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SUMMARY
The increasing importance of computational models for the design of complex mechanical systems
raises a discussion on defining some criteria for the selection of adequate modelling methods.
This paper aims to contribute to such discussion from an educational point of view. By choosing
the Delta parallel mechanism as a typical representative of multi-body mechanical systems, four
approaches – one based on the Principle of Virtual Work, two based on Lagrange’s formalism, and
one based on Kane’s formalism – are analysed from the perspective of modelling procedures. Finally,
inverse dynamic simulations are carried out along with qualitative comparisons of the considered
approaches.
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Nomenclature
ak Arbitrary length
ak Acceleration vector
C Constraint matrix
ck,j cos(qk,j )
cφk

cos(φk)
d(·) Differential operator
Fk Force vector
fi Holonomic constraint equation
g Acceleration of gravity
h Number of holonomic constraint equations
Ik,i Moment of inertia of the k-th rigid body around its i-th principal axis
J Constraint equations Jacobian
n Number of generalized coordinates defined
M Inertia matrix
mk Arbitrary mass
Qi Generalized active force associated with the coordinate qi

Q∗
i Generalized inertia force associated with the coordinate qi

Q̂∗
i Generalized giroscopic inertia forces associated with the coordinate qi

qi Generalized coordinate
R� Resultant of active forces
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R∗
� Resultant of inertia forces

rk Position vector
sk,j sin(qk,j )
sφk

sin(φk)
T Kinetic energy
T � Resultant of active torques
T ∗

� Resultant of inertia torques
ui Generalized speed
V Potential energy
vk Velocity vector
ṽkj j -th partial velocity of the k-th point
βkj See equation (14)
γ Number of constraint equations
δ(·) Variation operator
λr Lagrangian multiplier
μi Partial derivative of the constraint equation fi with respect to time
ν Number of degrees of freedom
τk Control torque provided by the k-th actuator
ψkj See equation (25)
ω� Angular velocity
ω̃�j j -th partial angular velocity of the �-th point
δW Virtual work
δξ Arbitrary column vector diffeomorphic to a vector of ν independent variations of

generalized coordinates

1. Introduction
Recent advances in the development of new computational tools are increasingly simplifying the
modelling of complex mechanical systems, taking advantage of systematic algorithms that can be
built using approaches from several methods of analytical mechanics. Commercial software packages
such as ADAMS R©, SIMPACK R©, SD/FAST R© and others are some examples of computational
tools that use analytical mechanics-based algorithms. However, modelling some simpler mechanical
systems does not require the use of specific commercial software packages. In some cases, complete
derivation of dynamic models and corresponding numerical simulations can be performed using
generic computational tools such as Wolfram Mathematica R©, Maple R©, wxMaxima, MATLAB R©,
GNU Octave, Scilab and others. Although such an approach requires some programming skills,
it allows a wider comprehension of the modelling process (avoiding erroneous analysis of the
systems due to modelling mistakes) and more versatility (concerning modifications in parameters
and input/output variables). The ability to select an adequate method to derive the equations of
motion of a mechanical system is of paramount importance to explore such advantages. Obviously,
the suitability of an approach depends on particular characteristics of a mechanical system so that no
method will be the best for every system modelled.

The present work proposes a discussion on the use of analytical mechanics-based approaches
to model multi-body mechanical systems, comparing qualitatively their applications with Delta
mechanism.2, 3 The choice of such mechanism is due to two reasons: it is a typical representative of
parallel (closed-loop) kinematic structures and its dynamics was and is still extensively studied in
the literature.1, 19 Despite many advantages presented by parallel mechanisms in terms of practical
applications when compared with their serial (open-loop) counterparts, the dynamic modelling of
these systems is still a difficult task.15, 16

Essentially, some of the usual approaches applied in the modelling of parallel mechanisms are the
adapted versions of successful and traditional methods for serial mechanisms.5, 21 Also, most of these
approaches restrict the choice of modelling coordinates and the definitions of generalized speeds,
requiring sometimes the elimination of redundant variables to achieve final equations. Other aspect
recurrently observed in some of these approaches is the great number of mathematical operations
needed to derive dynamic equations, which is sometimes due to an inadequate choice of modelling
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variables. Moreover, it is common to find authors adopting simplifying hypotheses, which are at first
unnecessary, in order to avoid some intricate steps of some modelling methods and to eliminate some
complex terms from the resulting dynamic equations.

Generally, the methods employ only two sets of coordinates when dealing with parallel
mechanisms: one to describe the motion of the end-effector, and the other to describe the motions
imposed by the actuators of the system.6 In a particular case of a Delta parallel mechanism, such an
approach results in some difficulties to describe the motion of parallelograms of chains. In order to
avoid the influence of such difficulties in the derivation of the dynamic model, some authors adopt
simplifying hypotheses with respect to the inertia properties of these components.4, 14 Even when
these two sets of coordinates are used along with their respective generalized momenta (which are
the generalized speeds of Hamilton’s approach), these difficulties on the description of the dynamics
of the parallelograms remain, leading to the adoption of the same type of hypotheses.17

In such cases, a simple strategy to develop either a comprehensive or a simplified mathematical
model is to define redundant generalized coordinates to simplify as much as possible the expressions
of velocities of significant points, angular velocities of relevant bodies, and that of all the generalized
forces. Staicu20 uses (passive) joint coordinates, together with end-effector and actuator coordinates,
to model the Delta parallel mechanism. Dealing with these coordinates involves a cumbersome
number of matrix transformations. However, using methods derived from the Principle of Virtual
Work, a comprehensive inverse dynamic analysis is performed, determining the time histories of
actuator torques associated with a given motion of the system.

Other usual dynamic approaches that have been successfully adapted from applications to serial
mechanisms are the recursive methods. Khan et al.10 present a brief discussion on the use of recursive
and non-recursive analytical mechanics methods to be applied to constrained mechanical systems such
as parallel mechanisms. The authors also presented modular recursive methods for modelling parallel
architecture manipulators, based on the use of the Newton–Euler equations of motion, and of the
decoupled natural orthogonal complement matrices associated with constraints. Although preserving
all the advantages of recursive methods (both in terms of modelling and numerical simulations), a
large number of matrix operations involved can make it difficult to both interpret and find eventual
modelling mistakes in the system of equations so obtained.

