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Abstract

This paper studies estimation of stochastic block models with Rissanen’s minimum
description length (MDL) principle in the dense graph asymptotics. We focus on the
problem of model specification, i.e., identification of the number of blocks. Refinements
of the true partition always decrease the code part corresponding to the edge placement,
and thus a respective increase of the code part specifying the model should overweight
that gain in order to yield a minimum at the true partition. The balance between these
effects turns out to be delicate. We show that the MDL principle identifies the true parti-
tion among models whose relative block sizes are bounded away from zero. The results
are extended to models with Poisson-distributed edge weights.
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1. Introduction

Let us define a stochastic block model (SBM) as a random graph G = (V, E), whose
structure is defined by a partition ξ = {A1, . . . , Ak} of V and by a symmetric k × k matrix
D = (dij)k

i,j=1 of real numbers dij ∈ [0, 1] as follows: for every pair {v, w} of distinct vertices
of V such that v ∈ Ai, w ∈ Aj, {v, w} ∈ E with probability dij, and all Bernoulli random vari-
ables evw = ewv = 1{{v,w}∈E} are independent. For unambiguity, we also set the irreducibility
condition that no two rows of D are equal, i.e.,

for all i, j, i < j, there is qij ∈ {1, . . . , k} such that diqij �= djqij . (1.1)

An SBM is said to be irreducible if its partition ξ and matrix D satisfy (1.1). This condition is
necessary for identifiability, because a random graph generated by an irreducible block model
with (ξ, D) can be equivalently generated by any reducible model obtained by refining ξ , i.e.,
splitting one or more of its blocks into smaller sets.
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A slightly different variant of SBMs has been defined by first drawing the sizes of blocks
A(n)

i as independent Poisson random variables and then proceeding with the matrix D as before.
SBMs have also been called generalized random graphs; the case of trivial partition ξ = {V}
yields a random graph with edge probability d11.

SBMs were first defined for community modeling in [8], and community detection has
remained their main application as well as a source of research problems—see e.g. [7, 10, 13].
However, large networks appear now in almost all imaginable application areas, and there are
grounds to consider SBMs as a rather generic form of the separation of structure and random-
ness in large real-world systems. Indeed, Szemerédi’s regularity lemma [22], a fundamental
result in graph theory, states that any large enough graph can be approximated by an SBM-like
block structure, where the randomness is replaced by pseudo-randomness in terms of so-called
ε-regularity, with a number of blocks k that depends only on ε. This remarkable combinatorial
fact has been utilized to solve hard problems in many areas of mathematics (see e.g. [1, 9]).
Looking for SBM-like structures in large real-world graphs and matrices is a generic way to
obtain low-dimensional approximations and compressed representations of them.

The typical case of SBM estimation is that the graph G = (V, E) is observed, but the parti-
tion ξ is unobserved. For any fixed candidate partition, a corresponding estimate of the matrix
D of edge densities is obtained immediately as consisting of empirical means.

If the number of blocks k is known (and the irreducibility condition (1.1) holds, as we
always assume), the partition can be identified accurately by several methods, when the graph
is sufficiently dense. In mathematical theorems, one considers asymptotics, and dense graph
asymptotics means that the densities dij remain the same when the graph size n = |V| grows
to infinity, the relative block sizes staying fixed. The main estimation techniques are max-
imum likelihood fitting, where the optimization may utilize expectation maximization (e.g.
[3]), simulated annealing or Markov chain Monte Carlo algorithms, and spectral methods (e.g.
[2, 10]). In sparse graph asymptotics, where all densities decrease to zero while keeping their
proportions, identification of the partition may be possible or impossible even with known k,
depending on the proportions of the densities; see [7, 10]. Gao et al. [5] consider achieving the
minimal possible fraction of errors in SBM estimation. Their work is mostly relevant for the
sparse case and when k is known.

We focus on the case called model selection, where k is unknown, and on the dense graph
setting. In practical tasks of grouping real-world data, it is often a major challenge to select
the ‘right’ partition size k. Intuitively, the optimal choice of k should strike a balance between
the degree of pseudo-randomness of the edge-level structures and the model complexity spec-
ified by the size of the partition. A popular device has been the Akaike information criterion
(AIC), which has been applied to block model estimation in, e.g., [11]. The AIC simply adds
the ‘number of model parameters’ to the maximal log-likelihood and chooses the model that
minimizes the sum.

We apply a more refined information-theoretic approach, Rissanen’s minimum description
length (MDL) principle (see [6]), according to which the quality of a model should be mea-
sured by the length of the bit string that it yields for unique encoding of the data. In our case,
the data consist of the graph G, and the model consists of the partition ξ and the density matrix
D. Rosvall and Bergstrom [21] pointed out information theory as a natural choice for com-
munity structure analysis, grouping redundant elements into a few communities. The MDL
principle, in particular, has been applied to SBMs at least by Peixoto [14]. He derived interest-
ing estimates which indicate that there is an upper limit on the number of communities that can
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be detected, k ∼ √
n as a function of the number of vertices n. However, he did not consider

the exact identification of the number of blocks k, which is the focus of the present paper.
Wang and Bickel [23] also used information theory for likelihood-based model selection for

SBMs. Their conclusions are similar to ours. In addition, they show the validity of results in a
sparse case when the average degree grows at a polylog (polynomial in log n) rate and in the
case of degree-corrected block models. They use asymptotic distributions instead of the exact
ones that we use. The algorithmic part of their work is also different from ours. They end up
in a likelihood-based Bayesian information criterion (BIC) that is asymptotically consistent.
Along with a term that corresponds to log-likelihood, there is a term proportional to k2n log n
with some tuning coefficient that has to be defined separately in every specific case. So defined,
the BIC has a minimum at the right value of k. Instead of such a term, we prefer to use MDL
model complexity that is not case-sensitive. Our techniques are different as well.

The main contributions of this paper are the following: (i) the consequent application of
the MDL approach, providing (ii) basically simple and transparent techniques, building on
Chernoff bounds, to (iii) prove three theorems on model specification. A crucial role is played
by Theorem 2, which states that all refinements of ξ increase an MDL-based objective function
with high probability. We show that the MDL principle identifies the true partition with high
probability among models whose relative block sizes are bounded away from zero. The results
are also shown to hold with Poissonian edge weights. We have applied Poissonian block models
as a heuristic for finding regular structures in large real-world data matrices, in a method we
call regular decomposition [11, 12, 15, 17, 18].

The paper is structured as follows. Section 2 defines the main notions: SBMs and the MDL
principle. Section 3 presents our main results. The proofs are given in Section 2; some of
the auxiliary propositions may be of independent interest. Finally, the results are discussed in
Section 3. The proofs apply simple information-theoretic tools collected in Appendix A.

2. Basics and definitions

2.1. Stochastic block models

If G(V , E) is a graph, where V is the set of vertices and E is the set of edges, the link density
of a nonempty vertex set X ⊆ V is defined as

d(X) = |e(X)|(|X|
2

) , where e(X) = {{v, w} ∈ E : v, w ∈ X} ,

and |·| denotes the cardinality of a set. Similarly, the link density between two disjoint
nonempty vertex sets X, Y ⊆ V is defined as

d(X, Y) := |e(X, Y)|
|X| |Y| , where e(X, Y) = {{v, w} ∈ E : v ∈ X, w ∈ Y} .

Definition 2.1. Let ε > 0. A pair of disjoint sets A, B ⊆ V of G(V, E) is called ε-regular if, for
every X ⊆ A and Y ⊆ B such that |X| > ε |A| and |Y| > ε |B|, we have

|d(X, Y) − d(A, B)| < ε.

