$\label{eq:proceedings} Proceedings \ of the \ Edinburgh \ Mathematical \ Society \ (2021) \ {\bf 64}, \ 662-674 \\ {\rm doi:} 10.1017/{\rm S0013091521000432}$

THE RELATIVE BRUCE–ROBERTS NUMBER OF A FUNCTION ON A HYPERSURFACE

B. K. LIMA-PEREIRA¹, J. J. NUÑO-BALLESTEROS^{2,3}, B. ORÉFICE-OKAMOTO⁴ AND J. N. TOMAZELLA⁴

¹Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, 13560-905 São Carlos, SP, Brazil (barbarapereira@estudante.ufscar.br)

²Departament de Matemàtiques, Universitat de València, Campus de Burjassot, 46100 Burjassot, Spain

³Departamento de Matemática, Universidade Federal da Paraíba, CEP 58051-900 João Pessoa PB, Brazil (juan.nuno@uv.es)

⁴ Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, 13560-905 São Carlos, SP, Brazil (brunaorefice@ufscar.br, jntomazella@ufscar.br)

(Received 05 May 2021; first published online 19 August 2021)

Abstract We consider the relative Bruce–Roberts number $\mu_{BR}^{-}(f, X)$ of a function on an isolated hypersurface singularity (X, 0). We show that $\mu_{BR}^{-}(f, X)$ is equal to the sum of the Milnor number of the fibre $\mu(f^{-1}(0) \cap X, 0)$ plus the difference $\mu(X, 0) - \tau(X, 0)$ between the Milnor and the Tjurina numbers of (X, 0). As an application, we show that the usual Bruce–Roberts number $\mu_{BR}(f, X)$ is equal to $\mu(f) + \mu_{BR}^{-}(f, X)$. We also deduce that the relative logarithmic characteristic variety $LC(X)^{-}$, obtained from the logarithmic characteristic variety LC(X) by eliminating the component corresponding to the complement of X in the ambient space, is Cohen–Macaulay.

Keywords: isolated hypersurface singularity; Bruce-Roberts number; logarithmic characteristic variety

2020 Mathematics subject classification: Primary 32S25; Secondary 58K40; 32S50

1. Introduction

Let (X, 0) be a germ of complex analytic set in \mathbb{C}^n and $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ a holomorphic function germ. The Bruce–Roberts number of f with respect to (X, 0) was introduced by Bruce and Roberts in [4] and is defined as

$$\mu_{\mathrm{BR}}(f, X) = \dim_{\mathbb{C}} \frac{\mathcal{O}_n}{\mathrm{d}f(\Theta_X)},$$

where \mathcal{O}_n is the local ring of holomorphic functions $(\mathbb{C}^n, 0) \to \mathbb{C}$, df is the differential of f and Θ_X is the \mathcal{O}_n -submodule of Θ_n of vector fields on $(\mathbb{C}^n, 0)$ which are tangent

© The Author(s), 2021. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

to (X, 0) at its regular points. If I_X is the ideal of \mathcal{O}_n of functions vanishing on (X, 0), then

$$\Theta_X = \{ \xi \in \Theta_n \mid \mathrm{d}h(\xi) \in I_X, \ \forall h \in I_X \}.$$

In particular, when $X = \mathbb{C}^n$, $df(\Theta_X)$ is the Jacobian ideal of f and thus, $\mu_{BR}(f, X)$ coincides with the classical Milnor number $\mu(f)$. We remark that Θ_X is also denoted in some papers by $Der(-\log X)$, following Saito's notation [11]. The main properties of $\mu_{BR}(f, X)$ are the following (see [4]):

- (a) $\mu_{BR}(f, X)$ is invariant under the action of the group \mathcal{R}_X of diffeomorphisms ϕ : $(\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ which preserve (X, 0);
- (b) $\mu_{BR}(f, X) < \infty$ if and only if f is finitely determined with respect to the \mathcal{R}_X -equivalence;
- (c) $\mu_{BR}(f, X) < \infty$ if and only if f restricted to each logarithmic stratum is a submersion in a punctured neighbourhood of the origin.

In general, $\mu_{BR}(f, X)$ is not so easy to compute as the classical Milnor number. The main difficulty comes from the computation of the module Θ_X and most of the times, it is necessary to use a symbolic computer system like SINGULAR [6]. If (X, 0) is an isolated complete intersection singularity (ICIS) and $\mu_{BR}(f, X)$ is finite, then $(f^{-1}(0) \cap X, 0)$ is an ICIS [2, Proposition 2.8], therefore it has well-defined Milnor number. In a previous paper, [9] we considered the case that (X, 0) is an isolated hypersurface singularity (IHS). We showed that

$$\mu_{\rm BR}(f,X) = \mu(f) + \mu(f^{-1}(0) \cap X, 0) + \mu(X,0) - \tau(X,0), \tag{1}$$

where μ and τ are the Milnor and the Tjurina numbers, respectively. Thus, (1) gives an easy way to compute $\mu_{BR}(f, X)$ in terms of well-known invariants. The formula (1) was also obtained independently in [8] and previously in [10] when (X, 0) is weighted homogeneous.