Concerning this discussion on the suitability of different approaches for modelling complex
mechanical systems, this paper aims to have an educational purpose. First of all, it briefly presents
three traditional analytical mechanics methods (Principle of Virtual Work, Lagrange’s and Kane’s
equations). Moreover, it proposes an integration of these methods with a general kinematic approach,
which is adequate for studying not only parallel mechanisms but also many other holonomic (or
simple nonholonomic) constrained mechanical systems. The kinematic techniques presented are
both simple and general, not restricting definitions of variables and not favouring the choice of
any kind of coordinates as “principal” or “fundamental,” relatively to other possibilities. It is also
briefly discussed as how the use of redundant generalized coordinates can lead to simplifications
in the modelling of these systems. Considering that simulations are performed using computational
algorithms, all the presented approaches lead to mathematical models in matrix forms. Also, the
concept of “constraint matrix” is explored in a slightly different form when compared with similar
approaches found in the literature,9, 10 keeping all the advantages of these techniques, but being more
simply interpretable. It is also shown that the non-uniqueness of these constraint matrices opens the
possibility of implementing several algorithms to find such matrices, some of these not even requiring
the selection of an “independent set” of coordinates to be performed. Finally, a qualitative comparison
among the applications of these methods to the Delta mechanism can lead to a rudimentary guide
for selecting analytical dynamic approaches to be applied in the modelling of similar mechanical
systems.

In Section 2, some aspects about kinematics and constraint equations are discussed. In Section 3,
the formalisms to develop dynamic equations using the Principle of Virtual Work, Lagrange’s and
Kane’s approaches are presented and compared. In Section 4, the Delta mechanism is presented,
and some considerations about its symmetries and how these can be used to simplify the dynamic
model are introduced. In Section 5, the dynamic equations of the Delta mechanism are derived using
the approaches presented previously, and some comparisons are carried out regarding simulation
methods. In addition, some numerical simulation results are shown along with a summary of

https://doi.org/10.1017/S026357471400054X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471400054X


956 Analytical mechanics approaches in the dynamic modelling of Delta mechanism

qualitative comparisons among models obtained by different approaches. Finally, Section 6 presents
the Conclusions.

2. Constraints and Kinematics
Mechanisms, generally, can be modelled as mechanical systems consisting of some connected solid
bodies. Each pair of linked solid bodies constitutes a joint. The joints are classified according to the
provided relative degrees-of-freedom (DOF). Generally, a mechanism has two most relevant parts: the
base and the end-effector, whose motion relative to the base is the main object of study in a modelling
process. In order to identify these relative motions, it is useful to analyse the motion constraints
imposed by each chain of bodies linking the base to the end-effector (in a parallel mechanism there
are more than one chain linking these main parts, while in a serial mechanism there is only one
chain). Such an approach is a mobility analysis based on the method of the Lie group of rigid body
displacements.7 It is worth noting that in mechanisms the solid bodies are generally stiffer than the
parts used to assemble them. Thus, it is common to consider such bodies as rigid, which significantly
simplifies the modelling process, once all the equations generated are either algebraic or ordinary
differential equations (that is, none of the equations of motion is a partial differential equation).

Once all the relative motions in the joints have been correctly identified, and the number of degrees
of freedom of the system are properly determined, it is necessary to define a set of generalized
coordinates. Some coordinates that naturally emerge from the mobility analysis can be classified in
the following three sets:

• The first set consisting of coordinates that describe all the possible motions of the end-effector.
• The second set consisting of coordinates that describe the motions imposed by the actuators.
• The third set consisting of auxiliary coordinates defined to describe motions of links of the

mechanism’s chains which cannot be described trivially by the coordinates of the two first sets
(these variables have to be carefully chosen, otherwise the increase in the number of variables
might not lead to a significant benefit).

Sometimes, even the definition of the fourth set of coordinates may be necessary to simplify the
expressions of the generalized active forces.

If n generalized coordinates are defined to model a ν-DOF mechanical system, then γ = n −
ν independent constraint equations must be satisfied by such coordinates. The constraints of a
mechanical system can be classified as holonomic or nonholonomic.11 The former category includes
all the constraints that can be expressed as functions of the coordinates of the system and the time
only. These equations cannot involve the differentials of any of these variables. It is worth noting that
sometimes integrable linear differential forms will appear as constraint equations. These constraints
are holonomic because, being integrable, the differential form can be replaced by a function of the
coordinates and time only. Suppose that a mechanical system has h holonomic constraints. These
constraints must be expressed as:

fi(q1, . . . , qn, t) = 0 for i = 1, . . . , h, (1)

or in differential form as:

n∑
j=1

∂fi

∂qj

dqj + ∂fi

∂t
dt = 0 for i = 1, . . . , h (2)

All constraints that do not satisfy these conditions are called nonholonomic (including those that
cannot even be expressed as equations). A remarkable case of nonholonomic constraints are those
that can be expressed as a linear differential form, where all the coefficients of the differentials of the
coordinates are functions of the system coordinates and the time only. These constraints are sometimes
referred as simple nonholonomic.8 Dealing with nonholonomic constraints that are not simple is out of
the scope of this work. Considering that the system has h̄ = γ − h simple nonholonomic constraints,
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it is possible to express these as the following non-integrable differential forms:

n∑
j=1

Jij dqj + μi dt = 0 for i = h + 1, . . . , γ . (3)

Generally, if in a mechanical system all the constraints can be classified as holonomic and simple
nonholonomic (which includes a wide range of systems commonly modelled), it is possible to define
Jij = ∂fi/∂qj and μi = ∂fi/∂t for i = 1, . . . , h and j = 1, . . . , n, so that all the constraint equations
can be expressed as a simple matrix equation:

J dq + μ dt = 0. (4)

The matrix J is the Jacobian of the constraint equations.
However, analytical mechanics-based methods do not deal with the differentials of the system

coordinates, but with its variations (which are considered independently in the course of time). Thus,
the constraint equations involving such variations can be expressed in the following matrix form:

J δq = 0. (5)

Noting that J is a γ × n matrix that can be a function of the system coordinates and the time, there will
be configurations of the system for which the rank of the matrix J is γ (which are called non-singular
configurations). In such cases it is possible to choose γ columns of J that will constitute an invertible
γ × γ matrix, which will be called J ◦. The matrix constituted by the remaining columns is an γ × ν

matrix, which will be called J ∗, such that the constraint equations can be expressed as:

J ◦δq◦ + J ∗δq∗ = 0,

δq◦ = − (J ◦)−1 J ∗δq∗. (6)

Consider any column vector δξ with ν components (not necessarily constituted by exact variation
differentials) such that there is a diffeomorphism between δξ and δq∗. It can be stated that, in any
non-singular configuration of a ν-DOF mechanical system, the variations of the n system coordinates
(given by the vector δq) can be expressed as a function of ν independent variations only (which are
the components of the vector δξ ). If a linear diffeomorphism between δξ and δq∗ is defined, there
will be a n × ν matrix C, which, in this text, will be named constraint matrix, such that:

δq = C δξ. (7)

It is important to note that a constraint matrix is not unique, once it depends on the choice of the
vector δξ . Also, a constraint matrix is generally a function of the system configuration, that is, it can
be a function of the time and the generalized coordinates. Furthermore, it is also remarkable that,
once the components of δξ are arbitrary, the substitution of Eq. (7) in (5) leads to:

J C δξ = 0 ⇒ J C = 0. (8)

Conversely, it can be stated that any matrix C satisfying Eq. (8) can be considered a constraint matrix
to the system.