The notion of a (binary) stochastic block model (SBM) was defined at the very beginning
of this paper. A Poissonian block model is defined similarly except that the elements of the
matrix D are numbers in [0, ∞), and the random variables eij have Poisson distributions with
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respective parameters dij. Thanks to the independence assumption, the sums
∑

u∈X
∑

v∈Y euv

are Poisson-distributed for any disjoint X, Y ⊂ V .
A sequence of random graphs Gn = (Vn, En) presenting copies of the same SBM in different

sizes can, for definiteness, be constructed as follows.

Construction 2.1. Let γ1, . . . , γk be positive, distinct real numbers such that
∑k

i=1 γi = 1.

1. Divide the interval (0,1] into k segments

I1 = (0, γ1], I2 = (γ1, γ1 + γ2], . . . , Ik =
(

k−1∑
i=1

γi, 1

]
,

and define � = {I1, . . . , Ik}. For n = 1, 2, . . ., let the vertices of Gn be

Vn =
{

i

n
: i ∈ {1, . . . , n}

}
.

For each n, let ξn be the partition of Vn into the blocks

A(n)
i = Ii ∩ Vn, i = 1, . . . , k.

For small n, we may obtain several empty copies of the empty set numbered as blocks.

However, from some n0 on, all blocks are nonempty and ξn =
{

A(n)
1 , . . . , A(n)

k

}
is a genuine

partition of Vn. We can then generate a sequence of SBMs based on the sequence (Vn, ξn, D).

2.2. The minimum description length principle

The minimum description length (MDL) principle was introduced by J. Rissanen, inspired
by Kolmogorov’s complexity theory (see [6, 20]; our general reference on coding and infor-
mation theory is [4]). The basic idea is the following: a set D of data is optimally explained by
a model M when a combined unique encoding of (i) the model and (ii) the data as interpreted
in this model is as short as possible. An encoding means here a bijective mapping of objects to
a binary prefix code, i.e., a code where no code word is the beginning of another code word,
and any sequence of them is thus uniquely decodable.

The principle is best illustrated by our actual case, that of simple graphs. A graph G = (V, E)
with |V| = n can always be encoded as a binary string of length

(n
2

) = n(n − 1)/2, where each
binary variable corresponds to a vertex pair, and a value 1 (resp. 0) indicates an edge (resp.
absence of an edge). Thus, the MDL of G is always at most

(n
2

)
. However, G may have a

structure whose disclosure would allow a much shorter description. For example, let G be
a bipartite graph consisting of two blocks with cardinality n/2. Knowing this, it suffices to
code the edges between the blocks, which requires at most (n/2)2 bits, just half of the previ-
ous number. However, the partition must still be specified. It requires n additional bits to say
which block each vertex belongs to. On the other hand, if the overall density of G is a number
d = h/

(n
2

) �= 1/2, the edges can be encoded using only
(n

2

)
H(d) bits, where H(d) denotes the

Shannon entropy H(d) = −d log2 d − (1 − d) log2 (1 − d). (There are
(N

K

)
binary sequences of

length N that have exactly K 1s, and
(N

K

) ≤ exp (NH(K/N)); see e.g. [24, IV.2].) However, the
integer h must be encoded, and the shortest-length prefix coding for integers requires

l∗(h) = max (0, log2 (h)) + max (0, log2 log2 (h)) + · · · (2.1)

bits [6, 19].
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Definition 2.2. Denote by Mn/k the set of all irreducible (see the condition (1.1)) SBMs
(V, ξ, D) with |V| = {1, . . . , n} and ξ = {V1, . . . , Vk} such that, for i, j ∈ {1, . . . , k},

dij = hij

|Vi||Vj| , dii = hii(|Vi|
2

) , hij ∈
{
0, . . . , |Vi||Vj|

}
, hii ∈

{
0, . . . ,

(|Vi|
2

)}
.

Mn/k is called the modeling space of SBMs with n vertices and k blocks, and

Mn :=
⋃

1≤k≤n

Mn/k (2.2)

is called the modeling space of all SBMs with n vertices.

The condition that the hij be integers entails that the modeling space Mn be finite. The
models in Mn/k are parameterized by � = (ξ, D). Note that without the irreducibility condition
(1.1) there would not be a bijection between SBMs and their parameterizations.

A good model � ∈Mn/k for a graph G is one that gives the largest probability for G, and it
is called the maximum likelihood model. Denote the parameter of this model by

�̂k(G) := arg max
�∈Mn/k

P(G | �), (2.3)

where P(G | �) denotes the probability that the probabilistic model specified by � produces
G. Part of likelihood optimization is trivial: when a partition η = {A1, . . . , Ak} is considered
for a given graph G, the optimal edge probabilities are the empirical edge densities,

dij = |e(Ai, Aj)|
|Ai||Aj| , i �= j, dii = |e(Ai)|(|Ai|

2

) . (2.4)

As a result, the edge densities are always rational numbers, which explains the corresponding
definition used in Mn/k.

The nontrivial part of maximum likelihood estimation within Mn/k is to find the optimal
partition, but, as noted in the introduction, this has also been well studied in the literature.

Kraft’s inequality (e.g. [4]) implies that if letters are drawn from an alphabet with probabili-
ties p1, . . . , pN , there exists a prefix coding with code lengths �− log p1, . . . , �− log pN, and
moreover, this coding scheme minimizes the mean code length. Thus, for any probability dis-
tribution P on the space of all graphs G with n vertices, there exists a prefix coding with code
lengths �− log2 P( {G} ). In particular, to every graph G0 with |V| = n we can associate an
encoding with code lengths �− log2 P(G|�̂k(G0)) corresponding to the SBM �̂k(G0) ∈Mn/k.
However, this is not all, since in order to be able to decode we must know what particular
model was used. This means that �̂k(G0) must also be prefix-encoded, with some code length
L(�̂k(G0)). We end up with a description length called the two-part MDL [6]:

L(G) = �− log2 P(G | �̂k(G)) + L(�̂k(G)). (2.5)

A detailed implementation of this principle is proposed in the next section.

3. MDL analysis of stochastic block models

3.1. Block model codes

In the rest of this paper, we define information-theoretic functions in terms of natural log-
arithms, and certain notions (such as code lengths) should be divided by log 2 to obtain their
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values in bits. We denote by H( · ) both Shannon’s entropy function for a partition and the
entropy of a Bernoulli distribution:

H(η) = −
∑
B∈η

|B|
|V| log

|B|
|V| , H(p) = −p log p − (1 − p) log (1 − p).

Definition 3.1. A block model code of a graph G = (V, E) with respect to a partition η =
{B1, . . . , Bm} of V is a code with the structure described below. The model part is as follows:

1. The sizes of the blocks B ∈ η are given as integers.

2. The edge density d(B) inside each block B ∈ η and the edge density d(B, B′) between
each pair of distinct blocks B, B′ ∈ η are given as the numerators of the rational numbers
presenting the exact (empirical) densities.

3. For v ∈ V, define iv = ∑m
i=1 i1{v∈Bi}. The partition η is specified by encoding the

sequence (iv)v∈V by a prefix code corresponding to the membership distribution
P(i ∈ Bj) = |Bj|/n.

The data part is as follows:

4. The edges inside each block Bi ∈ η are specified by a prefix code corresponding to
random distribution of edges with density di.

5. The edges between each pair of distinct blocks Bi, Bj ∈ η are specified by a prefix code
corresponding to random distribution of edges with density dij.

Note that a block model code can be given for any graph with respect to any partition
of its vertices. Next, we shall specify the functions we use to estimate the lengths of each
of the five code parts described in Definition 3.1. Parts 3–5 present long sequences from a
finite ‘alphabet’. By classical information theory, basically Kraft’s inequality, the required code
length per element is the entropy of the distribution of the ‘letters’.