An important application of (1) allowed us to conclude in [9] that the logarithmic characteristic variety LC(X) is Cohen–Macaulay. We recall that LC(X) is the subvariety of the cotangent bundle $T^*\mathbb{C}^n$ of pairs (x, α) such that $\alpha(\xi_x) = 0$, for all $\xi \in \Theta_X$ and for all x in a neighbourhood of 0. When (X, 0) is holonomic, LC(X) is Cohen–Macaulay if and only if for any Morsification f_t of f we have

$$\mu_{\rm BR}(f,X) = \sum_{\alpha} m_{\alpha} n_{\alpha},$$

where n_{α} is the number of critical points of f_t restricted to each logarithmic stratum X_{α} and m_{α} is the multiplicity of LC(X) along the irreducible component Y_{α} associated with X_{α} (see [4, Corollary 5.8]). When (X, 0) is an IHS, it always has a finite number of logarithmic strata (i.e., it is holonomic in Saito's terminology) given by $X_0 = \mathbb{C}^n \setminus X, X_i \setminus \{0\}$, with $i = 1, \ldots, k$ and $X_{k+1} = \{0\}$, where X_1, \ldots, X_k are the irreducible components of X at 0.

In this paper, we are interested in another important invariant introduced in [4],

$$\mu_{\rm BR}^-(f,X) = \dim_{\mathbb{C}} \frac{\mathcal{O}_n}{\mathrm{d}f(\Theta_X) + I_X},$$

which we call here the relative Bruce–Roberts number. This is an invariant of the restricted function $f:(X, 0) \to (\mathbb{C}, 0)$ under the induced \mathcal{R}_X -action. In fact, as commented in [4], it is equal to the codimension of the \mathcal{R}_X -orbit. Moreover, $\mu_{BR}^-(f, X)$ is finite if and only if f restricted to each logarithmic stratum (excluding X_0) is a submersion in a punctured neighbourhood of the origin.

A natural question is about the relationship between $\mu_{BR}(f, X)$ and $\mu_{BR}(f, X)$. It is shown in [4] that if (X, 0) is a weighted homogeneous ICIS then

$$\mu_{BB}^{-}(f,X) = \mu(f^{-1}(0) \cap X, 0).$$

This, combined with (1) when (X, 0) is a weighted homogeneous IHS, gives that

$$\mu_{BR}(f,X) = \mu(f) + \mu_{BR}^{-}(f,X).$$
(2)

Our main result in §2 is that if (X, 0) is any IHS and $\mu_{BR}^{-}(f, X)$ is finite, then

$$\mu_{BR}^{-}(f,X) = \mu(f^{-1}(0) \cap X, 0) + \mu(X,0) - \tau(X,0).$$
(3)

In particular, (2) also holds when $\mu_{BR}(f, X)$ is finite, even when (X, 0) is not weighted homogeneous. We also show in Example 3.1 that (2) is not true for higher codimension ICIS.

The relative logarithmic characteristic variety $LC(X)^-$ is obtained from LC(X) by eliminating the component Y_0 associated with the stratum $X_0 = \mathbb{C}^n \setminus X$. In [4], they showed that LC(X) is never Cohen–Macaulay when (X, 0) has codimension > 1 along the points on X_0 , but $LC(X)^-$ is always Cohen–Macaulay when (X, 0) is a weighted homogeneous ICIS (of any codimension). Again, Cohen–Macaulayness of $LC(X)^-$ is interesting since it implies that

$$\mu_{BR}^{-}(f,X) = \sum_{\alpha \neq 0} m_{\alpha} n_{\alpha},$$

for any Morsification f_t of f. As an application of (3), we show in §3 that $LC(X)^-$ is also Cohen–Macaulay for any IHS (X, 0) (not necessarily weighted homogeneous).

In §4, we consider any holonomic variety (X, 0) and study characterizations of Cohen– Macaulayness of LC(X) and $LC(X)^-$ in terms of the relative polar curve associated with a Morsification f_t of f. Finally, in §5, we give a formula which generalizes the classical Thom–Sebastiani formula for the Milnor number of a function defined as a sum of functions with separated variables.

2. The relative Bruce–Roberts number

The main goal of this section is to prove the equality (3). The next lemma is inspired by [2, Proposition 2.8].

https://doi.org/10.1017/S0013091521000432 Published online by Cambridge University Press

Lemma 2.1. Let (X, 0) be an IHS determined by $\phi : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ and $f \in \mathcal{O}_n$. The map $(\phi, f) : (\mathbb{C}^n, 0) \to (\mathbb{C}^2, 0)$ defines an ICIS if and only if $\mu_{BR}^-(f, X) < \infty$.

Proof. If $(\phi, f) : (\mathbb{C}^n, 0) \to (\mathbb{C}^2, 0)$ defines an ICIS then $\mu_{BB}^-(f, X)$ is finite because

$$V(\mathrm{d}f(\Theta_X^-)) \subset V(J(f,\phi) + I_X) \subset \{0\}.$$

For the converse, if $\mu_{BR}^-(f, X) < \infty$ then the restriction of f to each logarithmic stratum, excluding $\mathbb{C}^n \setminus X$ is non-singular. The proof is now the same of Proposition 2.8 in [2]. \Box

The following technical lemma will be used in the proof of the next theorem. Given a matrix A with entries in a ring R, we denote by $I_k(A)$ the ideal in R generated the $k \times k$ minors of A.

Lemma 2.2. Let $f, g \in \mathcal{O}_n$ be such that dim V(J(f, g)) = 1 and $V(Jf) = \{0\}$, and consider the following matrices

$$A = \begin{pmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \\ \frac{\partial g}{\partial x_1} & \cdots & \frac{\partial g}{\partial x_n} \end{pmatrix}, \quad A' = \begin{pmatrix} \mu & \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \\ \lambda & \frac{\partial g}{\partial x_1} & \cdots & \frac{\partial g}{\partial x_n} \end{pmatrix},$$

where $\lambda, \mu \in \mathcal{O}_n$. Let M, M' be the submodules of \mathcal{O}_n^2 generated by the columns of A, A' respectively. If $I_2(A) = I_2(A')$ then M = M'.