In order to illustrate this method, consider a spherical pendulum mounted on a horizontal base that
moves vertically (Z-direction) according to a given law ζ (t), see Fig. 1. The vector basis

{
nx, ny, nz

}
and the coordinate system OXYZ are attached to an inertial reference frame and

{
ex, ey, ez

}
is

attached to the pendulum.
As this pendulum has 2 DOF, the angles θ and φ are enough to completely describe its motion:

θ is the angle between the direction of the bar axis and the Z-axis, and φ is the angle between the
projection of the bar axis in the OXY plane and the Y -axis. However, suppose that it is also desired
to include in the model the rectangular coordinates x, y, z of the point P (measured in the system
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Fig. 1. Spherical pendulum constituted by a rigid thin bar of length l connected to a base which has an imposed
vertical motion ζ (t).

OXYZ, with O and N coinciding when ζ (t) = 0). Three constraint equations are then needed and
these can be expressed by the following geometrical relations:⎧⎨⎩x − l sin θ sin φ = 0

y − l sin θ cos φ = 0
z − l cos θ − ζ (t) = 0

. (9)

These holonomic constraint equations have the following differential form:⎧⎨⎩dx − l cos θ sin φ dθ − l sin θ cos φ dφ = 0
dy − l cos θ cos φ dθ + l sin θ sin φ dφ = 0
dz + l sin θ dθ − ζ ′(t) dt = 0

. (10)

In order to illustrate the use of non-exact differential forms to express the constraint equations in
the matricial form (7), consider that the angular velocity vector of the pendulum can be expressed
as ω = −θ̇ ex + φ̇ sin θ ey − φ̇ cos θ ez. This expression motivates the definition of the non-exact
differential dψ = cos θ dφ. Thus, the variations of the system coordinates can be easily expressed as
functions of δψ and δθ as follows:⎡⎢⎢⎢⎣

δx

δy

δz

δθ

δφ

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
l tan θ cos φ l cos θ sin φ

−l tan θ sin φ l cos θ cos φ

0 −l sin θ

0 1
sec θ 0

⎤⎥⎥⎥⎦
[

δψ

δθ

]
. (11)

In this case, a linear solution for the constraint equations has been obtained, being possible to define
a constraint matrix C such that δq = C δξ .

3. Analytical Mechanics-Based Methods

3.1. Methods based on the Principle of Virtual Work
The Principle of Virtual Work11, 13 states that the total virtual work done by the effective forces
(which are the sum of active forces and inertia forces of each of the system particles, not including

the constraint ones), denoted by δW
(e)

, is zero for all reversible variations that satisfy the kinematic
constraints. Consider, for instance, a system constituted by N mass particles, with Fk denoting the
applied forces on the particle k (except the constraint forces), mk denoting its mass, ak its acceleration
measured in an inertial reference frame and δrk denoting a variation on its position. The Principle of
Virtual Work for this system can be stated as:

δW
(e) =

N∑
k=1

(Fk − mkak) · δrk = 0. (12)
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It is worth mentioning that the notation δW is used to highlight that the virtual work is not
necessarily an exact variation differential. Moreover, when generalized coordinates are used, all
the displacement variations (δrk , k = 1, . . . , N) can be expressed as linear functions of the variations
of the system coordinates (δqi , i = 1, . . . , n). Furthermore, if the system coordinates do not constitute
an independent set of variables, but all the system constraints are holonomic or simple nonholonomic,
as discussed in Section 2, it is possible to define ν variation differentials δξj and to find a constraint
matrix C (function of the system coordinates and time) such that δq = C δξ . Thus, it can be stated
that:

δW
(e) =

ν∑
j=1

[
N∑

k=1

(Fk − mkak) · βkj

]
δξj = 0 (13)

with the βkj (k = 1, . . . , N , j = 1, . . . , ν) being defined as:

βkj =
n∑

i=1

∂ rk

∂qi

Cij . (14)

Considering that all the δξj (j = 1, . . . , ν) are independent variations that satisfy the system
constraints, the only way to ensure the nullity of the virtual work of the system for any possible
variation is imposing that

N∑
k=1

(Fk − mkak) · βkj = 0 for j = 1, . . . , ν. (15)

This method for dealing with the system constraints leads to a set of dynamic equations with as much
equations as the number of degrees of freedom of the modelled system.

Particularly, consider that this N mass particles system moves as a single rigid body. Because of
the system constraints in this case, there is a variation vector δθ (with dθ = ω dt , where ω is the
angular velocity of this rigid body) such that:

δrk = δr∗ + δθ × r∗
k. (16)

In this equation, r∗ was taken to denote the position vector of the centre of mass of the system and
r∗

k = rk − r∗, so that
∑N

k=1 mk r∗
k = 0. Also, for this system:

ak = a∗ + ω̇ × r∗
k + ω × (

ω × r∗
k

)
(17)

where a∗ is the acceleration of the centre of mass of the system.
Replacing Eqs. (16) and (17) in Eq. (12) leads, after some algebraic simplifications involving the

use of some properties of scalar and cross products, to the following expression:

δW
(e) = (R + R∗) · δr∗ + (T + T ∗) · δθ = 0, (18)

where R, R∗, T and T ∗ are defined as:

R =
N∑

k=1

Fk, (19)
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R∗ = −
N∑

k=1

mka∗ = −m a∗, (20)

T =
N∑

k=1

r∗
k × Fk, (21)

T ∗ = −
N∑

k=1

mk r∗
k × [

ω̇ × r∗
k + ω × (

ω × r∗
k

)] = −I · ω̇ − ω × I · ω. (22)

In Eq. (20), m represents the total mass of the system, and in Eq. (22), I represents the inertia dyadic
of the system relative to its centre of mass. A complete derivation of Eq. (22) is easily found in the
literature.8

In analogy to the derivation of Eq. (15), it can be stated that for a system with ν-DOF, comprising
NB rigid bodies, the dynamic equations can be given by:

NB∑
�=1

[(
R� + R∗

�

) · β∗
�j + (

T � + T ∗
�

) · ψ�j

] = 0 for j = 1, . . . , ν. (23)

In this case, β∗
�j and ψ�j are given by the following expressions:

β∗
�j =

n∑
i=1

∂ r∗
�

∂qi

Cij =
n∑

i=1

∂v∗
�

∂q̇i

Cij , (24)

ψ�j =
n∑

i=1

∂ω�

∂q̇i

Cij . (25)

Equation (23) can be used for the dynamic modelling of every system constituted exclusively by
rigid bodies. This approach has two main advantages: It is applicable to systems with redundant
generalized coordinates (that is, when n > ν), and there is no need of including any constraint force
in the dynamic equations.