Parts 1 and 2 encode certain integers. To obtain mathematically tractable and well-behaved
estimates, we make some simplifications. Instead of Rissanen’s l∗ function (2.1), we use the
plain logarithm, and instead of the lengths of numerators of rational numbers, we use the
lengths of their denominators. (Besides simplicity, this choice has the desirable effect that the
respective code length estimates then depend only on the partition structure, not on the edge
densities.) All length estimates should be nonzero. On the other hand, we do not need to care
about ceiling functions. These considerations lead us to estimate the code length of a positive
integer N as log (1 + N). With the additional simplification

(m
2

) ≈ m2/2, the estimate of the
length of Part 2 of the code would then be

L′
2(G|η) =

∑
B∈η

log
(1 + |B|)2

2
+ 1

2

∑
B,B′∈η, B�=B′

log
(
(1 + |B|)(1 + |B′|)). (3.1)

So far we have followed the MDL methodology quite strictly, up to the above simplifications.
Now, however, we introduce a twist that is motivated only by its usefulness in proving Theorem
3.3: we strengthen the impact of Part 2 by multiplying L′

2(G|η) by |η| + 1.
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Thus, we propose to base SBM selection on the following weighted estimate of the length
of a block model code:

L(G|η) = L1(G|η) + L2(G|η) + L3(G|η) + L4(G|η) + L5(G|η), where

L1(η) =
m∑

i=1

log (1 + |Bi|),

L2(η) = (m + 1)

⎛
⎝ m∑

i=1

log
(1 + |Bi|)2

2
+

∑
i<j

log
(
(1 + |Bi|)(1 + |Bj|)

)⎞⎠ , (3.2)

L3(G|η) = |V|H(η),

L4(G|η) =
m∑

i=1

(|Bi|
2

)
H(d(Bi)),

L5(G|η) =
∑
i<j

|Bi||Bj|H(d(Bi, Bj)).

For sums of only some of the functions Li, we define L12(G|n) := L1(G|n) + L2(G|n), etc.

Proposition 3.1. For any graph G = (V, E), the model part L123(G|η) is monotonically
increasing and the data part L45(G|η) is monotonically decreasing in η with respect to
refinement of partitions. That is, for any partitions η and ζ of V such that η ≤ ζ , we have

L123(G|η) ≤ L123(G|ζ ), L45(G|η) ≥ L45(G|ζ ).

Proof. The claim concerning the model part follows from the subadditivity of log (1 + x)
for x ≥ 1 and from the monotonicity of η �→ H(η).

As regards the data part, note that the internal density of B ∈ η can be written as a convex
combination of densities related to the partition ζ ∩ B of B:

d(B) = |E(B)|(|B|
2

)

= 1(|B|
2

)
⎛
⎜⎜⎜⎜⎜⎝

∑
C∈η∩B

|E(C)| +
∑

C,C′∈ζ∩B

C �=C′

|E(C, C′)|

⎞
⎟⎟⎟⎟⎟⎠

=
∑

C∈η∩B

(|C|
2

)
(|B|

2

) d(C) + 1

2

∑
C,C′∈ζ∩B

C �=C′

|C||C′|(|B|
2

) d(C, C′).

By the concavity of H, we then have

L45(G|η) =
∑
B∈η

(|B|
2

)
H(d(B)) + 1

2

∑
B,B′∈η

B�=B′

|B||B′|H(d(B, B′)).
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≥
∑
B∈η

∑
C∈ζ∩B

(|C|
2

)
H(d(C))

+
∑
B∈η

1

2

∑
C,C′∈ζ∩B

C �=C′

|C||C′|H(d(C, C′))

+ 1

2

∑
B,B′∈η

B�=B′

∑
C∈ζ∩B

∑
C′∈ζ∩B′

|C||C′|H(d(C, C′))

= L45(G|ζ ), (3.3)

where two first sums after the inequality sign come from L4(G|η) and the third
from L5(G|η). �

Poissonian block models
Let us now consider Poissonian block models, where the entries of E are Poisson-distributed

integers. For a pair of disjoint sets A, B ⊂ V , the set
{
eij : i ∈ A, j ∈ B

}
is a sample from a

distribution R = (r	)	≥0 that is a mixture of Poisson distributions. It would be hard to encode
the sample by first estimating the unknown mixture distribution. Instead, we base the code
simply on the sample mean

eAB = 1

|A||B|
∑

i∈A, j∈B

eij

and encode
{
eij : i ∈ A, j ∈ B

}
as if it came from a Poisson distribution P = (p	) with param-

eter eAB. If the eij really came from a Poisson distribution, a value eij = 	 would, by Kraft’s
inequality, be well encoded by a code word with approximate length

− log p	 = − log

(
e	

AB

	! e−eAB

)
.

However, a mixture of different Poisson distributions is not a Poisson distribution. Denote
by R = (r	) the empirical distribution of

{
eij : i ∈ A, j ∈ B

}
; i.e., r	 is the number of eij with

value 	, divided by |A||B|. The fundamental information inequality

∑
	

r	(− log p	) ≥
∑

	

r	(− log r	) = H(R) (3.4)

implies that this encoding is suboptimal for arbitrary disjoint subsets A and B, but it is opti-
mal when A and B are blocks of the model partition ξ and R comes from a sample from a
pure Poisson distribution. (The inequality (3.4) is a special case of the nonnegativity of the
Kullback–Leibler divergence; it says that using a code recommended by Kraft’s inequality
with wrong probabilities increases the expected code word length.) This suboptimality is no
problem, because for our purposes it only improves the contrast between ξ and other partitions
of V .
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Using the above coding rule for an arbitrary partition η = {B1, . . . , Bm}, the amount of code
needed to encode all of the eij is

m∑
i=1

(|Bi|
2

)∑
	≥0

r(Bi)
	

(
− log

(
e	

Bi

	! e−eBi

))

+
∑
i<j

|Bi||Bj|
∑
	≥0

r
(BiBj)
	

(
− log

(
e	

BiBj

	! e−eBiBj

))

=
m∑

i=1

(|Bi|
2

)
(− log eBi )

∑
	≥0

	r(Bi)
	 +

∑
i<j

|Bi||Bj|(− log eBiBj )
∑
	≥0

	r
(BiBj)
	

+
m∑

i=1

(|Bi|
2

)∑
	≥0

r(Bi)
	 log 	! +

∑
i<j

|Bi||Bj|
∑
	≥0

r
(BiBj)
	 log 	!

+
m∑

i=1

(|Bi|
2

)
eBi +

∑
i<j

|Bi||Bj|eBiBj

=
m∑

i=1

(|Bi|
2

)
φ(eBi) +

∑
i<j

|Bi||Bj|φ(eBiBj) + 1

2

∑
v,w∈V, v �=w

log evw! +
∑

v,w∈V, v �=w

evw,

where

eBi :=
∑

v,w∈Bi
evw

|Bi|(|Bi| − 1)
, eBiBj :=

∑
v,w∈Bi

evw

|Bi||Bj| ,

the r-symbols refer to the empirical distribution of the evw, and φ(x) = −x log x. Now, we
define our MDL-based objective function for a Poissonian block model E with respect to any
partition η = {B1, . . . , Bm} as

L(E|η) = L0(E|η) + L1(E|η) + L2(E|η) + L3(E|η) + L4(E|η) + L5(E|η),

L0(E|η) = 1

2

∑
v,w∈V, v �=w

log evw! +
∑

v,w∈V, v �=w

evw,

L1(E|η) =
m∑

i=1

log (1 + |Bi|),

L2(E|η) = (m + 1)

⎛
⎝ m∑

i=1

log
(1 + |Bi|)2

2
+

∑
i<j

log
(
(1 + |Bi|)(1 + |Bj|)

)⎞⎠ , (3.5)

L3(E|η) = |V|H(η),

L4(E|η) =
m∑

i=1

(|Bi|
2

)
φ(eBi ),

L5(E|η) =
∑
i<j

|Bi||Bj|φ(eBiBj).
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Note that the term L0(E|η) is independent of the partition η and can be neglected when
minimizing over η. The parts L1(E|η) and L2(E|η) are copied from the case of plain graphs.