Proof. We see A and A' as homomorphims of modules over $R := \mathcal{O}_n$:

$$A \colon \mathbb{R}^n \longrightarrow \mathbb{R}^2, \quad A' \colon \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^2.$$

We consider the *R*-module $R^2/M = \operatorname{coker}(A)$, which has support $V(I_2(A)) = V(J(f, g))$. Therefore, $\dim(R^2/M) = 1 = n - (n - 2 + 1)$ and hence it is Cohen–Macaulay (see [5]). In particular, it is unmixed. Now, M'/M is a submodule of R^2/M , so the associated primes $\operatorname{Ass}(M'/M)$ are included in $\operatorname{Ass}(R^2/M)$. If $M'/M \neq 0$ then $\operatorname{Ass}(M'/M) \neq \emptyset$ and it follows that $\dim(M'/M) = 1$.

Let U be a neighbourhood of 0 in \mathbb{C}^n such that 0 is the only critical point of f. For all $x \in U \setminus \{0\}$, there exist $i_0 \in \{1, \ldots, n\}$, such that $\partial f / \partial x_{i_0}(x) \neq 0$. We may suppose $i_0 = 1$. Making elementary column operations in the matrices A and A', we obtain

$$B = \begin{pmatrix} 1 & 0 & \dots & 0 \\ c_1 & c_2 & \dots & c_n \end{pmatrix}, \quad B' = \begin{pmatrix} \mu & 1 & 0 & \dots & 0 \\ \lambda & c_1 & c_2 & \dots & c_n \end{pmatrix}$$

such that

$$I_2(A) = I_2(B), \quad I_2(A') = I_2(B'), \text{ Im}(A) = \text{Im}(B) \text{ and } \text{Im}(A') = \text{Im}(B').$$

By hypothesis $I_2(A) = I_2(A')$ and consequently $\langle c_2, \ldots, c_n \rangle = \langle \mu c_1 - \lambda, c_2, \ldots, c_n \rangle$. This implies $\lambda = \mu c_1 + \alpha_2 c_2 + \cdots + \alpha_n c_n$, for some $\alpha_2, \cdots, \alpha_n \in \mathbb{R}$. Thus,

$$\begin{pmatrix} \mu \\ \lambda \end{pmatrix} = \mu \begin{pmatrix} 1 \\ c_1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 \\ c_2 \end{pmatrix} + \dots + \alpha_n \begin{pmatrix} 0 \\ c_n \end{pmatrix}$$

and hence $(M'/M)_x = 0$. This shows that $\text{Supp}(M'/M) \subset \{0\}$ and hence, M' = M. \Box

Given an IHS (X, 0) defined by a holomorphic function germ $\phi : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$, we consider the \mathcal{O}_n -submodule of the trivial vectors fields, denoted by Θ_X^T , generated by

$$\phi \frac{\partial}{\partial x_i}, \frac{\partial \phi}{\partial x_j} \frac{\partial}{\partial x_k} - \frac{\partial \phi}{\partial x_k} \frac{\partial}{\partial x_j}, \text{ with } i, j, k = 1, \dots, n; k \neq j.$$

This module was related to the Tjurina number of (X, 0) in [9, 13]. By using different approaches, it is shown that $\tau(X, 0) = \dim_{\mathbb{C}} \Theta_X / \Theta_X^T$. Moreover, in [9], we also proved that $\tau(X, 0) = \dim_{\mathbb{C}} df(\Theta_X) / df(\Theta_X^T)$ where f is any \mathcal{R}_X -finitely determined function germ. The following result generalizes this equality with a weaker hypothesis on f.

Theorem 2.3. Let (X, 0) be an IHS determined by $\phi : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ and $f \in \mathcal{O}_n$ such that $\mu_{BR}^-(f, X) < \infty$, then:

(i) $\frac{\Theta_X}{\Theta_X^T} \approx \frac{df(\Theta_X) + I_X}{df(\Theta_X^T) + I_X};$

(ii)
$$\frac{\Theta_X}{\Theta_X^T} \approx \frac{df(\Theta_X)}{df(\Theta_X^T)};$$

(iii) $df(\Theta_X) \cap I_X = JfI_X;$

(iv)
$$\frac{\mathcal{O}_n}{Jf} \approx \frac{df(\Theta_X^-)}{df(\Theta_X)}$$

(v) $df(\Theta_X): I_X = Jf;$

(vi)
$$df(\Theta_X^T): I_X = Jf$$
,

where I_X is the ideal generated by ϕ .

Proof. (i) The homomorphism $\Psi : \Theta_X \to df(\Theta_X) + I_X$ defined by $\Psi(\xi) = df(\xi)$ induces the isomorphism

$$\overline{\Psi}: \frac{\Theta_X}{\Theta_X^T} \to \frac{\mathrm{d}f(\Theta_X) + I_X}{\mathrm{d}f(\Theta_X^T) + I_X}.$$