3.2. Lagrange’s methods based on the extended Hamilton’s principle
Hamilton’s principle11, 13 states that, for any conservative mechanical system, it is null the variation of
the time integral of the Lagrangean function between two defined configurations. For non-conservative
mechanical systems, a slightly different version of this principle, called the Extended Hamilton’s
Principle, has to be used. The derivation of this principle can be easily done by means of the Principle
of Virtual Work considering that:

mk r̈k · δrk = mk

d

dt
(ṙk · δrk) − δTk, (26)

where Tk = 1
2mk ṙk · ṙk . Defining T = ∑N

k=1 Tk as the kinetic energy of the system, and replacing
this identity in Eq. (12), the following expression is obtained:

δW
(a) + δT =

N∑
k=1

mk

d

dt
(ṙk · δrk) , (27)

with δW
(a)

defined as:

δW
(a) =

N∑
k=1

Fk · δrk. (28)
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Consider now the time integral of Eq. (27) between two instants of time t1 and t2 such that δrk(t1) =
δrk(t2) = 0 for k = 1, . . . , N ,

∫ t2

t1

(
δW

(a) + δT
)

dt =
N∑

k=1

[
mk ṙk · δrk

]t2

t1

= 0. (29)

The virtual work of the active forces of the system can be expressed as:

δW
(a) =

n∑
i=1

Qi δqi. (30)

The ith generalized (active) force Qi is defined as:

Qi =
N∑

k=1

Fk · ∂ rk

∂qi

=
N∑

k=1

Fk · ∂vk

∂q̇i

. (31)

Moreover, using properties from variational calculus,11 it can be stated that:

δ

∫ t2

t1

T dt =
∫ t2

t1

[
n∑

i=1

Q∗
i δqi

]
dt. (32)

The ith generalized inertia force Q∗
i is defined as:

Q∗
i = ∂T

∂qi

− d

dt

∂T

∂q̇i

(33)

Thus, Eq. (29) can be written in the following form:

∫ t2

t1

[
n∑

i=1

(Q∗
i + Qi)δqi

]
dt = 0. (34)

In a system where redundant generalized coordinates are used, there are two methods for
transforming Eq. (34). These methods will lead to different, but equivalent, systems of dynamic
equations. The most common approach used in such cases is the Lagrangian multiplier method.11

It uses the constraint equations (in implicit form) and some undetermined coefficients, named
multipliers, to solve variational calculus problems in which some of the variations involved are
constrained. Considering that the constraint equations of a system whose constraints are either
holonomic or simple nonholonomic can be written simply as

∑n
i=1 Jri δqi = 0 for r = 1, . . . , γ , the

variational Eq. (34) can be solved by adding these constraint equations multiplied by undetermined
coefficients λr (r = 1, . . . , γ ) to the original one as shown:

∫ t2

t1

[
n∑

i=1

(
Q∗

i + Qi +
γ∑

r=1

Jriλr

)
δqi

]
dt = 0. (35)

In this equation, there are γ undetermined parameters that can be chosen for making null the
coefficients of δqi for i = ν + 1, . . . , n, for instance. Then there will appear only ν variations δqi
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in Eq. (35). As the system has ν-DOF, these δqi (i = 1, . . . , ν) must be independent so that their
coefficients must be null in order to ensure the nullity of the integral for any possible variation in the
system configuration. This procedure will lead to n dynamic equations in the following form:

Q∗
i + Qi +

γ∑
r=1

Jriλr = 0 for i = 1, . . . , n. (36)

Introducing the notation Q for the column vector whose components are Qi , Q∗ for the column
vector whose components are Q∗

i (i = 1, . . . , n) and λ for the column vector whose components are
λr (r = 1, . . . , γ ), the dynamic Eqs. (36) can be put in the following matrix form:

Q∗ + Q + J Tλ = 0. (37)

These n equations have n + γ unknown variables (n coordinates and γ multipliers) so that they have
to be solved along with the γ constraint Eqs. (4). In a system with a lot of constraint equations, this
method requires the solution of system with much more equations than the number of coordinates, as
the undetermined multipliers (generally of no interest) have to be determined along with the relevant
variables in the analysis.

Another possibility to deal with Eq. (34) is to use a solution of the constraint equations (which is
an explicit matrix form of these equations) such as the one presented in Eq. (7):∫ t2

t1

δqT(Q∗ + Q)dt =
∫ t2

t1

δξ
T
CT(Q∗ + Q)dt = 0. (38)

As the variations δξ j (j = 1, . . . , ν) are all independent, the only way to nullify the value
of the integral for all possible independent variations in the configuration of the system is
making:

CT(Q∗ + Q) = 0. (39)

This approach will lead to ν dynamic equations, which have to be solved along with the γ constraint
Eqs. (4) in order to determine the solution for the n coordinates of the system. In this case, the
number of equations is equal to the number of coordinates defined. This is an evident advantage of
the approach using dynamic equations of the form (39) instead of the form (37). In the multi-body
dynamics literature, formulations analogous to the presented in the derivation of Eq. (39) are often
associated with Maggi’s formalism.12

3.3. Kane’s method
Kane’s method can make use of generalized kinematic variables to replace the time derivatives of the
generalized coordinates in the dynamic equations, simplifying them mathematically. Sometimes these
new variables also favour the interpretation of some terms in the equations, being of more interest than
the generalized coordinates themselves. This procedure is also used in Newton–Euler’s, Hamilton’s11

and Poincaré’s22 methods. In the Newton–Euler’s approach, the variables used to describe the motion
of a rigid body are coordinates of position of the centre of mass, Euler angles, components of the
velocity of the centre of mass and components of the angular velocity of the body (which, in general,
are not equal to the time derivatives of Euler angles). Hamilton’s approach replaces time derivatives of
coordinates by generalized momenta. Poincaré’s approach is a generalization of Lagrange’s approach
which enables the replacement of time derivatives of generalized coordinates by freely chosen
generalized kinematic variables (although in most of the cases they will be the components of
velocities, angular velocities or generalized momenta). In this aspect, Kane’s approach is similar
to Poincaré’s approach. In the most general case, these kinematic variables (also called generalized
speeds) are the n components of a column vector u, and there is an invertible affine transformation
between u and q̇ that can be described by means of explicit and known functions Xij (q, t) and yi(q, t)

https://doi.org/10.1017/S026357471400054X Published online by Cambridge University Press

https://doi.org/10.1017/S026357471400054X


Analytical mechanics approaches in the dynamic modelling of Delta mechanism 963

as:

ui =
n∑

j=1

Xij (q, t) q̇j + yi(q, t) for i = 1, . . . , n. (40)

This transformation can be written in matrix form as:

u = X(q, t) q̇ + y(q, t), (41)

q̇ = V (q, t) u + w(q, t), (42)

where V = X−1 and w = −X−1y. The literature presents several ways to define these new kinematic
variables ui (i = 1, . . . , n) as affine transformations of the time derivatives of the coordinates in
Kane’s approach.8, 18

In a ν-DOF system where n coordinates are defined (n > ν), not all the variations of the coordinates
are independent as are not the n variables ui . As seen in Section 2, it is possible to find a constraint
matrix C(q, t) such that all the variations of the system coordinates can be written as a function of an
independent set of variations only, which is expressed in Eq. (7), δq = C δξ . Defining ũ = dξ/dt , it
can be stated that q̇ = C ũ + η, where η is a vector that satisfies Jη = −μ, as can be seen in Eq. (4).
Replacing it in Eq. (41) leads to:

u = C̃(q, t) ũ + η̃(q, t), (43)

where C̃ = XC and η̃ = y + Xη. Equations (43) can be interpreted as the constraint equations written
in terms of the generalized kinematic variables.