One application of Poisson block models was found in [16], which used them to analyze
graph distance matrices. This approach can help in finding communities in large and sparse
networks. In [15], it was suggested that the Poisson block model objective function (3.5) could
be used for any matrix with nonnegative entries, resulting in the same cost function as in the
integer case.

3.2. Accuracy of model selection

Our results on MDL-based model selection are summarized in the following theorem.
It is formulated in terms of the asymptotic behavior of a model sequence as specified by
Construction 1. In this framework, an event is said to happen with high probability if its
probability tends to 1 when n → ∞.

Consider a sequence of irreducible SBMs (Gn, ξn) based on a vector (γ1, . . . , γk) of relative
block sizes and a matrix D = (dij)k

i,j=1 of edge probabilities. Define

d(η, ξn) = 1

n
max
B∈η

min
A∈ξn

|B \ A|.

Thus, d(η, ξn) = 0 if and only if η is a refinement of ξn. For σ ∈ (0, 1), denote by Pn,σ the
set of partitions of Vn whose blocks each have at least σn vertices. Obviously, |η| ≤ 1/σ for
η ∈Pn,σ . If v ∈ Vn and B ∈ η, denote by ηv,B the partition obtained from η by moving vertex v
to block B (if v ∈ B, then ηv,B = η).

Theorem 3.1. Fix some minimal relative block size σ ∈ (0, mini γi). There are two numbers
ε0 > 0 and κ0 > 0 such that the following holds with high probability: Let a partition η ∈Pn,σ

satisfy |η| ≥ k and d(η, ξn) ≤ ε0. If A ∈ ξn and B ∈ η are such that 0 < |B \ A|/n ≤ ε0, choose
any vertex v ∈ B \ A. Then there is a block B′ ∈ η such that

L(Gn|ηv,B′) < L(Gn|η) − κ0n.

Moreover, L(Gn|η) ≥ L(Gn|η̃), where η̃ is a refinement of ξn.

Theorem 3.2. For any ε > 0 and positive integer m, there is a constant cε,m > 0 such that the
following holds with high probability:

For all η such that |η| ≤ m and d(η, ξn) > ε, L(Gn|ξn ∨ η)) < L(Gn|η) − cε,mn2.

Theorem 3.3. With high probability, minimizing L(η) identifies ξn among all refinements η

of ξn.

Corollary 3.1. For any σ ∈ (0, mini γi), ξn is with high probability the unique minimizer of
L(Gn|η) for η ∈Pn,σ , and

L(Gn|η) ≥ L(Gn|η ∨ ξn) ≥ L(Gn|ξn).

The corresponding results hold mutatis mutandis for Poissonian block models. The proofs
are essentially identical. The differences, required by the replacement of binomial distributions
by Poisson distributions, are indicated at the end of Appendix A.
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4. Proofs of the theorems

Through this section, we consider a sequence (Gn|ξn) of increasing versions of a fixed
SBM based on a vector (γ1, . . . , γk) of relative block sizes and a matrix D = (dij)k

i,j=1 of edge
probabilities, as specified in Construction 2.1.

Proof of Theorem 3.1. Let ε, δ > 0 be small numbers and m a positive integer to be specified.
They can be chosen so that the following hold:

• The value of ε is small enough so that η is close to η ∨ ξn when d(η, ξn) ≤ ε:

mε < δ min
i

γi. (4.1)

• All the differing link probabilities are widely separated in δ units:

δ ≤ 1

m
min

{|dij1 − dij2 | : i, j1, j2 ∈ {1, . . . , k} , dij1 �= dij2

}
. (4.2)

For any Ai, Aj ∈ ξn (possibly i = j), we then have

|d(Ai, Aj) − dij| + mε ≤ δ (4.3)

with high probability.
Let η be a partition of Vn such that d(η, ξn) ≤ ε. For i = 1, . . . , k, denote by Bi a block B ∈ η

such that |B ∩ Ai| is maximal. Then |Bi \ Ai|/n ≤ ε, and the blocks B1, . . . , Bk are distinct for
small ε. Let us number arbitrarily any remaining blocks of η = {

B1, . . . , B|η|
}
. We can further

assume that if |η| > k, then for each q > k there is a unique jq such that |Bq \ Ajq |/n ≤ ε (for
q ≤ k, let jq = q).

Assume now that v ∈ Bs \ Aj, |Bs \ Aj|/n ≤ ε, and v ∈ Ai ∩ Bs with i �= j. We choose B′ = Bi

and compare the partitions η and ηv,Bi . Let bq = |Bq|, q = 1, . . . , |η|, and B̃i = Bi ∪ {v}, B̃s =
Bs \ {v}. Then

L45(Gn|η) − L45(Gn|ηv,Bi)

=
(

bi

2

)
H(d(Bi)) +

(
bs

2

)
H(d(Bs)) −

(
bi + 1

2

)
H(d(B̃i)) −

(
bs − 1

2

)
H(d(B̃s))

+
∑
q �=i,s

[
bibqH(d(Bi, Bq)) + bsbqH(d(Bs, Bq))

− (bi + 1)bqH(d(B̃i, Bq)) + (bs − 1)bqH(d(B̃s, Bq))
]

+ bibsH(d(Bi, Bj)) − (bi + 1)(bs − 1)H(d(B̃i, B̃s)).

(4.4)

Consider first the sum over q. Leaving out the common factor bq, each term of the sum can be
written as

bs

[
H(d(Bs, Bq)) − bs − 1

bs
H(d(B̃j, Bq))

]

− (bi + 1)

[
H(d(B̃i, Bq)) − bi

bi + 1
H(d(Bi, Bq))

]

= bs

[
H

(
bs − 1

bs
d(B̃s, Bq) + 1

bs
d({v}, Bq)

)
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− bs − 1

bs
H(d(B̃s, Bq)) − 1

bs
H(d({v}, Bq))

]

− (bi + 1)

[
H

(
bi

bi + 1
d(Bi, Bq) + 1

bi + 1
d({v}, Bq)

)

− bi

bi + 1
H(d(Bi, Bq)) − 1

bi + 1
H(d({v}, Bq))

]

(note the addition and subtraction of the term H(d({v}, Bq))). Using Lemmas A.2 and A.3
(ε-regularity) and the relations (4.1), (4.2), and (4.3), the last expression can be set to be, with
high probability, arbitrarily close to the number

DB(diq‖djjq ) − DB(dijq‖dijq ) = DB(dijq‖djjq )

(the function DB( · ‖ · ), the Kullback–Leibler divergence of Bernoulli distributions, is defined
in (A.2)). Thus, the sum over q is, with high probability, close to

bq

∑
q �=i,s

DB(dijq‖djjq ).