In fact, it is enough to show that $\Psi^{-1}(df(\Theta_X^T) + I_X) \subset \Theta_X^T$. Let $\xi \in \Psi^{-1}(df(\Theta_X^T) + I_X)$ then $\Psi(\xi) \in df(\Theta_X^T) + I_X$, that is, there exist $\eta \in \Theta_X^T$ and $\mu, \lambda \in \mathcal{O}_n$, such that

$$\begin{cases} \mathrm{d}f(\xi - \eta) = \mu\phi \\ \mathrm{d}\phi(\xi - \eta) = \lambda\phi \end{cases}$$

then

$$\begin{pmatrix} \mu\phi\\\lambda\phi \end{pmatrix} \in \left\langle \begin{pmatrix} \frac{\partial f}{\partial x_i}\\ \frac{\partial\phi}{\partial x_i} \end{pmatrix} \quad i = 1, \dots, n \right\rangle$$

https://doi.org/10.1017/S0013091521000432 Published online by Cambridge University Press

and

$$I_2 \begin{pmatrix} \mu \phi & \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \\ \lambda \phi & \frac{\partial \phi}{\partial x_1} & \cdots & \frac{\partial \phi}{\partial x_n} \end{pmatrix} = I_2 \begin{pmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \\ \frac{\partial \phi}{\partial x_1} & \cdots & \frac{\partial \phi}{\partial x_n} \end{pmatrix} = J(f, \phi).$$

Therefore

$$\begin{vmatrix} \mu & \frac{\partial f}{\partial x_i} \\ \lambda & \frac{\partial \phi}{\partial x_i} \end{vmatrix} \phi \in J(f,\phi)$$

and since ϕ is regular in $\frac{\mathcal{O}_n}{J(f,\phi)}$ then

$$\begin{vmatrix} \mu & \frac{\partial f}{\partial x_i} \\ \lambda & \frac{\partial \phi}{\partial x_i} \end{vmatrix} \in J(f,\phi), \quad i = 1, \dots, n.$$

By Lemma 2.2, $\lambda \in J\phi$ and using [9, Lemma 3.1], $\xi \in \Theta_X^T$.

(ii) This equality also was proved in [9] with the additional hypothesis that f is \mathcal{R}_X -finitely determined. The epimorphism $\psi : \Theta_X \to df(\Theta_X)$ defined by $\psi(\xi) = df(\xi)$ induces the isomorphism

$$\overline{\psi}: \frac{\Theta_X}{\Theta_X^T} \to \frac{\mathrm{d}f(\Theta_X)}{\mathrm{d}f(\Theta_X^T)}.$$

In fact, let $\xi \in \ker(\psi)$, then there exist $\lambda \in \mathcal{O}_n$, such that

$$\begin{cases} \mathrm{d}f(\xi) = 0\\ \mathrm{d}\phi(\xi) = \lambda\phi \end{cases}$$

The rest is similar to the proof of (i).

(iii) Let $\xi \in \Theta_X$ be such that $df(\xi) \in I_X$, then there exist $\mu, \lambda \in \mathcal{O}_n$, such that

$$\begin{cases} \mathrm{d}f(\xi) = \mu\phi \\ \mathrm{d}\phi(\xi) = \lambda\phi \end{cases}$$

Using the same techniques of the proof of (i), we have

$$\mathrm{d}f(\Theta_X) \cap I_X \subset JfI_X.$$

The other inclusion is immediate.

(iv) It follows from the isomorphisms

$$\frac{\mathrm{d}f(\Theta_X^-)}{\mathrm{d}f(\Theta_X)} = \frac{\mathrm{d}f(\Theta_X) + I_X}{\mathrm{d}f(\Theta_X)} \approx \frac{I_X}{\mathrm{d}f(\Theta_X) \cap I_X} \stackrel{(iii)}{=} \frac{I_X}{JfI_X} \approx \frac{\mathcal{O}_n}{Jf}$$

- (v) It follows from (iii).
- (vi) It follows from (v) and $Jf \subset df(\Theta_X^T) : I_X$.

Remark 2.4. The items (ii) and (iv) of Theorem 2.3 seem a bit peculiar since from (iv) the quotient $df(\Theta_X^-)/df(\Theta_X)$ does not depend on (X, 0) while from (ii), $df(\Theta_X)/df(\Theta_X^T)$ does not depend on f. Moreover by [9, 13] if (X, 0) is an IHS determined by $\phi : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$, then $\dim_{\mathbb{C}} \frac{\Theta_X}{\Theta_X^T} = \tau(X, 0)$, therefore

$$\dim_{\mathbb{C}} \frac{\mathrm{d}f(\Theta_X) + I_X}{\mathrm{d}f(\Theta_X^T) + I_X} = \dim_{\mathbb{C}} \frac{\mathrm{d}f(\Theta_X)}{\mathrm{d}f(\Theta_X^T)} = \tau(X, 0).$$

The next theorem is one of the main results of this work.

Theorem 2.5. Let (X, 0) is an IHS determined by $\phi : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ and $f \in \mathcal{O}_n$ be a function germ such that $\mu_{BR}^-(f, X) < \infty$. Then (ϕ, f) defines an ICIS and

$$\mu(f^{-1}(0) \cap X, 0) = \mu_{BR}^{-}(f, X) + \tau(X, 0) - \mu(X, 0).$$

Proof. We consider the exact sequence

$$0 \longrightarrow \frac{\mathrm{d}f(\Theta_X^-)}{\mathrm{d}f(\Theta_X^T) + I_X} \xrightarrow{i} \frac{\mathcal{O}_n}{\mathrm{d}f(\Theta_X^T) + I_X} \xrightarrow{\pi} \frac{\mathcal{O}_n}{\mathrm{d}f(\Theta_X^-)} \longrightarrow 0.$$