In order to obtain Kane’s dynamic equations for a mechanical system, two important definitions are
required: Given the velocity vk of a point and the angular velocity ω� of a rigid body, the corresponding
j th partial velocities and j th partial angular velocities associated are given by:

ṽkj = ∂vk

∂ ũj

=
n∑

i=1

∂vk

∂ui

C̃ij , (44)

ω̃�j = ∂ω�

∂ ũj

=
n∑

i=1

∂ω�

∂ui

C̃ij . (45)

Consider, for instance, a system comprising N mass particles, with Fk denoting the applied force on
particle k (except the constraint forces), mk denoting its mass, ak its acceleration and ṽkj denoting
its partial velocity, both measured in an inertial reference frame. Kane’s dynamic equations for this
system can be written as follows:

F̃ ∗
j + F̃j = 0 for j = 1, . . . , ν, (46)

where:

F̃j =
N∑

k=1

Fk · ṽkj , (47)

F̃ ∗
j =

N∑
k=1

(−mkak) · ṽkj . (48)

Proceeding analogously to the development made in Section 3.1, for a system with ν-DOF,
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Fig. 2. Representation of a Delta parallel mechanism.

consisting of NB rigid bodies, Kane’s dynamic equations are given by the following
expression:

NB∑
�=1

[(
R� + R∗

�

) · ṽ ∗
�j + (

T � + T ∗
�

) · ω̃�j

] = 0 for j = 1, . . . , ν, (49)

where the expressions of R, R∗, T and T ∗ are given in Eqs. (19)–(22) and ṽ ∗
�j is the j th partial

velocity of the centre of mass of the �th rigid body of the system. It is worth noting that if the trivial
choice of ui is made, that is, ui = q̇i for i = 1, . . . , n, Kane’s dynamic Eqs. (46) will be exactly the
same as Eqs. (15), and Eqs. (49) will be exactly the same as Eqs. (18). It means that Kane’s method
can be interpreted as a generalization of methods based on the Principle of Virtual Work.

4. Delta Parallel Mechanism
Delta is a 3-DOF parallel symmetric mechanism, as represented in Fig. 2. Its three chains are
commonly disposed in a triangular symmetry, connecting its base to its end-effector. Each chain is
constituted by an arm that forms an active rotational joint with the fixed base, and by a spherical
joints parallelogram connecting the other end of this arm to the end-effector.

Applying the Lie group of rigid body displacements approach,7 it is possible to note that each
of the chains individually allows for the end-effector three-dimensional translational motions and
a rotational motion (around the same axis as the active rotational joint of the chain) relative to the
mechanism base. As these active rotational joint axes are not parallel, no rotational motion of the
end-effector relative to the base is allowed in this mechanism. That is, the 3 DOF of this mechanism
are related to the three-dimensional translational motions of its end-effector relative to its base.

Thus, it can be stated that the Cartesian coordinates of any point of the end-effector, for instance
its centre, are enough to fully describe the motion of the mechanism. Other possibility is to make
the description by means of the coordinates representing the angles between the actuated arms
and the mechanism’s base plane. However, it is easy to note that both possibilities will lead to
complex kinematic descriptions of bodies which are not the ones where these coordinates are defined.
Another clear disadvantage of modelling this system with a minimum number of coordinates is
the impossibility of exploring the existing symmetries among the mechanism’s chains, once such
coordinates by themselves do not evidence these symmetries.

In order to make an adequate analysis of this mechanism, some definitions are needed. First of
all, the mechanism base will be called body 0, the end-effector will be called body 1 and the object
manipulated by this mechanism (which is considered as rigidly attached to the end-effector) will
be called body 2. The mechanism’s chains will be referred as C1, C2 and C3. The actuated arms
will be called bodies 3, 5 and 7 respectively, and the pairs of lateral bars of each parallelogram
(both describing the same rigid body motion in each parallelogram) will be called bodies 4, 6 and 8
respectively. Then it is necessary to define some coordinate systems in order to choose an adequate
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Fig. 3. Defining coordinate systems and generalized coordinates to model the Delta mechanism.

set of generalized coordinates to the model. This is done as shown in Fig. 3: one coordinate system
will be defined for each body of the mechanism having its origins on the geometric centres of each of
these parts. The coordinate systems of the bodies 5 and 7 are defined analogously to the coordinate
system of body 3 as are the ones of bodies 6 and 8 defined analogously to the coordinate system of
body 4.

Assuming that the chains are identical and are arranged symmetrically, some parameters can be
defined: φk is the angle between the planes x0y0 and x(2k+1)y(2k+1) (k = 1, 2, 3), a1 is the distance
between the centre of the base and the axis of any of the active rotational joints, a2 is half of the length
of the arms 3, 5 and 7, a3 is half of the length of the lateral bars of the parallelograms (bodies 4, 6 and
8) and a4 is the distance between the centre of the end-effector and the midpoint of the lower side of
any parallelogram. The coordinates to be used in the model are defined in the following way: q1, q2

and q3 are the Cartesian coordinates (x0, y0 and z0) of the centre of the end-effector in the coordinate
system of the mechanism’s base, q(3k+1) = qk,1 are the angles between the planes y(2k+1)z(2k+1) and
y0z0 (measured in the positive direction of the z0-axis), q(3k+2) = qk,2 are the angles between the
planes y(2k+2)z(2k+2) and y0z0 (measured in the positive direction of the z0-axis) and q(3k+3) = qk,3 are
the angles between the planes x(2k+1)y(2k+1) and x(2k+2)y(2k+2) (measured in the positive direction of
x(2k+2) axis), for k = 1, 2, 3, as exemplified in Fig. 3 for the chain C1.

5. Dynamic Modelling of Delta Mechanism
Before modelling the Delta mechanism, some simplifying hypotheses are adopted. All the bodies
constituting this mechanism are considered perfectly rigid, and all the joints are considered ideal
(neither friction effects nor clearances occur). Thus, only gravitational forces and torque inputs
provided by the system actuators are considered as active efforts. All torque inputs are also considered
as ideal, that is, they have only components τk applied in the direction of the respective actuated
rotational joint axis of the kth chain, and the actuators never saturate, always providing the required
torque for a particular motion of the system.