Let us then turn to the remaining parts of (4.4), which refer to two codings of the internal
links of Bi ∪ Bs. Similarly as above, we can add and subtract terms to transform these parts
into (

bs

2

)[
H

((bs−1
2

)
(bs

2

) d(B̃s) + bs − 1(bs
2

) d({v}, B̃s)

)

−
(bs−1

2

)
(bs

2

) H(d(B̃s)) − bs − 1(bs
2

) H(d({v}, B̃s))

]

−
(

bi + 1

2

)[
H

( (bi
2

)
(bi+1

2

)d(Bi) + bi(bi+1
2

)d({v}, Bi)

)

−
(bi

2

)
(bi+1

2

)H(d(Bi)) − bi(bi+1
2

)H(d({v}, Bi))

]

+ bibs

[
H

(
bs − 1

bs
d(Bi, B̃s) + 1

bs
d({v}, Bi)

)

− bs − 1

bs
H(d(Bi, B̃s)) − 1

bs
H(d({v}, Bi))

]

− (bi + 1)(bs − 1)

[
H

(
bi

bi + 1
d(Bi, B̃s) + 1

bi + 1
d({v}, B̃s)

)

− bi

bi + 1
H(d(Bi, B̃s)) − 1

bi + 1
H(d({v}, B̃s))

]

≈ (bs − 1)DB(dij‖djj) − (bi + 1)DB(dii‖dii) + biDB(dii‖dij) − (bs − 1)DB(dij‖dij)

≈ bsDB(dij‖djj) + biDB(dii‖dij).
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By the above analysis of (4.4), we have obtained

L45(Gn|η) − L45(Gn|ηv,Bi)

≈ bq

∑
q �=i,s

DB(djjq‖dijq ) + bjDB(dij‖djj) + biDB(dii‖dij), (4.5)

where the approximation can be made arbitrarily accurate by the choice of ε, m, and δ. By the
irreducibility assumption (1.1), there is a block Ajq such that djqi �= djqj, with the possibility
that q ∈ {i, s}. It follows that at least one of the DB(x‖y) terms in (4.5) is positive. Let κ∗ =
min

{
DB(dij1‖dij2 ) : dij1 �= dij2

}
. Thus, with high probability,

L45(Gn|η) − L45(Gn|ηv,Bi) >
1

2
(κ∗ min

i
γi)n.

Choose ε0 = ε and κ0 = κ∗ mini γi/2. As regards the other code parts, it is easy to compute
that

L3(Gn|η) − L3(Gn|ηv,Bi) = n(H(η) − H(ηv,Bi)) → log
γj

γi
,

and the changes of L1 and L2 when moving from η to ηv,Bi are negligible. This concludes
the proof of the claim concerning moving a single vertex from Bj to Bi. The second claim
follows from noting that the first claim continues to hold a fortiori when moving similarly all
remaining vertices that prevent η from being a refinement of ξn.

Proof of Theorem 3.2. Fix an ε ∈ (0, 1) and let η be a partition of Vn such that d(η, ξn) > ε.
Lemma 3.1 yields that L45(Gn|η) ≥ L45(Gn|η ∨ ξn).

By assumption, there exists B ∈ η such that |B \ A| > εn for every A ∈ ξn. It is easy to see
that there must be (at least) two distinct blocks, say Ai and Aj, such that

min
{|Ai ∩ B|, |Aj ∩ B|} ≥ ε

k − 1
n. (4.6)

By the irreducibility assumption (1.1), there is a block Aq such that dqi �= dqj, with the possibil-
ity that q ∈ {i, j}. Fix an arbitrary δ > 0 to be specified later. By ε-regularity (Claim 2 of Lemma
A.3), with high probability, every choice of a partition η satisfying ∃B ∈ η ∀A ∈ ξn |B \ A| > εn
results in some blocks Ai, Aj, Aq with the above characteristics plus the regularity properties

|d(Ai ∩ B, Aq ∩ B′) − diq| ≤ δ, |d(Aj ∩ B, Aq ∩ B′) − djq| ≤ δ, (4.7)

where B′ denotes a block of η that maximizes |Aq ∩ B′| (note that because |η| ≤ m, |Aq ∩ B′| ≥
|Aq|/m). By the concavity of H,

|Ai ∩ B||Aq ∩ B′|H(d(Ai ∩ B, Aq ∩ B′))

+ |Aj ∩ B||Aq ∩ B′|H(d(Aj ∩ B, Aq ∩ B′))

= |(Ai ∪ Aj) ∩ B||Aq ∩ B′|
[ |Ai ∩ B|
|(Ai ∪ Aj) ∩ B|H(d(Ai ∩ B, Aq ∩ B′))

+ |Aj ∩ B|
|(Ai ∪ Aj) ∩ B|H(d(Aj ∩ B, Aq ∩ B′))

]

< |(Ai ∪ Aj) ∩ B||Aq ∩ B′|H(d((Ai ∪ Aj) ∩ B, Aq ∩ B′)).
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In the case that q ∈ {i, j} and B = B′, we obtain a similar equation where |Aq ∩ B| is partly
replaced by |Aq ∩ B| − 1. Because of (4.7) and (4.6), the difference between the sides of the
inequality has a positive lower bound that holds with high probability. On the other hand, this
difference is part of the overall concavity inequality (3.3) in the proof of Lemma 3.1. Thus, we
can choose cε,m so that

L45(Gn|ξn ∨ η)) < L45(Gn|η) − cε,mn2

with high probability. It remains to note that L123(Gn|ξn ∨ η)) − L123(Gn|η) is proportional to
n at most. �

Let us now turn to preparing the proof of Theorem 3.3 concerning refinements of ξn. For
any partition η ≥ ξn, write

�L(η) = L(Gn|η) − L(Gn|ξn)

and, for individual components of the code,

�L123(η) := L123(Gn|η) − L123(Gn|ξn), etc.

Lemma 4.1. For any partition η of Vn,

L2(η) = (|η| + 1)2
∑
B∈η

log (1 + |B|) − |η|(|η| + 1) log 2.

Proof. The claim is proved by elaborating (3.1) as follows:

L′
2(η) = 2

∑
B∈η

log (1 + |B|) − |η| log 2 + 1

2

∑
B∈η

∑
B′∈η\{B}

(log (1 + |B|) + log (1 + |B′|))

= 2
∑
B∈η

log (1 + |B|) − |η| log 2 +
∑
B∈η

log (1 + |B|)
∑

B′∈η\{B}
1

= 2
∑
B∈η

log (1 + |B|) − |η| log 2 + (|η| − 1)
∑
B∈η

log (1 + |B|)

= (|η| + 1)
∑
B∈η

log (1 + |B|) − |η| log 2,

where the second line follows from symmetry. �
Lemma 4.2. For η ≥ ξn,

�L2(η) ≥ (|η| − k)(|η| + k + 1) (k log n − cn(ξn) − log 2) , (4.8)

log �L23(η) ≤ log n + 2 log |η| + 2 log 2, (4.9)

where

cn(ξn) = −
∑
A∈ξ

log
1 + |A|

n
. (4.10)

Proof of (4.8). Note first that it follows from the subadditivity of log (1 + x) for x ≥ 1 that
for any η ≥ ξ we have ∑

B∈η

log (1 + |B|) ≥
∑
A∈ξn

log (1 + |A|). (4.11)
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Using Lemma 4.1 and (4.11), we have

�L2(η) =(|η| + 1)2
∑
B∈η

log (1 + |B|) − |η|(|η| + 1) log 2

− (k + 1)2
∑
A∈ξn

log (1 + |A|) + k(k + 1) log 2

≥(|η| − k)(|η| + k + 2)
∑
A∈ξn

log (1 + |A|) − (|η| − k)(|η| + k + 1) log 2

≥(|η| − k)(|η| + k + 1)

⎛
⎝∑

A∈ξn

log (1 + |A|) − log 2

⎞
⎠

=(|η| − k)(|η| + k + 1)

⎛
⎝∑

A∈ξn

(
log n + log

1 + |A|
n

)
− log 2

⎞
⎠

≥(|η| − k)(|η| + k + 1)(k log n − cn(ξn) − log 2).

