conclude in [9] that the logarithmic
characteristic variety LC(X) is Cohen–Macaulay. We recall that LC(X) is the subvariety
of the cotangent bundle T ∗

C
n of pairs (x, α) such that α(ξx) = 0, for all ξ ∈ ΘX and for

all x in a neighbourhood of 0. When (X, 0) is holonomic, LC(X) is Cohen–Macaulay if
and only if for any Morsification ft of f we have

μBR(f,X) =
∑
α

mαnα,

where nα is the number of critical points of ft restricted to each logarithmic stratum
Xα and mα is the multiplicity of LC(X) along the irreducible component Yα associated
with Xα (see [4, Corollary 5.8]). When (X, 0) is an IHS, it always has a finite number
of logarithmic strata (i.e., it is holonomic in Saito’s terminology) given by X0 = C

n \
X, Xi \ {0}, with i = 1, . . . , k and Xk+1 = {0}, where X1, . . . , Xk are the irreducible
components of X at 0.
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In this paper, we are interested in another important invariant introduced in [4],

μ−
BR(f,X) = dimC

On

df(ΘX) + IX
,

which we call here the relative Bruce–Roberts number. This is an invariant of the
restricted function f : (X, 0) → (C, 0) under the induced RX -action. In fact, as com-
mented in [4], it is equal to the codimension of the RX -orbit. Moreover, μ−

BR(f, X) is
finite if and only if f restricted to each logarithmic stratum (excludingX0) is a submersion
in a punctured neighbourhood of the origin.

A natural question is about the relationship between μBR(f, X) and μ−
BR(f, X). It is

shown in [4] that if (X, 0) is a weighted homogeneous ICIS then

μ−
BR(f,X) = μ(f−1(0) ∩X, 0).

This, combined with (1) when (X, 0) is a weighted homogeneous IHS, gives that

μBR(f,X) = μ(f) + μ−
BR(f,X). (2)

Our main result in § 2 is that if (X, 0) is any IHS and μ−
BR(f, X) is finite, then

μ−
BR(f,X) = μ(f−1(0) ∩X, 0) + μ(X, 0) − τ(X, 0). (3)

In particular, (2) also holds when μBR(f, X) is finite, even when (X, 0) is not weighted
homogeneous. We also show in Example 3.1 that (2) is not true for higher codimension
ICIS.

The relative logarithmic characteristic variety LC(X)− is obtained from LC(X) by
eliminating the component Y0 associated with the stratum X0 = C

n \X. In [4], they
showed that LC(X) is never Cohen–Macaulay when (X, 0) has codimension > 1 along the
points on X0, but LC(X)− is always Cohen–Macaulay when (X, 0) is a weighted homoge-
neous ICIS (of any codimension). Again, Cohen–Macaulayness of LC(X)− is interesting
since it implies that

μ−
BR(f,X) =

∑
α�=0

mαnα,

for any Morsification ft of f . As an application of (3), we show in § 3 that LC(X)− is
also Cohen–Macaulay for any IHS (X, 0) (not necessarily weighted homogeneous).

In § 4, we consider any holonomic variety (X, 0) and study characterizations of Cohen–
Macaulayness of LC(X) and LC(X)− in terms of the relative polar curve associated
with a Morsification ft of f . Finally, in § 5, we give a formula which generalizes the
classical Thom–Sebastiani formula for the Milnor number of a function defined as a sum
of functions with separated variables.

2. The relative Bruce–Roberts number

The main goal of this section is to prove the equality (3). The next lemma is inspired by
[2, Proposition 2.8].
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Lemma 2.1. Let (X, 0) be an IHS determined by φ : (Cn, 0) → (C, 0) and f ∈ On.
The map (φ, f) : (Cn, 0) → (C2, 0) defines an ICIS if and only if μ−

BR(f, X) <∞.

Proof. If (φ, f) : (Cn, 0) → (C2, 0) defines an ICIS then μ−
BR(f, X) is finite because

V (df(Θ−
X)) ⊂ V (J(f, φ) + IX) ⊂ {0}.

For the converse, if μ−
BR(f, X) <∞ then the restriction of f to each logarithmic stratum,

excluding C
n \X is non-singular. The proof is now the same of Proposition 2.8 in [2]. �

The following technical lemma will be used in the proof of the next theorem. Given a
matrix A with entries in a ring R, we denote by Ik(A) the ideal in R generated the k × k
minors of A.