With these hypotheses, the constraint equations and dynamic equations will be derived using
the coordinates defined in the previous section. The approaches to derive these equations will be
compared, and some numerical simulations will be presented to verify the consistency of the results
and to determine which is the best analytical mechanics approach to model the Delta mechanism.

5.1. Derivation of constraint equations
A strategy to obtain constraint equations of a parallel mechanism consists of the description of the
motion of the end-effector using the coordinates defined for each chain. Proceeding in this way, the
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obtained constraint equations will explicitly relate the motion of each chain to the motion of the
end-effector. The most important advantage of this approach is that if all the chains of a mechanism
are identical, so are the forms of the constraint equations, which saves a large amount of time in its
derivations, once it can be restricted to the derivation of these equations for a single chain. Using
geometrical relations, the coordinates q1, q2 and q3 of the geometric centre of the end-effector can
be written as the functions of qk,1, qk,2 and qk,3 leading to the following constraint equations (for
k = 1, 2, 3):

fk,1(qi) = q1 + 2a2sk,1 + 2a3ck,3sk,2 = 0, (50)

fk,2(qi) = q2 + 2sφk
a3sk,3 − cφk

(a1 − a4 + 2a2ck,1 + 2a3ck,2ck,3) = 0, (51)

fk,3(qi) = q3 − 2cφk
a3sk,3 − sφk

(a1 − a4 + 2a2ck,1 + 2a3ck,2ck,3) = 0. (52)

In these equations, ck,j = cos(qk,j ), sk,j = sin(qk,j ), cφk
= cos(φk) and sφk

= sin(φk).
As it was shown in the previous sections, it is important to express these constraint equations in a

differential form. As none of these constraints is explicitly dependent on time, the differential form
of such equations can be represented by J dq = 0 (or expressing in terms of the variations of the
coordinates, J δq = 0). For this model, the matrix J is given by:

J =
⎡⎣I3×3 J 〈1〉 0 0

I3×3 0 J 〈2〉 0
I3×3 0 0 J 〈3〉

⎤⎦, (53)

where I3×3 is a 3 × 3 identity matrix, and J 〈k〉 (k = 1, 2, 3) is a 3 × 3 matrix whose general expression
is:

J 〈k〉 =

⎡⎢⎣J
〈k〉
1,1 J

〈k〉
1,2 J

〈k〉
1,3

J
〈k〉
2,1 J

〈k〉
2,2 J

〈k〉
2,3

J
〈k〉
3,1 J

〈k〉
3,2 J

〈k〉
3,3

⎤⎥⎦, (54)

J
〈k〉
1,1 = 2a2ck,1,

J
〈k〉
1,2 = 2a3ck,2ck,3,

J
〈k〉
1,3 = −2a3sk,2sk,3,

J
〈k〉
2,1 = 2cφk

a2sk,1,

J
〈k〉
2,2 = 2cφk

a3ck,3sk,2,

J
〈k〉
2,3 = 2sφk

a3ck,3 + 2cφk
a3ck,2sk,3,

J
〈k〉
3,1 = 2sφk

a2sk,1,

J
〈k〉
3,2 = 2sφk

a3ck,3sk,2,

J
〈k〉
3,3 = −2cφk

a3ck,3 + 2sφk
a3ck,2sk,3.

For instance, defining ξ = [q1 q2 q3]T, in any non-singular configuration of this system it can be
stated that:

δq = C δξ with C =

⎡⎢⎢⎣
I3x3

−(J 〈1〉)−1

−(J 〈2〉)−1

−(J 〈3〉)−1

⎤⎥⎥⎦ . (55)
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Clearly, as discussed in Section 2, the constraint matrix presented in Eq. (55) can be replaced by any
other matrix satisfying the condition JC = 0, as established in Eq. (8).

Upon such considerations, the dynamic equations of this system can be readily derived by the
approaches presented in Section 3.

5.2. Derivation of the equations of motion
Considering that the coordinates q1, q2 and q3 completely describe any motion performed by the
mechanism, it seems natural to choose δξ = [δq1 δq2 δq3]T as a vector of independent variations of
the configurations of the system. Such a choice leads to ũ1 = q̇1, ũ2 = q̇2, ũ3 = q̇3. Also, choosing
u = q̇, the dynamic equations obtained by Kane’s methodology will be the same as those obtained
by the Principle of Virtual Work, as discussed in Section 3. These equations will be referred in the
remaining of the text as model K. Lagrange’s equations can be presented in two different forms: one
of them using undetermined multipliers as presented in Eq. (37), which will be called model LI, and
the other using an explicit form for the constraint equations, as presented in Eq. (39), which will be
called model LE.

In order to obtain such models, it is relevant to describe the velocities of the centres of mass
(considered coincident with the geometric centres of each body) and the angular velocities of each
rigid body of the mechanism, which can be given by the following expressions:

v∗
1 = v∗

2 = q̇1 i0 + q̇2 j0 + q̇3 k0, (56)

v∗
2k+1 = −a2ck,1q̇k,1 i0 − cφk

a2sk,1q̇k,1 j0 − sφk
a2sk,1q̇k,1 k0, (57)

v∗
2k+2 = [−2a2ck,1q̇k,1 − a3ck,2ck,3q̇k,2 + a3sk,2sk,3q̇k,3] i0 − [sφk

a3ck,3q̇k,3 + cφk
υ] j0

+ [cφk
a3ck,3q̇k,3 − sφk

υ] k0, (58)

υ = 2a2sk,1q̇k,1 + a3ck,3sk,2q̇k,2 + a3ck,2sk,3q̇k,3, ω1 = ω2 = 0, (59)

ω2k+1 = q̇k,1 k2k+1, (60)

ω2k+2 = q̇k,3 i2k+2 + sk,3q̇k,2 j2k+2 + ck,3q̇k,2 k2k+2. (61)

Thus, the parcels of kinetic energy associated with each body of this mechanism are given by the
following expressions (it is supposed that the local axes of each coordinate system are the respective
principal inertia axes of each body so that Ii,j represents the moment of inertia of the ith body around
the j th principal axis):

T1 + T2 = 1

2
(m1 + m2)

(
q̇2

1 + q̇2
2 + q̇2

3

)
, (62)

T2k+1 = 1

2

(
a2

2m3 + I3,3
)
q̇2

k,1, (63)

T2k+2 = 1

2

[
4a2

2m4q̇
2
k,1 + (

a2
3m4 + I4,1

)
q̇2

k,3 + (
s2
k,3I4,2 + c2

k,3

(
a2

3m4 + I4,3
))

q̇2
k,2

+ 4a2a3m4q̇k,1[ck,3 cos(qk,1 − qk,2)q̇k,2 + sk,3 sin(qk,1 − qk,2)q̇k,3]