Proof of (4.9) We now use (4.11) in the other direction, and note that the concavity of log x
implies ∑

B∈η

log (1 + |B|) =|η|
∑
B∈η

1

|η| log (1 + |B|)

≤|η| log

⎛
⎝∑

B∈η

1 + |B|
|η|

⎞
⎠

=|η| log

(
1 + n

|η|
)

≤ log en = n.

We then have

log �L23(η)

≤ log

(
(|η| − k)(|η| + k + 2)

∑
B∈η

log (1 + |B|) − (|η| − k)(|η| + 1) log 2 + nH(η|ξn)

)

≤ log
(

(|η| − k)(|η| + k + 2)n + n(H(η) − H(ξn))
)

≤ log
(
n
[
(|η| − k)(|η| + k + 2) + log |η|]) . �

Proposition 4.1. For any refinement η of ξn, we have

−�L45(η)
(st)≤

M(|η|)−M(k)∑
j=1

(log 2 + Yi), (4.12)

where (st) refers to stochastic order, the Yi are independent Exp(1) random variables, and

M(x) = x(x + 1)

2
. (4.13)
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Proof. Here we apply results presented in Appendix A. Denote by η ∩ Ai the subset of η

whose members are subsets of the block Ai of ξn. Writing the edge code lengths of the coarser
and finer partition similarly as in (3.3), taking the difference, and using (A.5), we obtain

− L45(η)

=
k∑

i=1

( ∑
B∈η∩Ai

(|B|
2

)
DB(d(B)‖dii) + 1

2

∑
B,B′∈η∩Ai

B�=B′

|B||B′|DB(d(B, B′)‖dii)

−
(|Ai|

2

)
DB(d(Ai)‖dii)

)

+
∑
i<j

( ∑
B∈η∩Ai

∑
B′∈η∩Aj

|B||B′|DB(d(B, B′)‖dij) − |Ai||Aj|DB(d(Ai, Aj)‖dij)

)
.

(4.14)

Applying Proposition A.4 to each term of both outer sums now yields the claim, because

k∑
i=1

(M(|η ∩ Ai|) − 1) +
∑
i<j

(|η ∩ Ai||η ∩ Aj| − 1) = M(|η|) − M(k). �

It is rather surprising that the stochastic bound (4.12) depends only on the number of blocks
in η—not on their relative sizes, nor on the overall model size n.

Proof of Theorem 3.3. Let η be a refinement of ξn and recall Lemma 3.1: refining the par-
tition with respect to ξn yields a gain, based on the concavity of H, in the data code part L45,
but additional costs in the model code part L123. We have to relate these to each other. Since
L1(Gn|η) is just a small addition to L2(Gn|η) (see Lemma 4.1), we can ignore it and focus on
L2(Gn|η) and L3(Gn|η) as regards the model part.

The refinement gain in code part L45 was bounded in Proposition 4.1 stochastically
by Exp(1) random variables. The rate function (see the beginning of Appendix A) of the
distribution Exp(1) is

IE(x) = x − 1 − log x.

Proposition 4.1 yields, using (A.1) and Proposition A.1 that for y > log 2

P (−�L45(η) > y)

≤ P

⎛
⎝M(|η|)−M(k)∑

j=1

Yi > y − (M(|η|) − M(k)) log 2

⎞
⎠

≤ exp

(
−(M(|η|) − M(k))IE

(
y − (M(|η|) − M(k)) log 2

M(|η|) − M(k)

))

≤ exp
(− y + (M(|η|) − M(k)) log y

) (
2e

M(|η|) − M(k)

)M(|η|)−M(k)

.
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For two refinements of ξn, write η′ ∼ η if the block sizes of η′ in each Ai are identical to
those of η. The number of refinements η′ of ξn with η′ ∼ η is bounded above by

exp

⎛
⎝∑

A∈ξn

|A|H(η ∩ A)

⎞
⎠ = enH(η|ξn),

where H(η ∩ A) denotes the entropy of the partition of A induced by η and H(η|ξn) the
conditional entropy of η given ξn. On the other hand, we have

�L3(η) = nH(η) − nH(ξn) = nH(η|ξn).

Let m = |η|. With y = �L′
23, the union bound and Lemma 2 yield

P

(
inf

η
′∼η

�L(η) < 0

)

≤ exp

(
nH(η|ξn) − �L3(η) − �L′

2(η) + 1

2
(m − k)(m + k + 1) log �L′

23(η)

)

·
(

2e

M(m) − M(k)

)M(m)−M(k)

≤ exp
(
− (m − k)(m + k + 1) (k log n − cn(ξn) − log 2)

+ 1

2
(m − k)(m + k + 1) log

(
n
[
(m − k)(m + k + 2) + log m

])
− 1

2
(m − k)(m + k + 1)( log ((m − k)(m + k + 1)) − 2 log 2 − 1

)

= exp
{
− (m − k)(m + k + 1)

(
k − 1

2

)
log n (4.15)

+ 1

2
(m − k)(m + k + 1)ρ1(m)

}
,

where

ρ1(m) = log

(
(m − k)(m + k + 2) + log m

(m − k)(m + k + 1) − 2cn(ξ ) − 4 log 2 − 1

)
, (4.16)

and ρ1(m) = o(m) as m → ∞.
Consider all different block size sequences of partitions η > ξ such that |η| = m:

κ11 ≥ κ12 ≥ · · · ≥ κ1σ1 ; . . . ; κk1 ≥ · · · ≥ κkσk ,

σi∑
j=1

κij = |Ai|, i = 1, . . . , k;
k∑

i=1

σi = m.

A rough upper bound of their number is

km−knm−k = exp
(

(m − k) log n + (m − k) log k
)

. (4.17)
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Indeed, choose first the number of subblocks in each block Ai of ξn, then the sizes of the
subblocks, each in decreasing order. Note that within each block of ξn, the size of its smallest
subblock is determined by the others; i.e., k of the m block sizes ‘come for free’.

Using (4.15), (4.17), and the union bound, we obtain for any integer m > k

P

(
inf

η>ξ, |η|=m
�L(η) < 0

)

≤ exp
{

(m − k) log n + (m − k) log k − (m − k)(m + k + 1)

(
k − 1

2

)
log n

+ 1

2
(m − k)(m + k + 1)ρ1(m)

}

= exp
{
− (m − k)

(
(m + k + 1)

(
k − 1

2

)
− 1

)
log n + m2ρ2(m)

}
, (4.18)

where

ρ2(m) = 1

m2

(
1

2
(m − k)(m + k + 1)ρ1(m) + (m − k) log k

)
,

and ρ2(m) = o(m). Adding and subtracting m log n and using the facts 1 ≤ k < m and k ≤ m,
(4.18) can be further bounded by

exp

(
−m log n −

[
(m − k)

(
m

2
− 1

2

)
− m

]
log m + m2ρ2(m)

)

= exp

(
−m log n −

(
1

4
log m − ρ2(m)

)
m2 − m

2

(
m

2
− k − 3 + k

m

))
.

Now define

m∗ := inf

{
m ≥ k + 1 : ρ2(m′) ≤ 1

4
log m′ ∀m′ ≥ k + 1

}
∨ (2k + 6).

Let n ≥ m∗. Then we have

P

(
inf

η>ξ, |η|=m
�L(η) < 0

)
≤

{
n−k exp

(
m2ρ2(m) + m

2
+ 4

)
, m < m∗,

e−m log n, m ≥ m∗.