Since (X, 0) is an IHS

$$\mathrm{d}f(\Theta_X^T) = J(f,\phi) + JfI_X,$$

hence

$$mu_{BR}^{-}(f,X) = \dim_{\mathbb{C}} \frac{\mathcal{O}_n}{J(f,\phi) + I_X} - \dim_{\mathbb{C}} \frac{\mathrm{d}f(\Theta_X) + I_X}{\mathrm{d}f(\Theta_X^T) + I_X}$$
$$= \mu(f^{-1}(0) \cap X, 0) + \mu(X, 0) - \tau(X, 0).$$

The last equality is a consequence of the Lê-Greuel formula [3] and Theorem 2.3 (i). \Box

3. The relative Bruce–Roberts number of a function with isolated singularity

In this section, (X, 0) is an IHS and $f \in \mathcal{O}_n$ is a function germ \mathcal{R}_X -finitely determined, then all the results in the previous section are true in this case. In particular from (iv)

668

of Theorem 2.3

$$\mu(f) = \dim_{\mathbb{C}} \frac{\mathrm{d}f(\Theta_X^-)}{\mathrm{d}f(\Theta_X)}.$$
(4)

Therefore, by the exact sequence

$$0 \longrightarrow \frac{\mathrm{d}f(\Theta_X^-)}{\mathrm{d}f(\Theta_X)} \xrightarrow{i} \frac{\mathcal{O}_n}{\mathrm{d}f(\Theta_X)} \xrightarrow{\pi} \frac{\mathcal{O}_n}{\mathrm{d}f(\Theta_X^-)} \longrightarrow 0,$$

we conclude that

$$\mu_{BR}(f, X) = \mu(f) + \mu_{BR}^{-}(f, X).$$

The following example shows that the characterization of the Milnor number (4) is not true anymore when (X, 0) is an ICIS with codimension higher than one.

Example 3.1. Let (X, 0) be an ICIS determined by $\phi(x, y, z) = (x^3 + x^2y^2 + y^7 + z^3, xyz)$, and $f(x, y, z) = xy - z^4$, f is a \mathcal{R}_X -finitely determined and

$$3 = \mu(f) \neq \dim_{\mathbb{C}} \frac{\mathrm{d}f(\Theta_X^-)}{\mathrm{d}f(\Theta_X)} = 6.$$

As a consequence of the characterization of the Milnor number (4), we prove that $LC(X)^{-}$ is Cohen–Macaulay when (X, 0) is an IHS.

The logarithmic characteristic variety, LC(X), is defined as follows. Suppose the vector fields $\delta_1, \ldots, \delta_m$ generate Θ_X on some neighbourhood U of 0 in \mathbb{C}^n . Let $T_U^*\mathbb{C}^n$ be the restriction of the cotangent bundle of \mathbb{C}^n to U. We define $LC_U(X)$ to be

$$LC_U(X) = \{ (x,\xi) \in T_U^* \mathbb{C}^n : \xi(\delta_i(x)) = 0, i = 1, \dots, m \}.$$

Then LC(X) is the germ of $LC_U(X)$ in $T^*\mathbb{C}^n$ along $T_0^*\mathbb{C}^n$, the cotangent space to \mathbb{C}^n at 0. As LC(X) is independent of the choice of the vector fields δ_i then it is a well-defined germ of analytic subvariety in $T^*\mathbb{C}^n$ (see [4, 11]).

If (X, 0) is holonomic with logarithmic strata X_0, \ldots, X_k then LC(X) has dimension n, and its irreducible components are Y_0, \ldots, Y_k , with $Y_i = \overline{N^*X_i}$ as set-germs, where $\overline{N^*X_i}$ is the closure of the conormal bundle N^*X_i of X_i in \mathbb{C}^n (see [4, Proposition 1.14]).

When (X, 0) has codimension higher than one, Bruce and Roberts proved that LC(X) is not Cohen–Macaulay. Then they consider the subspace of LC(X) obtained by deleting the component Y_0 that corresponds to the stratum $X_0 = \mathbb{C}^n \setminus X$, that is

$$LC(X)^{-} = \bigcup_{i=1}^{k+1} Y_i$$

and as set-germs,

$$LC(X)^{-} = \bigcup_{i=1}^{k+1} \overline{N^* X_i}.$$

An interesting fact about $LC(X)^-$ is that it may be Cohen–Macaulay even when LC(X) is not Cohen–Macaulay, for example, if (X, 0) is a weighted homogeneous ICIS, then $LC(X)^-$ is Cohen–Macaulay, [4].

Proposition 3.2. Let (X, 0) be an IHS, then $LC(X)^-$ is Cohen-Macaulay.

Proof. We consider $(0, p) \in LC(X)^-$, then $(0, p) \in LC(X)$ and there exists $f \in \mathcal{O}_n$ such that df(0) = p. In [9], we proved that LC(X) is Cohen–Macaulay. Therefore, by [4, Proposition 5.8],

$$\mu_{BR}(f,X) = \sum_{i=0}^{k+1} m_i n_i = m_0 n_0 + \sum_{i=1}^{k+1} m_i n_i = \mu(f) + \sum_{i=1}^{k+1} m_i n_i.$$

where n_i is the number of critical points of a Morsification of f in X_i and m_i is the multiplicity of irreducible component Y_i . Thus,

$$\mu_{BR}^{-}(f,X) = \mu_{BR}(f,X) - \dim_{\mathbb{C}} \frac{\mathrm{d}f(\Theta_{X}^{-})}{\mathrm{d}f(\Theta_{X})} = \mu_{BR}(f,X) - \mu(f) = \sum_{i=1}^{k+1} m_{i}n_{i}.$$

 \square

and by [4, Proposition 5.11], we obtain that $LC(X)^{-}$ is Cohen-Macaulay.