]
. (64)

It can be stated that there is an n by n matrix M(q, t) and an n column vector Q̂∗(q, q̇, t) such that:

Q∗ = −Mq̈ + Q̂∗. (65)
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For this particular system:

M =

⎡⎢⎢⎣
M 〈0〉 0 0 0

0 M 〈1〉 0 0
0 0 M 〈2〉 0
0 0 0 M 〈3〉

⎤⎥⎥⎦ , (66)

Q̂∗ =

⎡⎢⎢⎣
(Q̂∗)〈0〉

(Q̂∗)〈1〉

(Q̂∗)〈2〉

(Q̂∗)〈3〉

⎤⎥⎥⎦ and Q =

⎡⎢⎢⎣
Q〈0〉

Q〈1〉

Q〈2〉

Q〈3〉

⎤⎥⎥⎦ , (67)

where M 〈0〉 = (m1 + m2)I3x3, (Q̂∗)〈0〉 = 0 and the components of M 〈k〉 and (Q̂∗)〈k〉 (k = 1, 2, 3) are
given by:

M
〈k〉
1,1 = a2

2 (m3 + 4m4) + I3,3, (68)

M
〈k〉
2,2 = s2

k,3I4,2 + c2
k,3

(
a2

3m4 + I4,3
)
, (69)

M
〈k〉
3,3 = a2

3m4 + I4,1, (70)

M
〈k〉
1,2 = M

〈k〉
2,1 = 2a2a3m4ck,3 cos(qk,1 − qk,2), (71)

M
〈k〉
1,3 = M

〈k〉
3,1 = 2a2a3m4sk,3 sin(qk,1 − qk,2), (72)

M
〈k〉
2,3 = M

〈k〉
3,2 = 0, (73)

(Q̂∗)〈k〉
1 = 4a2a3m4

(
cos(qk,1 − qk,2)sk,3q̇k,2q̇k,3 − 1

2
ck,3 sin(qk,1 − qk,2)(q̇2

k,2 + q̇2
k,3)

)
, (74)

(Q̂∗)〈k〉
2 = 2ck,3(a2a3m4 sin(qk,1 − qk,2)q̇2

k,1 + sk,3(a2
3m4 − I4,2 + I4,3)q̇k,2q̇k,3), (75)

(Q̂∗)〈k〉
3 = −sk,3

(
2a2a3m4 cos(qk,1 − qk,2)q̇2

k,1 + ck,3
(
a2

3m4 − I4,2 + I4,3
)
q̇2

k,2

)
. (76)

The parcels of gravitational potential energy due to each body of this mechanism are given by:

V1 + V2 = −g (m1 + m2) q1, (77)

V2k+1 = ga2m3sk,1, (78)

V2k+2 = gm4
(
2a2sk,1 + a3ck,3sk,2

)
. (79)

Thus, the generalized forces vector is given by (k = 1, 2, 3):

Q〈0〉 = [(m1 + m2)g 0 0]T, (80)

Q
〈k〉
1 = −ga2 (m3 + 2m4) ck,1 + τk, (81)

Q
〈k〉
2 = −ga3m4ck,2ck,3, (82)

Q
〈k〉
3 = ga3m4sk,2sk,3. (83)

Analogously, it is possible to express Kane’s dynamic Eqs. (49) in the following matrix form:

M̃q̈ − Q̃∗ − Q̃ = 0. (84)

Having the expressions of velocities of centres of mass and angular velocities of each body of the
Delta mechanism, the corresponding accelerations, angular accelerations, partial velocities and partial
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Fig. 4. Trajectory imposed to the end-effector in order to perform inverse dynamic numerical simulations with
the models of the Delta mechanism.

angular velocities can be determined. Then, according to the approaches presented in Sections 3.1
and 3.3, the expressions of the matrix M̃ and the column vectors Q̃∗ and Q̃ can also be determined.

Deriving Kane’s dynamic equations for the Delta mechanism and simplifying these mathematically,
after some factorizations, it can be noted that, as expected, the following identities hold:

M̃ = CTM, (85)

Q̃∗ = CTQ̂∗, (86)

Q̃ = CTQ. (87)

That is, using the same variables, models K and LE lead to exactly the same dynamic equations,
although their derivations are slightly different. The former deals with vector functions (forces,
torques, velocities, partial velocities, accelerations, angular velocities, partial angular velocities and
angular accelerations), and the later with scalar functions, such as kinetic energy, potential energy
and generalized forces.

In terms of the derivation of the dynamic equations, considering that the same software was
employed (Wolfram Mathematica 8.023), it can be stated that models LI and LE (Lagrange’s equations)
required almost the same computational effort, as both need the expressions of matrix M and the
column vectors Q∗ and Q. Model LI is even simpler than model LE because only the Jacobian J is
required and not a constraint matrix C as in model LE. This is not a relevant aspect, in this particular
system, once a constraint matrix C can be easily expressed in terms of the Jacobian J as shown
in Eq. (55), but it may be an important issue for systems in which finding an explicit form of the
constraint equations is not so straightforward.

Nevertheless, when comparing models LI and LE with model K (that in this case represents both
the Principle of Virtual Work and Kane’s approaches), it is noted that the computational effort to
derive the dynamic equations is higher as it requires vector expressions (as accelerations and angular
accelerations) that are significantly more complex than the expressions of kinetic energy. Also, it is
more difficult to put the resulting equations in a matrix form adequate to numerical simulations.

5.3. Numerical simulations of the dynamic equations
In order to make a numerical performance assessment of the dynamic models, algorithms to perform
inverse dynamic simulations were developed for each of these. As previously discussed, models K
and LE lead to the same dynamic equations, although their derivations are different. Thus, only two
different numerical simulations need to be performed. The goal of these simulations is the calculation
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Fig. 5. Time history of torque inputs needed to perform trajectory in Fig. 4.

Table I. Qualitative assessment of models K, LE and LI .

Model Derivation Interpretability Numerical computations

K �� � � � � � � � � � �

LE � � �� � � � � � � � �

LI � � � � � � � � � � �

of torques in each of the system actuators corresponding to a prescribed motion of the end-effector.
The trajectory imposed to the end-effector is shown on Fig. 4 and is defined as a straight line with
null velocities and accelerations in its both extremities.

For the simulations, the following values of parameters were used: a1 = 0.20 m, a2 = 0.10 m,
a3 = 0.25 m, a4 = 0.10 m, φ1 = 0, φ2 = 2π/3, φ3 = −2π/3, m1 = 0.30 kg, m2 = 1.00 kg, m3 =
m5 = m7 = 0.40 kg, m4 = m6 = m8 = 0.25 kg. The inertia moments were estimated considering
that all the bodies comprised ideal bars, using the corresponding mathematical formulas.