Finally,

P

(
inf
η>ξ

�L(η) < 0

)
≤

n∑
m=k+1

P

(
inf

η>ξ, |η|=m
�L(η) < 0

)

≤n−k
m∗−1∑

m=k+1

em2ρ2(m)+m/2+4 +
n∑

m=m∗
e−m log n

≤const(k) · n−k + n−m∗

1 − n−1
→ 0, as n → ∞.

5. Discussion

The results of this paper provide rather clear insight into the description length optimiza-
tion landscape for SBMs. When a partition η deviates only a little from the true partition
ξn and |η| = k = |ξn|, minimization of L45(η) (likelihood maximization) in a single round by
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moving each vertex to its most appropriate block leads to exact identification of ξn (Theorem
3.1). L45 is essentially the log-likelihood function. With |η| > k, however, minimization of L45
may lead instead to some refinement of ξn, with a value L45(η) that is strictly smaller than
L45(ξn). We have quantified this additional gain, which is of order n, and shown that it is
overweighted by additional model complexity, measured by functions suggested by the MDL
principle. MDL seems outstanding as a theoretically solid way to weigh likelihood gain against
model complexity.

In the earlier paper [18], we and our coauthors analyzed several questions on regular decom-
position, i.e., our MDL-based methodology, focusing on the case in which k is known. It was
found that not a single vertex can be misplaced without a substantial penalty in L45, propor-
tional to n. In this sense, the global minimum is well separated from all local minima. However,
there is no easy way of testing whether a minimum found by a greedy algorithm is the global
one. This problem is acute with real-life data, in which there is no SBM-type ground truth. It is
an interesting theoretical challenge to determine the probability of finding the global optimum
of MDL using a greedy minimization algorithm.

The paper [18] proposed a way to speed up the L45 minimization when k is known and
n = |V| arbitrarily large. The idea is that a moderately sized random sample from V reveals the
block structure, which can be identified by some brute force method, in our case by repeating
the greedy algorithm many times with random initial partitions. The majority of the vertices
can then be placed into their blocks with very high accuracy.

In [18], we also compared regular decomposition by simulations with a spectral clustering
method. The results suggested that the spectral clustering method is sensitive to the relative
block sizes and requires them to be well balanced, whereas regular decomposition is not
sensitive to the relative block sizes.

The additional insights provided by the present paper may be useful in designing algorithms
where k is unknown and likelihood maximization is combined with some different kinds of
operations. One simple operation worth studying is that of merging blocks according to the
MDL criterion.

Practical implementation of MDL often requires a bit of art in addition to science. In the
present work, we could not prove Theorem 3.3 completely without using the slightly bigger
function L2 instead of the better motivated L′

2, although MDL is theoretically able to identify
SBM-like models exactly. Another remaining technical question is whether the restriction to
partitions with nonnegligible relative block sizes is really necessary for L(η) ≥ L(η ∨ ξn).

Appendix A. Information-theoretic preliminaries

Consider a random variable X with moment-generating function

φX(β) =E eβX,

and let DX = {β : φX(β) < ∞}. We restrict our attention to distributions of X for which DX is
an open (finite or infinite) interval. The corresponding rate function is

IX(x) = − inf
β∈DX

(log φX(β) − βx);

this is a strictly convex function with minimum 0 at E X and value +∞ outside the range of X.
For the mean X̄n = 1

n

∑n
1 Xi of independent and identically distributed copies of X, we have

IX̄n
(x) = nIX(x). (A.1)

The following inequalities are known as the Chernoff bounds for the random variable X.
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Proposition A.1 We have

P (X ≤ x) ≤ e−IX (x) for x ≤E X,

P (X ≥ x) ≥ e−IX (x) for x ≥E X.

We make frequent use of the following consequence of the Chernoff bounds. Let the convex
hull of the support of X be the closure of (x−, x+), and define

a− := lim
x↓x− IX(x) = − log P

(
X = x−)

, a+ := lim
x↑x+ IX(x) = − log P

(
X = x+)

(note that a− < ∞ if and only if the distribution of X has an atom at x−, and similarly for a+).
We can now write

IX(x) = I−
X (x)1{(x−,E X]}(x) + I+

X (x)1{[E X,x+)}(x)

+ a− · 1{x−}(x) + a+ · 1{x+}(x) + ∞ · 1{R\[x−,x+]}(x).

With the assumptions made above, the functions I−
X (x) and I+

X (x) are, respectively, bijections
from (x−,E X] and [E X, x+) to [0, a−) and [0, a+).

Lemma A.1. We have

IX(X)
(st)≤ log 2 + Y,

where
(st)≤ denotes stochastic order and Y is a random variable with distribution Exp(1).

Proof. For any z ≥ 0, we have

P (IX(X) > z) = P
(
1{X<E X}IX(X) > z or 1{X>E X}IX(X) > z

)
= P

(
1{X<E X}I−

X (X) > z
) + P

(
1{X>E X}I+

X (X) > z
)

= 1{z<a−}P
(

X < I−(−1)
X (z)

)
+ 1{z<a+}P

(
X > I+(−1)

X (z)
)

≤ 1{z<a−} exp (− IX(I−(−1)
X (z))) + 1{z<a+} exp (− IX(I+(−1)

X (z)))

≤ 2e−z

= e−(z−log 2),

where the first inequality comes from Proposition A.1. Thus,

P (IX(X) > z) ≤ min
{

1, e−(z−log 2)
}

= e−(z−log 2)+ = P (log 2 + Y > z) . �
In the case that X has the Bernoulli(p) distribution, we have

IX(x) = DB(x‖p) := x log
x

p
+ (1 − x) log

1 − x

1 − p
. (A.2)
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Lemma A.2. The first and second derivatives of the functions H(x) and x �→ DB(x‖p) are

H′(x) = log
1 − x

x
, H′′(x) = − 1

x(1 − x)
, (A.3)

D′
B(x‖p) = H′(p) − H′(x), D′′

B(x‖p) = 1

x(1 − x)
. (A.4)

Since DB(p‖p) = D′
B(p‖p) = 0 and D′′

B(p‖p) = −H′′(p), we also have

H(q) − (H(p) + H′(p)(q − p)) = −DB(q‖p), (A.5)

and

lim
n→∞ n

[
H

((
1 − 1

n

)
p + 1

n
q

)
−

((
1 − 1

n

)
H(p) + 1

n
H(q)

)]

= (q − p)H′(p) − (H(q) − H(p))

= DB(q‖p).

Proposition A.2. Let n ≥ 2, and let X1 and X2 be independent random variables with
distributions Bin(m,p) and Bin(n − m, p), respectively. Let X12 = X1 + X2 and X̄1 = X1/m,
X̄2 = X2/(n − m), X̄12 = X12/n. Then the following identities hold:

mDB(X̄1‖p) + (n − m)DB(X̄2‖p) − nDB(X̄12‖p) (A.6)

= X12DB

(
X1

X12

∥∥∥∥ m

n

)
+ (n − X12)DB

(
m − X1

n − X12

∥∥∥∥ m

n

)
(A.7)

= mDB(X̄1‖X̄12) + (n − m)DB

(
X12 − X1

n − m

∥∥∥∥ X̄12

)
. (A.8)

The identities in Proposition A.2 are obtained by writing out the full expression for (A.6)
and rearranging the log terms in two other ways. The formulae (A.7) and (A.8) are written
without X2, expressing the fact that any two of the three random variables X1, X2, and X12
contain the same information as the full triple. Note that (A.7) and (A.8) do not contain p. This
reflects the fact that the conditional distribution of X1 given X12, known as the hypergeometric
distribution, does not depend on p. The identity of (A.6) and (A.8) can be interpreted so that the
two positive terms of (A.6) measure exactly the same amount of information about p as what is
subtracted by the negative term. Moreover, (A.8) has the additional interpretation of presenting
the rate function of the hypergeometric distribution, as stated in the following proposition.