Remark 3.3. We remark that in the proof of the previous proposition, we just used that if $(X, 0) \subset (\mathbb{C}^n, 0)$ is a hypersurface such that $\dim_{\mathbb{C}} df(\Theta_X)/df(\Theta_X) = \mu(f)$ for all $f \mathcal{R}_X$ -finitely determined then $LC(X)^-$ is Cohen–Macaulay if and only if LC(X) is Cohen–Macaulay.

4. Polar curves and logarithmic characteristic varieties

It is important to know whether the logarithmic characteristic variety of an analytic variety is Cohen–Macaulay. In [9], we showed that this is the case for IHS. For non-isolated singularities, it is an open problem. In this section, we give one more step in order to solve it: we study the polar curve and the relative polar curve of a holomorphic function germ over a holonomic analytic variety. We show that these curves are Cohen–Macaulay if and only if the logarithmic characteristic variety and the relative logarithmic characteristic variety (respectively) are Cohen–Macaulay. As a consequence, we have the principle of conservation for the Bruce–Roberts number.

Definition 4.1. Let $f \in \mathcal{O}_n$ be a \mathcal{R}_X -finitely determined function germ and $F : (\mathbb{C}^n \times \mathbb{C}, 0) \to (\mathbb{C}, 0), F(t, x) = f_t(x),$

a 1-parameter deformation of f. The polar curve of F in (X, 0) is

$$C = \{ (x,t) \in \mathbb{C}^n \times \mathbb{C}; df_t(\delta_i(x)) = 0, \forall i = 1, \dots, m \},\$$

where $\Theta_X = \langle \delta_1, \ldots, \delta_m \rangle$.

In [1], it was proved that if LC(X) is Cohen-Macaulay then the polar curve C is Cohen-Macaulay.

Proposition 4.2. Let (X, 0) be a holonomic analytic variety. If any \mathcal{R}_X -finitely determined function germ has a Morsification whose polar curve is Cohen–Macaulay then LC(X) is Cohen–Macaulay.

Proof. Let $(0, p) \in LC(X)$, then there exists an \mathcal{R}_X -finitely determined function germ $f \in \mathcal{O}_n$, such that df(0) = p. Let $F : (\mathbb{C}^n \times \mathbb{C}) \to (\mathbb{C}, 0), F(x, t) = f_t(x)$,

be a Morsification of f. By hypothesis $\mathcal{O}_{n+1}/df_t(\Theta_X)$ is Cohen–Macaulay of dimension 1, then by the principle of conservation of number

$$\mu_{BR}(f,X) = \sum_{i=0}^{k+1} \sum_{x \in \Sigma f_t \cap X_i} \dim_{\mathbb{C}} \frac{\mathcal{O}_{n,x}}{\mathrm{d}f_t(\Theta_{X,x})} = \sum_{i=0}^{k+1} \sum_{x \in \Sigma f_t \cap X_i} m_i = \sum_{i=0}^{k+1} n_i m_i$$

because if $x \in X_i$ is a Morse critical point of f_t , then $\mu_{BR}(f_t, X)_x = m_i$, and by [4, Proposition 5.8], LC(X) is Cohen–Macaulay.

When LC(X) is Cohen–Macaulay, we have

$$\mu_{BR}(f, X) = \sum_{x \in \mathbb{C}^n} \mu_{BR}(f_t, X)_x,$$

where f_t is any 1-parameter deformation of f.

Our purpose now is to prove similar results for $LC(X)^{-}$. We define the relative polar curve by

$$C^{-} = \{ (x, t) \in C; \ x \in X \},\$$

where C is the polar curve of F in (X, 0).

The proof of the next proposition is similar to the one of [1, Theorem 3.7].

Proposition 4.3. Let (X, 0) be a holonomic analytic variety. If $LC(X)^-$ is Cohen-Macaulay then the relative polar curve of every 1-parameter deformation of any \mathcal{R}_X -finitely determined function germ is Cohen-Macaulay.

For the converse, we need the following lemma, which is the analogous of [4, Proposition 5.12] for the relative Bruce–Roberts number.

Lemma 4.4. Let (X, 0) be a holonomic analytic variety and $f \in \mathcal{O}_n$. We assume that f restricted to (X, 0) is a Morse function. If $x \in X$ is a critical point of f then $\mu_{BR}(f, X)_x^- = m_\alpha$, where m_α is the multiplicity of the irreducible component Y_α corresponding to the logarithmic stratum X_α which contains x.

Proof. Let $Z_i = Y_i \setminus \bigcup_{j \neq i} Y_j$ where Y_i are the irreducible components of LC(X). We know from [4, Proposition 5.12] that LC(X) is Cohen–Macaulay at points in Z_i , $i = 1, \ldots, k+1$. We see that $LC(X)^-$ coincides locally with LC(X) and hence, $LC(X)^-$ is also Cohen–Macaulay at points in Z_i , $i = 1, \ldots, k+1$.

In fact, let $(0, p) \in Z_i$ with $i \neq 0$, then $(x, p) \notin Y_0$. Let $V := T^* \mathbb{C}^n \setminus Y_0$, which is an open neighbourhood of (x, p). Obviously, we have the equality of sets

$$LC(X) \cap V = LC(X)^{-} \cap V.$$

Moreover, let I, I^- and I_j be the ideals which define LC(X), $LC(X)^-$ and Y_j , $j = 0, \ldots, k+1$, respectively. Then,

$$I = I_0 \cap I_1 \cap \dots \cap I_{k+1}, \quad I^- = I_1 \cap \dots \cap I_{k+1} \text{ and } I_0 = \langle p_1, \dots, p_n \rangle$$

Since $p \neq 0$, I_0 is the total ring at (x, p), so we have an equality between germs of complex spaces.