Lemma 2.2. Let f, g ∈ On be such that dimV (J(f, g)) = 1 and V (Jf) = {0}, and
consider the following matrices

A =

⎛
⎜⎜⎝
∂f

∂x1
· · · ∂f

∂xn

∂g

∂x1
· · · ∂g

∂xn

⎞
⎟⎟⎠ , A′ =

⎛
⎜⎜⎝
μ

∂f

∂x1
· · · ∂f

∂xn

λ
∂g

∂x1
· · · ∂g

∂xn

⎞
⎟⎟⎠ ,

where λ, μ ∈ On. Let M, M ′ be the submodules of O2
n generated by the columns of A, A′

respectively. If I2(A) = I2(A′) then M = M ′.

Proof. We see A and A′ as homomorphims of modules over R := On:

A : Rn −→ R2, A′ : Rn+1 −→ R2.

We consider the R-module R2/M = coker(A), which has support V (I2(A)) = V (J(f, g)).
Therefore, dim(R2/M) = 1 = n− (n− 2 + 1) and hence it is Cohen–Macaulay (see [5]).
In particular, it is unmixed. Now, M ′/M is a submodule of R2/M , so the associated
primes Ass(M ′/M) are included in Ass(R2/M). If M ′/M �= 0 then Ass(M ′/M) �= ∅ and
it follows that dim(M ′/M) = 1.

Let U be a neighbourhood of 0 in C
n such that 0 is the only critical point of f . For

all x ∈ U \ {0}, there exist i0 ∈ {1, . . . , n}, such that ∂f/∂xi0(x) �= 0. We may suppose
i0 = 1. Making elementary column operations in the matrices A and A′, we obtain

B =
(

1 0 . . . 0
c1 c2 . . . cn

)
, B′ =

(
μ 1 0 . . . 0
λ c1 c2 . . . cn

)

such that

I2(A) = I2(B), I2(A′) = I2(B′), Im(A) = Im(B) and Im(A′) = Im(B′).

By hypothesis I2(A) = I2(A′) and consequently 〈c2, . . . , cn〉 = 〈μc1 − λ, c2, . . . , cn〉.
This implies λ = μc1 + α2c2 + · · · + αncn, for some α2, · · · , αn ∈ R. Thus,(

μ
λ

)
= μ

(
1
c1

)
+ α2

(
0
c2

)
+ · · · + αn

(
0
cn

)
.

and hence (M ′/M)x = 0. This shows that Supp(M ′/M) ⊂ {0} and hence, M ′ = M . �
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Given an IHS (X, 0) defined by a holomorphic function germ φ : (Cn, 0) → (C, 0), we
consider the On-submodule of the trivial vectors fields, denoted by ΘT

X , generated by

φ
∂

∂xi
,
∂φ

∂xj

∂

∂xk
− ∂φ

∂xk

∂

∂xj
, with i, j, k = 1, . . . , n; k �= j.

This module was related to the Tjurina number of (X, 0) in [9, 13]. By using different
approaches, it is shown that τ(X, 0) = dimC ΘX/ΘT

X . Moreover, in [9], we also proved
that τ(X, 0) = dimC df(ΘX)/df(ΘT

X) where f is any RX -finitely determined function
germ. The following result generalizes this equality with a weaker hypothesis on f .

Theorem 2.3. Let (X, 0) be an IHS determined by φ : (Cn, 0) → (C, 0) and f ∈ On

such that μ−
BR(f, X) <∞, then:

(i) ΘX

ΘT
X

≈ df(ΘX)+IX

df(ΘT
X)+IX

;

(ii) ΘX

ΘT
X

≈ df(ΘX)

df(ΘT
X)

;

(iii) df(ΘX) ∩ IX = JfIX ;

(iv) On

Jf ≈ df(Θ−
X)

df(ΘX) ;

(v) df(ΘX) : IX = Jf ;

(vi) df(ΘT
X) : IX = Jf,

where IX is the ideal generated by φ.

Proof. (i) The homomorphism Ψ : ΘX → df(ΘX) + IX defined by Ψ(ξ) = df(ξ)
induces the isomorphism

Ψ :
ΘX

ΘT
X

→ df(ΘX) + IX
df(ΘT

X) + IX
.