Proposition A.3. Let X have the distribution Hypergeometric(n,m,z), i.e. the conditional
distribution of X1 of Proposition A.2 given that X12 = z. The rate function of X is

IX(x) = mDB

( x

m

∥∥∥ z

n

)
+ (n − m)DB

(
z − x

n − m

∥∥∥∥ z

n

)
. (A.9)

Proof. Define the bivariate moment-generating function of (X1, X2) as

φ(α, β) =E eαX1+βX2 .

Write

P [X1 = m | X12 = z] = P (X1 = m, X2 = z − m)

P (X12 = z)
,
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and note that we can assume p = z/n. We can now derive the claim using φ(α, β) in a similar
manner as in the well-known proof of the one-dimensional Chernoff bound. �
Proposition A.4. Let k ≥ 2, and let Xi, i ∈ {1, . . . , k}, be independent random variables
with distributions Bin(ni, p), respectively. Let n = ∑k

i=1 ni, X1...j = ∑j
i=1 Xi, X̄i = Xi/ni, and

X̄1...j = X1...j/
∑j

i=1 ni. Then

k∑
i=1

niDB(X̄i‖p) − nDB(X̄1...k‖p)
(st)≤

k−1∑
i=1

(log 2 + Yi) , (A.10)

where Y1, . . . , Yk−1 are independent Exp(1) random variables.

Proof. For k = 2, the left-hand side of (A.10) equals

n1DB(X̄1‖X̄12) + n2DB

(
X12 − X1

n2

∥∥∥∥ X̄12

)
(A.11)

by Proposition A.2 For any N ∈ {0, . . . , n}, consider the conditional distribution of (A.11),
given that X12 = N. By Proposition A.3, this is the distribution of the Hypergeometric(n, n1, N)
rate function taken at the random variable X1 with the same distribution. The claim now follows
by Lemma A.1, because the stochastic upper bound does not depend on N, i.e. on the value
of X12.

For k > 2 we proceed by induction. Assume that the claim holds for k − 1 and write

k∑
i=1

niDB(X̄i‖p) − nDB(X̄12‖p)

=
k−1∑
i=1

niDB(X̄i‖p) − (n − nk)DB(X̄1...(k−1)‖p)

+ nkDB(X̄k‖p) + (n − nk)DB(X̄1...(k−1)‖p) − nDB(X̄1...k‖p).

By the induction hypothesis, the first row of the second expression is stochastically bounded by∑k−2
i=1 ( log 2 + Yi), irrespective of the value of X1...(k−1). Similarly, the second row is stochas-

tically bounded by log 2 + Yk, where Yk ∼ Exp(1), irrespective of the value of X1...k. It remains
to note that Yk can be chosen to be independent of (Y1, . . . , Yk−2), because Xk is independent
of (X1, . . . , Xk−1), and of X̄1...(k−1) in particular. �
Lemma A.3. Consider the sequence (Gn, ξn) of SBMs as in Subsection 3.2. Then the following
hold:

1. For any blocks Ai and Aj such that dij �∈ {0, 1}, it holds for an arbitrary ε > 0 with high
probability that

min
v∈Ai

|e({v}, Aj)|
|Aj| ≥ dij − n− 1

2 +ε, max
v∈Ai

|e({v}, Aj)|
|Aj| ≤ dij + n− 1

2 +ε .

2. For any ε > 0, all block pairs of the partition ξn are ε-regular (Definition 2.1) with high
probability.
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Proof. Claim 1: By Proposition A.1 and (A.4),

P

(
max
v∈Ai

|e({v}, Aj)|
|Aj| > dij + h

)

≤
∑
v∈Ai

P

( |e({v}, Aj)|
|Aj| > dij + h

)

≤ |Ai| exp
(−|Aj|DB(dij + h ‖ dij)

)
= |Ai| exp

(
−|Aj|

(
h2

2dij(1 − dij)
+ h3

6
D′′′

B (z‖dij)

))
.

The last expression converges to zero with the choice h = n− 1
2 +ε (recall that |Ai| ∼ nγi and

|Aj| ∼ nγj), which proves the claim on the maximum. The case of the minimum is symmetric.
Claim 2: Fix ε > 0 and consider any i, j. Let U1 ⊆ Ai and U2 ⊆ Aj be such that |U1| ≥ ε|Ai|

and |U2| ≥ ε|Aj|. By Proposition A.1,

P
(|d(U1, U2) − dij| > ε

) ≤ e−|U1||U2|DB(dij+ε‖dij) + e−|U1||U2|DB(dij−ε‖dij).

Let ι(ε) = min
{
DB(dij + ε‖dij), DB(dij − ε‖dij)

}
. The union bound yields

P
(∃U1 ⊆ Ai, U2 ⊆ Aj : ‖U1| ≥ ε|Ai|, |U2| ≥ ε|Aj|, ‖d(U1, U2) − dij| > ε

)
≤ 2|Ai||Aj| exp

(
(|Ai| + |Aj|) log 2 − ε2|Ai||Aj|ι(ε)

)

≤ 2n2 exp

(
n2

(
(γi + γj) log 2

n
− γiγjε

2ι(ε)

))
→ 0 as n → ∞,

because ι(ε) > 0. �

Preliminaries for the Poissonian block model
For the Poissonian block model, the function φ(x) = −x log x replaces binomial entropy in

the counterparts of code lengths L4 + L5. We indicate below how the crucial steps of the proofs
would change.

Denote by DP(b‖a) the Kullback–Leibler divergence between the distributions Poisson(a)
and Poisson(b),

DP(b‖a) = a − b + b log b − b log a. (A.12)

For a counterpart to Lemma A.2, note that, for any z > 0,

φ′′(x) = −1

x
= − d2

dx2
DP(x‖z). (A.13)

Lemma A.4. For any α ∈ [0, 1] and x, y > 0, let z = αx + (1 − α)y. Then we have

φ(z) − (αφ(x) + (1 − α)φ(y)) = αDP(x‖z) + (1 − α)DP(y‖z) (A.14)

= zIBer(α)

(
αx

z

)
. (A.15)

Proof. The equality (A.14) follows from (A.13) by an argument similar to the derivation
of (A.5). The expression (A.15) is obtained by writing the right-hand side of (A.14) with the
substitution y = (z − αx)/(1 − α) and recombining the log terms.
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The Poissonian counterpart of Proposition A.4 is the following.

Proposition A.5. Let a > 0, k ≥ 2, ni ≥ 1, i = 1, . . . , k, and n = ∑
i ni. Let Xi, i ∈ {1, . . . , k},

be independent random variables with distributions Poisson(nia), respectively. Let X1...j =∑j
i=1 Xi, X̄i = Xi/ni, and X̄1...j = X1...j/

∑j
i=1 ni. Then

nφ(X̄1...k) −
k∑

i=1

niφ(X̄i)
(st)≤

k−1∑
i=1

(log 2 + Yi) , (A.16)

where Y1, . . . , Yk−1 are independent Exp(1) random variables.

Proof. The proof of Proposition A.4 can be imitated as follows:

• Using induction, it suffices to consider the case k = 2.

• Apply Lemma A.4 to the left-hand side of (A.16) with x = X̄1, y = X̄2, z = X̄12, and
α = n1/n. This yields

X12IBer
( n1

n

) ( X1

X12

)
= IBin

(
X12,

n1
n

)(X1).

• Now, the conditional distribution of X1 given X12 is the above binomial distribution.
Thus, we can apply Lemma A.1 in a similar way as in the proof of Proposition A.4 �
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