Finally, we have

$$\mu_{BR}(f,X)_x^- \stackrel{(*)}{=} \sum_{i=1}^{k+1} m_i n_i \stackrel{(**)}{=} m_\alpha.$$

The equalities (*) and (**) are consequences of [4, Propositions 5.11 and 5.2], respectively. \Box

We are ready now to prove the converse of Proposition 4.3.

Proposition 4.5. Let (X, 0) be a holonomic analytic variety. If the relative polar curve of every 1-parameter deformation of any \mathcal{R}_X -finitely determined function germ is Cohen–Macaulay then $LC(X)^-$ is Cohen–Macaulay.

Proof. Let $(0, p) \in LC(X)^-$, then there exists an \mathcal{R}_X -finitely determined function germ $f \in \mathcal{O}_n$, such that df(0) = p. Let $F : (\mathbb{C}^n \times \mathbb{C}, 0) \to (\mathbb{C}, 0)$ be a Morsification of f and set $f_t(x) = F(x, t)$.

By hypothesis $\mathcal{O}_{n+1}/\mathrm{d}f_t(\Theta_X^-)$ is Cohen–Macaulay of dimension 1. By the principle of the conservation of the multiplicity,

$$\dim_{\mathbb{C}} \frac{\mathcal{O}_n}{\mathrm{d}f(\Theta_X^-)} = \sum_{i=1}^{k+1} \sum_{x \in \Sigma f \cap X_i} \dim_{\mathbb{C}} \frac{\mathcal{O}_{n,x}}{\mathrm{d}f_t(\Theta_{X,x}^-)} = \sum_{i=1}^{k+1} \sum_{x \in \Sigma f \cap X_i} m_i = \sum_{i=1}^{k+1} n_i m_i,$$

because if $x \in X_i$ is a Morse critical point of f_t , then $\mu_{BR}(f_t, X)_x^- = m_i$ by Lemma 4.4. By [4, Proposition 5.11], $LC(X)^-$ is Cohen–Macaulay.

As a consequence of the previous result,

$$\mu_{BR}^-(f,X) = \sum_{x \in \mathbb{C}^n} \mu_{BR}^-(f_t,X)_x,$$

where f_t is any 1-parameter deformation of f.

5. An example with non-isolated singularities

Given natural numbers $0 < k \le n$, we can see \mathcal{O}_k as a subring of \mathcal{O}_n and Θ_k as a subset of Θ_n . We fix (x_1, \ldots, x_n) as the system of coordinates in \mathcal{O}_n and we use (x_1, \ldots, x_k) as the coordinate system of \mathcal{O}_k and (x_{k+1}, \ldots, x_n) as the one in \mathcal{O}_{n-k} .

Let $(X, 0) \subset (\mathbb{C}^k, 0)$ be an analytic variety. We denote by $(\tilde{X}, 0) \subset (\mathbb{C}^n, 0)$ the inclusion of (X, 0) in $(\mathbb{C}^n, 0)$. Then $\Theta_{\tilde{X}} = \mathcal{O}_n \Theta_X + \langle \frac{\partial}{\partial x_{k+1}}, \dots, \frac{\partial}{\partial x_n} \rangle$ and $LC(\tilde{X}) = LC(X) \times \mathbb{C}^{n-t}$.

Consequently, if LC(X) is Cohen–Macaulay then LC(X) is Cohen–Macaulay.

In particular, if (X, 0) is an IHS then LC(X) is Cohen–Macaulay.

Let $F \in \mathcal{O}_n$ a function germ with isolated singularity such that F = f + g with $f \in \mathcal{O}_k$ and $g \in \mathcal{O}_{n-k}$. It is known by Sebastiani and Thom [12] that $\mu(F) = \mu(f)\mu(g)$. We prove a similar result for the Bruce-Roberts number,

$$\mu_{BR}(F,X) = \mu(g)\mu_{BR}(f,X).$$

Proposition 5.1. Let I and J be ideals in \mathcal{O}_k and \mathcal{O}_{n-k} , respectively. If we denote by $I' = I\mathcal{O}_n$ and $J' = J\mathcal{O}_n$ the respective induced ideals in \mathcal{O}_n , then

$$\dim_{\mathbb{C}} \frac{\mathcal{O}_n}{I'+J'} < \infty \text{ if and only if } \dim_{\mathbb{C}} \frac{\mathcal{O}_k}{I} < \infty \text{ and } \dim_{\mathbb{C}} \frac{\mathcal{O}_{n-k}}{J} < \infty.$$

Moreover, if these dimensions are finite then

$$\dim_{\mathbb{C}} \frac{\mathcal{O}_n}{I' + J'} = \left(\dim_{\mathbb{C}} \frac{\mathcal{O}_k}{I} \right) \left(\dim_{\mathbb{C}} \frac{\mathcal{O}_{n-k}}{J} \right).$$

Proof. The equivalence follows from

$$V(I') = V(I) \times \mathbb{C}^{n-t}, \quad V(J') = \mathbb{C}^t \times V(J) \text{ and } V(I'+J') = V(I) \times V(J).$$