In fact, it is enough to show that Ψ−1(df(ΘT
X) + IX) ⊂ ΘT

X . Let ξ ∈ Ψ−1(df(ΘT
X) +

IX) then Ψ(ξ) ∈ df(ΘT
X) + IX , that is, there exist η ∈ ΘT

X and μ, λ ∈ On, such that

{
df(ξ − η) = μφ

dφ(ξ − η) = λφ
,

then

(
μφ
λφ

)
∈

〈⎛
⎜⎜⎝
∂f

∂xi

∂φ

∂xi

⎞
⎟⎟⎠ i = 1, . . . , n

〉
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and

I2

⎛
⎜⎜⎝
μφ

∂f

∂x1
· · · ∂f

∂xn

λφ
∂φ

∂x1
· · · ∂φ

∂xn

⎞
⎟⎟⎠ = I2

⎛
⎜⎜⎝
∂f

∂x1
· · · ∂f

∂xn

∂φ

∂x1
· · · ∂φ

∂xn

⎞
⎟⎟⎠ = J(f, φ).

Therefore ∣∣∣∣∣∣∣∣
μ

∂f

∂xi

λ
∂φ

∂xi

∣∣∣∣∣∣∣∣
φ ∈ J(f, φ)

and since φ is regular in On

J(f, φ) then∣∣∣∣∣∣∣∣
μ

∂f

∂xi

λ
∂φ

∂xi

∣∣∣∣∣∣∣∣
∈ J(f, φ), i = 1, . . . , n.

By Lemma 2.2, λ ∈ Jφ and using [9, Lemma 3.1], ξ ∈ ΘT
X .

(ii) This equality also was proved in [9] with the additional hypothesis that f is
RX -finitely determined.
The epimorphism ψ : ΘX → df(ΘX) defined by ψ(ξ) = df(ξ) induces the isomor-
phism

ψ :
ΘX

ΘT
X

→ df(ΘX)
df(ΘT

X)
.

In fact, let ξ ∈ ker(ψ), then there exist λ ∈ On, such that{
df(ξ) = 0
dφ(ξ) = λφ

The rest is similar to the proof of (i).

(iii) Let ξ ∈ ΘX be such that df(ξ) ∈ IX , then there exist μ, λ ∈ On, such that{
df(ξ) = μφ

dφ(ξ) = λφ

Using the same techniques of the proof of (i), we have

df(ΘX) ∩ IX ⊂ JfIX .

The other inclusion is immediate.

(iv) It follows from the isomorphisms

df(Θ−
X)

df(ΘX)
=

df(ΘX) + IX
df(ΘX)

≈ IX
df(ΘX) ∩ IX

(iii)
=

IX
JfIX

≈ On

Jf
.
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(v) It follows from (iii).

(vi) It follows from (v) and Jf ⊂ df(ΘT
X) : IX .

�

Remark 2.4. The items (ii) and (iv) of Theorem 2.3 seem a bit peculiar since from (iv)
the quotient df(Θ−

X)/df(ΘX) does not depend on (X, 0) while from (ii), df(ΘX)/df(ΘT
X)

does not depend on f . Moreover by [9, 13] if (X, 0) is an IHS determined by φ : (Cn, 0) →
(C, 0), then dimC

ΘX

ΘT
X

= τ(X, 0), therefore

dimC

df(ΘX) + IX
df(ΘT

X) + IX
= dimC

df(ΘX)
df(ΘT

X)
= τ(X, 0).

The next theorem is one of the main results of this work.

Theorem 2.5. Let (X, 0) is an IHS determined by φ : (Cn, 0) → (C, 0) and f ∈ On

be a function germ such that μ−
BR(f, X) <∞. Then (φ, f) defines an ICIS and

μ(f−1(0) ∩X, 0) = μ−
BR(f,X) + τ(X, 0) − μ(X, 0).

Proof. We consider the exact sequence

0 −→ df(Θ−
X)

df(ΘT
X) + IX

i−→ On

df(ΘT
X) + IX

π−→ On

df(Θ−
X)

−→ 0.

Since (X, 0) is an IHS

df(ΘT
X) = J(f, φ) + JfIX ,

hence

mu−BR(f,X) = dimC

On

J(f, φ) + IX
− dimC

df(ΘX) + IX
df(ΘT

X) + IX

= μ(f−1(0) ∩X, 0) + μ(X, 0) − τ(X, 0).

The last equality is a consequence of the Lê-Greuel formula [3] and Theorem 2.3 (i). �

3. The relative Bruce–Roberts number of a function with isolated
singularity

In this section, (X, 0) is an IHS and f ∈ On is a function germ RX -finitely determined,
then all the results in the previous section are true in this case. In particular from (iv)
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of Theorem 2.3

μ(f) = dimC

df(Θ−
X)

df(ΘX)
. (4)

Therefore, by the exact sequence

0 −→ df(Θ−
X)

df(ΘX)
i−→ On

df(ΘX

π−→ On

df(Θ−
X)

−→ 0,

we conclude that
μBR(f,X) = μ(f) + μ−

BR(f,X).