The results obtained by the numerical simulations of both models LE (which has the same equations
as model K) and LI are, as expected, identical. These results are presented in Fig. 5. It can be stated
that the torques required for the motion of this system do not have a much different magnitude
compared with the torques required to maintain the equilibrium of the system in both the extremities
of this trajectory, that is, large accelerations can be achieved without consuming a large amount of
energy, as expected for a parallel mechanism.

5.4. Qualitative assessment of models K, LE and LI

In order to conclude the discussion on the suitability of each analytical mechanics approach to model
the Delta parallel mechanism, a qualitative assessment is performed based on the results presented
in the previous sections. This assessment consists of comparing the following three characteristics
associated with these approaches:

1. Derivation: The effort to obtain dynamic equations of the model in a form that is suitable to
numerical simulations.

2. Interpretability: The ability to understand the meaning of each term of dynamic equations.
3. Computational effort in numerical simulations: The kind of operations needed to perform a

numerical simulation of the model.

For each of these characteristics, models K, LE and LI receive a grade from one to five stars, being
awarded five stars to the method that stands out in a given characteristic in relation to others, as shown
in Table I. It must be made clear that this assessment is purely qualitative and entirely based on the
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applications of the approaches to model the Delta mechanism. The intention of presenting this kind
of evaluation is to guide the selection of an appropriate method to model other types of mechanical
systems that have some similarities with the Delta mechanism (which includes, for example, a wide
range of parallel mechanisms).

In terms of derivation, as discussed in Section 5.2, obtaining the expressions of inertia forces by
Lagrange’s approach is much simpler than by the Principle of Virtual Work and Kane’s approaches,
once it only involves partial derivatives of the kinetic energy, which is a scalar function, instead
of requiring the vector expressions of accelerations and angular accelerations. Moreover, model K
also requires an additional factorization to acquire the same matrix form as the model LE. It is also
worth commenting that deriving model LI is even simpler as it does not require obtaining a constraint
matrix.

On the one hand, dealing with the vector expressions of forces, torques, accelerations, angular
accelerations, partial velocities and partial angular velocities, represents a disadvantage in terms of the
derivation of the Principle of Virtual Work and Kane’s formalisms, but on the other hand, it becomes
a great advantage in terms of interpretability, once for each term in the dynamic equations the active
or inertia force associated can be easily identified. This characteristic makes it easier not only to
identify some modelling mistakes during the derivations but also to make eventual simplifications in
the model.

Finally, concerning the computational effort in numerical simulations, it is worth commenting that
the system of equations corresponding to models K and LE had a better performance than the system of
equations of model LI for the simulations presented in Section 5.3. These simulations were performed
in Wolfram Mathematica 8.0, on the same computer. When an algorithm based on Eq. (8) was used
to obtain a constraint matrix, the simulation corresponding to models K and LE took approximately
83% of the time of the simulation corresponding to model LI (five simulations were performed for
each system of equations, resulting in an average time of 1.38 s for the simulations corresponding
to models K and LE, and an average time of 1.65 s for the simulations corresponding to model LI,
considering only the time necessary to run the inverse dynamics functions). It is worth noting that this
additional time observed in the execution of the simulation of model LI is due to the fact that it has
to deal with the inversion of higher order matrices so that in longer simulations, this difference in the
simulation time becomes more relevant. Also, these higher order matrices are characteristically sparse
(with several zero elements) so that, near singular configurations, it is expected that the inversion of
such matrices will be more subjected to numerical errors than the inversion of not so sparse matrices,
as those occurring in the system of equations of models K and LE (this being an evident advantage
for these models).

6. Conclusions
Analytical mechanics methods clearly demonstrate several advantages in comparison with those
derived from vectorial mechanics, mainly when dealing with complex mechanical systems whose
description of constraints is not straightforward. The modelling of the Delta parallel mechanism has
shown that, for closed-loop kinematic chains, a lot of advantages can be obtained from the use of
redundant generalized coordinates. The most relevant of these is the exploration of symmetries in the
system, which significantly simplifies the derivation of both constraint and dynamic equations.

Four modelling methods were analyzed: One based on the Principle of Virtual Work, two based
on Lagrange’s equations and one based on Kane’s formalism. Regarding the two methods based on
Lagrange’s approaches, one has the form of Lagrange’s equations valid for constrained system and
therefore uses the Lagrangian multipliers, while the other employs an explicit matricial formulation
that eliminates these multipliers. In addition, a comparison was conducted to evaluate the capability
of the four methods to deal with constraints and redundant coordinates, the simplicity to implement
the software code, the interpretability of the generated equations and the computational effort in
numerical simulations.

The methods based on Lagrange’s approach have shown a lot of advantages in terms of software-
aided derivation, being easier to manipulate the expressions of kinetic energy and generalized forces
than to work with complex vector expressions of accelerations and angular accelerations as required
in both the Principle of Virtual Work and Kane’s approaches. Regarding the last two methods, it is
important to note that these are operationally similar, although Kane’s formalism adds some algebraic
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technics that enable more options on the choice of variables during the modelling process. In spite of
the fact that these options were not explored here when modelling the Delta parallel mechanism, these
can be very useful to model even more complex systems. In such cases, use of Poincaré’s approach,22

instead of Lagrange’s approach, would be recommended to obtain dynamic equations in the same
variables as in Kane’s formalism in order to conduct fair comparisons.

In the case of the Delta parallel mechanism, once all models were derived by using the same
variables, as expected, Kane’s approach and the Principle of Virtual Work (model K) led to the same
equations as those obtained by Lagrange’s method by using constraint equations in an explicit form
(model LE). The generated model LE was already in an adequate matrix form to develop simulation
algorithms, while model K required additional algebraic work to acquire the same form. On the other
hand, it seems easier to interpret the meaning of each term of the dynamic equations in the derivation
of model K, when compared with model LE.

Comparing Lagrange’s method that uses the constraint equations in explicit form with the one
that uses undetermined multipliers, it is possible to note that the former is slightly more complex
in terms of derivation, depending on the type of algorithm chosen to find a constraint matrix for
each time instant (once some of these algorithms may require more derivation steps). However, for a
symmetrical system such as the Delta parallel mechanism, these further mathematical transformations
can be as simple as the one presented in Eq. (55). Also, using the constraint equations in explicit
form, the number of equations to be simulated numerically is equal to the total number of coordinates
defined, while the use of undetermined multipliers adds more (generally irrelevant) variables and
equations, leading to sparse matrix forms of higher orders (which demand a greater computational
effort for numerical operations). Although no relevant difference was observed in the results of the
performed numerical simulations, this last fact makes Lagrange’s method using constraint equations
in explicit form (without multipliers) the most interesting choice to be used in the modelling of a
closed-loop kinematic chain, such as the Delta parallel mechanism, in terms of numerical simulation
computations.
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