For the equality, by hypothesis there exist positive integer numbers k', k_i and k_j such that

$$\mathcal{M}_n^{k'} \subset I' + J', \quad \mathcal{M}_k^{k_i} \subset I, \; ; \mathcal{M}_{n-k}^{k_j} \subset J,$$

where \mathcal{M}_{ℓ} is the maximal ideal of \mathcal{O}_{ℓ} . Let $r = \max\{k', k_i, k_j\}$, then

$$\frac{\mathcal{O}_n}{I'+J'} \approx \frac{\frac{\mathcal{O}_n}{\mathcal{M}_n^r}}{\frac{I'+J'}{\mathcal{M}_n^r}} = \frac{\frac{\mathbb{C}[z_1,z_2]}{\mathcal{M}_n^r}}{\frac{I''+J''}{\mathcal{M}_n^r}} = \frac{\mathbb{C}[z_1,z_2]}{I''+J''},$$

where $z_1 = (x_1, \ldots, x_k)$, $z_2 = (x_{k+1}, \ldots, x_n)$ and I'' and J'' are the ideals in $\mathbb{C}[z_1, z_2]$ generated by the r-1-jets of the generators of I and J, respectively. Analogously,

$$\frac{\mathcal{O}_k}{I} \approx \frac{\mathbb{C}[z_1]}{I'''} \text{ and } \frac{\mathcal{O}_{n-t}}{J} \approx \frac{\mathbb{C}[z_2]}{J'''},$$

where I''' and J''' are the ideals in $\mathbb{C}[z_1]$ and $\mathbb{C}[z_2]$ generated by the r-1-jets of the generators of I and J, respectively. Finally, the equality follows from

$$\frac{\mathbb{C}[z_1]}{I'''} \otimes_{\mathbb{C}} \frac{\mathbb{C}[z_2]}{J'''} = \frac{\mathbb{C}[z_1, z_2]}{I'' + J''}$$

where $\otimes_{\mathbb{C}}$ denotes the tensor product, see [7, Proposition 2.7.13].

We observe that the previous result gives a simpler proof to the equality of [12] about the Milnor numbers. Finally, we relate the Bruce–Roberts numbers $\mu_{BR}(F, \tilde{X})$ and $\mu_{BR}(f, X)$.

Corollary 5.2. Let $(\tilde{X}, 0)$, and (X, 0) as before, and

$$F: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0),$$
$$(z_1, z_2) \mapsto f(z_1) + g(z_2)$$

then:

- (a) F is $\mathcal{R}_{\tilde{X}}$ -finitely determined if, and only if, f is \mathcal{R}_X -finitely determined and g has isolated singularity.
- (b) If F is $\mathcal{R}_{\tilde{X}}$ -finitely determined, $\mu_{BR}(F, \tilde{X}) = \mu(g)\mu_{BR}(f, X)$.

Proof. It is a consequence of the characterization of $\Theta_{\tilde{X}}$ and the previous theorem. \Box

Acknowledgements. The first author was partially supported by CAPES. The second author was partially supported by MICINN Grant PGC2018–094889–B–I00 and by GVA Grant AICO/2019/024. The third and fourth authors were partially supported by FAPESP Grant 2019/07316-0.

References

- 1. I. AHMED, M. A. S. RUAS AND J. N. TOMAZELLA, Invariants of topological relative right equivalences, *Math. Proc. Cambridge Philos. Soc. (Print)* **155** (2013), 1–9.
- 2. C. BIVIÁ-AUSINA AND M. A. S. RUAS, Mixed Bruce-Roberts number, *Proc. Edinb. Math. Soc.* **63**(2) (2020), 456–474.
- E. BRIESKORN AND G. M. GREUEL, Singularities of complete intersections, Manifolds-Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973), University of Tokyo Press, (1975), 123– 129
- 4. J. W. BRUCE AND R. M. ROBERTS, Critical points of functions on analytic varieties, *Topology* **27**(1) (1988), 57–90.
- 5. D. A. BUCHSBAUM AND D. S. RIM, A generalized Koszul complex. II. Depth and multiplicity, *Trans. Am. Math. Soc.* **111** (1964), 197–224.
- 6. W. DECKER, G. M. GREUEL, G. PFISTER AND H. SCHÖNEMANN, SINGULAR 4-1-1 a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2018)
- 7. G. M. GREUEL AND G. PFISTER, A singular introduction to commutative algebra. Second extended edition. With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann (Springer, Berlin, 2008)
- K. KOURLIOUROS, The Milnor-Palamodov theorem for functions on isolated hypersurface singularities, Bull. Braz. Math. Soc., New Seri. 52 (2020), 405–413. doi:10.1007/s00574-020-00209-6.
- J. J. NUÑO-BALLESTEROS, B. ORÉFICE-OKAMOTO, B. K. LIMA-PEREIRA AND J. N. TOMAZELLA, The Bruce-Roberts Number of A Function on A Hypersurface with Isolated Singularity, Q. J. Math. 71(3) (2020), 1049–1063.
- J. J. NUÑO-BALLESTEROS, B. ORÉFICE-OKAMOTO AND J. N. TOMAZELLA, The Bruce-Roberts number of a function on a weighted homogeneous hypersurface, Q. J. Math. 64(1) (2013), 269–280.
- K. SAITO, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 27 (1980), 265–291.
- M. SEBASTIANI AND R. THOM, Un résultat sur la monodromie, (French) Invent. Math. 13 (1971), 90–96.
- S. TAJIMA, On polar varieties, logarithmic vector fields and holonomic D-modules, Recent development of micro-local analysis for the theory of asymptotic analysis, 41–51, RIMS Kôkyûroku Bessatsu, B40 (Research Institute for Mathematical Sciences (RIMS), Kyoto 2013)