The following example shows that the characterization of the Milnor number (4) is not
true anymore when (X, 0) is an ICIS with codimension higher than one.

Example 3.1. Let (X, 0) be an ICIS determined by φ(x, y, z) = (x3 + x2y2 + y7 +
z3, xyz), and f(x, y, z) = xy − z4, f is a RX -finitely determined and

3 = μ(f) �= dimC

df(Θ−
X)

df(ΘX)
= 6.

As a consequence of the characterization of the Milnor number (4), we prove that
LC(X)− is Cohen–Macaulay when (X, 0) is an IHS.

The logarithmic characteristic variety, LC(X), is defined as follows. Suppose the vector
fields δ1, . . . , δm generate ΘX on some neighbourhood U of 0 in C

n. Let T ∗
UC

n be the
restriction of the cotangent bundle of C

n to U . We define LCU (X) to be

LCU (X) = {(x, ξ) ∈ T ∗
UC

n : ξ(δi(x)) = 0, i = 1, . . . ,m}.
Then LC(X) is the germ of LCU (X) in T ∗

C
n along T ∗

0 C
n, the cotangent space to C

n at
0. As LC(X) is independent of the choice of the vector fields δi then it is a well-defined
germ of analytic subvariety in T ∗

C
n (see [4, 11]).

If (X, 0) is holonomic with logarithmic strata X0, . . . , Xk then LC(X) has dimension
n, and its irreducible components are Y0, . . . , Yk, with Yi = N∗Xi as set-germs, where
N∗Xi is the closure of the conormal bundle N∗Xi of Xi in C

n (see [4, Proposition 1.14]).
When (X, 0) has codimension higher than one, Bruce and Roberts proved that LC(X)

is not Cohen–Macaulay. Then they consider the subspace of LC(X) obtained by deleting
the component Y0 that corresponds to the stratum X0 = C

n \X, that is

LC(X)− =
k+1⋃
i=1

Yi

and as set-germs,

LC(X)− =
k+1⋃
i=1

N∗Xi.

An interesting fact about LC(X)− is that it may be Cohen–Macaulay even when LC(X)
is not Cohen–Macaulay, for example, if (X, 0) is a weighted homogeneous ICIS, then
LC(X)− is Cohen–Macaulay, [4].
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Proposition 3.2. Let (X, 0) be an IHS, then LC(X)− is Cohen–Macaulay.

Proof. We consider (0, p) ∈ LC(X)−, then (0, p) ∈ LC(X) and there exists f ∈ On

such that df(0) = p. In [9], we proved that LC(X) is Cohen–Macaulay. Therefore, by
[4, Proposition 5.8],

μBR(f,X) =
k+1∑
i=0

mini = m0n0 +
k+1∑
i=1

mini = μ(f) +
k+1∑
i=1

mini.

where ni is the number of critical points of a Morsification of f in Xi and mi is the
multiplicity of irreducible component Yi. Thus,

μ−
BR(f,X) = μBR(f,X) − dimC

df(Θ−
X)

df(ΘX)
= μBR(f,X) − μ(f) =

k+1∑
i=1

mini.

and by [4, Proposition 5.11], we obtain that LC(X)− is Cohen–Macaulay. �

Remark 3.3. We remark that in the proof of the previous proposition, we just used
that if (X, 0) ⊂ (Cn, 0) is a hypersurface such that dimC df(Θ−

X)/df(ΘX) = μ(f) for
all f RX -finitely determined then LC(X)− is Cohen–Macaulay if and only if LC(X) is
Cohen–Macaulay.

4. Polar curves and logarithmic characteristic varieties

It is important to know whether the logarithmic characteristic variety of an analytic
variety is Cohen–Macaulay. In [9], we showed that this is the case for IHS. For non-
isolated singularities, it is an open problem. In this section, we give one more step in
order to solve it: we study the polar curve and the relative polar curve of a holomorphic
function germ over a holonomic analytic variety. We show that these curves are Cohen–
Macaulay if and only if the logarithmic characteristic variety and the relative logarithmic
characteristic variety (respectively) are Cohen–Macaulay. As a consequence, we have the
principle of conservation for the Bruce–Roberts number.

Definition 4.1. Let f ∈ On be a RX -finitely determined function germ and F : (Cn ×
C, 0) → (C, 0), F (t, x) = ft(x),

a 1-parameter deformation of f . The polar curve of F in (X, 0) is

C = {(x, t) ∈ C
n × C; dft(δi(x)) = 0, ∀i = 1, . . . ,m},

where ΘX = 〈δ1, . . . , δm〉.

In [1], it was proved that if LC(X) is Cohen–Macaulay then the polar curve C is
Cohen–Macaulay.

Proposition 4.2. Let (X, 0) be a holonomic analytic variety. If any RX -finitely deter-
mined function germ has a Morsification whose polar curve is Cohen–Macaulay then
LC(X) is Cohen–Macaulay.
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Proof. Let (0, p) ∈ LC(X), then there exists an RX -finitely determined function germ
f ∈ On, such that df(0) = p. Let F : (Cn × C) → (C, 0), F (x, t) = ft(x),

be a Morsification of f . By hypothesis On+1/dft(ΘX) is Cohen–Macaulay of dimension
1, then by the principle of conservation of number

μBR(f,X) =
k+1∑
i=0

∑
x∈Σft∩Xi

dimC

On,x

dft(ΘX,x)
=

k+1∑
i=0

∑
x∈Σft∩Xi

mi =
k+1∑
i=0

nimi

because if x ∈ Xi is a Morse critical point of ft, then μBR(ft, X)x = mi, and by
[4, Proposition 5.8], LC(X) is Cohen–Macaulay. �

When LC(X) is Cohen–Macaulay, we have

μBR(f,X) =
∑

x∈Cn

μBR(ft,X)x,

where ft is any 1-parameter deformation of f .
Our purpose now is to prove similar results for LC(X)−. We define the relative polar

curve by
C− = {(x, t) ∈ C; x ∈ X},

where C is the polar curve of F in (X, 0).
The proof of the next proposition is similar to the one of [1, Theorem 3.7].

Proposition 4.3. Let (X, 0) be a holonomic analytic variety. If LC(X)− is Cohen–
Macaulay then the relative polar curve of every 1-parameter deformation of any
RX -finitely determined function germ is Cohen–Macaulay.

For the converse, we need the following lemma, which is the analogous of [4, Proposition
5.12] for the relative Bruce–Roberts number.

Lemma 4.4. Let (X, 0) be a holonomic analytic variety and f ∈ On. We assume
that f restricted to (X, 0) is a Morse function. If x ∈ X is a critical point of f
then μBR(f, X)−x = mα, where mα is the multiplicity of the irreducible component Yα

corresponding to the logarithmic stratum Xα which contains x.

Proof. Let Zi = Yi \
⋃

j �=i Yj where Yi are the irreducible components of LC(X). We
know from [4, Proposition 5.12] that LC(X) is Cohen–Macaulay at points in Zi, i =
1, . . . , k + 1. We see that LC(X)− coincides locally with LC(X) and hence, LC(X)− is
also Cohen–Macaulay at points in Zi, i = 1, . . . , k + 1.

In fact, let (0, p) ∈ Zi with i �= 0, then (x, p) �∈ Y0. Let V := T ∗
C

n \ Y0, which is an
open neighbourhood of (x, p). Obviously, we have the equality of sets

LC(X) ∩ V = LC(X)− ∩ V.
Moreover, let I, I− and Ij be the ideals which define LC(X), LC(X)− and Yj , j =
0, . . . , k + 1, respectively. Then,

I = I0 ∩ I1 ∩ · · · ∩ Ik+1, I− = I1 ∩ · · · ∩ Ik+1 and I0 = 〈p1, . . . , pn〉.
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Since p �= 0, I0 is the total ring at (x, p), so we have an equality between germs of complex
spaces.

Finally, we have

μBR(f,X)−x
(∗)
=

k+1∑
i=1

mini
(∗∗)
= mα.

The equalities (∗) and (∗∗) are consequences of [4, Propositions 5.11 and 5.2], respectively.
�

We are ready now to prove the converse of Proposition 4.3.

Proposition 4.5. Let (X, 0) be a holonomic analytic variety. If the relative polar
curve of every 1-parameter deformation of any RX -finitely determined function germ is
Cohen–Macaulay then LC(X)− is Cohen–Macaulay.

Proof. Let (0, p) ∈ LC(X)−, then there exists an RX -finitely determined function
germ f ∈ On, such that df(0) = p. Let F : (Cn × C, 0) → (C, 0) be a Morsification of f
and set ft(x) = F (x, t).

By hypothesis On+1/dft(Θ−
X) is Cohen–Macaulay of dimension 1. By the principle of

the conservation of the multiplicity,

dimC

On

df(Θ−
X)

=
k+1∑
i=1

∑
x∈Σf∩Xi

dimC

On,x

dft(Θ−
X,x)

=
k+1∑
i=1

∑
x∈Σf∩Xi

mi =
k+1∑
i=1

nimi,

because if x ∈ Xi is a Morse critical point of ft, then μBR(ft, X)−x = mi by Lemma 4.4.
By [4, Proposition 5.11], LC(X)− is Cohen–Macaulay. �

As a consequence of the previous result,

μ−
BR(f,X) =

∑
x∈Cn

μ−
BR(ft,X)x,

where ft is any 1-parameter deformation of f .

5. An example with non-isolated singularities

Given natural numbers 0 < k ≤ n, we can see Ok as a subring of On and Θk as a subset
of Θn. We fix (x1, . . . , xn) as the system of coordinates in On and we use (x1, . . . , xk)
as the coordinate system of Ok and (xk+1, . . . , xn) as the one in On−k.

Let (X, 0) ⊂ (Ck, 0) be an analytic variety. We denote by (X̃, 0) ⊂ (Cn, 0) the inclu-
sion of (X, 0) in (Cn, 0). Then ΘX̃ = OnΘX + 〈 ∂

∂xk+1
, . . . , ∂

∂xn
〉 and LC(X̃) = LC(X) ×

C
n−t.
Consequently, if LC(X) is Cohen–Macaulay then LC(X̃) is Cohen–Macaulay.
In particular, if (X, 0) is an IHS then LC(X̃) is Cohen–Macaulay.
Let F ∈ On a function germ with isolated singularity such that F = f + g with f ∈ Ok

and g ∈ On−k. It is known by Sebastiani and Thom [12] that μ(F ) = μ(f)μ(g). We prove
a similar result for the Bruce–Roberts number,

μBR(F, X̃) = μ(g)μBR(f,X).
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Proposition 5.1. Let I and J be ideals in Ok and On−k, respectively. If we denote
by I ′ = IOn and J ′ = JOn the respective induced ideals in On, then

dimC

On

I ′ + J ′ <∞if and only if dimC

Ok

I
<∞ and dimC

On−k

J
<∞.

Moreover, if these dimensions are finite then

dimC

On

I ′ + J ′ =
(

dimC

Ok

I

) (
dimC

On−k

J

)
.

Proof. The equivalence follows from

V (I ′) = V (I) × C
n−t, V (J ′) = C

t × V (J) and V (I ′ + J ′) = V (I) × V (J).

For the equality, by hypothesis there exist positive integer numbers k′, ki and kj such
that

Mk′
n ⊂ I ′ + J ′, Mki

k ⊂ I, ;Mkj

n−k ⊂ J,

where M� is the maximal ideal of O�. Let r = max{k′, ki, kj}, then

On

I ′ + J ′ ≈
On

Mr
n

I′+J ′
Mr

n

=
C[z1,z2]
Mr

n

I′′+J ′′
Mr

n

=
C[z1, z2]
I ′′ + J ′′ ,

where z1 = (x1, . . . , xk), z2 = (xk+1, . . . , xn) and I ′′ and J ′′ are the ideals in C[z1, z2]
generated by the r − 1-jets of the generators of I and J , respectively. Analogously,

Ok

I
≈ C[z1]

I ′′′
and

On−t

J
≈ C[z2]

J ′′′ ,

where I ′′′ and J ′′′ are the ideals in C[z1] and C[z2] generated by the r − 1-jets of the
generators of I and J , respectively. Finally, the equality follows from

C[z1]
I ′′′

⊗C

C[z2]
J ′′′ =

C[z1, z2]
I ′′ + J ′′ ,

where ⊗C denotes the tensor product, see [7, Proposition 2.7.13]. �

We observe that the previous result gives a simpler proof to the equality of [12]
about the Milnor numbers. Finally, we relate the Bruce–Roberts numbers μBR(F, X̃)
and μBR(f, X).

Corollary 5.2. Let (X̃, 0), and (X, 0) as before, and

F : (Cn, 0) → (C, 0),

(z1, z2) �→ f(z1) + g(z2)

then:
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(a) F is RX̃ -finitely determined if, and only if, f is RX -finitely determined and g has
isolated singularity.

(b) If F is RX̃ -finitely determined, μBR(F, X̃) = μ(g)μBR(f, X).

Proof. It is a consequence of the characterization of ΘX̃ and the previous theorem. �
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